(完整word版)小学奥数解题方法大全
- 格式:pdf
- 大小:1.47 MB
- 文档页数:165
小学奥数解题方法小学奥数解题方法奥数解题方法1有甲、乙、丙三种货物。
如果买甲3件,乙7件,丙1件,共花去3.15元;如果买甲4件,乙10件,丙1件,共花去4.20元。
现在买甲、乙、丙各1件,需要花多少钱?买甲3件,乙7件,丙1件,花3.15元①买甲4件,乙10件,丙1件,花4.20元②要想求出买甲1件,乙1件,丙1件,共需花多少钱,必须使上述①与②中对应的“件数”相差1。
为此,可转化已知条件:将条件①中的每个量都扩大3倍,得:买甲9件,乙21件,丙3件,花9.45元③将条件②中的每个量都扩大2倍,得:买甲8件,乙20件,丙2件,花8.40元④所以,买甲、乙、丙各一件,共需要花的钱数为9.45—8.40=1.05(元)小学奥数解题方法2深圳小学奥数解题方法2——化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况(化大为小),从中分析探寻出问题的规律,以获得问题的答案。
这就是解数学题常用的一种方法,叫做归纳,我们也可以叫做“化大为小找规律”。
10条直线最多可把一个长方形分成多少块?提示:先不考虑10条直线,而是先看1条、2条、3条直线能把一个长方形分成几块?10条直线最多可把一个长方形分成多少块?第一条直线:分成 2 块第二条直线:分成 2+2=4 块第三条直线:分成 2+2+3=7 块10条直线最多可把一个长方形分成多少块?我们发现这样的规律:=2+(2+3+4+5+6+7+8+9+10)=2+54=56(块)这就是说,10条直线可把长方形分为56块。
小学奥数解题方法3小学奥数解题方法——分类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的。
可分为这样几类:(1)以A为左端点的线段共4条,分别是:AB,AC,AD,AE;(2)以B为左端点的线段共3条,分别是:BC,BD,BE;(3)以C为左端点的线段共2条,分别是:CD,CE;(4)以D为左端点的线段有1条,即DE。
奥数解题方法总结
1、形象化画图法:解奥数题时,如果可以科学合理的、科学合理的、巧妙地依靠点、线、面、图、表将小学奥数难题形象化形象的展示出来,将抽象的数量关系具象化,可让学生们非常容易弄清数量关系,沟通交流“”与“”的联系,把握住问题的本质,快速答题
2、倒推法:从题目上述的最后结果考虑,运用标准一步一步向前反推,直至题目中难题及时解决。
3、枚举法:奥数题中常常出现一些数量关系十分特殊题目,用普通的办法难以列式解释,有时候压根列出不来对应的式子来。
人们用枚举法,依据题目的需求,一一列举压根符合要求的数据信息,随后从这当中筛出符合要求的回答。
4、正难那样反:有一些数学题目假如你从标准正脸考虑考虑到有困难,那么你可以更改思考的方位,从结论或问题的背面考虑来考虑事情,使难题及时解决。
5、恰当转化:在解奥数题时,经常要提醒自己,碰到的新问题能不能转化成旧解决问题,化新为旧,通过表面,把握住难题的实质,把问题转化成自身熟悉的难题去解释。
转化的种类有条件转化、难题转化、关联转化、图形转化等。
整体掌握:有一些奥数题,从细节上考虑到,很复杂,也没有必要,如果可以从整体上掌握,宏观上考虑到,根据研究问题的整体方式、整体结构、一部分与整体的相互关系,“只看见山林,看不到花草树木”,来求取问题的解决。
小学奥数解题方法完整版一、引言小学奥数是培养孩子数学思维和解题能力的重要途径。
在面对各种题型和难度的奥数题目时,学生需要了解正确的解题方法。
本文将介绍小学奥数常见的解题方法,帮助学生更好地应对奥数考试。
二、奥数解题方法1. 四则运算四则运算是小学奥数题目中最基本的类型。
在解题时,需要掌握加法、减法、乘法和除法的运算规则。
此外,学生还需了解运算顺序,即先乘除后加减。
2. 分数运算分数运算在小学奥数中也是常见的题型。
在解决分数运算题时,可以使用找最小公倍数、通分、约分等方法来简化计算过程。
同时,还需要熟练掌握分数的加减乘除规则。
3. 算式变换奥数题目中常会涉及算式的变换。
在解题时,可以通过交换律、结合律、分配律等运算法则,将原始算式转化为更简单的形式。
这样能够加快解题速度,提高解题效率。
4. 排列组合排列组合是奥数中的重要概念。
当遇到排列组合问题时,可以运用阶乘、组合数等数学方法来求解。
同时,可以通过画图、列式等方式辅助理解问题,找到更简洁的解题方法。
5. 逻辑推理逻辑推理题目在小学奥数中也经常出现。
解决这类题目时,学生需要运用逻辑思维和分析能力。
可以通过分情况讨论、排除法等方式来找到正确答案。
6. 图形推理图形推理题是小学奥数中较为复杂的题型之一。
解决这类题目需要运用几何知识和图形分析能力。
学生可以通过观察图形的形状、对称性、旋转等特点,找到规律并推理出正确答案。
三、解题技巧除了上述的解题方法外,还有一些解题技巧可以帮助学生更好地解决奥数题目。
1. 多做题目做更多的奥数题目有助于提高解题能力和熟练度。
通过大量练习,学生可以熟悉各类题型的解题方法,掌握常用的技巧和思路。
2. 学会总结每次做完一道题目后,及时总结解题过程中使用的方法和思路。
这样可以帮助学生记住解题思路并且提高解题能力。
3. 理解题意在解题过程中,要仔细阅读题目,理解其中的条件和要求。
只有正确理解题意,才能有针对性地运用相应的解题方法。
【导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、⾯、图、表将奥数问题直观形象的展⽰出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
以下是整理的《⼩学⽣奥数解题⽅法⼤全》相关资料,希望帮助到您。
⼩学⽣奥数解题⽅法篇⼀ 尝试法: 解应⽤题时,按照⾃⼰认为可能的想法,通过尝试,探索规律,从⽽获得解题⽅法,叫做尝试法。
尝试法也叫“尝试探索法”。
⼀般来说,在尝试时可以提出假设、猜想,⽆论是假设或猜想,都要⽬的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结果是什么,从⽽减少尝试的次数,提⾼解题的效率。
在9只规格相同的⼿镯中混有1只较重的假⼿镯。
在⼀架没有砝码的天平上,最多只能称两次,你能把假⼿镯找出来吗?(适于三年级程度) 解:先把9只⼿镯分成A、B、C三组,每组3只。
①把A、B两组放在天平左右两边的秤盘上,如果平衡,则假的1只在C组⾥;若不平衡,则哪组较重,假的就在哪组⾥。
②再把有假⼿镯的那组中的两只分别放在天平的左右秤盘上。
如果平衡,余下的1只是假的;若不平衡,较重的那只是假的。
⼩学⽣奥数解题⽅法篇⼆ 观察法: 在解答数学题时,第⼀步是观察。
观察是基础,是发现问题、解决问题的⾸要步骤。
⼩学数学教材,特别重视培养观察⼒,把培养观察⼒作为开发与培养学⽣智⼒的第⼀步。
观察法,是通过观察题⽬中数字的变化规律及位置特点,条件与结论之间的关系,题⽬的结构特点及图形的特征,从⽽发现题⽬中的数量关系,把题⽬解答出来的⼀种解题⽅法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
看每⼀⾏的前三个数,想⼀想接下去应该填什么数。
(适于⼆年级程度)6、16、26、____、____、____、____。
9、18、27、____、____、____、____。
80、73、66、____、____、____、____。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==小学数学奥数题解题技巧小学数学奥数题的解题方法有很多,掌握这些有效的方法,我们在小学数学奥数考试中就能有更好的表现。
因此,我们在复习小学数学奥数时,对这些重要方法一定要认真进行了解。
一起来看看吧。
1、直观画图法:解小学数学奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。
3、枚举法:奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。
我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。
4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。
5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
6、整体把握:有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。
第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学奥数11种解题方法1、对照法如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。
根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
例2:判断题:能被2除尽的数一定是偶数。
这里要对照“除尽”和“偶数”这两个数学概念。
只有这两个概念全理解了,才能做出正确判断。
2公式法运用定律、公式、规则、法则来解决问题的方法。
它体现的是由一般到特殊的演绎思维。
公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。
但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
例3:计算59×37+12×59+5959×37+12×59+59=59×(37+12+1)…………运用乘法分配律=59×50…………运用加法计算法则=(60-1)×50…………运用数的组成规则=60×50-1×50…………运用乘法分配律=3000-50…………运用乘法计算法则=2950…………运用减法计算法则3比较法通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
小学奥数解题方法大全100道及答案(完整版)题目1:计算1 + 2 + 3 + 4 + …+ 100 的和。
解题方法:使用等差数列求和公式,首项为1,末项为100,公差为1,项数为100。
求和公式为:(首项+ 末项)×项数÷2 。
答案:(1 + 100) ×100 ÷2 = 5050题目2:鸡兔同笼,共有30 个头,88 只脚,求鸡兔各有多少只?解题方法:假设全是鸡,共有脚30×2 = 60 只,比实际少88 - 60 = 28 只。
因为每把一只兔当成鸡,就少算4 - 2 = 2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。
答案:鸡16 只,兔14 只。
题目3:一条路长100 米,从头到尾每隔10 米栽1 棵梧桐树,共栽多少棵树?解题方法:因为两端都栽树,所以棵数= 间隔数+ 1 ,间隔数为100÷10 = 10 ,则棵数为10 + 1 = 11 棵。
答案:11 棵。
题目4:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?解题方法:参加数学或航模小组的人数为15 + 18 - 10 = 23 人,所以两个小组都不参加的人数为40 - 23 = 17 人。
答案:17 人。
题目5:甲乙两数的和是32,甲数的3 倍与乙数的5 倍的和是122,求甲、乙二数各是多少?解题方法:设甲数为x,乙数为y,则x + y = 32 ,3x + 5y = 122 。
将第一个式子乘以3 得到3x + 3y = 96 ,用第二个式子减去这个式子得到2y = 26 ,y = 13 ,则x = 19 。
答案:甲数19,乙数13 。
题目6:一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?解题方法:火车40 秒走的路程= 桥长+ 车长,30 秒走的路程= 山洞长+ 车长。
小学奥数解题方法大全一、加减法解题方法在小学奥数中,加减法是最基础也是最常见的题型。
以下是几种常用的解题方法:1. 竖式计算法竖式计算法是最常用的加减法解题方法,适用于任何数值大小的计算。
先将两个数竖式排列,逐位相加或相减,并按进位或借位的要求进行计算。
2. 寻找相反数法有时候,我们可以通过寻找相反数的方法来简化计算。
例如,对于一个加法题目3 + 7,我们可以通过找到7的相反数-7,然后用3 - 7的方式进行计算,得到的结果再取相反数即可。
3. 进退相等法进退相等法适用于一些特殊的加减法题目。
当两个数相差一致(如8和9)时,我们可以采用进退相等法来计算。
比如计算8 + 9,我们可以将9退1,变成8 + 8 = 16,然后再加上1,即可得到17。
二、乘法解题方法乘法是小学奥数中较为复杂的题型。
以下是几种常用的解题方法:1. 分解因数法对于一个较大的乘法题目,我们可以将其中一个数拆分成多个因数的乘积,然后再进行计算。
例如,计算36 × 4,我们可以将36分解成6 × 6,然后计算6 × 4 × 6 = 144。
2. 组合乘法法则组合乘法法则适用于一些特殊的乘法题目。
例如,计算12 × 7,我们可以将12拆分成10 + 2,然后计算(10 × 7) + (2 × 7) = 70 + 14 = 84。
3. 巧用倍数关系在一些乘法题目中,我们可以巧妙地运用倍数关系来简化计算。
例如,计算8 × 25,我们可以将8拆分成2 × 4,然后计算(2 × 25) × 4 =50 × 4 = 200。
三、除法解题方法除法是小学奥数中较为复杂的题型之一。
以下是几种常用的解题方法:1. 精确除法精确除法是最常用的除法解题方法。
根据除法的定义,将被除数除以除数,得到的商和余数就是精确除法的结果。
2. 简化除法有时候,我们可以通过简化运算来进行除法计算。
目录第一讲奇妙的幻方 (3)练习卷 (9)第二讲可能性的大小(游戏与对策) (10)练习卷 (12)第三讲图形的面积(一) (13)第四讲认识分数 (17)练习卷 (21)第五讲行程中的相遇(相遇问题) (22)练习卷 (26)第六讲公因数与公倍数 (27)综合演练 (31)第一讲幻方(第一课时)【知识概述】在一个n×n的正方形方格中,填入一些连续的数字,使得所有的横、竖、斜列所加之和都相等,这样的正方形方格叫做幻方。
幻方一般分为奇数幻方和偶数幻方。
(n 是几就表示为几阶幻方)。
本讲,我们将来学习这方面的知识。
例题讲学例1在一个3×3的表格内,填入1-9九个数,(不能重复,不能遗漏),使得3个横列、3个竖列和2个斜列所加之和都相等。
可以怎样填?【和为15】【思路分析】这样的3×3幻方,在填写时有一定的规律和口诀:二、四为肩,六、八为足,左七右三,戴九履一,五为中央。
【注:戴指头,履指脚。
】试试填一填吧!幻方 (第二课时)知识概述:上一讲中,我们讲述了如何填写3×3的幻方,其实在幻方的知识世界里,像3×3、5×5、7×7……像这样幻方,称之为奇数幻方,这一讲我们将来学习如何填写五阶幻方。
例题:在一个5×5的方格中,填入1-25这25个数字,使5个横列、5个竖列、2个斜列所加之和都相等。
先试试看!看 样 子 ,要 想 顺 利 填 写 好 这 么 多 的 表格,还真 的 不容易,没有 口诀 真 的 不行,下 面这 个 口诀 要 记 牢:一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。
你能按顺序继续写下去吗?试试看吧!幻方(第三课时)根据上讲中的方法,把口诀运用到所有的奇数幻方中,可以继续填写七阶幻方、九阶幻方、十一阶幻方……,本讲,我们继续试着填写七阶幻方和九阶幻方。
【思路点拨】再来重温一下口诀吧!一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。
小学奥数21类难题汇总,附解题思路题型一:归一问题【含义】在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
【数量关系】总量÷份数=单一量单一量×所占份数=所求几份的数量或总量A÷(总量B÷份数B)=份数A【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。
【例】买5支铅笔需要0.6元钱,买同样的铅笔16支,需要多少钱?解:先求出一支铅笔多少钱——0.6÷5=0.12(元)再求买16支铅笔需要多少钱——0.12×16=1.92(元)综合算式:0.6÷5×16=0.12×16=1.92(元)题型二:归总问题【含义】解题时先找出“总数量”,再根据已知条件解决问题的题型。
所谓“总数量”可以指货物总价、几天的工作量、几亩地的总产量、几小时的总路程等。
【数量关系】1份数量×份数=总量总量÷一份数量=份数【解题思路】先求出总数量,再解决问题。
【例】服装厂原来做一套衣服用布3.2米,改进剪裁方法后,每套衣服用布2.8米。
问原来做791套衣服的布,现在可以做多少套衣服?解:先求这批布总共多少米——3.2×791=2531.2(米)再求现在可以做多少套——2531.2÷2.8=904(套)综合算式:3.2×791÷2.8=904(套)题型三:和差问题【含义】已知两个数量的和与差,求这两个数量各是多少。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:直接套用公式——甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)题型四:和倍问题【含义】已知两个数的和及“大数是小数的几倍(或小数是大数的几分之几)”,求这两个数各是多少。
专题三组合图形的面积计算1.等量代换法一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。
前者是等量公理,后者是减法的差不变性质。
这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。
例1小两个正方形组成下图所示的组合图形。
已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。
例2两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。
例3 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO与三角形EFO的面积之差。
例4在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。
求ED的长。
例5左下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。
2.割补法在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。
就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。
、例6求下列各图中阴影部分的面积:例7如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。
求这个梯形的面积。
例8下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40厘米2。
求乙正方形的面积。
作业:1.左下图中,等腰直角三角形ABC的腰为10厘米,以C为圆心、CF为半径画弧线EF,组成扇形CEF。
如果图中甲、乙两部分的面积相等,那么扇形所在的圆的面积是多少?2.右上图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积。
小学奥数21类难题汇总,附解题思路题型一:归一问题【含义】在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
【数量关系】总量÷份数=单一量单一量×所占份数=所求几份的数量或总量A÷(总量B÷份数B)=份数A【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。
【例】买5支铅笔需要0.6元钱,买同样的铅笔16支,需要多少钱?解:先求出一支铅笔多少钱——0.6÷5=0.12(元)再求买16支铅笔需要多少钱——0.12×16=1.92(元)综合算式:0.6÷5×16=0.12×16=1.92(元)题型二:归总问题【含义】解题时先找出“总数量”,再根据已知条件解决问题的题型。
所谓“总数量”可以指货物总价、几天的工作量、几亩地的总产量、几小时的总路程等。
【数量关系】1份数量×份数=总量总量÷一份数量=份数【解题思路】先求出总数量,再解决问题。
【例】服装厂原来做一套衣服用布3.2米,改进剪裁方法后,每套衣服用布2.8米。
问原来做791套衣服的布,现在可以做多少套衣服?解:先求这批布总共多少米——3.2×791=2531.2(米)再求现在可以做多少套——2531.2÷2.8=904(套)综合算式:3.2×791÷2.8=904(套)题型三:和差问题【含义】已知两个数量的和与差,求这两个数量各是多少。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。
【例】甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:直接套用公式——甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)题型四:和倍问题【含义】已知两个数的和及“大数是小数的几倍(或小数是大数的几分之几)”,求这两个数各是多少。
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
9、18、27、____、____、____、____。
80、73、66、____、____、____、____。
解:观察6、16、26这三个数可发现,6、16、26的排列规律是:16比6大10,26比16大10,即后面的每一个数都比它前面的那个数大10。
观察9、18、27这三个数可发现,9、18、27的排列规律是:18比9大9,27比18大9,即后面的每一个数都比它前面的那个数大9。
观察80、73、66这三个数可发现,80、73、66的排列规律是:73比80小7,66比73小7,即后面的每一个数都比它前面的那个数小7。
这样可得到本题的答案是:6、16、26、36、46、56、66。
9、18、27、36、45、54、63。
80、73、66、59、52、45、38。
例3将1~9这九个数字填入图1-6的方框中,使图中所有的不等号均成立。
(适于三年级程度)解:仔细观察图中不等号及方框的排列规律可发现:只有中心的那个方框中的数小于周围的四个数,看来在中心的方框中应填入最小的数1。
再看它周围的方框和不等号,只有左下角的那个方框中的数大于相邻的两个方框中的数,其它方框中的数都是一个比一个大,而且方框中的数是按顺时针方向排列越来越小。
所以,在左下角的那个方框中应填9,在它右邻的方框中应填2,在2右面的方框中填3,在3上面的方框中填4,以后依次填5、6、7、8。
图1-7是填完数字的图形。
例4从一个长方形上剪去一个角后,它还剩下几个角?(适于三年级程度)解:此题不少学生不加思考就回答:“一个长方形有四个角,剪去一个角剩下三个角。
”我们认真观察一下,从一个长方形的纸上剪去一个角,都怎么剪?都是什么情况?(1)从一个角的顶点向对角的顶点剪去一个角,剩下三个角(图1-8)。
(2)从一个角的顶点向对边上任意一点剪去一个角,剩下四个角(图1-9)。
(3)从一个边上任意一点向邻边上任意一点剪去一个角,剩下五个角(图1-10)。
例5甲、乙两个人面对面地坐着,两个人中间放着一个三位数。
这个三位数的每个数字都相同,并且两人中一个人看到的这个数比另一个人看到的这个数大一半,这个数是多少?(适于三年级程度)解:首先要确定这个三位数一定是用阿拉伯数字表示的,不然就没法考虑了。
甲看到的数与乙看到的数不同,这就是说,这个三位数正看、倒看都表示数。
在阿拉伯数字中,只有0、1、6、8、9这五个数字正看、倒看都表示数。
这个三位数在正看、倒看时,表示的数值不同,显然这个三位数不能是000,也不能是111和888,只可能是666或999。
如果这个数是666,当其中一个人看到的是666时,另一个人看到的一定是999,999-666=333,333正好是666的一半。
所以这个数是666,也可以是999。
*例6 1966、1976、1986、1996、2006这五个数的总和是多少?(适于三年级程度)解:这道题可以有多种解法,把五个数直接相加,虽然可以求出正确答案,但因数字大,计算起来容易出错。
如果仔细观察这五个数可发现,第一个数是1966,第二个数比它大10,第三个数比它大20,第四个数比它大30,第五个数比它大40。
因此,这道题可以用下面的方法计算:1966+1976+1986+1996+2006=1966×5+10×(1+2+3+4)=9830+100=9930这五个数还有另一个特点:中间的数是1986,第一个数1966比中间的数1986小20,最后一个数2006比中间的数1986大20,1966和2006这两个数的平均数是1986。
1976和1996的平均数也是1986。
这样,中间的数1986是这五个数的平均数。
所以,这道题还可以用下面的方法计算:1966+1976+1986+1996+2006=1986×5=9930例7你能从400÷25=(400×4)÷(25×4)=400×4÷100=16中得到启发,很快算出(1)600÷25(2)900÷25(3)1400÷25(4)1800÷25(5)7250÷25的得数吗?(适于四年级程度)解:我们仔细观察一下算式:400÷25=(400×4)÷(25×4)=400×4÷100=16不难看出,原来的被除数和除数都乘以4,目的是将除数变成1后面带有0的整百数。
这样做的根据是“被除数和除数都乘以一个相同的数(零除外),商不变”。
进行这种变化的好处就是当除数变成了1后面带有0的整百数以后,就可以很快求出商。
按照这个规律,可迅速算出下列除法的商。
(1)600÷25(2)900÷25=(600×4)÷(25×4) =(900×4)÷(25×4)=600×4÷100=900×4÷100=24 =36(3)1400÷25(4)1800÷25=(1400×4)÷(25×4) =(1800×4)÷(25×4)=1400×4÷100=1800×4÷100=56 =72(5)7250÷25=(7250×4)÷(25×4)=29000÷100=290*例8把1~1000的数字如图1-11那样排列,再如图中那样用一个长方形框框出六个数,这六个数的和是87。
如果用同样的方法(横着三个数,竖着两个数)框出的六个数的和是837,这六个数都是多少?(适于五年级程度)解:(1)观察框内的六个数可知:第二个数比第一个数大1,第三个数比第一个数大2,第四个数比第一个数大7,第五个数比第一个数大8,第六个数比第一个数大9。
假定不知道这几个数,而知道上面观察的结果,以及框内六个数的和是87,要求出这几个数,就要先求出六个数中的第一个数:(87-1-2-7-8-9)÷6=10求出第一个数是10,往下的各数也就不难求了。
因为用同样的方法框出的六个数之和是837,这六个数之中后面的五个数也一定分别比第一个数大1、2、7、8、9,所以,这六个数中的第一个数是:(837-1-2-7-8-9)÷6=810÷6=135第二个数是:135+1=136第三个数是:135+2=137第四个数是:135+7=142第五个数是:135+8=143第六个数是:135+9=144答略。
(2)观察框内的六个数可知:①上、下两数之差都是7;②方框中间坚行的11和18,分别是上横行与下横行三个数的中间数。
11=(10+11+12)÷318=(17+18+19)÷3所以上横行与下横行两个中间数的和是:87÷3=29由此可得,和是837的六个数中,横向排列的上、下两行两个中间数的和是:837÷3=279因为上、下两个数之差是7,所以假定上面的数是x,则下面的数是x+7。
x+(x+7)=2792x+7=279=272x=272÷2=136x+7=136+7=143因为上一横行中间的数是136,所以,第一个数是:136-1=135第三个数是:135+2=137因为下一横行中间的数是143,所以,第四个数是:143-1=142第六个数是:142+2=144答略。
*例9有一个长方体木块,锯去一个顶点后还有几个顶点?(适于五年级程度)解:(1)锯去一个顶点(图1-12),因为正方体原来有8个顶点,锯去一个顶点后,增加了三个顶点,所以,8-1+3=10即锯去一个顶点后还有10个顶点。
(2)如果锯开的截面通过长方体的一个顶点,则剩下的顶点是8-1+2=9(个)(图1-13)。
(3)如果锯开的截面通过长方体的两个顶点,则剩下的顶点是8-1+1=8(个)(图1-14)。
(4)如果锯开的截面通过长方体的三个顶点,则剩下的顶点是8-1=7(个)(图1-15)。
例10将高都是1米,底面半径分别是 1.5米、1米和0.5米的三个圆柱组成一个物体(图1-16),求这个物体的表面积S。
(适于六年级程度)解:我们知道,底面半径为γ,高为h的圆柱体的表面积是2πγ2+2πγh。
本题的物体由三个圆柱组成。
如果分别求出三个圆柱的表面积,再把三个圆柱的表面积加在一起,然后减去重叠部分的面积,才能得到这个物体的表面积,这种计算方法很麻烦。
这是以一般的观察方法去解题。