排列与组合的综合应用题共44页
- 格式:ppt
- 大小:3.72 MB
- 文档页数:44
组合与排列的综合运用(四)在综合运用中,组合与排列是非常重要的概念。
它们在数学问题、实际应用中都能发挥巨大的作用。
本文将介绍一些关于组合与排列的综合运用问题,并探讨它们在实际生活中的应用。
一、赛车比赛假设有8辆赛车参加一场比赛。
比赛结束后,需要为这8辆赛车进行名次的排名。
这个排名又受到一些规定的限制:第一名必须是车号为1的赛车,而第二名必须是车号为2的赛车。
现在,我们需要计算有多少种不同的排名方式满足上述条件。
解法:根据题目要求,首先确定了两个名次的车辆。
剩下的车辆(6辆)可以按照任意顺序排在第三名到第八名。
因此,我们只需要计算剩下车辆的排列情况。
根据排列的原理,剩下的6辆车的排列数为6! (6的阶乘)。
综合起来,总的排列数为2 * 6! = 1440。
所以,满足条件的排名方式有1440种。
二、购物方案小明准备去商场购买衣物。
商场有3件上衣和4条裤子可供选择。
小明想要购买一套衣物,其中上衣和裤子都不能重复。
现在,我们需要计算小明有多少种不同的购物方案。
解法:根据题目要求,我们需要进行组合运算。
小明可以从3件上衣中选择1件,从4条裤子中选择1条,然后将它们组合在一起。
根据组合的原理,选择1件上衣的可能性为C(3,1),选择1条裤子的可能性为C(4,1)。
综合起来,小明有C(3,1) * C(4,1) = 3 * 4 = 12 种不同的购物方案。
小节:组合与排列是数学中非常重要的概念,它们在实际应用中发挥着巨大作用。
通过以上两个例子,我们可以看到组合与排列在问题求解中的灵活运用。
无论是赛车比赛还是购物方案,都需要考虑到各种限制条件。
在解题过程中,我们要根据题目要求,灵活运用组合与排列的原理,进行计算。
组合与排列的综合运用不仅仅局限于数学问题,它们在实际生活中也具有广泛的应用。
比如,在人员分组、活动安排、商品搭配等方面,都需要考虑到组合与排列的原理。
因此,掌握组合与排列的综合运用对于我们解决问题、提高思维能力都是非常有益的。
6.2.3 排列组合的综合运用(精练)【题组一全排列】1.(2020·中山大学附属中学高二期中)一个市禁毒宣传讲座要到4个学校开讲,一个学校讲一次,不同的次序种数为( )A.4 B.44C.24 D.482.(2020·全国高二单元测试)3名学生报名参加篮球、足球、排球、计算机课外兴趣小组,每人选报一门,则不同的报名方案有________种.3.(2020·上海高二专题练习)若把英文单词“hello”的字母的顺序写错了,则可能出现的错误共有_________种.4.(2021·浙江衢州市)将9个相同的球放到3个不同的盒子中,每个盒子至少放一个球,且每个盒子中球的个数互不相同,则不同的分配方法共有________种.5.(2020·天津河西区·高二期中)学校要安排一场文艺晚会的11个节目的演出顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,则不同的排法有_____种.(用数字作答)6.(2020·河南)2020年新型冠状病毒肆虐全球,目前我国疫情已经得到缓解,为了彰显我中华民族的大爱精神,我国决定派遣具有丰富抗击疫情经验的四支不同的医疗队A、B、C、D,前往四个国家E、F、G、H进行抗疫技术指导,每支医疗队到一个国家,那么总共有______(请用数字作答)种的不同的派遣方法.如果已知A医疗队被派遣到H国家,那么此时B医疗队被派遣到E国的概率是______.【题组二相邻问题】1.(2020·沙坪坝区·重庆八中)小涛、小江、小玉与本校的另外2名同学一同参加《中国诗词大会》的决赛,5人坐成一排,若小涛与小江、小玉都相邻,则不同坐法的总数为()A.6 B.12 C.18 D.242.(2020·宁夏吴忠市·吴忠中学高二期末)将A,B,C,D,E,F这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A.112B.15C.115D.2153.(2020·陕西彬州市·高二月考)5个男生,2个女生排成一排,若女生不能排在两端,但又必须相邻,则不同的排法种数为A.480B.720C.960D.14404.(2020·广东广州市)2020年初,全国各大医院抽调精兵强将前往武汉参加新型冠状病毒肺炎阻击战,各地医护人员分别乘坐6架我国自主生产的“运20”大型运输机,编号为1,2,3,4,5,6号,要求到达武汉天河飞机场时,每五分钟降落一架,其中1号与6号相邻降落,则不同的安排方法有()A.60 B.120 C.144 D.2405.(2020·莒县教育局教学研究室高二期中)3名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为()A.2B.9C.72D.366.(2020·江苏宿迁市·宿迁中学高二期中)三位女歌手和她们各自的指导老师合影,要求每位歌手与她们的老师站一起,这六人排成一排,则不同的排法数为()A.24 B.48 C.60 D.96【题组三不相邻问题】1.(2020·全国)六个人排队,甲乙不能排一起,丙必须排在前两位的概率为()A.760B.16C.1360D.142.(2020·全国)将编号为1、2、3、4、5的5个小球全部放入A、B、C三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有()A.42B.36C.48D.603.(2020·全国)某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有()A.72种B.48种C.36种D.24种4.(2020·防城港市防城中学高二期中)5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为()A.72B.48C.24D.605..(2020·北京丰台区·高二期末)某活动中需要甲、乙、丙、丁4名同学排成一排.若甲、乙两名同学不相邻,则不同的排法种数为_________.(用数字作答)6.(2020·上海)2位女生3位男生排成一排,则2位女生不相邻的排法共有______种.7.(2020·安徽省太和第一中学高二月考(理))将A,B,C,D,E五个字母排成一排,若A与B相邻,且A与C不相邻,则不同的排法共有__种.8.(2020·博兴县第三中学高二月考)某班上午有五节课,分别安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,则不同排课法的种数是___________【题组四分组分配】1.(2020·全国)将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法.2.(2020·全国)将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有________种.(用数字作答)3(2020·福建省泰宁第一中学高二月考)五一劳动节期间,5名游客到三个不同景点游览,每个景点至少有一人,至多两人,则不同的游览方法共有___________种.(用数字填写答案)4.(2020·全国)把5张不同的电影票分给4个人,每人至少一张,则不同的分法种数为________.5.(2020·全国)从6个人中选4个人值班,第一天1个人,第二天1个人,第三天2个人,共有多少种排法_________.6.(2020·重庆北碚区·西南大学附中高二期中)某学校安排5名高三教师去3个学校进行交流学习,且每位教师只去一个学校,要求每个学校至少有一名教师进行交流学习,则不同的安排方式共有______种.7.(2020·全国)2020年是全面建成小康社会目标实现之年,是脱贫攻坚收官之年根据中央对“精准扶贫”的要求,某市决定派5名党员和3名医护人员到三个不同的扶贫村进行调研,要求每个扶贫村至少派党员和医护人员各1名,则所有不同的分派方案种数为________________.(用数字作答).【题组五 几何问题】1.(2021·全国)直线x m =,y x =将圆面224x y +≤分成若干块,现有5种颜色给这若干块涂色,且任意两块不同色,则所有可能的涂色种数是( )A .20B .60C .120D .2402.(2021·安徽省)224x y +≤表示的平面区域内,以横坐标与纵坐标均为整数的点为顶点,可以构成的三角形个数为( )A .286B .281C .256D .1763.(2020·全国高二单元测试)以一个正方体的顶点为顶点的四面体的个数为( )A .70B .64C .58D .52【题组六 方程不等式问题】1.(2021·太原市)不定方程12x y z ++=的非负整数解的个数为( )A .55B .60C .91D .5402.(2021·湖北)若方程12348x x x x +++=,其中22x =,则方程的正整数解的个数为A .10B .15C .20D .30【题组七 数字问题】1.已知集合{}A a b c d =,,,,从集合A 中任取2个元素组成集合B ,则集合B 中含有元素b 的概率为( )A .16 B .13 C .12 D .12.如果一个四位数的各位数字互不相同,且各位数字之和等于10,则称此四位数为“完美四位数(如1036),则由数字0,1,2,3,4,5,6,7构成的“完美四位数”中,奇数的个数为( )A .12B .44C .58D .763.从数字0,1,2,3,4,5,6中任取3个,这3个数的乘积为偶数时的不同取法共有______种(用数字作答).4.已知{}1,2,3,4,5,,,M m M n M m n =∈∈≠,则方程221x y m n +=表示焦点在x 轴上的椭圆的概率是_______ .5.(2021·宁波市)有写好数字2,2,3,3,5,5,7,7的8张卡片,任取4张,则可以组成不同的四位数的个数为_________.6.(2020·江西省信丰中学)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.。
排列与组合双基训练*1.已知2n A =132,则n=( ).【1】(A)11 (B) -11 (C)12 (D)-12*2.2n+1A 与3n A 的大小关系是( )。
【1】(A) 2n+1A >3n A (B) 2n+1A <3n A(C) 2n+1A =3n A (D)不确定*3.四名学生编入两个班级,不同的编法有( )。
【1】(A)12种 (B)14种 (C)16种 (D)25种*4.从1~9这9个自然数中,任取3个数作数组(a,b,c),且a>b>c ,则不同的数组共有( )。
【2】(A)21组 (B)28组 (C)84组 (D)343组*5.5本不同的中文书,4本不同的数学书,3本不同的英语书,每类书各取1本,不同的取法有( )。
【1】(A)3种 (B)12种 (C)60种 (D)120种*6.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法有( )。
【1】(A)4种 (B)5种 (C)6种 (D)7种*7.如图9-1,用4种不同的颜色涂入图中的矩形A 、B 、C 、D 中,要求相邻的矩形涂色不同,则不同的涂色方法共有( )。
【1】(A)72种 (B)48种 (C)24种 (D)12种*8.沿着长方体的棱,从一个顶点到它相对的另一个顶点的最近路线有( )。
【1】(A)3条 (B)4条 (C)5条 (D)6条*9.用数字0,1,2,3,4,5组成没有重复数字的四位数,其中是25的倍数的数共有( )。
【1】(A)9个 (B)12个 (C)24个 (D)21个*10.取1,2,3,4,5这5个数字中的2个分别作为一个对数的底数和真数,则所得的不同的值的个数为( )。
【1】(A)12 (B)13 (C)16 (D)20*11.100件产品中有97件合格品,从中任取5件检验,至少有2件是次品的抽法种数为( )。
【1】(A)322310031003C C +C C (B)5510057C -C(C)554110097973C -C -C C (D)512100973C -2C -C*12.用1,3,5三个数字中的数组成无重复数字的自然数,再以这些自然数中的若干个为元素组成非空集合,这样的集合个数是( )。
小学数学《排列组合的综合应用》练习题(含答案)例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有 5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有 5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有 15+10+ 6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2C47+6C37+3C27+C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.习题六解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.五点共线有4组,四点共线的有9组,三点共线的有8组,利用排除法:C320-4C35-9C34-8C33=1140-4×10-9×4-8=1056.6.因为任一张人民币的币值都大于所有币值比它小的人民币的币值的和,例如1角的大于1分、2分、5分的和,因此不论取多少张,它们组成的币值都不重复,所以组成的币值与组合总数一致,有C110+C210+……+C1010=210-1=1023种.因为由这些人民币能组成的最小的币值是1分,最大的币值是十张币值的和,即1888分,而1023<1888,可见从1分到1888分中间有一些币值不能组成.。
专题强化训练(一) 排列、组合的综合应用(建议用时:40分钟)一、选择题1.设4名学生报名参加同一时间安排的3项课外活动方案有a 种,这4名学生在运动会上共同争夺100米、跳远、铅球3项比赛的冠军的可能结果有b 种,则(a ,b )为( )A .(34,34)B .(43,34)C .(34,43)D .(A 34,A 34)C [由题意知本题是一个分步乘法问题,首先每名学生报名有3种选择,根据分步乘法计数原理知4名学生共有34种选择,每项冠军有4种可能结果,根据分步乘法计数原理知3项冠军共有43种可能结果.故选C.]2.若C 3n =C 4n ,则n !3!(n -3)!的值为( ) A .1B .20C .35D .7 C [若C 3n =C 4n ,则n (n -1)(n -2)3×2×1=n (n -1)(n -2)(n -3)4×3×2×1,可得n =7, 所以n !3!(n -3)!=7!3!4!=7×6×53×2×1=35.] 3.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为( )A .C 23C 397B .C 23C 397+C 33C 297 C .C 5100-C 13C 497D .C 5100-C 597 B [根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C 23C 397种,“有3件次品”的抽取方法有C 33C 297种,则共有C 23C 397+C 33C 297种不同的抽取方法,故选B.]4.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种D [和为偶数共有3种情况:取4个数均为偶数有C 44=1种取法;取2奇数2偶数有C 24·C 25=60种取法;取4个数均为奇数有C 45=5种取法,故共有1+60+5=66种不同的取法.]5.登山运动员10人,平均分为两组,其中熟悉道路的有4人,每组都需要2人,那么不同的分配方法种数是( )A .60B .120C .240D .480A [先将4个熟悉道路的人平均分成两组有C 24·C 22A 22种.再将余下的6人平均分成两组有C 36·C 33A 22种.然后这四个组自由搭配还有A 22种,故最终分配方法有12C 24·C 36=60(种).] 二、填空题6.有8名男生和3名女生,从中选出4人分别担任语文、数学、英语、物理学科的课代表,若某女生必须担任语文课代表,则不同的选法共有________种.(用数字作答)720 [由题意知,从剩余10人中选出3人担任3个学科课代表,有A 310=720种.]7.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有________种.20 [分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C 23=6种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C 24=12种情形.所有可能出现的情形共有2+6+12=20(种).]8.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方法共有________种.(用数字作答)96 [甲传第一棒,乙传最后一棒,共有A 44种方法.乙传第一棒,甲传最后一棒,共有A 44种方法.丙传第一棒,共有C 12·A 44种方法.由分类计数原理得,共有A 44+A 44+C 12·A 44=96(种)方法.]三、解答题9.现有5名教师要带3个不同的兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,求不同的带队方案有多少种?[解] 第一类,把甲、乙看做一个复合元素,和另外的3人分配到3个小组中,有C 23A 33=18(种),第二类,先把另外的3人分配到 3个小组,再把甲、乙分配到其中2个小组,有A 33A 23=36(种),根据分类加法计数原理可得,共有18+36=54(种).10.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?[解](1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680种.(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16·C34·A44=576种.1.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216 C.180D.162C[分两类:第一类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C23·C22·A44=72(个)符合要求的四位数;第二类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C12·C23·(A44-A33)=108(个)符合要求的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个),故选C.]2.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲、乙同时参加时,他们两人的发言不能相邻,那么不同发言顺序的排法种数为() A.360 B.520C.600 D.720C[根据题意,可分两种情况讨论:①甲、乙两人中只有一人参加,有C12·C35·A44=480(种)情况;②甲、乙两人都参加,有C22·C25·A44=240(种)情况,其中甲、乙两人的发言相邻的情况有C22·C25·A33·A22=120(种).故不同发言顺序的排法种数为480+240-120=600.] 3.将10个运动员名额分给7个班,每班至少1个,则不同的分配方案的种数为________.84[因为10个名额没有差别,把它们排成一排,相邻名额之间形成9个空隙.在9个空隙中选6个位置插隔板,可把名额分成7份,对应地分给7个班.每一种插板方法对应一种分配方案,则共有C69=C39=9×8×73×2×1=84种分配方案.] 4.某科技小组有六名学生,现从中选出三人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为________.2[设男生人数为x,则女生有(6-x)人.依题意C36-C3x=16,即6×5×4=x(x-1)(x-2)+16×6,所以x(x-1)(x-2)=2×3×4,解得x=4,即女生有2人.]5.有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)共有几种放法?(2)恰有2个盒子不放球,有几种放法?[解](1)44=256(种).(2)恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中,有两类放法;第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C34种,再放到2个小盒中有A24种放法,共有C34A24种方法;第二类,2个盒子中各放2个小球有C24C24种放法,故恰有2个盒子不放球的方法共有C34A24+C24C24=84种放法.。
排列和组合的基本计算练习题一、排列问题1. 从5个人中选取3个人排成一队,共有多少种排列方式?2. 一个由字母A、B、C、D、E组成的五位密码,每位密码不能重复,共有多少种排列方式?3. 一个班级有10个学生,要选取3名学生作为班级委员,共有多少种不同的委员组合?4. 一张音乐专辑中有10首歌曲,其中要选择5首歌曲放入一个播放列表,共有多少种不同的组合方式?5. 某公司有8个部门,要从8个部门中选取3个部门安排一次合作项目,共有多少种不同的组合方式?二、组合问题1. 一个有6个红球和4个蓝球的盒子,从中随机选取3个球,共有多少种不同的组合方式?2. 一家餐厅有7种汤和5种主菜,顾客可以选择一种汤和一种主菜组成一份套餐,共有多少种不同的组合方式?3. 一个班级有20个学生,要选取4个学生组成一个数学小组,共有多少种不同的小组组合?4. 一家服装店有8件上衣和6条裤子,如果一位顾客要买一件上衣和一条裤子,共有多少种不同的购买组合方式?5. 在一个农场,有9只鸡和5只鸭子,从中选取4只禽类作为宠物,共有多少种不同的组合方式?三、排列与组合的混合问题1. 一本书包含10个篇章,其中6个篇章是数学相关的,4个篇章是文学相关的。
要选择4个篇章开设一个讲座,共有多少种不同的组合方式,假设篇章顺序不重要?2. 一个班级有10个男生和12个女生,要从中选出一个男生和一个女生组成一对表演参赛,共有多少种不同的组合方式?3. 一家酒店有5间大床房和8间双人床房,要为一个团体安排3间房间,共有多少种不同的房间分配方式?4. 一条项链由6颗红宝石和4颗蓝宝石组成,要选择3颗宝石制作一条手链,共有多少种不同的组合方式?5. 一家餐厅有10种主菜和8种甜品,要选择一种主菜和一种甜品作为套餐,共有多少种不同的组合方式?。
排列与组合经典例题一.选择题(共16小题)1.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法种数为()A.36B.64C.72D.812.在8张奖券中有一等奖2张,二、三等奖各1张,其余4张无奖,将这8张奖券分配给4个人,每人2张,则不同的获奖情况数为()A.120B.96C.148D.2163.6名大学生分配到4所学校实习,每名大学生只分配到一所学校,每所学校至少分配1名大学生,则不同的分配方案共有()A.65B.1560C.2640D.45604.某校选派4名干部到两个街道服务,每人只能去一个,每个街道至少1人,有多少种方法()A.10B.14C.16D.185.为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有()种.A.40B.24C.20D.126.现将A、B、C、D、E、F六个字母排成一排,要求A、B相邻,且B、C不相邻,则不同的排列方式有()种.A.192B.240C.120D.287.春节期间,某地政府在该地的一个广场布置了一个如图所示的圆形花坛,花坛分为5个区域.现有5种不同的花卉可供选择,要求相邻区域不能布置相同的花卉,且每个区域只布置一种花卉,则不同的布置方案有()A.120种B.240种C.420种D.720种8.现要从A,B,C,D,E这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A 不能安排在甲岗位上,则安排的方法有()A.56种B.64种C.72种D.96种9.甲、乙、丙3人去食堂用餐,每个人从A,B,C,D,E这5种菜中任意选用2种,则A 菜有2人选用、B菜有1人选用的情形共有()A.54B.81C.135D.16210.从1,2,3,0这四个数中取三个组成没有重复数字的三位数,则这些三位数的和为()A.1332B.2544C.3560D.386411.已知m,n∈N*,下列排列组合公式中,不一定正确的是()A.B.C.D.12.有5名学生全部分配到4个地区进行社会实践,且每名学生只去一个地区,其中A地区分配了1名学生的分配方法共()种A.120B.180C.405D.78113.从a、b、c中任取两个不同字母排成一列,则不同的排列种数为()A.3B.4C.5D.614.6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到一个社区,每个社区至少分配一名志愿者且人数各不相同,不同的分配方案共有()A.540种B.360种C.180种D.120种15.某市聘请6名农业专家安排到三个乡镇作指导,每个乡镇至少一人,则安排方案的种数是()A.495B.540C.630D.72016.某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A.72B.36C.24D.122023年03月19日吾疯癫的高中数学组卷参考答案与试题解析一.选择题(共16小题)1.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法种数为()A.36B.64C.72D.81【解答】解:依题意可知,其中一个小区必安排2名同学,则先把4名同学分成“1,1,2”的组合,有种方式,再将这三组安排到3个小区,有种方式,所以符合题意的不同的安排方法种数为6×6=36种.故选:A.2.在8张奖券中有一等奖2张,二、三等奖各1张,其余4张无奖,将这8张奖券分配给4个人,每人2张,则不同的获奖情况数为()A.120B.96C.148D.216【解答】解:分类讨论,2人中奖,3人中奖,4人中奖的情况;2人中奖,1人中2个一等奖,1人中1个二等奖,1个三等奖;另外两人不中奖,不同的获奖情况数为:=12;1人中1个一等奖1个二等奖,1人中1个一等奖1个三等奖;另外两人不中奖,不同的获奖情况数为:=12;3人中奖,1人中2个一等奖,1人中1个二等奖,1人中1个三等奖;余下1人不中奖,不同的获奖情况数为:=24;1人中1个一等奖1个二等奖,1人中1个一等奖,1人中1个三等奖;余下1人不中奖,不同的获奖情况数为:=24;1人中1个一等奖1个三等奖,1人中1个一等奖,1人中1个二等奖;余下1人不中奖,不同的获奖情况数为:=24;1人中1个二等奖1个三等奖,1人中1个一等奖,1人中1个一等奖;余下1人不中奖,不同的获奖情况数为:=12;4人中奖,不同的获奖情况数为:=12;共有120种.故选:A.3.6名大学生分配到4所学校实习,每名大学生只分配到一所学校,每所学校至少分配1名大学生,则不同的分配方案共有()A.65B.1560C.2640D.4560【解答】解:6名大学生分配到4所学校实习,每名大学生只分配到一所学校,每所学校至少分配1名大学生,可以分为两种情况:1,1,1,3,对应情况数为×A=480;1,1,2,2,对应情况数为×A=1080;故不同的分配方案共有48+1080=1560种,故选:B.4.某校选派4名干部到两个街道服务,每人只能去一个,每个街道至少1人,有多少种方法()A.10B.14C.16D.18【解答】解:选派4名干部到两个街道服务,每人只能去一个,每个街道至少1人,则有种方法,故选:B.5.为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有()种.A.40B.24C.20D.12【解答】解:由题意得,5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有A A A=24种,故选:B.6.现将A、B、C、D、E、F六个字母排成一排,要求A、B相邻,且B、C不相邻,则不同的排列方式有()种.A.192B.240C.120D.28【解答】解:将A、B捆绑,可作一个元素,与D、E、F排列,然后插入C,可得不同的排列方式有:=192.故选:A.7.春节期间,某地政府在该地的一个广场布置了一个如图所示的圆形花坛,花坛分为5个区域.现有5种不同的花卉可供选择,要求相邻区域不能布置相同的花卉,且每个区域只布置一种花卉,则不同的布置方案有()A.120种B.240种C.420种D.720种【解答】解:先在A中种植,有5种不同的选择,再在B中种植,有4种不同的选择,再在C中种植,有3种不同的选择,再在D中种植,若D与B种植同一种花卉,则E有3种不同的选择,若D与B种植不同花卉,则D有2种不同的选择,E有2种不同的选择,故不同的布置方案有5×4×3×(3+2×2)=420种.故选:C.8.现要从A,B,C,D,E这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A 不能安排在甲岗位上,则安排的方法有()A.56种B.64种C.72种D.96种【解答】解:根据A是否入选进行分类:若A入选,则先给A从乙、丙、丁3个岗位上安排一个岗位有种,再给剩下三个岗位安排人有种,共有3×24=72种方法;若A不入选,则4个人4个岗位全排有种方法,所以共有72+24=96种不同的安排方法.故选:D.9.甲、乙、丙3人去食堂用餐,每个人从A,B,C,D,E这5种菜中任意选用2种,则A 菜有2人选用、B菜有1人选用的情形共有()A.54B.81C.135D.162【解答】解:A菜有2人选用有种,比如甲、乙选用了A菜,①甲、乙之中有1人选用了B菜,有种,比如甲用了B菜,则乙从C,D,E中任意选用1种,有种,丙从C,D,E中任意选用2种,有种,故共有;②丙选用了B菜,丙再从C,D,E中任意选用1种,有种,甲、乙再从C,D,E中各任意选用1种,有种,故共有;由①②可知所有情形是54+81=135.故选:C.10.从1,2,3,0这四个数中取三个组成没有重复数字的三位数,则这些三位数的和为()A.1332B.2544C.3560D.3864【解答】解:根据题意可得所求为:(1+2+3)×+(10+20+30)×+(100+200+300)×=3864,故选:D.11.已知m,n∈N*,下列排列组合公式中,不一定正确的是()A.B.C.D.【解答】解:根据题意,依次分析选项:对于A,由组合数公式可得C=C,A正确;对于B,A=,而C A=×m!=,B正确;对于C,C==,C错误;对于D,A=,A==,故A=A,D正确;故选:C.12.有5名学生全部分配到4个地区进行社会实践,且每名学生只去一个地区,其中A地区分配了1名学生的分配方法共()种A.120B.180C.405D.781【解答】解:由题意,先选一名学生分配到A地,剩下的4名学生在其他三个地区任选一个,方法数为5×34=405.故选:C.13.从a、b、c中任取两个不同字母排成一列,则不同的排列种数为()A.3B.4C.5D.6【解答】解:根据题意,从a,b,c中任取两个字母,有C32=3种取法,再将取出的字母排成一列,有A22=2种情况,则有3×2=6种不同的排法;故选:D.14.6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到一个社区,每个社区至少分配一名志愿者且人数各不相同,不同的分配方案共有()A.540种B.360种C.180种D.120种【解答】解:由题意6名志愿者被分成1,2,3三组,然后再分配到3个社区全排,所以共有种,故选:B.15.某市聘请6名农业专家安排到三个乡镇作指导,每个乡镇至少一人,则安排方案的种数是()A.495B.540C.630D.720【解答】解:将6名农业专家分组,所有可能的情况有(1,1,4),(1,2,3),(2,2,2)三种情况,其中(1,1,4)分组数有=15种,(1,2,3)分组数有=60种,(2,2,2)分组数有=15种,再将6名农业专家分配到三个乡镇共有(15+60+15)A=540种.故选:B.16.某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A.72B.36C.24D.12【解答】解:晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有=72种排法,故选:A.。
【学生版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。
【典例】题型1、特殊元素(位置)问题例1、大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有()A.18种B.24种C.36种D.48种【提示】;【答案】;【解析】;【说明】题型2、相邻、相间问题例2、(1)某大厦一层有A,B,C,D四部电梯,现有3人在同一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有()A.12种B.24种C.18种D.36种【答案】【解析】;(2)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.168【答案】【解析】;题型3、分组、分配问题例3、(1)现有三本相同的语文书和一本数学书,分发给三个学生,每个学生至少分得一本,不同分法的种数为()A.36 B.9 C.18 D.15(2)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有种不同的分法.题型4、涂色问题例4、(1)如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?(2)如图,一个地区分为5个行政区域,现给该地区的地图着色,要求相邻区域不得使用同一种颜色.现在有4种颜色可供选择,则不同的着色方法共有________种.(用数字作答)【说明】解决涂色问题,关键还是阅读理解与用好两个计数原理;【归纳】排列、组合的混合问题是从几类元素中取出符合题意的几个元素,再安排到一定位置上的问题.其基本的解题步骤为:第一步:选,根据要求先选出符合要求的元素;第二步:排,把选出的元素按照要求进行排列;第三步:乘,根据分步乘法计数原理求解不同的排列种数,得到结果;均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数;【即时练习】1、有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种2、从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法种数为()A.C210P48B.C19P59C.C18P59D.C18P583、北京APEC峰会期间,有2位女性和3位男性共5位领导人站成一排照相,则女性领导人甲不在两端,3位男性领导人中有且只有2位相邻的站法有种A.12种B.24种C.48种D.96种4、如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有种5、在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)(1)三名女生不能相邻,有多少种不同的站法?(2)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(3)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)(4)从中选出2名男生和2名女生表演分四个不同角色朗诵,有多少种选派方法?6、现有7名师范大学应届毕业的免费师范生将被分配到育才中学、星云中学和明月湾中学任教.(1)若4人被分到育才中学,2人被分到星云中学,1人被分到明月湾中学,则有多少种不同的分配方案?(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?【教师版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。
排列组合综合应用一、例题讲解题型一先选后排问题例1有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________种.题型二配对问题例2 设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子,将五个小球放入五个盒子中(每个盒子中放一个小球),⑴则恰有两个小球和盒子编号相同的放法有多少种?⑵则恰有一个小球和盒子编号相同的放法有多少种?练习1:从5双不同的袜子中任取4只,则恰有2只袜子配成一双的可能取法种数是多少?题型三相同元素问题例3现准备将7台型号相同的电脑分配给5所小学,每个学校至少1台,则不同的分配方案共有()A.13种B.15种C.20种D.30种练习2:有10个运动员名额,分给7个班,每班至少一个,有________种分配方案.练习3:已知不定方程x1+x2+x3+x4=12,则不定方程正整数解的组数为________.练习4:已知不定方程x1+x2+x3+x4=12,则不定方程自然数解的组数为________.例4 马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案共有() A.60种B.20种C.10种D.8种练习5:某班微信群中甲、乙、丙、丁、戊五名同学同时抢4个红包,每人最多抢一个红包,且红包全被抢光,4个红包中有两个2元,两个5元(红包中金额相同视为相同的红包),则甲、乙两人都抢到红包的情况有()A.36种B.24种C.18种D.9种题型四古典概型与排列组合例5(2021全国甲卷)将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3B.0.5C.0.6D.0.8二、课后巩固1.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为( )A .20B .24C .25D .262.(2020新高考I 卷)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种3.(2021全国甲卷理)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .45 4.(2019全国乙卷)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .1116 5.(2022新高考II 卷)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )A .12种B .24种C .36种D .48种6.受疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭.高三年级一层楼六个班排队,甲班必须排在前三位,且丙班、丁班必须排在一起,则这六个班排队吃饭的不同安排方案共有( ) A .240种B .120种C .188种D .156种7.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有( )A .311C 种B .38A 种C .39C 种 D .38C 种8.为进一步规范电动自行车管理,某社区持续开展了两轮电动车安全检查和宣传教育,为了解工作效果,该社区将四名工作人员随机分派到A ,B ,C 三个小区进行抽查,每人被分派到哪个小区互不影响,则三个小区中恰有一个小区未分配到任何工作人员的概率为( )A.49B.2027C.1627D.14279.将编号为1,2,3,4,5的小球放入编号为1,2,3,4,5的小盒中,每个小盒放一个小球.则恰有2个小球与所在盒子编号相同的概率为()A.18B.16C.112D.12410.(多选)如图,在某城市中,M,N两地之间有整齐的方格形道路网,其中A1、A2、A3、A4、A5是道路网中位于一条对角线上的5个交汇处,现在甲需要从道路网M出发,随机选择一条沿街的最短路径走到N处为止,下列说法正确的是()A.如果甲需要经过A5,那么从M到N的线路有4条;B.如果甲需要经过A2,那么从M到N的线路有16条;C.如果甲需要经过A3,那么从M到N的线路有36条;D.甲从M到N的线路一共有70条;11.(2020新高考II卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.12.(2023新高考Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).13.某班两位老师和6名学生出去郊游,分别乘坐两辆车,每辆车坐4人.若要求两位老师分别坐在两辆车上,共有种分配方法.14. (教材28页)甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军”对乙说:“你当然不会是最差的”从这两个回答分析,5人的名次排列可能有________种不同情况.15.某微信群中五人同时抢4个红包,每人最多抢一个且红包全部被抢完,已知4个红包中有两个2元,一个3元,一个5元(红包中金额相同视为相同的红包),则有种不同的情况.16.(浙江卷)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有__________种(用数字作答).17.有10本相同的画册要分给6个小朋友,每个小朋友至少一本,则不同的分法种数有__________种.18.将10本完全相同的科普知识书,全部分给甲、乙、丙3人,每人至少得2本,则不同的分法数有种.。
数学的力排列与组合的综合算式练习题数学的力——排列与组合的综合算式练习题在数学中,排列与组合是一种常见的思维方式,能够帮助我们解决各种实际问题。
通过排列与组合,我们可以计算出事件的可能性,并且解决一些有关选取元素的问题。
在本文中,我将为大家提供一系列综合的排列与组合练习题,帮助大家提高解决问题的能力。
1. 小明的衣柜里有4件上衣和5条裤子,请问他一天最多可以穿多少种不同的组合?解析:这是一个典型的排列问题,我们需要求出上衣和裤子可以组合的所有可能。
根据排列的性质,如果有m种上衣和n种裤子,那么总的组合方式为m × n。
所以,小明一天最多可以穿4 × 5 = 20种不同的组合。
2. 甲、乙、丙、丁、戊五人排成一排,请问他们一共有多少种不同的排列方式?解析:这是一个排列问题,我们需要求出五个人排成一排的所有可能性。
根据排列的性质,n个元素的全排列方式共有n!种。
所以,甲、乙、丙、丁、戊五人一共有5! = 120种不同的排列方式。
3. 一共有8本书,其中3本是数学书,2本是历史书,3本是文学书。
现在要选择3本书,请问有多少种不同的选择方式?解析:这是一个组合问题,我们需要求出从8本书中选取3本的所有可能性。
根据组合的性质,从n个元素中选取m个元素的组合方式共有C(n, m)种,公式为C(8, 3) = 8! / (3! * (8-3)!) = 56种不同的选择方式。
4. 有6个人参加一场数学竞赛,其中3个人获奖。
请问一共有多少种不同的获奖方式?解析:这也是一个组合问题,我们需要求出从6个人中选取3个人的所有可能性。
根据组合的性质,C(6, 3) = 6! / (3! * (6-3)!) = 20种不同的获奖方式。
5. 某课程有15个学生,其中要选出5个学生参加比赛,请问有多少种不同的选取方式?解析:这还是一个组合问题,我们需要求出从15个学生中选取5个学生的所有可能性。
根据组合的性质,C(15, 5) = 15! / (5! * (15-5)!) = 3,003种不同的选取方式。