初三毕业考试数学试卷
- 格式:doc
- 大小:179.50 KB
- 文档页数:10
初三数学毕业考试试卷含详细答案一、压轴题1.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式. 解析:(1)CP=3t ,BQ=8-t ;(2)见解析;(3)S=16-2t .【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC ≅,得到∠PQC=∠BCQ,即可求证; (3)过点C 作CM⊥AB,垂足为M ,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t ,BQ=8-t ;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD ∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC ≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C 作CM⊥AB,垂足为M∵AC=BC,CM⊥AB ∴AM=118422AB =⨯=(cm ) ∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm )∴118t 416222BCQ S BQ CM t ==⨯-⨯=- 因此,S 与t 之间的关系式为S=16-2t .【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.2.直线MN 与PQ 相互垂直,垂足为点O ,点A 在射线OQ 上运动,点B 在射线OM 上运动,点A 、点B 均不与点O 重合.(1)如图1,AI 平分BAO ∠,BI 平分ABO ∠,若40BAO ∠=︒,求AIB ∠的度数; (2)如图2,AI 平分BAO ∠,BC 平分ABM ∠,BC 的反向延长线交AI 于点D . ①若40BAO ∠=︒,则ADB =∠______度(直接写出结果,不需说理);②点A 、B 在运动的过程中,ADB ∠是否发生变化,若不变,试求ADB ∠的度数:若变化,请说明变化规律.(3)如图3,已知点E 在BA 的延长线上,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F ,在ADF 中,如果有一个角的度数是另一个角的4倍,请直接写出ABO ∠的度数.解析:(1)135°;(2)①45°;②不变;45°;(3)45°或36°【解析】【分析】灵活运用三角形的一个外角等于与其不相邻的两个内角和;(1)求出IBA ∠,IAB ∠,根据180()AIB IBA IAB ∠=-∠+∠,即可解决问题; (2)①求出CBA ∠,BAI ∠,根据CBA ADB BAD ∠=∠+∠,即可求出ADB ∠的值; ②根据D CBA BAD ∠=∠-∠1122MBA BAO =∠-∠12AOB =∠即可得出结论; (3)首先证明90DAF ∠=,2ABO D ∠=∠,再分四种情况讨论①当4DAF D ∠=∠时,②4DAF F ∠=∠时, ③4F D ∠=∠时,④4D F ∠=∠时, 分别计算,符合题意得保留即可.【详解】解:(1)如图1中,MN PQ ⊥,90AOB ∴∠=,40BAO ∠=︒,∴905040ABO ∠=-=︒, 又AI 平分BAO ∠,BI 平分ABO ∠,∴1252IBA ABO ∠==,1202IAB OAB ∠==, ∴180()135AIB IBA IAB ∠=-∠+∠=,(2)如图2中:①MBA AOB BAD ∠=∠+∠(三角形的一个外角等于与其不相邻的两个内角和), 9040=+130=AI 平分BAO ∠,BC 平分ABM ∠,∴1652CBA MBA ∠=∠=,1202BAI BAO ∠=∠=, CBA ADB BAD ∠=∠+∠,∴45ADB ∠=;②结论:点A 、B 在运动过程中,45ADB ∠=, 理由:D CBA BAD ∠=∠-∠1122MBA BAO =∠-∠ 1()2MBA BAO =∠-∠12AOB =∠ 1902=⨯ 45=∴点A 、B 在运动过程中,ADB ∠的角度不变,45ADB ∠=;(3)如图3中,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F , ∴12DAO BAO ∠=∠,12FAO EAP ∠=∠, 又BAO EAP ∠+∠为平角,∴11118090222DAF BAO EAP ∠=∠+∠=⨯=, ∴111222D POD DAO POB BAO ABO ∠=∠-∠=∠-∠=∠, ∴2ABO D ∠=∠, 又在AOB 中:AOB 90∠=,∴ABO ∠﹤90,在ADF 中,如果有一个角的度数是另一个角的4倍,则:①当4DAF D ∠=∠时,22.5D ∠=,此时245ABO D ∠=∠=,②4DAF F ∠=∠时,22.5F ∠=,67.5D ∠=,此时2135ABO D ∠=∠=(不符合题意舍去),③4F D ∠=∠时,18D ∠=,此时236ABO D ∠=∠=,④4D F ∠=∠时,72D ∠=,此时2144ABO D ∠=∠=(不符合题意舍去),综上所述,当45ABO ∠=或36时,在ADF 中,有一个角的度数是另一个角的4倍.【点睛】本题主要考查角平分线的定义,三角形内角和定理,以及分类讨论的数学思想的理解及应用,分类讨论时,没有讨论完全是本题的易错点.3.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.解析:(1)详见解析;(2)①详见解析;②PB PC PD BE ++=,理由详见解析【解析】【分析】(1)根据等边三角形的性质得出BC=AC ,CE=CD ,∠ACB=∠DCE=60°,进而得出∠BCE=∠ACD ,判断出BCE ACD ≌(SAS ),即可得出结论;(2)①同(1)的方法判断出≌ACD BCE (SAS ),ABD CBF ≌(SAS ),即可得出结论; ②先判断出∠APB=60°,∠APC=60°,在PE 上取一点M ,使PM=PC ,证明CPM △是等边三角形, 进而判断出PCD MCE ≌(SAS ),即可得出结论.【详解】(1)证明:∵ABC 和DCE 都是等边三角形,∴BC=AC ,CE=CD ,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,∴BCE ACD ≌(SAS ),∴BE=AD ;(2)①证明:∵ABC 和DCE 是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠BCE ,∴≌ACD BCE (SAS ),∴AD=BE ,同理:ABD CBF ≌(SAS ),∴AD=CF ,即AD=BE=CF ;②解:结论:PB+PC+PD=BE ,理由:如图2,AD 与BC 的交点记作点Q ,则∠AQC=∠BQP ,由①知,≌ACD BCE ,∴∠CAD=∠CBE ,在ACQ 中,∠CAD+∠AQC=180°-∠ACB=120°,∴∠CBE+∠BQP=120°,在BPQ中,∠APB=180°-(∠CBE+∠BQP)=60°,∴∠DPE=60°,同理:∠APC=60°,∴∠=︒∠CPD=120°,CPE60,在PE上取一点M,使PM=PC,△是等边三角形,∴CPM==,∠PCM=∠CMP=60°,∴CP CM PM∴∠CME=120°=∠CPD,△是等边三角形,∵CDE∴CD=CE,∠DCE=60°=∠PCM,∴∠PCD=∠MCE,≌(SAS),∴PCD MCE∴PD=ME,∴BE=PB+PM+ME=PB+PC+PD.【点睛】此题是三角形综合题,主要考查了三角形的内角和定理,等边三角形的性质和判定,全等三角形的判定和性质,构造出全等三角形是解本题的关键.⊥于F,点A、C分别在4.数学活动课上,老师出了这样一个题目:“已知:MF NF∠-∠=︒.求证:FAB MCDNF和MF上,作线段AB和CD(如图1),使90AB CD”.//(1)聪聪同学给出一种证明问题的辅助线:如图2,过A 作//AG FM ,交CD 于G .请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点E 在直线CD 下方,且知30BED ∠=︒,直接写出ABE ∠和CDE ∠之间的数量关系.解析:(1)见解析;(2)30ABE CDE ∠-∠=︒【解析】【分析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:AGC MCD ∠=∠,90F GAF ∠+∠=︒,再证明MCD BAG ∠=∠,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A 作//AG FM ,交CD 于G ,AGC MCD ∴∠=∠,90F GAF ∠+∠=︒,FN FM ⊥,90F ∴∠=︒,90GAF ∴∠=︒,90FAB MCD ∠-∠=︒,FAB GAF MCD BAG ∴∠-∠=∠=∠,//AB CD ∴;(2)解:30ABE CDE ∠-∠=︒,理由如下:如图3,//AB CD ,BPD ABE ∴∠=∠,BPD CDE BED ∠=∠+∠,30BED ∠=︒,30BPD CDE ∴∠-∠=︒,∴30ABE CDE ∠-∠=︒.【点睛】本题主要考查了平行线的性质和判定以及三角形外角性质的运用,熟练掌握平行线的性质和判定是解决问题的关键.5.探索发现:111111111;;12223233434=-=-=-⨯⨯⨯…… 根据你发现的规律,回答下列问题:(1)145⨯= ,1(1)n n ⨯+= ; (2)利用你发现的规律计算:1111122334(1)n n ⋅++++⨯⨯⨯⨯+ (3)利用规律解方程:1111121(1)(1)(2)(2)(3)(3)(4)(4)(5)(5)x x x x x x x x x x x x x -++++=++++++++++ 解析:(1)1111,451n n --+;(2)n n 1+;(3)见解析. 【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到145⨯和1(1)n n ⨯+ (2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】解:(1)1114545=-⨯,111(1)1n n n n=-++;故答案为1111,451n n--+(2)原式=111111111+122334111nn n n n--+-++-=-=+++;(3)已知等式整理得:11111121 11245(5)xx x x x x x x x--+-++-=++++++所以,原方程即:11215(5)xx x x x--=++,方程的两边同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,检验:把x=3代入x(x+5)=24≠0,∴原方程的解为:x=3.【点睛】本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点. 6.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,1 2【解析】【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=12BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于12;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN =∠DBE ,∴∠BCD+∠BDC =2∠N+2∠BDN ,∵DN 平分∠BDC ,∴∠BDC =2∠BDN ,∴∠BCD =2∠N ,∴∠N :∠BCD =12. 【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.7.(概念认识)如图①,在∠ABC 中,若∠ABD =∠DBE =∠EBC ,则BD ,BE 叫做∠ABC 的“三分线”.其中,BD 是“邻AB 三分线”,BE 是“邻BC 三分线”.(问题解决)(1)如图②,在△ABC 中,∠A =70°,∠B =45°,若∠B 的三分线BD 交AC 于点D ,则∠BDC = °;(2)如图③,在△ABC 中,BP 、CP 分别是∠ABC 邻AB 三分线和∠ACB 邻AC 三分线,且BP ⊥CP ,求∠A 的度数;(延伸推广)(3)在△ABC 中,∠ACD 是△ABC 的外角,∠B 的三分线所在的直线与∠ACD 的三分线所在的直线交于点P .若∠A =m°,∠B =n°,直接写出∠BPC 的度数.(用含 m 、n 的代数式表示)解析:(1)85或100;(2)45°;(3)23m 或13m 或23m +13n 或13m -13n 或13n -13m 【解析】【分析】(1)根据题意可得B 的三分线BD 有两种情况,画图根据三角形的外角性质即可得BDC ∠的度数;(2)根据BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线,且BP CP ⊥可得135ABC ACB ,进而可求A ∠的度数;(3)根据B 的三分线所在的直线与ACD ∠的三分线所在的直线交于点P .分四种情况画图:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时;情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时;情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时;情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,再根据A m ∠=︒,B n ∠=︒,即可求出BPC ∠的度数.【详解】解:(1)如图,当BD 是“邻AB 三分线”时,701585BD C; 当BD 是“邻BC 三分线”时,7030100BD C; 故答案为:85或100;(2)BP CP , 90BPC ∴∠=︒,90PBC PCB , 又BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线, 23PBC ABC ,23PCB ACB ∠=∠, ∴229033ABC ACB , 135ABC ACB ,在ABC ∆中,180A ABC ACB ∠+∠+∠=︒ 180()45A ABCACB . (3)分4种情况进行画图计算:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时,2233BPC A m ; 情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时,1133BPC A m ; 情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时,21213333BPC A ABC m n ; 情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,①当m n >时,11113333BPC A ABC m n ∠=∠-∠=-; ②当m n <时,11113333P ABC A n m ∠=∠-∠=-. 【点睛】 本题考查了三角形的外角性质,解决本题的关键是掌握三角形的外角性质.注意要分情况讨论.8.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.解析:(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC, CD = CE,∠ACB =∠DCB =∠DCE-∠DCB,即∠ACD = ∠BCE,∴△ACD≌△BCE,∴AD = BE,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC-∠CED =135°- 45°= 90°.在等腰直角△DCE中,CM为斜边DE上的高,∴CM =DM= ME,∴DE = 2CM.∴AE = DE+AD=2CM+BE.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.9.如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.解析:(1)详见解析;(2)①详见解析;②详见解析.【解析】【分析】(1)本题考查理解题意能力,按照题目所述依次作图即可.(2)①本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的.②本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论.【详解】(1)补全图形,如图1所示(2)①如图2,连接BD,P为BD与AE的交点∵等边△ACD ,AE ⊥CD∴PC=PD,PC+PB 最短等价于PB+PD 最短故B,D 之间直线最短,点P 即为所求.②证明:连接DE ,DF .如图3所示∵△ABC ,△ADC 是等边三角形∴AC =AD ,∠ACB =∠CAD =60°∵AE ⊥CD∴∠CAE =12∠CAD =30° ∴∠CEA =∠ACB ﹣∠CAE =30°∴∠CAE =∠CEA∴CA =CE∴CD 垂直平分AE∴DA =DE∴∠DAE =∠DEA∵EF ⊥AF ,∠EAF =45°∴∠FEA =45°∴∠FEA =∠EAF∴FA =FE ,∠FAD =∠FED∴△FAD ≌△FED (SAS )∴∠AFD =∠EFD∴点D 到AF ,EF 的距离相等.【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升.10.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由. 解析:(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.11.如图,若要判定纸带两条边线a ,b 是否互相平行,我们可以采用将纸条沿AB 折叠的方式来进行探究.(1)如图1,展开后,测得12∠=∠,则可判定a//b ,请写出判定的依据_________; (2)如图2,若要使a//b ,则1∠与2∠应该满足的关系是_________;(3)如图3,纸带两条边线a ,b 互相平行,折叠后的边线b 与a 交于点C ,若将纸带沿11A B (1A ,1B 分别在边线a ,b 上)再次折叠,折叠后的边线b 与a 交于点1C ,AB//11A B ,137BB AC ==,,求出1AC 的长.解析:(1)内错角相等,两直线平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根据平行线的判定定理,即可得到答案;(2)由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,结合三角形内角和定理,即可得到答案;(3)分两种情况:①当B 1在B 的左侧时,如图2,当B 1在B 的右侧时,如图3,分别求出1AC 的长,即可得到答案.【详解】(1)∵12∠=∠,∴a ∥b (内错角相等,两直线平行),故答案是:内错角相等,两直线平行;(2)如图1,由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a ∥b ,则1∠与2∠应该满足的关系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①当B 1在B 的左侧时,如图2,∵AB//11A B ,a ∥b ,∴AA 1=BB 1=3,∴1AC =AC- AA 1=7-3=4;②当B 1在B 的右侧时,如图3,∵AB//11A B ,a ∥b ,∴AA 1=BB 1=3,∴1AC =AC+AA 1=7+3=10.综上所述:1AC =4或10.【点睛】本题主要考查平行线的判定和性质定理,折叠的性质以及三角形的内角和定理,掌握“平行线间的平行线段长度相等”是解题的关键.12.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.解析:(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C 、F 作对边AB 、DE 上的高CG 、FH ,其中G 、H 为垂足. ∵∠ABC 、∠DEF 都是钝角∴G 、H 分别在AB 、DE 的延长线上.∵CG ⊥AG ,FH ⊥DH ,∴∠CGA =∠FHD =90°.∵∠CBG =180°-∠ABC ,∠FEH =∠180°-∠DEF ,∠ABC =∠DEF ,∴∠CBG =∠FEH .在△BCG 和△EFH 中,∵∠CGB =∠FHE ,∠CBG =∠FEH ,BC =EF ,∴△BCG ≌△EFH .∴CG =FH .又∵AC =DF .∴Rt △ACG ≌△DFH .∴∠A =∠D .在△ABC 和△DEF 中,∵∠ABC =∠DEF ,∠A =∠D ,AC =DF ,∴△ABC ≌△DEF .(3)如图②,△DEF 就是所求作的三角形,△DEF 和△ABC 不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.13.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.解析:(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒ BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD =⎧⎨=⎩()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF ∴∆是等边三角形,60MF DM F DMF ∴=∠=∠=︒60BMG ∠=︒DMF DM B M G G D M G ∴∠+∠=+∠∠,即FMG DMB ∠=∠在FMG ∆和DMB ∆中,60F MDB MF MD FMG DMB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA ∴∆≅∆GF BD ∴=,即DF DG BD +=AD DF DG MD DG ∴=+=+即AD DG MD =+;(3)结论:AD DG ND =-,证明过程如下:如图,延长BD 使得DH ND =,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD ∠=︒∠=︒-∠-∠=︒= HDN ∴∆是等边三角形,60NH ND H HND ∴=∠=∠=︒60BNG ∠=︒HND BND BND BNG ∠+∠=+∠∴∠,即N HNB D G ∠=∠在HNB ∆和DNG ∆中,60H NDG NH ND HNB DNG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA ∴∆≅∆HB DG ∴=,即DH BD DG +=ND AD DG ∴+=即AD DG ND =-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.14.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接 BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.解析:(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C →B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.15.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG=______.(直接写出结果) 解析:(1)见解析;(2)见解析;(3)113或53【解析】【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF=AC ,等量代换证明结论; (2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG=CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG=GD ,AD=CE=7,代入计算即可.【详解】解:(1)证明:∵FD ⊥AC ,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE ,在△AFD 和△EAC 中,AFD EAC ADF ECA AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△EAC (AAS ),∴DF=AC ,∵AC=BC ,∴FD=BC ;(2)作FD ⊥AC 于D ,由(1)得,FD=AC=BC ,AD=CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△FDG ≌△BCG (AAS ),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E 点为BC 中点;(3)当点E 在CB 的延长线上时,过F 作FD ⊥AG 的延长线交于点D ,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF ≌△ECA ,△GDF ≌△GCB ,∴CG=GD ,AD=CE=7,∴CG=DG=1.5, ∴4 1.5111.53AG CG +==, 同理,当点E 在线段BC 上时,4 1.551.53AG CG -==, 故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.二、选择题16.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×106 解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】试题分析:384 000=3.84×105.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°解析:C【解析】【分析】 根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.18.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =, 则可列出:()223x x +⨯=解得:4x =, 12BC AB =, 28AB x ∴==.故答案为:C.【点睛】本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.19.已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a–4ab)的值为()A.49 B.59C.77 D.139解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.20.如图,C为射线AB上一点,AB=30,AC比BC的14多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②AB=4NQ;③当PB=12BQ时,t=12,其中正确结论的个数是()A.0 B.1 C.2 D.3解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.21.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592解析:C【解析】【分析】 由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.22.下列方程是一元一次方程的是( )A .213+x =5xB .x 2+1=3xC .32y =y+2D .2x ﹣3y =1 解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案.【详解】解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程;C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程;。
初三数学毕业考试数学试卷含详细答案一、压轴题1.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.2.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)3.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON 的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).4.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?5.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值. 6.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.7.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示).(4)直接写出点B 为AC 中点时的t 的值.8.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.9.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒.(1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.10.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.11.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n 的式子列式,并计算第n 个图的钢管总数.12.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.13.已知线段30AB cm(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.14.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.15.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
初三数学毕业考试数学试卷含详细答案一、选择题 1.若分式21x x --的值为零,则x 的值为( ) A .2-B .2±C .2D .2 2.下列正多边形中,能够铺满地面的是( ) A .正方形B .正五边形C .正七边形D .正八边形 3.下列各式由左到右的变形中,属于分解因式的是( ) A .()a m n am an +=+B .21055(21)x x x x -=-C .2322623a b a b b =⋅D .2166(4)(4)6x x x x x -+=+-+4.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE⊥AC 于点E ,Q 为BC 延长线上一点,当PA=CQ 时,连结PQ 交AC 边于D ,则DE 的长为 ( )A .12B .13C .23D .255.如图,ΔA 'B 'C ≌ΔABC ,点B '在AB 边上,线段A 'B ',AC 交于点D .若∠A =40°,∠B =60°,则∠A 'CB 的度数为( )A .100°B .120°C .135°D .140° 6.已知一个多边形的内角和与一个外角的和是1160度,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形 7.如图,直线a ,b ,c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处 8.如图,BP 平分∠ABC ,∠ABC =∠BAP =60°,若△ABC 的面积为2cm 2,则△PBC 的面积为( )A .0.8cm 2B .1cm 2C .1.2cm 2D .无法确定9.如图,点A,B,C 在一条直线上,△ABD,△BCE 均为等边三角形,连接AE 和CD,AE 分别交CD,BD 于点M,P ,CD 交BE 于点Q,连接PQ,BM,下面的结论:①△ABE ≌△DBC;②∠DMA=60°;③△BPQ 为等边三角形;④MB 平分∠AMC,其中结论正确的有( )A .1个B .2个C .3个D .4个 10.若ABC 的三边a ,b ,c 满足()()0)(a b b c c a ---=那么ABC 的形状一定是( ).A .等腰三角形B .直角三角形C .等边三角形D .锐角三角形 二、填空题11.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .12.如图,在△ABC 中,AD 、AE 分别是边BC 上的中线与高,AE =4,△ABC 的面积为12,则CD 的长为_____.13.分解因式:(a+b )2﹣4ab= .14.若关于x 的分式方程221a a x +=+无解,则a 的值为_____. 15.若关于x 的方程355x m x x=+--有增根,则m =_____. 16.()()()243232121211++⋯++计算结果的个位数字是______________. 17.三角形的两条边长分别是2cm ,8cm ,第三边为奇数,则其周长为________.18.如图,点D 是△ABC 的边BC 的延长线上的一点,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推…,已知∠A =α,则∠A 2020的度数为_____.(用含α的代数式表示).19.如图,△ABC 中,点D 在边BC 上,DE ⊥AB 于E ,DH ⊥AC 于H ,且满足DE=DH ,F 为AE 的中点,G 为直线AC 上一动点,满足DG =DF ,若AE=4cm ,则AG= _____cm .20.已知等腰三角形的两边长是5和12,则它的周长是______________;三、解答题21.如图所示,△ABC 中,AB =AC ,E 在AC 上,D 在BA 的延长线上,且AD =AE ,连接DE .求证:DE ⊥BC .22.已知如图,点A 、点B 在直线l 异侧,以点A 为圆心,AB 长为半径作弧交直线l 于C 、D 两点.分别以C 、D 为圆心,AB 长为半径作弧,两弧在l 下方交于点E,连结AE. (1)根据题意,利用直尺和圆规补全图形;(2)证明:l 垂直平分AE.23.(1)因式分解;()()22a x y b x y ---;(2)解方程:213211x y x y +=⎧⎨-=⎩. 24.如图,在△ABC 中,A ABC ∠=∠,直线EF 分别交AB 、AC 点D 、E ,CB 的延长线于点F ,过点B 作//BP AC 交EF 于点P ,(1)若70A ∠=︒,25F ∠=︒,求BPD ∠的度数.(2)求证:2F FEC ABP ∠+∠=∠.25.已知:230m mn +=,210mn n -=-,求下列代数式的值:(1)222m mn n +-;(2)227m n +-.26.先化简,再求值:2112(1)3(2)23b a b ---+-,其中a =-1,b =1. 27.先化简,再求值:2()()(2)()x y x y y x y x y +-++--,其中3x =,13y =-.28.如图1,四边形MNBD 为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(BAE AEC ECD ∠∠∠、、),则BAE AEC ECD ∠+∠+∠=__________°.(2)如图3,将长方形纸片剪三刀,剪出四个角(BAE AEF EFC FCD ∠∠∠∠、、、),则BAE AEF EFC FCD ∠+∠+∠+∠=__________°.(3)如图4,将长方形纸片剪四刀,剪出五个角(BAE AEF EFG FGC GCD ∠∠∠∠∠、、、、),则BAE AEF EFG FGC GCD ∠+∠+∠+∠+∠=___________°.(4)根据前面探索出的规律,将本题按照上述剪法剪n 刀,剪出()1n +个角,那么这()1n +个角的和是____________°.29.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E, ∠A=35°, ∠D=50°,求∠ACD 的度数.30.观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1(1)根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)(2)你能否由此归纳出一般规律(x-1)(x n+x n-1+…+x+1)(3)根据以上规律求32018+32017+32016+32+3+1的值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵分式21xx--的值为0,∴|x|-2=0,且x-1≠0,解得:x=2±.故选:B.【点睛】本题考查分式值为零的条件,解题关键是熟练掌握分式值为零的条件.2.A解析:A【解析】【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【详解】A、正方形的每个内角是90°,4个能密铺,符合题意;B、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,不符合题意;C、正七边形每个内角是180°-360°÷7=9007,不能整除360°,不能密铺,不符合题意;D、正八边形每个内角是180°-360°÷8=135°,不能整除360°,不能密铺,不符合题意.故选:A.【点睛】本题考查了一种多边形的镶嵌问题,考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.3.B解析:B【解析】【分析】根据因式分解的概念,即把一个多项式化成几个整式的积的形式,进行逐一分析判断.【详解】解:A、该变形是整式乘法,不是因式分解,故本选项不符合题意;B、符合因式分解的概念,故本选项符合题意;C、该变形不是多项式分解因式,故本选项不符合题意;D、该变形没有分解成几个整式的积的形式,故本选项不符合题意.故选:B.【点睛】本题考查因式分解的意义,熟练掌握因式分解的定义是解题关键.4.A解析:A【解析】【分析】过P作PF∥BC交AC于F,可得△ABC是等边三角形,然后证明△PFD≌△QCD,推出DE=12AC,即可得出结果.【详解】过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ .∵在△PFD 和△QCD 中,PFD QCD PDF QDC PF CQ ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△PFD ≌△QCD (AAS ),∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC , ∵AC=1,∴DE=12. 故选A .【点睛】本题考查全等三角形的判定与性质,作辅助线构造等边三角形是关键.5.D解析:D【解析】【分析】利用全等三角形的性质即可解答.【详解】解:已知ΔA 'B 'C ≌ΔABC ,则∠A 'C B '=∠ACB=180°-∠A-∠B=80°,又因为CB=C B ',且∠B=60°,故三角形C B 'B 是等边三角形,∠B 'CB=60°,故∠A 'CB=60°+80°=140°,答案选D.【点睛】本题考查全等三角形的性质,熟悉掌握是解题关键.6.D解析:D【解析】【分析】设多边形的边数为n ,多加的外角度数为x ,根据内角和与外角度数的和列出方程,由多边形的边数n 为整数求解可得.【详解】设多边形的边数为n ,多加的外角度数为x ,根据题意列方程得,(n -2)•180°+x =1160°,∵0°<x <180°,∴1160°-180°<(n -2)×180°<1160°,∴549<n−2<649, ∵n 是整数,∴n =8.故选:D .【点睛】本题主要考查了多边形的内角和公式,利用多边形的内角和是180°的倍数是解题的关键.7.D 解析:D【解析】【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.8.B解析:B【解析】【分析】延长AP 交BC 于点D ,构造出()ABP DBP ASA ≅,得AP DP =,再根据三角形等底同高面积相等,得到12BPC ABC S S =.【详解】 解:如图,延长AP 交BC 于点D ,∵BP 是ABC ∠的角平分线,∴1302ABP DBP ABC ∠=∠=∠=︒, ∵60BAP ∠=︒,∴18090BPA BAP ABP ∠=︒-∠-∠=︒,∴18090BPD BPA ∠=︒-∠=︒, 在ABP △和DBP 中,ABP DBP BP BP BPA BPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABP DBP ASA ≅,∴AP DP =,根据三角形等底同高,12ABP DBP ABD SS S ==,12ACP DCP ACD S S S ==, ∴()211122BPC DBP DCP ABD ACD ABC S S S S S S cm =+=+==.故选:B .【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是作辅助线构造全等三角形.9.D解析:D【解析】试题分析:∵△ABD 、△BCE 为等边三角形,∴AB=DB ,∠ABD=∠CBE=60°,BE=BC ,∴∠ABE=∠DBC ,∠PBQ=60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,∴②正确;在△ABP和△DBQ中,,∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形,∴③正确;∵∠DMA=60°,∴∠AMC=120°,∴∠AMC+∠PBQ=180°,∴P、B、Q、M四点共圆,∵BP=BQ,∴BP BQ=,∴∠BMP=∠BMQ,即MB平分∠AMC;∴④正确;综上所述:正确的结论有4个;故选D.考点:等边三角形的性质与判定、全等三角形的判定与性质、四点共圆、圆周角定理.10.A解析:A【解析】试题解析:∵(a-b)(b-c)(c-a)=0,∴(a-b)=0或(b-c)=0或(c-a)=0,即a=b或b=c或c=a,因而三角形一定是等腰三角形.故选A.二、填空题11.5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念.解析:5【解析】试题分析:中心角的度数=360n︒36072n︒︒=,5n=考点:正多边形中心角的概念.12.3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△A解析:3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴12×BC×AE=12,∴12×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD=12BC=3,故答案为3.【点睛】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题.13.(a﹣b)2.【解析】试题分析:首先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.解:(a+b)2﹣4ab=a2+2ab+b2﹣4ab=a2+b2﹣2ab=(a﹣b解析:(a﹣b)2.【解析】试题分析:首先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.解:(a+b)2﹣4ab=a2+2ab+b2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.考点:因式分解-运用公式法.14.﹣1或0【解析】【分析】分式方程无解有两种情况:(1)原方程存在增根;(2)原方程约去分母化为整式方程后,整式方程无解,据此解答即可.【详解】解:去分母,得ax+a=2a+2,整理,得a解析:﹣1或0【解析】【分析】分式方程无解有两种情况:(1)原方程存在增根;(2)原方程约去分母化为整式方程后,整式方程无解,据此解答即可.【详解】解:去分母,得ax+a=2a+2,整理,得ax=a+2,当a=0时,方程无解;当a≠0时,x=2aa+.∵当x=﹣1时,分式方程无解,∴2aa+=﹣1,解得:a=﹣1.故答案为:﹣1或0.【点睛】本题考查了分式方程无解的情况,解题的关键是既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.15.-5【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程即可求出m的值.【详解】分式方程去分母得:x=3x﹣15﹣m,由分式方程有增根解析:-5【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x ﹣5=0,求出x 的值,代入整式方程即可求出m 的值.【详解】分式方程去分母得:x =3x ﹣15﹣m ,由分式方程有增根,得到x ﹣5=0,即x =5,把x =5代入整式方程得:m =﹣5,故答案为:﹣5.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 16.6【解析】【分析】根据平方差公式化简所求,再根据2的n 次幂的变化规律即可求解.【详解】=====∵21=2,22=4,23=8,24=16,25=32,26=64,27=128解析:6【解析】【分析】根据平方差公式化简所求,再根据2的n 次幂的变化规律即可求解.【详解】()()24323212121(1++⋯++)=()()()()22432212121211-++⋯++ =()()()44322121211-+⋯++=323221)2((1)1-++=64211-+=642∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴64÷4=16∴个位数为6故答案为:6.【点睛】本题考查了平方差公式的应用,解此题的关键是熟知平方差公式的特点,题型较好,难度适中,是一道不错的题目,通过此题能培养学生的观察能力.17.17cm 或19cm【解析】【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长解析:17cm 或19cm【解析】【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长是2+8+7=17(cm )或2+8+9=19(cm )故答案为:17cm 或19cm .【点睛】本题考查了三角形的三边关系,首先根据题意求出第三边,然后再求出周长,难度较小.18.【解析】【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A1=,∠A2=,∠A3=,据此找规律可求解.【详解】解:在△ABC 中,∠A=∠ACD﹣∠ABC=α,∵∠ABC 的平 解析:202012【解析】【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A 1=12α,∠A 2=212α,∠A 3=312α,据此找规律可求解. 【详解】 解:在△ABC 中,∠A =∠ACD ﹣∠ABC =α,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1=∠A 1CD ﹣∠A 1BC =12(∠ACD ﹣∠ABC )=12∠A =12α, 同理可得∠A 2=12∠A 1=212α, ∠A 3=12∠A 2=312α, …以此类推,∠A 2020=202012α, 故答案为:202012α.【点睛】考查三角形内角和定理以及三角形外角的性质,熟练掌握和运用三角形外角的性质是解题的关键. 19.2或6.【解析】【分析】【详解】∵DE⊥AB,DH⊥AC,∴∠AED=∠AHE=90°.在△ADE 和△ADH 中,∵AD=AD,DE=DH, ∴△ADE≌△ADH(HL),∴AH=A解析:2或6.【解析】【分析】【详解】∵DE ⊥AB ,DH ⊥AC ,∴∠AED=∠AHE=90°.在△ADE 和△ADH 中,∵AD=AD,DE=DH, ∴△ADE ≌△ADH(HL),∴AH=AE=4cm.∵F为AE的中点,∴AF=EF=2cm.在△FDE和△GDH中,∵DF=DG,DE=DH, ∴△FDE≌△GDH(HL),∴GH=EF=2cm.当点G在线段AH上时,AG=AH-GH=4-2=2cm;当点G在线段HC上时,AG=AH+GH=4+2=6cm;故AG的长为2或6.20.29【解析】【分析】没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当5为腰长时,∵5+5<12,故不能组成三角形,当12为腰长时,边解析:29【解析】【分析】没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当5为腰长时,∵5+5<12,故不能组成三角形,当12为腰长时,边长分别为:5,12,12,∵5+12>12,故能组成三角形,故周长为:5+12+12=29;故答案为:29.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,同时需要验证各种情况是否能构成三角形进行解答.三、解答题21.见解析.【解析】【分析】过A作AM⊥BC于M,根据等腰三角形三线合一的性质得出∠BAC=2∠BAM,由三角形外角的性质及等边对等角的性质得出∠BAC=2∠D,则∠BAM=∠D,根据平行线的判定得出DE∥AM,进而得到DE⊥BC.【详解】证明:如图,过A作AM⊥BC于M,∵AB=AC,∴∠BAC=2∠BAM,∵AD=AE,∴∠D=∠AED,∴∠BAC=∠D+∠AED=2∠D,∴∠BAC=2∠BAM=2∠D,∴∠BAM=∠D,∴DE∥AM,∵AM⊥BC,∴DE⊥BC.【点睛】考查了等腰三角形的性质,三角形外角的性质,平行线的判定等知识,难度适中.准确作出辅助线是解题的关键.22.(1)见解析;(2)证明见解析.【解析】【分析】(1)根据题意进行作图即可;(2)根据题意可证明△ACD≌△ECD,再利用全等的性质及等腰三角形“三线合一”的性质即可证明结论.【详解】解:(1)如图所示;(2)证明:由题意可知,AC=AD=AB ,CE=ED=AB ,∴AC=CE ,AD=DE ,又∵CD=CD ,∴△ACD ≌△ECD ,∴∠ACD=∠ECD ,又∵AC=CE ,∴CO 垂直平分AE ,∴l 垂直平分AE.【点睛】本题考查了作图及线段的垂直平分线,需熟练掌握全等三角形的判定及性质,等腰三角形的性质,学会应用“三线合一”证明线段的垂直平分线.23.(1)()()()x y a b a b -+-;(2)31x y =⎧⎨=-⎩【解析】【分析】(1)先提取公因式,再采用平方差公式继续分解.(2)根据加减法解方程即可求解.【详解】(1)()()22a x y b x y ---22()()x y a b =--()()()x y a b a b =-+-;(2)213211x y x y ①②+=⎧⎨-=⎩①+②,得412x =,解得:3x =,将3x =代入①,得321y +=,解得1y =-,所以方程组的解是31x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组,提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.24.(1)65°;(2)见解析【解析】【分析】(1)运用三角形内角和定理先求出∠C 的度数,再应用平行线性质求出∠PBF 的度数,最后应用三角形外角与内角的关系求出∠BPD .(2)先证明∠F+∠FEC=∠PBC ,再证∠PBC=2∠ABP .【详解】解:(1)在ABC ∆中,∵∠A=70°,∠A=∠ABC∴由内角和定理可得40C ∠=又∵//BP AC∴65BPD AEF C F ∠=∠=∠+∠=(2) 在ABC ∆中,∵∠A =∠ABC∴ 由内角和定理可得2180A C ∠+∠=同理, 在CEF ∆中由三角形内角和定理得180F FEC C ∠+∠+∠=∴2F FEC A ∠+∠=∠又∵//BP AC∴ABP A ∠=∠即2F FEC ABP ∠+∠=∠.【点睛】本题考查三角形内角和定理和三角形的外角等于和它不相邻的两个内角之和的综合题.用已知条件结合图形运用相关定理找角的关系是基本技能,是解本题的关键.25.(1)20;(2)33.【解析】【分析】(1)将已知两等式左右两边相加,即可求出所求代数式的值;(2)将已知两等式左右两边相减,即可求出所求代数式的值.【详解】(1)∵230m mn +=,210mn n -=-,∴222m mn n +-=(2m mn +)+(2mn n -)=30-10=20;(2)∵230m mn +=,210mn n -=-,∴227m n +-=(2m mn +)-(2mn n -)-7=30-(-10)-7=30+10-7=33.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.26.a 2-2b +4;3.【解析】【分析】首先根据整式的运算法则对算式进行化简,再把字母的值代入计算即可得到结果.【详解】解:原式=()2211221333223623b a b b a b ⎛⎫⨯-⨯-⨯--⨯-⨯-=-+-+ ⎪⎝⎭=a 2-2b +4,当a=-1,b=1时,原式=1-2+4=3.【点睛】本题考查整式的化简求值,熟练应用乘法对加法的分配律计算是解答本题的关键.27.3xy ,3-.【解析】【分析】先计算平方差公式、完全平方公式、整式的乘法,再计算整式的加减法,然后将x 、y 的值代入即可得.【详解】原式222222(2)x y xy y x xy y =-++--+, 2222222x y xy y x xy y =-++-+-,3xy =,将3x =,13y =-代入得:原式133333xy ⎛⎫==⨯⨯-=- ⎪⎝⎭.【点睛】本题考查了平方差公式、完全平方公式、整式的加减法与乘法,熟记公式和整式的运算法则是解题关键.28.(1)360;(2)540;(3)720;(4)180n .【解析】【分析】(1)过点E 作EH ∥AB ,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E 、F 分别作AB 的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E 、F 、G 分别作AB 的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n 刀,剪出n+1个角,那么这n+1个角的和是180n 度.【详解】(1)过E 作EH ∥AB (如图②).∵原四边形是长方形,∴AB ∥CD ,又∵EH ∥AB ,∴CD∥EH(平行于同一条直线的两条直线互相平行).∵EH∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EH,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.故答案为:(1)360;(2)540;(3)720;(4)180n.【点睛】本题主要考查了多边形的内角和,作平行线并利用两直线平行,同旁内角互补是解本题的关键,总结规律求解是本题的难点.29.83°.【解析】试题分析:由DF⊥AB,在Rt△BDF中可求得∠B;再由∠ACD=∠A+∠B可求得.试题解析:∵DF⊥AB,∴∠B+∠D=90°,∴∠B=90°-∠D=90°-42°=48°,∴∠ACD=∠A+∠B=35°+48°=83°.30.(1)x7﹣1;(2)x n+1﹣1;(3)2019312-.【解析】【分析】(1)仿照已知等式求出所求原式的值即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用得出的规律变形,计算即可求出值.【详解】(1)根据题中规律得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)总结题中规律得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;(3)原式=12×(3﹣1)×(32018+32017+…+32+3+1)=2019312-.【点睛】此题考查了平方差公式,规律型:数字的变化类,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.。
初三数学毕业考试试卷含详细答案一、压轴题1.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?2.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).3.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)4.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.5.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.6.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.7.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.8.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.9.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.10.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.11.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.12.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.13.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.14.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.15.已知120AOB ∠︒=(本题中的角均大于0︒且小于180︒) (1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.16.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.17.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD、的代数式表示),请画出图形,直接写出答案.的度数(结果用含m n18.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.19.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.20.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.2.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t =240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.3.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.4.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.【详解】(1)A,B,C三点的位置如图所示:.(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-(-4)=9,AC=12-(-4)=16.②3AC-4AB的值不变.当移动时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t +6,则:AC=(3t+6)-(-t-2)=4t+8,AB=(2t+1)-(-t-2)=3t+3,∴3AC-4AB=3(4t+8)-4(3t+3)=12t+24-12t-12=12.即3AC﹣4AB的值为定值12,∴在移动过程中,3AC﹣4AB的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.5.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.6.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++()312n n =+ 【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.7.(1)(4,8)(2)S △OAE =8﹣t (3)2秒或6秒【解析】【分析】(1)根据M 和N 的坐标和平移的性质可知:MN ∥y 轴∥PQ ,根据K 是PM 的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE 的面积S ;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t )+12×4(6﹣t+8﹣t )﹣12×6(8﹣t ), =10﹣2t ,∵S △OBD =S △OAE , ∴10﹣2t =8﹣t ,t =2;②如图3,当点B 在OD 上方时,过点B 作BG ⊥x 轴于G ,过D 作DH ⊥x 轴于H ,则B (2,6﹣t ),D (6,8﹣t ),∴OG =2,GH =4,BG =6﹣t ,DH =8﹣t ,OH =6,S △OBD =S △ODH ﹣S 四边形DBGH ﹣S △OBG ,=12OH•DH ﹣12(BG+DH )•GH ﹣12OG•BG , =12×2(8-t )﹣12×4(6﹣t+8﹣t )﹣12×2(6﹣t ), =2t ﹣10,∵S △OBD =S △OAE ,∴2t ﹣10=8﹣t ,t =6;综上,t 的值是2秒或6秒.【点睛】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.8.问题一、(1)32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011. 【解析】【分析】问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。
一、选择题(每题5分,共25分)1. 若a,b是方程x²-2x+1=0的两个根,则a+b的值为()A. 0B. 1C. 2D. -12. 下列各组数中,能构成等差数列的是()A. 2, 4, 6, 8, 10B. 1, 3, 5, 7, 9C. 1, 4, 9, 16, 25D. 1, 2, 4, 8, 163. 在直角坐标系中,点A(2,3),点B(4,5)关于直线y=x对称的点的坐标是()A.(2,5)B.(3,4)C.(4,2)D.(5,3)4. 若sinα=1/2,则α的取值范围是()A. 0°<α<90°B. 90°<α<180°C. 180°<α<270°D. 270°<α<360°5. 下列函数中,y随x的增大而减小的函数是()A. y=x²B. y=-x²C. y=x³D. y=-x³二、填空题(每题5分,共25分)6. 若x=2是方程2x²-3x+1=0的一个根,则另一个根为______。
7. 在△ABC中,∠A=45°,∠B=60°,则∠C的度数为______。
8. 若sinα=3/5,则cosα的值为______。
9. 分数1/3,1/4,1/5的最小公倍数是______。
10. 下列等式正确的是______。
A. (a+b)²=a²+b²B. (a-b)²=a²-b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²三、解答题(共50分)11. (15分)解下列方程组:(1)$$ \begin{cases} 2x+3y=8 \\ x-y=1 \end{cases} $$(2)$$ \begin{cases} 3x-2y=5 \\ 4x+5y=11 \end{cases} $$12. (15分)已知函数y=2x-3,求:(1)当x=2时,y的值;(2)当y=5时,x的值。
初三数学毕业试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y=ax+bB. y=a(x-h)^2+kC. y=ax^2+bx+cD. y=a(x+h)^2+k2. 如果一个多边形的内角和是720度,那么这个多边形有多少条边?A. 4B. 5C. 6D. 73. 计算下列表达式的结果:(2x+3)(x-1) = ?A. 2x^2+x-3B. 2x^2-x+3C. 2x^2-x-3D. 2x^2+x+34. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<15. 一个圆的半径是5厘米,那么它的周长是多少?A. 31.4厘米B. 10π厘米C. 20π厘米D. 50π厘米6. 如果一个等腰三角形的底边长为6厘米,高为4厘米,那么它的面积是多少?A. 12平方厘米B. 24平方厘米C. 6平方厘米D. 18平方厘米7. 下列哪个选项是方程x^2-5x+6=0的解?A. x=2或x=3B. x=1或x=6C. x=2或x=-3D. x=-2或x=-38. 计算下列表达式的值:(3x-2)/(x+1) 当x=1时,该表达式的值为?A. 1/2B. 1C. -1D. 09. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,那么它的体积是多少?A. 24立方厘米B. 12立方厘米C. 8立方厘米D. 6立方厘米10. 一个正数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。
12. 一个直角三角形的两条直角边长分别是3厘米和4厘米,那么它的斜边长是______厘米。
13. 如果一个数的相反数是-5,那么这个数是______。
14. 一个数的绝对值是7,那么这个数可以是______或______。
15. 一个正比例函数的图象经过点(2,6),那么它的解析式是y=______。
初三数学毕业考试数学试卷含答案一、压轴题1.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【解析】【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB∥CD,FG∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;②∠F=12∠BED,理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=12∠BED;(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB ∥CD ,EG ∥AB ,∴CD ∥EG ,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE ),即∠BED=360°-(∠ABE+∠CDE ),∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α, ∴2452αα≥+︒,解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.2.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒; (1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.解析:(1)60°;(2)15°;(3)30°或15°【解析】【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45ED F ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45ED F ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.3.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。
初三数学毕业考试试卷含详细答案一、选择题1.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个2.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个3.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cm B .3cm C .3cm 或 7cm D .7cm 或 9cm 4.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)5.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱 6.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣3 7.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2 B .(3a ﹣b )2 C .3a ﹣b 2 D .(a ﹣3b )2 8.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣49.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-10.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题11.9的算术平方根是________ 12.因式分解:32x xy -= ▲ .13.如果向东走60m 记为60m +,那么向西走80m 应记为______m.14.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.15.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.16.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.17.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.18.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.19.观察“田”字中各数之间的关系:则c 的值为____________________.20.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.三、解答题21.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问: (1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场? 22.如图,把△ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1.(1)在图中画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标; (2)连接A 1A 、C 1C ,则四边形A 1ACC 1的面积为______. 23.解方程:(1)()43203x x --= (2)23211510x x -+-= 24.数学问题:计算231111nm m mm ++++(其中m ,n 都是正整数,且m ≥2,n ≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 探究一:计算2311112222n++++. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为12; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为12+212; 第3次分割,把上次分割图中空白部分的面积继续二等分,…; …第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为12+212+312+…+12n ,最后空白部分的面积是12n . 根据第n 次分割图可得等式:12 +212+312+…+12n =1﹣12n .探究二:计算13+213+313+…+13n.第1次分割,把正方形的面积三等分,其中阴影部分的面积为23;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为2 3+223;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为2 3+223+323+…+23n,最后空白部分的面积是13n.根据第n次分割图可得等式:23+223+323+…+23n=1﹣13n,两边同除以2,得13+213+313+…+13n=12﹣123n.探究三:计算14+214+314+…+14n.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算1m +21m +31m +…+1n m. (只需画出第n 次分割图,在图上标注阴影部分面积,并完成以下填空) 根据第n 次分割图可得等式:_________, 所以,1m +21m +31m +…+1n m=________. 拓广应用:计算515- +22515-+33515-+…+515n n -. 25.计算: (1)17+(﹣1.5)﹣(﹣67) (2)32÷(﹣34)+(﹣27)2×2126.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离. 27.计算: (1)(﹣0.5)+(﹣32)﹣(+1) (2)2+(﹣3)2×(﹣112) (33825﹣2|﹣(﹣1)201828.化简求值:()()2222533x y xy xy x y --+,其中1x =,12y. 29.如图,已知数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是 ,当点P 运动到AB 中点时,它所表示的数是 ; (2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P ,Q 两点同时出发,求点P 与Q 运动多少秒时重合?(3)动点Q 从点B 出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P ,Q 两点同时出发,求:①当点P 运动多少秒时,点P 追上点Q ?②当点P 与点Q 之间的距离为8个单位长度时,求此时点P 在数轴上所表示的数.30.先化简,再求值:2(x 2y+xy 2)﹣2(x 2y ﹣x )﹣2xy 2﹣2y ,其中x=﹣2,y=2.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】无理数就是无限不循环小数,依据定义即可判断. 【详解】解:在3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)35-π、0.1313313331…(每2个1之间依次多一个3)这3个, 故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.D解析:D 【解析】 【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断; ③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断 【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52 +25 x x a x x a=⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x ax a=⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确④方程组解得25-15x a y a=⎧⎨=-⎩由题意得:x-3a=5把25-15x ay a=⎧⎨=-⎩代入得25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键3.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm . 故选C . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.4.A解析:A 【解析】 【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可. 【详解】解:﹣(﹣1)=1, ∴﹣1<0<﹣(﹣1)<2, 故选:A . 【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.5.C解析:C 【解析】 【分析】三棱柱的侧面展开图是长方形,底面是三角形. 【详解】解:由图可得,该展开图是由三棱柱得到的, 故选:C . 【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.6.D解析:D 【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D . 考点:D .7.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.8.B解析:B 【解析】 【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值. 【详解】解:根据题意得:3x ﹣9﹣3=0, 解得:x =4, 故选:B . 【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.9.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意; 故选:C . 【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.10.D解析:D 【解析】 【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案. 【详解】解:因为2|2|(1)0a b ++-=, 所以a +2=0,b -1=0, 所以a =-2,b =1, 所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D. 【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a,b的值是解决此题的关键.二、填空题11.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.12.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x (x ﹣y )(x+y ).13.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x 袋,根据题意,得:2(x ﹣1)﹣1﹣1=x +1解得:x =5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.16.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.17.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.18.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.19.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
初三数学毕业考试试卷含详细答案一、选择题1.分式方程3111x x x =-+-的解是( ) A .4B .2C .1D .-2 2.若代数式1x +有意义,则x 的取值范围是( ) A .x >﹣1且x≠1 B .x≥﹣1 C .x≠1 D .x≥﹣1且x≠1 3.下列因式分解正确的是( )A .221(21)1x x x x --=--B .2244(2)x x x -+=-C .256(6)(1)x x x x -+=-+D .()321x x x x -=- 4.下列计算正确的是( )A .(﹣1)0=﹣1B .(﹣1)-1=1C .33122a a -= D .(﹣a )7÷(﹣a )3=a 4 5.钝角三角形三条高所在的直线交于( )A .三角形内B .三角形外C .三角形的边上D .不能确定 6.若分式211x x -+的值等于0,则x 的值为( ) A .2 B .0 C .1- D .127.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,F 是CB 延长线上一点,AF ⊥CF ,垂足为F .下列结论:①∠ACF =45°;②四边形ABCD 的面积等于12AC 2;③CE =2AF ;④S △BCD =S △ABF +S △ADE ;其中正确的是( )A .①②B .②③C .①②③D .①②③④8.如图,ABC ∆是等边三角形,BD 是中线,延长BC 到点E ,使CE CD =,连结DE ,下面给出的四个结论:①BD AC ⊥,②BD 平分ABC ∠,③BD DE =,④120BDE ∠=,其中正确的个数是( )A .1个B .2个C .3个D .4个9.如图将一张长方形纸的一角折叠过去,使顶点A 落在'A 处,BC 为折痕,若AB AC =且BD 为CBE ∠的平分线,则A BD '∠=( )A .45B .67.5C .22.5D .89.510.下列图形具有稳定性的是( )A .B .C .D .二、填空题11.如图,在△ABC 中,点D 是AC 的中点,分别以AB , BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM=∠NBC =90°,连接MN ,则BD 与MN 的数量关系是_____.12.如图,在△ABC 中,AB =10,AC =8,∠ABC 、∠ACB 的平分线相交于点O ,MN 过点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .则△AMN 的周长为_______.13.如图,在△ABC 中,AD 、AE 分别是边BC 上的中线与高,AE =4,△ABC 的面积为12,则CD 的长为_____.14.()()()243232121211++⋯++计算结果的个位数字是______________. 15.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.16.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______.17.小敏设计了一种衣架,如图,在使用时能轻易收拢,然后套进衣服后松开即可,衣架杆18OA OB cm ==,若衣架收拢时,60AOB ∠=,则A 、B 的距离为_____cm .18.如图,90E F ∠=∠=︒,B C ∠=∠,AE AF =.给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ∆≅∆;④CD DN =.其中正确结论的序号是__________.19.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).20.空气的密度是30.001293/cm g ,这个数据用科学记数法表示为__________3/cm g .三、解答题21.如图,在四边形ABCD 中,//AD BC ,ABC ∠的平分线交CD 于点E ,交AD 的延长线于点F ,DEF F ∠=∠.(1)写出3对由条件//AD BC 直接推出的相等或互补的角;___________、_____________、_______________.(2)3∠与F ∠相等吗?为什么?(3)证明://DC AB .请在下面括号内,填上推理的根据,完成下面的证明://AD BC ,2F ∴∠=∠.(①_________);3F∠=∠(已证), 23∴∠=∠,(②__________); 又12∠=∠(③___________),13∠∠∴=,//DC AB ∴(④_____________).22.在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD ;(3)画出BC 边上的高线AE ;(4)记网格的边长为1,则A B C '''的面积为___________.23.已知:230m mn +=,210mn n -=-,求下列代数式的值:(1)222m mn n +-;(2)227m n +-.24.如图,∠ADB =∠ADC ,∠B =∠C .(1)求证:AB =AC ;(2)连接BC ,求证:AD ⊥BC .25.如图,点D 是等边三角形ABC 的边AC 上一点,//DE BC 交AB 于E ,延长CB 至F ,使BF AD =,连结DF 交BE 于G .(1)请先判断ADE 的形状,并说明理由.(2)请先判断BG 和EG 是否相等,并说明理由.26.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,∠ACD=∠B .(1)求证:BC=DE(2)若∠A=40°,求∠BCD 的度数.27.如图,如果AD ∥BC ,∠B =∠C ,那么AD 是∠EAC 的平分线吗?请说明你判别的理由.28.如图,在平面直角坐标系中,点 A ,B 的坐标分别为(0,3),(1,0),△ABC 是等腰直角三角形,∠ABC =90°.(1)图1中,点C 的坐标为 ;(2)如图2,点D 的坐标为(0,1),点E 在射线CD 上,过点B 作BF ⊥BE 交y 轴于点F . ①当点E 为线段CD 的中点时,求点F 的坐标;②当点E 在第二象限时,请直接写出F 点纵坐标y 的取值范围.29.观察下列等式:第1个等式:1111(1)1323a ==⨯-⨯; 第2个等式:21111()35235a ==⨯-⨯; 第3个等式:31111()57257a ==⨯-⨯; 第4个等式:41111()79279a ==⨯-⨯;…… 请回答下列问题:(1)按以上规律,用含n 的式子表示第n 个等式:n a = = (n 为正整数) (2)求1234100•••a a a a a +++++ 的值.30.观察下列各式(x -1)(x +1)=x 2-1(x -1)(x 2+x +1)=x 3-1(x -1)(x 3+x 2+x +1)=x 4-1(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)(2)你能否由此归纳出一般规律(x -1)(x n +x n-1+…+x +1)(3)根据以上规律求32018+32017+32016+32+3+1的值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】各项乘以(1)(1)x x +-去分母,然后移项合并,即可求出方程的解.【详解】解:去分母得:22331x x x x -=+-+,移项、合并得:24=x ,解得:2x =,经检验2x =是分式方程的解,故选:B .【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法,注意需要检验.2.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得 x≥-1且x≠1.故选A .【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.B解析:B【解析】【分析】根据因式分解的定义进行选择即可.【详解】A. 221(21)1x x x x --=--,不是因式分解,故本选项不符合题意;B. 2244(2)x x x -+=-,故本选项符合题意,C. 256(2)(-3)-+=-x x x x ,故本选项不符合题意;D. ()321=x x+1x-1()()-=-x x x x ,故本选项不符合题意; 故选B【点睛】此题考查提公因式法与公式法的综合运用,因式分解-十字相乘法,掌握运算法则是解题关键解析:D【解析】【分析】分别根据0指数幂、负整数指数幂及同底数幂的除法法则进行逐一计算即可.【详解】解:A 、错误,(﹣1)0=1;B 、错误,(﹣1)﹣1=﹣1;C 、错误,3322aa -=; D 、正确.故选:D .【点睛】本题考查的知识点为:(1)0指数幂:任何非0数的0次幂等于1;(2)负整数指数幂:负整数指数幂等于对应的正整数指数幂的倒数;(3)同底数幂的除法法则:底数不变,指数相减. 5.B解析:B【解析】【分析】由图形可知:钝角三角形三条高所在的直线交于三角形外.【详解】解:如图可知:钝角△ABC 三边的高交于三角形外部一点D ,即钝角三角形三条高所在的直线交于三角形外,故选:B .【点睛】本题考查三角形的高线的交点问题,解答的关键是会画三角形的高线,并能根据三角形的形状得出三条高线所在的直线的交点与三角形的关系.6.D解析:D【解析】根据分式值为零的条件是分子等于零且分母不等于零列式计算;【详解】由题意得, 2x-1=0,x+1≠0,解得,x=12,x≠-1, 所以当x=12时,此分式的值为零. 故选:D【点睛】本题考查分式值为0的条件,解题关键是熟练掌握分式值为零的条件是分子等于零且分母不等于零. 7.C解析:C【解析】【分析】证明ABC ≌()ADE SAS ,得出45ACF E ∠=∠=︒,①正确;由ABC ACD ABCD S SS =+四边形,得出212ADE ACD ACE ABCD S S S S AC =+==四边形,②正确; 证出AF AG =,2CE AF =,③正确;由ABF ADE ABF ABC ACF SS S S S +=+=,不能确定ACF BCD S S =,④不正确;即可得出答案.【详解】解:∵∠CAE =90°,AE =AC ,∴∠E =∠ACE =45°,∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠EAD +∠CAD∴∠BAC =∠EAD ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (SAS ),∴∠ACF =∠E =45°,①正确;∵S 四边形ABCD =S △ABC +S △ACD ,∴S 四边形ABCD =S △ADE +S △ACD =S △ACE =12AC 2,②正确; ∵△ABC ≌△ADE ,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.8.D解析:D【解析】【分析】因为△ABC是等边三角形,又BD是AC上的中线,所以有:AD=CD,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC,即DB=DE(③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.【详解】∵△ABC是等边三角形,BD是AC上的中线,∴∠ADB=∠CDB=90°,BD平分∠ABC;∴BD⊥AC;∵∠ACB=∠CDE+∠DEC=60°,又CD=CE,∴∠CDE=∠DEC=30°,∴∠CBD=∠DEC,∴DB=DE.∠BDE=∠CDB+∠CDE=120°所以这四项都是正确的.故选:D.【点睛】此题考查等边三角形的性质,等腰三角形的性质等知识,注意三线合一这一性质的理解与运用.9.C解析:C【解析】【分析】利用等腰直角三角形的性质可求∠ABC=45°,利用折叠的性质可得∠A’BC=∠ABC =45°,再利用角平分线的性质和平角的定义可求∠CBD=67.5°,由此得到∠A’BD=∠CBD-∠A’BC即可求解.【详解】解:∵∠A=90°,AC=AB,∴∠ABC=45°,∵将顶点A折叠落在A’处,∴∠ABC=∠A’BC=45°,∵BD为∠CBE的平分线,∴∠CBD=∠DBE=12×(180°- 45°)=67.5°,∴∠A’BD=67.5°- 45°=22.5°.故选:C.【点睛】考查了图形的折叠问题,解题的关键是熟练掌握折叠的性质、等腰三角形的性质、角平分线定义及平角的定义等.10.A解析:A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.故选:A.【点睛】本题考查了三角形的稳定性和四边形的不稳定性.二、填空题11.2BD=MN【解析】【分析】延长BD 到E ,使DE=BD ,连接CE ,证明△ABD≌△CED,得到∠ABD=∠E,AB=CE ,证出∠BCE=∠MBN,再证明△BCE≌△NBM 得到BE=MN ,即可得 解析:2BD=MN【解析】【分析】延长BD 到E ,使DE=BD ,连接CE ,证明△ABD ≌△CED ,得到∠ABD=∠E ,AB=CE ,证出∠BCE=∠MBN ,再证明△BCE ≌△NBM 得到BE=MN ,即可得出结论.【详解】解:2BD=MN ,理由是:如图,延长BD 到E ,使DE=BD ,连接CE ,∵点D 是BC 中点,∴AD=CD ,又DE=BD ,∠ADB=∠CDE ,∴△ABD ≌△CED ,∴∠ABD=∠E ,AB=CE ,∵∠ABM=∠NBC=90°,∴∠ABC+∠MBN=180°,即∠ABD+∠CBD+∠MBN=180°,∵∠E+∠CBD+∠BCE=180°,∴∠BCE=∠MBN ,∵△ABM 和△BCN 是等腰直角三角形,∴AB=MB ,BC=BN ,∴CE=MB ,在△BCE 和△NBM 中,CE BM BCE MBN BC NB =⎧⎪∠=∠⎨⎪=⎩, ∴△BCE ≌△NBM (SAS ),∴BE=MN ,∴2BD=MN .故答案为:2BD=MN .【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,有一定难度,解题的关键是适当添加辅助线,找出一些较为隐蔽的全等三角形.12.18【解析】【分析】由在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,易证得△BOM与△CON是等腰三角形,继而可得△AMN的周长等于AB+AC.【详解】∵在△AB解析:18【解析】【分析】由在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,易证得△BOM 与△CON是等腰三角形,继而可得△AMN的周长等于AB+AC.【详解】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.【点睛】本题考查等腰三角形的判定与性质,角平分线的性质,平行线的判定,三角形周长的求法,等量代换等知识点.13.3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△A解析:3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴12×BC×AE=12,∴12×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD=12BC=3,故答案为3.【点睛】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题.14.6【解析】【分析】根据平方差公式化简所求,再根据2的n次幂的变化规律即可求解.【详解】=====∵21=2,22=4,23=8,24=16,25=32,26=64,27=128解析:6【解析】【分析】根据平方差公式化简所求,再根据2的n 次幂的变化规律即可求解.【详解】()()24323212121(1++⋯++)=()()()()22432212121211-++⋯++ =()()()44322121211-+⋯++=323221)2((1)1-++=64211-+=642∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴64÷4=16∴个位数为6故答案为:6.【点睛】本题考查了平方差公式的应用,解此题的关键是熟知平方差公式的特点,题型较好,难度适中,是一道不错的题目,通过此题能培养学生的观察能力.15.a5+5a4b+10a3b2+10a2b3+5ab4+b5【解析】【分析】利用已知各项系数变化规律进而得出答案.【详解】解:可得:(a+b )4=a4+4a3b+6a2b2+4ab3+b4;解析:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5【解析】【分析】利用已知各项系数变化规律进而得出答案.【详解】解:可得:(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.故答案为:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.16.【解析】【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【详解】解:令,则,∴,∴,则.故答案为:【点睛】本题考查了同底数幂的乘法,利用错 解析:2019112-【解析】【分析】 根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.17.18【解析】【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接,如图所示:∵,,∴是等边三角形,∴,故答案为:18.【点睛】本题考查了等边三角形解析:18【解析】【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接AB ,如图所示:∵OA OB =,60AOB ∠=,∴AOB ∆是等边三角形,∴18AB OA cm ==,故答案为:18.【点睛】本题考查了等边三角形的判定与性质;熟练掌握等边三角形的判定方法是解题的关键.18.①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS 证△EAB≌△FAC,即可判断②;推出AC=AB ,根据ASA 即可证出③;不能推出CD 和DN 所在的三角形解析:①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC ,即可判断①;根据AAS 证△EAB ≌△FAC ,即可判断②;推出AC=AB ,根据ASA 即可证出③;不能推出CD 和DN 所在的三角形全等,也不能用其它方法证出CD=DN .【详解】∵∠E=∠F=90∘,∠B=∠C ,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘,∴∠EAB=∠FAC ,∴∠EAB−CAB=∠FAC−∠CAB ,即∠1=∠2,∴①正确;在△EAB 和△FAC 中AF AE B C E F =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△EAB ≌△FAC ,∴BE=CF ,AC=AB ,∴②正确;在△ACN 和△ABM 中C B CAN BAM AC AB =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACN ≌△ABM ,∴③正确;∵根据已知不能推出CD=DN ,∴④错误;【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断.19.③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面; ∵正方形的每个内角都是90度,能将360度整除,故可以用其解析:③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.20.293×10-3.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的解析:293×10-3.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:空气的密度是0.001293g/cm 3,把这个数据用科学记数法表示是 1.293×10-3g/cm 2, 故答案为:1.293×10-3.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题21.(1)2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒ (2)相等,理由见解析(3)见解析【解析】【分析】(1)根据平行线的性质解答;(2)根据对顶角的性质解答;(3)根据平行线的性质及等量代换,平行线的判定定理解答.【详解】(1)∵//AD BC ,∴2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒;故答案为:2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒; (2)3∠与F ∠相等.理由如下:DEF F ∠=∠,3DEF ∠=∠,3F ∴∠=∠.(3)//AD BC ,2F ∴∠=∠.(①两直线平行,内错角相等);3F∠=∠(已证), 23∴∠=∠,(②等量代换); 又12∠=∠(③角平分线的定义),13∠∠∴=,//DC AB ∴(④内错角相等,两直线平行).故答案为:①两直线平行,内错角相等;②等量代换;③角平分线的定义;④内错角相等,两直线平行.【点睛】此题考查平行线的性质定理及判定定理,角平分线的性质定理,等量代换的推理依据,熟练掌握平行线的判定及性质定理是解题的关键.22.(1)见解析;(2)见解析;(3)见解析;(4)8【解析】【分析】(1)连接BB ′,过A 、C 分别做BB ′的平行线,并且在平行线上截取AA ′=CC ′=BB ′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB 的垂直平分线找到中点D ,连接CD ,CD 就是所求的中线.(3)从A 点向BC 的延长线作垂线,垂足为点E ,AE 即为BC 边上的高;(4)根据三角形面积公式即可求出△A ′B ′C ′的面积.【详解】解:(1)如图所示:A B C '''∆即为所求;(2)如图所示:CD 就是所求的中线;(3)如图所示:AE 即为BC 边上的高;(4)4421628A B C S '''∆=⨯÷=÷=.故A B C '''∆的面积为8.【点睛】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.(1)20;(2)33.【解析】【分析】(1)将已知两等式左右两边相加,即可求出所求代数式的值;(2)将已知两等式左右两边相减,即可求出所求代数式的值.【详解】(1)∵230m mn +=,210mn n -=-,∴222m mn n +-=(2m mn +)+(2mn n -)=30-10=20;(2)∵230m mn +=,210mn n -=-,∴227m n +-=(2m mn +)-(2mn n -)-7=30-(-10)-7=30+10-7=33.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.24.(1)见解析;(2)见解析【解析】【分析】(1)根据题意证明△ADB ≌△ADC 即可证明AB =AC ;(2)连接BC ,由中垂线的逆定理证明即可.【详解】证明:(1)∵在△ADB 和△ADC 中,==ADB ADC B CAD AD ∠⎧⎪∠∠⎨⎪=⎩, ∴△ADB ≌△ADC (AAS ),∴AB =AC ;(2)连接BC ,∵△ADB ≌△ADC ,∴AB =AC ,BD =CD ,∴A 和D 都在线段BC 的垂直平分线上,∴AD 是线段BC 的垂直平分线,即AD ⊥BC .【点睛】本题主要考查全等三角形的判定与性质以及中垂线的逆定理,熟记相关定理是解题关键.25.(1)ADE 等边三角形,证明见解析;(2)BG EG =,证明见解析.【解析】【分析】(1)根据等边三角形和平行线的性质,即可完成证明;(2)根据(1)的结论,结合BF AD =,可得BFDE =;再根据平行线性质,得EDG F ∠=∠,DEG FBG ∠=∠,从而得到DEG FBG ≅△△,即可得到答案.【详解】(1)∵ABC 是等边三角形∴60A ABC ACB ∠=∠=∠=∵//DE BC∴60AED ABC ∠=∠=︒,60ADE C ∠=∠=︒∴∠=∠=∠A AED ADE∴ADE 是等边三角形;(2)∵ADE 是等边三角形∴AD DE BF ==∵BF AD =∴BF DE =∵//DE BC∴EDG F ∠=∠,DEG FBG ∠=∠在DEG △和FBG △中 EDG F BF DEDEG FBG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DEG FBG ≅△△∴BG EG =.【点睛】本题考查了等边三角形、平行线、全等三角形的知识;解题的关键是熟练掌握等边三角形、平行线、全等三角形的性质,从而完成求解.26.(1)证明见解析;(2)140°;【解析】【分析】(1)根据平行线的性质可得∠ACB=∠DEC ,∠ACD=∠D ,再由∠ACD=∠B 可得∠D=∠B ,然后可利用AAS 证明△ABC ≌△CDE ,进而得到CB=DE ;(2)根据全等三角形的性质可得∠A=∠DCE=40°,然后根据邻补角的性质进行计算即可.【详解】(1)∵AC ∥DE ,∴∠ACB=∠DEC ,∠ACD=∠D ,∵∠ACD=∠B .∴∠D=∠B ,在△ABC和△DEC中,===ACB EB DAC CE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABC≌△CDE(AAS),∴BC=DE;(2)∵△ABC≌△CDE,∴∠A=∠DCE=40°∴∠BCD=180°–40°=140°.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.27.AD是∠EAC的平分线,理由见解析【解析】【分析】根据平行线和等腰三角形的性质可证得∠EAD=∠DAC,可得出结论.【详解】AD是∠EAC的平分线,∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,又∵∠B=∠C,∴∠EAD=∠DAC,∴AD是∠EAC的平分线.【点睛】本题主要考查了等腰三角形的性质和平行线的性质,掌握等边对等角和平行线的性质是解题的关键.28.(1 ) C(4,1);(2)①F( 0 , 1 ),②1y<-【解析】试题分析:()1过点C向x轴作垂线,通过三角形全等,即可求出点C坐标.()2过点E作EM⊥x轴于点M,根据,C D的坐标求出点E的坐标,OM=2,得到1OB BM EM===,BE BF⊥,得到△OBF为等腰直角三角形,即可求出点F的坐标. ()3直接写出F点纵坐标y的取值范围.试题解析:(1 ) C(4,1),(2)法一:过点E作EM⊥x轴于点M,∵C(4,1),D(0,1),E为CD中点,∴CD∥x轴,EM=OD=1,()21E∴,,∴OM=2,()10.B,1OB BM EM ∴===,45EBM ∴∠=︒,BE BF ⊥,∴∠OBF =45°,∴ △OBF 为等腰直角三角形,∴OF =OB =1.()0,1.F ∴法二:在OB 的延长线上取一点M.∵∠ABC =∠AOB =90°.∴∠ABO +∠CBM =90° .∠ABO +∠BAO =90°.∴∠BAO =∠CBM .∵C (4,1).D (0,1).又∵CD ∥OM ,CD =4.∴∠DCB =∠CBM.∴∠BAO =∠ECB.∵∠ABC =∠FBE =90°.∴∠ABF =∠CBE.∵AB =BC.∴△ABF ≌△CBE (ASA).∴AF =CE =12CD =2, ∵A (0,3),OA =3,∴OF =1.∴F (0,1) ,(3) 1y <-.29.(1)1(21)(21)n n -+;111()22121n n --+;(2)100201【解析】【分析】(1)观察等式数字变化规律即可得出第n 个等式;(2)利用积化和差计算出a 1+a 2+a 3+…+a 100的值.【详解】解:(1) 解: 1111(1)1323a ==⨯-⨯; 21111()35235a ==⨯-⨯; 31111()57257a ==⨯-⨯; 41111()79279a ==⨯-⨯;…… 1111()(21)(21)22121n a n n n n ==--+-+ 故答案为:1(21)(21)n n -+; 111()22121n n --+ (2)1234100a a a a a +++++ =11111111111(1)()()...()232352572199201-+-+-++- =11111111(1...)233557199201-+-+-++- =11(1)2201- =12002201⨯ =100201【点睛】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.30.(1)x 7﹣1;(2)x n+1﹣1;(3)2019312-. 【解析】【分析】 (1)仿照已知等式求出所求原式的值即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用得出的规律变形,计算即可求出值.【详解】(1)根据题中规律得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)总结题中规律得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;(3)原式=12×(3﹣1)×(32018+32017+…+32+3+1)=2019312.【点睛】此题考查了平方差公式,规律型:数字的变化类,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.。
2023年四川省广元市中考数学试卷一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)1.12-的相反数是()A.2- B.2 C.12-D.122.下列计算正确的是()A.22ab a b -=B.236a a a ⋅=C.233ab a a÷= D.222()()4a a a +-=-3.某几何体是由四个大小相同的小立方块拼成,其俯视图如图所示,图中数字表示该位置上的小立方块个数,则这个几何体的左视图是()A.B.C.D.4.某中学开展“读书节活动”,该中学某语文老师随机抽样调查了本班10名学生平均每周的课外阅读时间,统计如表:每周课外阅读时间(小时)2468学生数(人)2341下列说法错误的是()A.众数是1B.平均数是4.8C.样本容量是10D.中位数是55.关于x 的一元二次方程232302x x -+=根的情况,下列说法中正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定6.如图,AB 是O 的直径,点C ,D 在O上,连接CD OD AC ,,,若124BOD ∠=︒,则ACD ∠的度数是()A.56︒B.33︒C.28︒D.23︒7.如图,半径为5的扇形AOB 中,90AOB ∠=︒,C 是 AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E ,若CD CE =,则图中阴影部分面积为()A.2516πB.258π C.256π D.254π8.向高为10的容器(形状如图)中注水,注满为止,则水深h 与注水量v 的函数关系的大致图象是()A. B. C. D.9.近年来,我市大力发展交通,建成多条快速通道,小张开车从家到单位有两条路线可选择,路线a 为全程10千米的普通道路,路线b 包含快速通道,全程7千米,走路线b 比路线a 平均速度提高40%,时间节省10分钟,求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时,依题意,可列方程为()A.()10710140%60x x -=+ B.()10710140%x x -=+C.()71010140%60x x -=+ D.()71010140%x x -=+10.已知抛物线2y ax bx c =++(a ,b ,c 是常数且a<0)过()1,0-和()0m ,两点,且34m <<,下列四个结论:0abc >①;30a c +>②;③若抛物线过点()1,4,则213a -<<-;④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(把正确答案直接写在答题卡对应题目的横线上.每小题4分,共24分)11.有意义,则实数x 的取值范围是______12.广元市聚焦“1345”发展战略和“十四五”规划,牢牢牵住重点项目建设“牛鼻子”,《2023年广元市重点项目名单》共编列项目300个,其中生态环保项目10个,计划总投资约45亿元,将45亿这个数据用科学记数法表示为____________.13.如图,a b ∥,直线l 与直线a ,b 分别交于B ,A 两点,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点E ,F ,作直线EF ,分别交直线a ,b 于点C ,D ,连接AC ,若34CDA ∠=︒,则CAB ∠的度数为_____.14.在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为_____.15.如图,在平面直角坐标系中,已知点()1,0A ,点()0,3B -,点C 在x 轴上,且点C 在点A 右方,连接AB ,BC ,若1tan 3ABC ∠=,则点C 的坐标为_____.16.如图,45ACB ∠=︒,半径为2的O 与角的两边相切,点P 是⊙O 上任意一点,过点P 向角的两边作垂线,垂足分别为E ,F ,设t PE =+,则t 的取值范围是_____.三、解答题(要求写出必要的解答步骤或证明过程,共96分)17.计算:()101822202313++--.18.先化简,再求值:222222322x y x x y y x x y xy ⎛⎫++÷⎪---⎝⎭,其中31x =+,3y =.19.如图,将边长为4的等边三角形纸片沿边BC 上的高AD 剪成两个三角形,用这两个三角形拼成一个平行四边形.(1)画出这个平行四边形(画出一种情况即可);(2)根据(1)中所画平行四边形求出两条对角线长.20.为进一步落实“德、智、体、美、劳”五育并举工作,某校开展以“文化、科技、体育、艺术、劳动”为主题的活动,其中体育活动有“一分钟跳绳”比赛项目,为了解学生“一分钟跳绳”的能力,体育老师随机抽取部分学生进行测试并将测试成绩作为样本,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:(1)求第四小组的频数,并补全频数分布直方图;(2)若“一分钟跳绳”不低于160次的成绩为优秀,本校学生共有1260人,请估计该校学生“一分钟跳绳”成绩为优秀的人数;(3)若“一分钟跳绳”不低于180次的成绩为满分,经测试某班恰有3名男生1名女生成绩为满分,现要从这4人中随机抽取2人去参加学校组织的“一分钟跳绳”比赛,请用画树状图或列表的方法,求所选2人都是男生的概率.21.“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120︒,当其中一片风叶OB 与塔干OD 叠合时,在与塔底D 水平距离为60米的E 处,测得塔顶部O 的仰角45OED ∠=︒,风叶OA 的视角30OEA ∠=︒.(1)已知α,β两角和的余弦公式为:()cos cos cos sin sin αβαβαβ+=-,请利用公式计算cos 75︒;(2)求风叶OA 的长度.22.某移动公司推出A ,B 两种电话计费方式.计费方式月使用费/元主叫限定时间/min主叫超时费/(元/min )被叫A 782000.25免费B1085000.19免费(1)设一个月内用移动电话主叫时间为t min ,根据上表,分别写出在不同时间范围内,方式A ,方式B 的计费金额关于t 的函数解析式;(2)若你预计每月主叫时间为350min ,你将选择A ,B 哪种计费方式,并说明理由;(3)请你根据月主叫时间t 的不同范围,直接写出最省钱的计费方式.23.如图,已知一次函数6y kx =+的图象与反比例函数()0my m x=>的图象交于()34A ,,B 两点,与x 轴交于点C ,将直线AB 沿y 轴向上平移3个单位长度后与反比例函数图象交于点D ,E .(1)求k ,m 的值及C 点坐标;(2)连接AD ,CD ,求ACD 的面积.24.如图,AB 为O 的直径,C 为O 上一点,连接AC BC ,,过点C 作O 的切线交AB 延长线于点D ,OF BC ⊥于点E ,交CD 于点F .(1)求证:BCD BOE ∠=∠;(2)若3sin 5CAB ∠=,10AB =,求BD 的长.25.如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,以BC 为边在BC 上方作Rt BDC ,且30DBC ∠=︒.(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=︒,30EBA ∠=︒,连接DE ,用等式表示线段AC 与DE 的数量关系是;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC 的长;(3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时tan CBA ∠的值.26.如图1,在平面直角坐标系中,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON是否为定值?若是,求出这个定值;若不是,请说明理由.2023年四川省广元市中考数学试卷一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)1.12-的相反数是()A.2- B.2C.12-D.12【答案】D【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D .【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.下列计算正确的是()A.22ab a b -=B.236a a a ⋅=C.233ab a a ÷= D.222()()4a a a +-=-【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A.22ab a b -≠,故该选项不正确,不符合题意;B.235a a a ⋅=,故该选项不正确,不符合题意;C.233a b a ab ÷=,故该选项不正确,不符合题意;D.222()()4a a a +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键.3.某几何体是由四个大小相同的小立方块拼成,其俯视图如图所示,图中数字表示该位置上的小立方块个数,则这个几何体的左视图是()A.B.C.D.【分析】先细心观察原立体图形中正方体的位置关系,从左面看去,一共两排,左边底部有1个小正方形,右边有2个小正方形.结合四个选项选出答案.【详解】解:从左面看去,一共两排,左边底部有1个小正方形,右边有2个小正方形.故选:D .【点睛】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力.4.某中学开展“读书节活动”,该中学某语文老师随机抽样调查了本班10名学生平均每周的课外阅读时间,统计如表:每周课外阅读时间(小时)2468学生数(人)2341下列说法错误的是()A.众数是1B.平均数是4.8C.样本容量是10D.中位数是5【答案】A【分析】根据众数、平均数、样本的容量、中位数的定义,逐项分析判断即可求解.【详解】解:A.6出现的次数最多,则众数是6,故该选项不正确,符合题意;B.平均数是224364814.810⨯+⨯+⨯+⨯=,故该选项正确,不符合题意;C.样本容量是234110+++=,故该选项正确,不符合题意;D.中位数是第5个和第6个数的平均数即46=2+5,故该选项正确,不符合题意;故选:A .【点睛】本题考查了众数、平均数、样本的容量、中位数,熟练掌握众数、平均数、样本的容量、中位数的定义是解题的关键.5.关于x 的一元二次方程232302x x -+=根的情况,下列说法中正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【答案】C【分析】直接利用一元二次方程根的判别式即可得.【详解】解:232302x x -+=,其中2a =,3b =-,32c =,∴()23Δ342302=--⨯⨯=-<,∴方程没有实数根.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根.6.如图,AB 是O 的直径,点C ,D 在O 上,连接CD OD AC ,,,若124BOD ∠=︒,则ACD ∠的度数是()A.56︒B.33︒C.28︒D.23︒【答案】C【分析】根据圆周角定理计算即可.【详解】解:∵124BOD ∠=︒,∴18012456AOD Ð=°-°=°,∴1282ACD AOD ∠=∠=︒,故选:C .【点睛】此题考查圆周角定理,熟知同弧所对的圆周角是圆心角的一半是解题的关键.7.如图,半径为5的扇形AOB 中,90AOB ∠=︒,C 是 AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E ,若CD CE =,则图中阴影部分面积为()A.2516π B.258π C.256π D.254π【答案】B【分析】连接OC ,证明四边形CDOE 是正方形,进而得出CDE OCE S S = ,45COE ∠=︒,然后根据扇形面积公式即可求解.【详解】解:如图所示,连接OC ,∵CD OA ⊥,CE OB ⊥,90AOB ∠=︒,∴四边形CDOE 是矩形,∵CD CE =,∴四边形CDOE 是正方形,∴CDE OCE S S = ,45COE ∠=︒,∴图中阴影部分面积24525π5π3608BOC S ==⨯=扇形,故选:B .【点睛】本题考查了正方形的性质与判定,求扇形面积,证明四边形CDOE 是正方形是解题的关键.8.向高为10的容器(形状如图)中注水,注满为止,则水深h 与注水量v 的函数关系的大致图象是()A. B. C. D.【答案】D【分析】从水瓶的构造形状上看,从底部到顶部的变化关系为:开始宽,逐渐细小,再变宽,再从函数的图象上看,选出答案.【详解】解:从水瓶的构造形状上看,从底部到顶部的变化关系为:开始宽,逐渐细小,再变宽.则注入的水量v 随水深h 的变化关系为:先慢再快,最后又变慢,那么从函数的图象上看,C 对应的图象变化为先快再慢,最后又变快,不符合;A 、B 对应的图象中间没有变化,只有D 符合条件.故选:D .【点睛】本题主要考查函数的定义及函数的图象的关系,抓住变量之间的变化关系是解题的关键.9.近年来,我市大力发展交通,建成多条快速通道,小张开车从家到单位有两条路线可选择,路线a 为全程10千米的普通道路,路线b 包含快速通道,全程7千米,走路线b 比路线a 平均速度提高40%,时间节省10分钟,求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时,依题意,可列方程为()A.()10710140%60x x -=+ B.()10710140%x x -=+ C.()71010140%60x x -=+ D.()71010140%x x-=+【答案】A 【分析】若设路线a 时的平均速度为x 千米/小时,则走路线b 时的平均速度为()140%x +千米/小时,根据路线b 的全程比路线a 少用10分钟可列出方程.【详解】解:由题意可得走路线b 时的平均速度为()140%x +千米/小时,∴()10710140%60x x -=+,故选:A .【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.10.已知抛物线2y ax bx c =++(a ,b ,c 是常数且a<0)过()1,0-和()0m ,两点,且34m <<,下列四个结论:0abc >①;30a c +>②;③若抛物线过点()1,4,则213a -<<-;④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有()A.1个B.2个C.3个D.4个【答案】B 【分析】由抛物线过()1,0-和()0m ,两点得到对称轴为直线122b m x a -=-=,且34m <<,a<0所以得到3122b a <-<,进而判断abc 的符号,得到0abc <,30a c +>;抛物线过点()1,0-和()1,4,代入可得0a b c -+=和4a b c ++=,解得2b =,又由3122b a <-<,得213a -<<-;对称轴为直线12m x -=,a<0,开口向下,所以y 有最大值为212m a +⎛⎫- ⎪⎝⎭,且34m <<,无法判断关于x 的方程()()13a x x m +-=是否有实数根.【详解】解:已知抛物线过()1,0-和()0m ,两点,则对称轴为直线()1122m m x +--==,∵34m <<,所以13122m -<<,即3122b a <-<,a<0,则0b >,当=1x -时,()()2110y a b c a b c =-+-+=-+=,则0c >,所以0abc <,故结论①错误;因为12b a->,所以2a b >-,32a c a a c a b c +=++>-+,即30a c +>,故结论②正确;抛物线过()1,0-和()1,4两点,代入可得0a b c -+=和4a b c ++=,两式相减解得2b =,由3122b a <-<可得23122a <-<,解得213a -<<-,故结论③正确;对称轴为直线12m x -=,a<0,开口向下,∵()()()222221*********m m m m y a x x m a x m x m a x am a a x a ---+⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=+-=+--=+--=+- ⎪ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭,∴所以y 有最大值为212m a +⎛⎫- ⎪⎝⎭,∵2132m a +⎛⎫-> ⎪⎝⎭不一定成立,∴关于x 的方程()()13a x x m +-=有实数根无法确定,故结论④错误.故选:B【点睛】本题主要考查二次函数的图象与性质,根据题意判断a ,b ,c 与0的关系,再借助点的坐标得出结论.二、填空题(把正确答案直接写在答题卡对应题目的横线上.每小题4分,共24分)11.有意义,则实数x 的取值范围是______【答案】3x >【分析】根据分式有意义的条件,二次根式有意义的条件计算即可.有意义,∴3030x x --≠≥,且,解得x 3>,故答案为:x 3>.【点睛】本题考查了分式有意义的条件,二次根式有意义的条件,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.12.广元市聚焦“1345”发展战略和“十四五”规划,牢牢牵住重点项目建设“牛鼻子”,《2023年广元市重点项目名单》共编列项目300个,其中生态环保项目10个,计划总投资约45亿元,将45亿这个数据用科学记数法表示为____________.【答案】94.510⨯【分析】根据科学记数法的表示方法求解即可.【详解】解:将45亿这个数据用科学记数法表示为94.510⨯.故答案为:94.510⨯.【点睛】此题考查了科学记数法的表示方法,解题的关键是熟练掌握科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.13.如图,a b ∥,直线l 与直线a ,b 分别交于B ,A 两点,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点E ,F ,作直线EF ,分别交直线a ,b 于点C ,D ,连接AC ,若34CDA ∠=︒,则CAB ∠的度数为_____.【答案】56︒##56度【分析】先判断EF 为线段AB 的垂直平分线,即可得CAB CBA ∠=∠,ACD BCD ∠=∠,再由a b ∥,可得34CDA BCD ∠=∠=︒,即有34ACD BCD ∠=∠=︒,利用三角形内角和定理可求CAB ∠的度数.【详解】解:由作图可知EF 为线段AB 的垂直平分线,∴AC BC =,∴CAB CBA ∠=∠,ACD BCD ∠=∠,∵a b ∥,∴34CDA BCD ∠=∠=︒,∴34ACD BCD ∠=∠=︒,∵180ACD BCD CAB CBA ∠+∠+∠+∠=︒,∴56CAB ∠=︒,故答案为:56︒.【点睛】本题考查了垂直平分线的作图、垂直平分线的性质、平行线的性质以及三角形内角和定理等知识,判断EF为线段AB 的垂直平分线是解答本题的关键.14.在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为_____.【答案】21【分析】根据前六行的规律写出第7,8行的规律进而即可求解.【详解】解:根据规律可得第七行的规律为1,6,1520,15,6,1,第八行的规律为1,7,21,35,35,21,7,1∴根据规律第八行从左到右第三个数为21,故答案为:21.【点睛】本题考查了数字类规律,找到规律是解题的关键.15.如图,在平面直角坐标系中,已知点()1,0A ,点()0,3B -,点C 在x 轴上,且点C 在点A 右方,连接AB ,BC ,若1tan 3ABC ∠=,则点C 的坐标为_____.【答案】904⎛⎫ ⎪⎝⎭,【分析】根据已知条件得出ABO ABC ∠=∠,根据等面积法得出AC CB OA OB=,设(),0C m ,则1AC m =-,进而即可求解.【详解】解:∵点()1,0A ,点()0,3B -,∴1,3OA OB ==,1tan 3OBA ∠=,∵1tan 3ABC ∠=,∴ABO ABC ∠=∠,过点A 作AD BC ⊥于点D,∵,AO BO AD BC ⊥⊥,AB 是OBC ∠的角平分线,∴1AO AD ==∵11221122ABO ABC OA OB OB OA S S AC OB BC AD ⨯⨯==⨯⨯ ∴AC CB OA OB=设(),0C m ,则1AC m =-,BC =∴1313m -=解得:94m =或0m =(舍去)∴C 904⎛⎫ ⎪⎝⎭,故答案为:904⎛⎫ ⎪⎝⎭,.【点睛】本题考查了正切的定义,角平分线的性质,勾股定理,熟练掌握角平分线的定义是解题的关键.16.如图,45ACB ∠=︒,半径为2的O 与角的两边相切,点P 是⊙O 上任意一点,过点P 向角的两边作垂线,垂足分别为E ,F,设t PE =+,则t 的取值范围是_____.【答案】4t ≤≤+【分析】利用切线的性质以及等腰直角三角形的性质求得2CD DH ==+,再求得t PE PQ EQ =+=,分两种情况讨论,画出图形,利用等腰直角三角形的性质即可求解.【详解】解:设O 与ACB ∠两边的切点分别为D 、G ,连接OG OD 、,延长DO 交CB 于点H ,由90OGC ODC OGH ∠=∠=∠=︒,∵45ACB ∠=︒,∴45OHC ∠=︒,∴OH ==∴2CD DH ==+,如图,延长EP 交CB 于点Q ,同理PQ =,∵t PE =+,∴t PE PQ EQ =+=,当EQ 与O 相切时,EQ 有最大或最小值,连接OP ,∵D 、E 都是切点,∴90ODE DEP OPE ∠=∠=∠=︒,∴四边形ODEP 是矩形,∵OD OP =,∴四边形ODEP 是正方形,∴t 的最大值为4EQ CE CD DE ==+=+;如图,同理,t 的最小值为22EQ CE CD DE ==-=;综上,t 的取值范围是224t ≤≤+.故答案为:224t ≤≤+.【点睛】本题考查了切线的性质,等腰直角三角形的性质,勾股定理,求得t EQ =是解题的关键.三、解答题(要求写出必要的解答步骤或证明过程,共96分)17.计算:()101822202313++--.【答案】4【分析】先化简二次根式,绝对值,计算零次幂,再合并即可.【详解】解:()101822202313++--3222113=++22211=++4=.【点睛】本题考查的是二次根式的加减运算,化简绝对值,零次幂的含义,掌握运算法则是解本题的关键.18.先化简,再求值:222222322x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭,其中31x =+,3y =.【答案】2xy ;332【分析】先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后将字母的值代入求解.【详解】解:222222322x y x x y y x x y xy⎛⎫++÷ ⎪---⎝⎭()22322xy x y x y x x y -+-=⨯-()()()2xy x y x y x y x y -+=⨯+-=2xy ,当1x =+,y =时,原式)13322+==.【点睛】本题考查了分式化简求值,二次根式的混合运算,解题关键是熟练运用分式运算法则进行求解.19.如图,将边长为4的等边三角形纸片沿边BC 上的高AD 剪成两个三角形,用这两个三角形拼成一个平行四边形.(1)画出这个平行四边形(画出一种情况即可);(2)根据(1)中所画平行四边形求出两条对角线长.【答案】(1)见解析(2)4或或2,【分析】(1)根据题意画出拼接图形即可;(2)利用等边三角形的性质求得BD CD AD 、、,分情况分别利用平行四边形和矩形的性质和勾股定理求解即可.【小问1详解】解:如图①或②或③,,【小问2详解】解:∵等边ABC 边4AB AC BC ===,∴2BD DC ==,∴AD ==如图①所示:可得四边形ACBD 是矩形,则其对角线长为4AB CD ==;如图②所示:AD =连接BC ,过点C 作CE BD ⊥于点E ,则可得四边形ACED 是矩形,∴==EC AD ,24BE BD ==,则BC ==;如图③所示:2BD =,连接AC ,过点A 作AE BC ⊥交CB 延长线于点E ,可得四边形AEBD 是矩形,由题意可得:2AE BD ==,28EC BC ==,故AC ==【点睛】本题考查图形的剪拼,涉及等边三角形的性质、平行四边形的性质、矩形的性质、勾股定理,熟练掌握等腰三角形的性质和矩形性质,作辅助线构造直角三角形求解是解答的关键.20.为进一步落实“德、智、体、美、劳”五育并举工作,某校开展以“文化、科技、体育、艺术、劳动”为主题的活动,其中体育活动有“一分钟跳绳”比赛项目,为了解学生“一分钟跳绳”的能力,体育老师随机抽取部分学生进行测试并将测试成绩作为样本,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:(1)求第四小组的频数,并补全频数分布直方图;(2)若“一分钟跳绳”不低于160次的成绩为优秀,本校学生共有1260人,请估计该校学生“一分钟跳绳”成绩为优秀的人数;(3)若“一分钟跳绳”不低于180次的成绩为满分,经测试某班恰有3名男生1名女生成绩为满分,现要从这4人中随机抽取2人去参加学校组织的“一分钟跳绳”比赛,请用画树状图或列表的方法,求所选2人都是男生的概率.【答案】(1)第四小组的频数为10,补全图形见解析(2)该校学生“一分钟跳绳”成绩为优秀的人数为294人(3)所选2人都是男生的概率为12.【分析】(1)首先利用第二小组的人数及所占比例求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数1260乘以优秀成绩所占的比例即可求解;(3)画树状图展示所有12种等可能的结果数,再找出符合条件的结果数,然后根据概率公式计算即可.【小问1详解】解:样本容量是1220%60÷=(人),第四组的人数是:606121810410-----=(人),补全统计图如图:;【小问2详解】解:该校学生“一分钟跳绳”成绩为优秀的人数为104126029460+⨯=(人);【小问3详解】解:画树状图:共有12种等可能的结果数,其中抽到的2人都是男生的结果数为6,所以抽到的2人都是男生的概率为61122=.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.还考查读频数分布直方图的能力和利用统计图获取信息的能力.21.“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120︒,当其中一片风叶OB 与塔干OD 叠合时,在与塔底D 水平距离为60米的E 处,测得塔顶部O 的仰角45OED ∠=︒,风叶OA 的视角30OEA ∠=︒.(1)已知α,β两角和的余弦公式为:()cos cos cos sin sin αβαβαβ+=-,请利用公式计算cos 75︒;(2)求风叶OA 的长度.【答案】(1)4(2)风叶OA的长度为()60-米【分析】(1)根据题中公式计算即可;(2)过点A 作AF D E ⊥,连接AC ,OG AC ⊥,先根据题意求出OE ,再根据等腰对等边证明OE AE =,结合第一问的结论用三角函数即可求EF ,再证明四边形DFAG 是矩形,即可求出.【小问1详解】解:由题意可得:()cos75cos 4530︒=︒+︒,∴()1cos 4530cos 45cos30sin 45sin 302︒+︒=︒︒-︒︒==;【小问2详解】解:过点A 作AF D E ⊥,连接AC ,OG AC ⊥,如图所示,由题意得:60DE =米,45OED ∠=︒,∴cos 45DE OE ==∠︒45DOE ∠=︒,∵三片风叶两两所成的角为120︒,∴120DOA ∠=︒,∴1204575AOE ∠=︒-︒=︒,又∵30OEA ∠=︒,∴180753075OAE ∠=︒-︒-︒=︒,∴OAE AOE ∠=∠,∴OE AE ==∵30OEA ∠=︒,45OED ∠=︒,∴75AED ∠=︒,由(1)得:62cos 754-︒=,∴cos 7530EF AE =⨯︒=米,∴()603090DF DE EF =-=-=-∵AF D E ⊥,OG AC ⊥,OD DE ⊥,∴四边形DFAG 是矩形,∴90AG DF ==-米,∵三片风叶两两所成的角为120︒,且三片风叶长度相等,∴30OAG ∠=︒,∴()60cos30AG OA ===︒米,∴风叶OA的长度为()60米.【点睛】本题考查解直角三角形的实际应用,正确理解题意和作出辅助线是关键.22.某移动公司推出A ,B 两种电话计费方式.计费方式月使用费/元主叫限定时间/min 主叫超时费/(元/min )被叫A782000.25免费B 1085000.19免费(1)设一个月内用移动电话主叫时间为t min ,根据上表,分别写出在不同时间范围内,方式A ,方式B 的计费金额关于t 的函数解析式;(2)若你预计每月主叫时间为350min ,你将选择A ,B 哪种计费方式,并说明理由;(3)请你根据月主叫时间t 的不同范围,直接写出最省钱的计费方式.【答案】(1)见解析;(2)选方式B 计费,理由见解析;(3)见解析.【分析】(1)根据题意,设两种计费金额分别为1y 、2y ,分别计算200,t ≤500,t 200<≤500,t >三个不同范围内的A 、B 两种方式的计费金额即可;(2)令350t =,根据(1)中范围求出对应两种计费金额,选择费用低的方案即可;(3)令1108y =,求出此时t 的值0t ,当主叫时间0t t <时,方式A 省钱;当主叫时间t t =0时,方式A 和B 一样;当主叫时间0t t >时,方式B 省钱;【小问1详解】解:根据题意,设两种计费金额分别为1y 、2y 当200t ≤时,方式A 的计费金额为78元,方式B 的计费金额为108元;500,t 200<≤方式A 的计费金额178(200)0.250.2528y t t =+-⨯=+,方式B 的计费金额为108元;当500t >时,方式A 的计费金额为10.2528y t =+,方式B 的计费金额为2108(500)0.190.1913y t t =+-⨯=+总结如下表:主叫时间t /分钟方式A 计费(1y )方式B 计费(2y )200t ≤78108500t 200<≤0.2528t +108500t >0.2528t +0.1913t +【小问2详解】解:当350t =时,10.2535028115.5y =⨯+=2108y =12y y >,故选方式B 计费.【小问3详解】解:令1108y ≤,有0.2528108t +≤解得320t ≤∴当320t <时,方式A 更省钱;当320t =时,方式A 和B 金额一样;当320t >时,方式B 更省钱.【点睛】本题考查了一次函数在电话计费中的应用,根据题意分段讨论是求解的关键.23.如图,已知一次函数6y kx =+的图象与反比例函数()0m y m x =>的图象交于()34A ,,B 两点,与x 轴交于点C ,将直线AB 沿y 轴向上平移3个单位长度后与反比例函数图象交于点D ,E .(1)求k ,m 的值及C 点坐标;(2)连接AD ,CD ,求ACD 的面积.【答案】(1)23k =-;12m =;()9,0C (2)9ACD S =△【分析】(1)把点()34A ,代入6y kx =+和()0m y m x=>求出k 、m 的值即可;把0y =代入AB 的解析式,求出点C 的坐标即可;(2)延长DA 交x 轴于点F ,先求出AB 平移后的关系式,再求出点D 的坐标,然后求出AD 解析式,得出点F 的坐标,根据ACD CDF CAF S S S =- 求出结果即可.【小问1详解】解:把点()34A ,代入6y kx =+和()0m y m x=>得:364k +=,43m =,解得:23k =-,12m =,∴AB 的解析式为263y x =-+,反比例函数解析式为12y x=,把0y =代入263y x =-+得:2063x =-+,解得:9x =,∴点C 的坐标为()9,0;【小问2详解】解:延长DA 交x 轴于点F,如图所示:将直线AB 沿y 轴向上平移3个单位长度后解析式为:2263933y x x =-++=-+,联立29312y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得:11328x y ⎧=⎪⎨⎪=⎩,22121x y =⎧⎨=⎩,∴点382,D ⎛⎫⎪⎝⎭,。
初三数学毕业考试数学试卷含详细答案一、选择题1.一块多边形木板截去一个三角形(截线不经过顶点),得到的新多边形内角和为2340︒,则原多边形的边数为( )A .13B .14C .15D .162.已知点P 在∠AOB 的平分线上,点P 到OA 的距离为10,点Q 是OB 边上的任意一点,则下列结论正确的是( )A .PQ >10B .PQ≥10C .PQ <10D .PQ≤103.如图,AB//CD ,F 为,BAC ACD ∠∠的平分线的交点,EF AC ⊥于点E ,且EF=6,则AB 与CD 之间的距离是( )A .6B .8C .10D .124.下列各式从左到右的变形中,是因式分解的是( )A .2(3)(3)9a a a +-=-B .233m m m m ⎛⎫-=- ⎪⎝⎭C .243(4)3a a a a --=--D .22()()a b a b a b -=+-5.下列式子中,运算结果为1x +的是 ( )A .211x x x x -⋅+B .2211x x x +++C .11x +D .111x x x +÷- 6.我国古代许多关于数学的发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律,例如,第四行的四个数1,3,3,1恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数,请你猜想5()a b +的展开式中含32a b 项的系数是( )A .10B .12C .9D .87.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个8.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q 在轨道槽AM 上运动,点P 既能在以A 为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN 上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A .②③B .③④C .②③④D .①②③④9.如图,ABC 中,50B ∠=︒,60C ∠=°,点D 是 BC 边上的任意一点,DE AB ⊥,DF AC ⊥,垂足分别为 E 、F ,那么EDF ∠ 等于( )A .100︒B .110︒C .120︒D .140︒10.如图,在△ABC 中,AB =AC ,BO 、CO 分别平分∠ABC 、∠ACB ,DE 经过点 O , 且DE ∥BC ,DE 分别交 AB 、AC 于 D 、E ,则图中等腰三角形的个数为( )A .2B .3C .4D .5二、填空题11.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC 的度数是___________.12.如图,在ABC ∆中,o o 9030C B AD ∠=∠=,,是ABC ∆的角平分线,DE AB ⊥,垂足为E ,1DE =,则ABC ∆的周长为________.13.将一块直角三角板按图所示摆放在一张长方形纸片上,若∠1=82°,则∠2的度数是_____.14.已知23a =,26b =,212c =,则2a c b +-=________.15.三角形的两条边长分别是2cm ,8cm ,第三边为奇数,则其周长为________.16.若103a =,102b =,则210a b -=______.17.如图,在矩形ABCD 中,6,8AB AD ==,以A 为圆心,任意长为半径画弧交,AB AC 于,M N ,再分别以,M N 为圆心,大于12MN 为半径画弧,两弧交于点G ,连接,AG 交边BC 于,E 则AEC 的周长为_________.18.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).19.一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.20.若x ,y 是整数且满足225x y xy ++=,则x y +=__________.三、解答题21.如图,在ABC ∆和DEF ∆中,B 、E 、C 、F 在同一直线上,下面有四个条件:①AB DE =;②AC DF =;③//AB DE ;④BE CF =.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:____________________________________________;求证:___________.(注:不能只填序号)证明如下:22.如图,等边ABC 中,D 为BC 边中点,CP 是BC 的延长线.按下列要求作图并回答问题:(要求:尺规作图,不写作法,保留作图痕迹)(1)作ACP ∠的平分线CF ;(2)作60ADE ∠=︒,且DE 交CF 于点E ;(3)在(1),(2)的条件下,可判断AD 与DE 的数量关系是__________;请说明理由.23.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD 是∠BAC 的平分线.24.设2244322M x xy y x y =-+-+,则M 的最小值为______.25.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若148∠=︒,求2∠的度数;(2)求证://AB DE .26.如图,等边△ABC 的边AC ,BC 上各有一点E ,D ,AE=CD ,AD ,BE 相交于点O .(1)求证:△ABE ≌△CAD ;(2)若∠OBD =45°,求∠ADC 的度数.27.已知:如图,AD 垂直平分BC ,D 为垂足,DM ⊥AB ,DN ⊥AC ,M 、N 分别为垂足.求证:DM=DN .28.如图,ABC ∆中,30A ∠=︒,70B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥,求CDF ∠的度数.29.(1)解方程组:202321x y x y -=⎧⎨+=⎩. (2)解不等式组:202(21)15x x x -<⎧⎨-≤+⎩. (3)分解因式:3x x -.(4)分解因式:221x x -++.30.已知x 3,y 31,求:(1)代数式xy 的值;(2)代数式x 3+x 2y +xy 2+y 3的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先求出内角和为2340°的多边形的边数,而根据题意可得原多边形比新多边形的边数少1,据此进一步求解即可.【详解】设内角和为2340°的多边形边数为x ,则:()18022340x -=,解得:15x =,则原多边形边数=15114-=,故选:B.【点睛】本题主要考查了多边形内角和公式的运用,熟练掌握相关公式是解题关键.2.B解析:B【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为10,再根据垂线段最短解答.【详解】解:∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于10,∴点P 到OB 的距离为10,∵点Q 是OB 边上的任意一点,∴PQ≥10.故选B .【点睛】本题考查角平分线的性质;垂线段最短.3.D解析:D【解析】【分析】过点F 作MN AB ⊥于点M ,交CD 于点N ,根据角平分线上的点到角的两边距离相等可得MF EF FN ==,再根据平行线间的距离的定义解答.【详解】解:如图,过点F 作MN AB ⊥于点M ,交CD 于点N ,//AB CD ,M N CD ∴⊥. F 为BAC ∠、ACD ∠的平分线的交点,6EF =,6MF EF FN ∴===,AB ∴与CD 之间的距离12MF FN =+=.故选:D .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,平行线间的距离的求解,熟记性质并作出辅助线是解题的关键.4.D解析:D【解析】【分析】直接利用因式分解的定义得出答案.【详解】A 、2(3)(3)9a a a +-=-,是整式乘法,故此选项不合题意;B 、233m m m m ⎛⎫-=- ⎪⎝⎭,不符合因式分解的定义,故此选项不合题意; C 、243(4)3a a a a --=--,不符合因式分解的定义,故此选项不合题意;D 、22()()a b a b a b -=+-是分解因式,符合题意;故选:D .【点睛】此题主要考查了因式分解的意义,正确分解因式是解题关键.5.B解析:B【解析】【分析】分别对每个选项进行化简,然后进行判断,即可得到答案.【详解】解:A 、21(1)(1)111x x x x x x x x x x -+-•=•=-++,故A 错误;B 、2221(1)111x x x x x x +++==+++,故B 正确;C 、111x x x++=,故C 错误; D 、21111(1)1x x x x x x x x++-÷=•-=-,故D 错误; 故选:B .【点睛】本题考查了分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.6.A解析:A【解析】【分析】根据“杨辉三角”的构造法则即可得.【详解】由“杨辉三角”的构造法则得:5()a b +的展开式的系数依次为1,5,10,10,5,1, 因为系数是按a 的次数由大到小的顺序排列,所以含32a b 项的系数是第3个,即为10,故选:A .【点睛】本题考查了多项式乘法中的规律性问题,理解“杨辉三角”的构造法则是解题关键.7.C解析:C【解析】【分析】过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确; ∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.8.C解析:C【解析】【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.9.B解析:B【解析】【分析】根据直角三角形的两锐角互余和平角的定义可求得∠EDF 的度数.【详解】解:∵DE ⊥AB 于E ,DF ⊥AC 于F ,∠B=50°,∠C=60°,∴∠EDB=90°-50°=40°,∠FDC=90°-60°=30°,∴∠EDF=180°-40°-30°=110°.故选:B .【点睛】本题考查三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.注意:垂直和直角总是联系在一起.10.D解析:D【解析】【分析】根据等腰三角形的判定定理,即可得到答案.【详解】∵在△ABC 中,AB=AC,∴△ABC是等腰三角形,∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴△ADE是等腰三角形,∵BO、CO 分别平分∠ABC、∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC=∠OCB,∴△OBC是等腰三角形,∵DE∥BC,BO、CO 分别平分∠ABC、∠ACB,∴∠DBO=∠OBC=∠DOB,∠ECO=∠OCB=∠EOC,∴△DBO,△ECO是等腰三角形,∴图中由5个等腰三角形,故选D.【点睛】本题主要考查等腰三角形的判定定理,熟悉等腰三角形的判断定理和“双平等腰”模型,是解题的关键.二、填空题11.106°【解析】【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO,延长AO交BC于点D.根据三角形中一个外角等于与它不相邻的两个内角和,可得:解析:106°【解析】【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO,延长AO交BC于点D.根据三角形中一个外角等于与它不相邻的两个内角和,可得:∠BOD=∠1+∠BAO,∠DOC=∠2+∠OAC,∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC,∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.故答案为:106°.【点睛】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.12.;【解析】【分析】在△ACD、△ADE、△DEC都是含有30°的直角三角形,利用边之间的关系,得出各边长,从而得出△ABC的周长.【详解】∵∠C=90°,∠B=30°,DE=1∴在Rt△+解析:333【解析】【分析】在△ACD、△ADE、△DEC都是含有30°的直角三角形,利用边之间的关系,得出各边长,从而得出△ABC的周长.【详解】∵∠C=90°,∠B=30°,DE=1∴在Rt△DEB中,DB=2,3∵AD是∠CAB的角平分线∴CD=DE=1,∠CAD=∠DAE=30°AC=∴在Rt△ACD中,AD=2,3同理,在Rt△ADE中,AD=2,3∴△ABC的周长3故答案为:3+33.【点睛】本题考查含30°角的直角三角形、角平分线的性质,解题关键是得出△ACD、△ADE、△DEC都是含有30°的直角三角形.13.98°【解析】【分析】根据直角三角形两锐角互余求得∠4度数,再根据平角为180°求得∠3度数,最后根据平行线的性质求得∠2度数.【详解】解:如图所示,∵∠C=90°,∠1=82°,∴∠解析:98°【解析】【分析】根据直角三角形两锐角互余求得∠4度数,再根据平角为180°求得∠3度数,最后根据平行线的性质求得∠2度数.【详解】解:如图所示,∵∠C=90°,∠1=82°,∴∠4=8°,∵∠4+∠3+90°=180°,∴∠3=82°,∵AD∥BC,∴∠2+∠3=180°,∴∠2=98°,故答案为:98°.【点睛】本题主要考查了直角三角形的性质,平行线的性质,根据直角三角形的两锐角互余求得∠4的度数是解决此题的关键.14.【解析】【分析】先计算,再逆运用同底数幂的乘除法法则,代入求值即可.∵2b=6,∴(2b)2=62.即22b=36.∵2a+c -2b=2a×2c÷22b=3×12÷36=解析:【解析】【分析】先计算22b ,再逆运用同底数幂的乘除法法则,代入求值即可.【详解】∵2b =6,∴(2b )2=62.即22b =36.∵2a+c-2b=2a ×2c ÷22b=3×12÷36=1,∴20a c b +-=.故答案为:0.【点睛】本题考查了同底数幂的乘除法法则及幂的乘方法则,熟练掌握同底数幂的乘除法法则及逆运用,是解决本题的关键.15.17cm 或19cm【解析】【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长解析:17cm 或19cm【解析】【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长是2+8+7=17(cm )或2+8+9=19(cm )故答案为:17cm 或19cm .本题考查了三角形的三边关系,首先根据题意求出第三边,然后再求出周长,难度较小.16.【解析】【分析】根据同底数幂的除法和幂的乘方得出,代入求出即可.【详解】∵10a=3,10b=2,∴=102a ÷10 b==32÷2=.故答案为.【点睛】本题考查同底数幂 解析:92【解析】【分析】根据同底数幂的除法和幂的乘方得出()21010a b ÷,代入求出即可. 【详解】∵10a =3,10b =2,∴210a b -=102a ÷10 b=()21010a b ÷ =32÷2 =92. 故答案为92. 【点睛】 本题考查同底数幂的除法和幂的乘方的应用,关键是得出关于10a 和10b 的式子,用了整体代入思想.17.15+3【解析】【分析】作,根据角平分线的性质得到BE=EP ,利用勾股定理求解即可;作,根据题意可知AE 是的角平分线,∴BE=EP,在△ABE 和△APE 中,,∴,∴AB解析:15+35【解析】【分析】作EP ⊥AC ,根据角平分线的性质得到BE=EP ,利用勾股定理求解即可;【详解】作EP ⊥AC ,根据题意可知AE 是BAC ∠的角平分线,∴BE=EP ,在△ABE 和△APE 中,BAE PAE B APE BE PE ⎧∠=∠⎪∠=∠⎨⎪=⎩,∴△△ABE APE ≅,∴AB=AP ,设BE=x ,则PE=x ,∵6,8AB AD ==,∴10AC =,∴1064PC =-=,8EC x =-,在Rt △PEC 中,222PE PC EC +=,∴()22248x x +=-,∴5EC =,∴222226345AE AP PE =+=+=, ∴AE =∴△15AEC C AE AC PE =++=+故答案是【点睛】本题主要考查了角平分线的性质应用,准确分析是解题的关键.18.③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面; ∵正方形的每个内角都是90度,能将360度整除,故可以用其解析:③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.19.720°【解析】【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n 边形内角和等于(n-2) ×180°.解析:720°【解析】【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n 边形内角和等于(n -2) ×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n -2) ×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n 边形内角和等于(n -2) ×180°”是解题的关键.20.25或9或或.【解析】【分析】由题意,原式通过整理得到,结合x 、y 是整数,进行分析讨论,即可求出答案.【详解】解:∵,∴,∴,∴,∵x,y 是整数,∴,是整数,∵,∴,,或,解析:25或9或27-或11-.【解析】【分析】由题意,原式通过整理得到(21)(21)51x y ++=,结合x 、y 是整数,进行分析讨论,即可求出答案.【详解】解:∵225x y xy ++=,∴22450x y xy ++=,∴224151x y xy +++=,∴(21)(21)51x y ++=,∵x ,y 是整数,∴21x +,21y +是整数,∵151317(1)(51)(3)(17)51⨯=⨯=-⨯-=-⨯-=,∴211x +=,2151y +=,或2151x +=,211y +=,或213x +=,2117y +=,或2117x +=,213y +=,或211x +=-,2151y +=-,或2151x +=-,211y +=-,或213x +=-,2117y +=-,或2117x +=-,213y +=-;∴0x =,25y =,或25x =,0y =,或1x =,8y =,或8x =,1y =,或1x =-,26y =-,或26x =-,1y =-,或2x =-,9y =-,或9x =-,2y =-;∴25x y +=,或9x y +=,或27x y +=-,或 11x y +=-;故答案为:25或9或27-或11-.【点睛】本题考查了二元二次方程的解,因式分解的应用,解题的关键是熟练掌握题意,正确得到(21)(21)51x y ++=,从而利用分类讨论进行解题.三、解答题21.已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AC=DF ,BE=CF .求证:AB ∥DE.证明见解析.或已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AB ∥DE ,BE=CF .求证:AC=DF .证明见解析.【解析】【分析】由BE=CF ⇒BC=EF ,所以,由①②④,可用SSS ⇒△ABC ≌△DEF ⇒∠ABC=∠DEF ⇒ AB ∥DE ;由①③④,可用SAS ⇒△ABC ≌△DEF ⇒AC=DF ;由于不存在ASS 的证明全等三角形的方法,故由其它三个条件不能得到1或4.【详解】解:将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AC=DF ,BE=CF . 求证:AB ∥DE .证明:在△ABC 和△DEF 中,∵BE=CF ,∴BC=EF.又∵AB=DE ,AC=DF ,∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF .∴ AB ∥DE.将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AB ∥DE ,BE=CF . 求证:AC=DF .证明:∵AB ∥DE,∴∠ABC=∠DEF.在△ABC 和△DEF 中∵BE=CF ,∴BC=EF.又∵AB=DE ,∠ABC=∠DEF ,∴△ABC ≌△DEF (SAS ),∴AC=DF .【点睛】本题考查命题与定理、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.22.(1)见解析;(2)见解析;(3)AD DE =,见解析【解析】【分析】(1)根据角平分线的作法作图即可;(2)根据作一个角等于已知角的方法作图即可;(3)连接AE ,首先根据等边三角形的性质计算出30BAD EDC ∠=∠=︒,30DEC EDC ∠=∠=︒,进而得到CE CD BD ==,然后证明ABD ACE ∆≅∆可得AD AE =,再由60ADE ∠=︒,可得ADE ∆是等边三角形,进而得到AD DE =.【详解】(1)尺规作图,如下图;(2)尺规作图,如下图;(3)AD DE =理由如下:如图,连接AE∵等边ABC 中,D 为BC 边中点,∴BD DC =,90ADB ADC ∠=∠=︒,∵60B ADE ∠=∠=︒,∴30BAD EDC ∠=∠=︒,∵120ACP ∠=︒,CE 为ACP ∠的平分线,∴60ACE ECP ∠=∠=︒,∴30DEC ECP EDC ∠=∠-∠=︒,∴30DEC EDC ∠=∠=︒,∴CE CD BD ==,在ABD △和ACE △中,∵AB AC =,60B ACE ∠=∠=︒,BD CE =,∴ABD ACE SAS △≌△(),∴AD AE =,又∵60ADE ∠=︒,∴ADE 是等边三角形,∴AD DE =.【点睛】此题主要考查了基本作图,以及全等三角形的判定与性质,解题的关键是正确掌握全等三角形的判定方法.23.证明见解析.【解析】【分析】根据等腰三角形的性质得∠DBC =∠DCB ,结合条件,得∠ABC =∠ACB ,进而得AB =AC ,易证△ABD ≌△ACD ,进而即可得到结论.【详解】∵BD =DC ,∴∠DBC =∠DCB .∵∠1=∠2,∴∠ABC =∠ACB ,∴AB =AC ,在△ABD 与△ACD 中∵12AB AC BD DC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS),∴∠BAD =∠CAD ,∴AD 是∠BAC 的平分线.【点睛】本题主要考查等腰三角形的判定和性质定理以及三角形全等的判定和性质定理,掌握等腰三角形的判定和性质定理以及三角形全等的判定和性质定理是解题的关键.24.38- 【解析】【分析】把M 化成完全平方的形式,再示出其最小值即可.【详解】2244322M x xy y x y =-+-+22112224x y y y ⎛⎫=--++- ⎪⎝⎭ 22111132224488x y y ⎛⎫⎛⎫=--++--≥- ⎪ ⎪⎝⎭⎝⎭ 当且仅当14y =-,316x =表达式取得最小值. 故答案为:38-. 【点睛】考查了完全平方公式,解题关键是把整式化成完全平方的形式.25.(1)248∠=︒;(2)证明见解析;【解析】【分析】(1)先求六边形ABCDEF 的每个内角的度数,再根据四边形的内角和是360°,求∠2的度数.(2)由(1)中∠ADC的度数,可得∠BAD=∠ADE,利用内错角相等,两直线平行,可证AB∥DE.【详解】(1)∵六边形ABCDEF的每个内角的度数是(6-2)×180°÷6=120°∴∠FAB=120°,∵∠1=48°∴∠FAD=∠FAB-∠1=120°-48°=72°,∴∠2=360°-120°-120°-72°=48°.(2)∵∠1=48°,∠2=48°,∴AB∥DE.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.注意平行于同一条直线的两直线平行.26.(1)见解析;(2)∠ADC=105°【解析】【分析】(1)根据等边三角形的性质可得AB=AC,∠BAE=∠C=60 °,再根据SAS即可证得结论;(2)根据全等三角形的性质可得∠ABE=∠CAD,然后根据三角形的外角性质和角的和差即可求出∠BOD的度数,再根据三角形的外角性质即可求出答案.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAE=∠C=60 °,在△ABE与△CAD中,∵AB=AC,∠BAE=∠C,AE=CD,∴△ABE≌△CAD(SAS);(2)解:∵△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BOD=∠ABO+∠BAO=∠CAD +∠BAO=∠BAC=60°,∴∠ADC=∠OBD+∠BOD=45°+60°=105°.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及三角形的外角性质等知识,属于常考题目,熟练掌握上述知识是解答的关键.27.见解析.【解析】【分析】根据垂直平分线的性质得到AC=AB,再利用等腰三角形的性质得到AD是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD 垂直平分BC ,∴AC=AB ,即ABC 是等腰三角形,∴AD 平分∠BAC ,∵DM ⊥AB ,DN ⊥AC ,∴DM=DN .【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定定理是解题的关键.28.70CDF ∠=︒【解析】【分析】首先根据三角形的内角和定理求得∠ACB 的度数,以及∠BCD 的度数,根据角的平分线的定义求得∠BCE 的度数,则∠ECD 可以求解,然后在△CDF 中,利用内角和定理即可求得∠CDF 的度数.【详解】解:∵30A ∠=︒,70B ∠=︒,∴18080ACB A B ∠=︒-∠-∠=︒.∵CE 平分ACB ∠,∴1402ACE ACB ∠=∠=︒. ∵CD AB ⊥于D ,∴90CDA ∠=︒,18060ACD A CDA ∠=︒-∠-∠=︒.∴20ECD ACD ACE ∠=∠-∠=︒.∵DF CE ⊥,∴90CFD ∠=︒,∴18070CDF CFD ECD ∠=︒-∠-∠=︒.【点睛】本题考查了三角形的内角和等于180°以及角平分线的定义,是基础题,准确识别图形是解题的关键.29.(1)63x y =⎧⎨=⎩;(2)32x -≤<;(3)()()11x x x +-;(4)()21x - 【解析】【分析】(1)加减消元法解方程组;(2)先分别解不等式,再找解集的公共部分;(3)先提公因式,再用平方差公式;(4)应用完全平方公式.【详解】(1)解:202321x y x y -=⎧⎨+=⎩①②, ②-①×2,得:721y =,解得:3y =,把3y =代入①得:6x =,∴原方程组的解为:63x y =⎧⎨=⎩; (2)解:202(21)15x x x -<⎧⎨-≤+⎩①②, 由①得:2x <,由②得:4-215x x ≤+,解得:3x ≥-,∴原不等式组的解为:32x -≤<;(3)原式=()()()211-1x x x x x -=+; (4)原式=221x x -++=()21x -.【点睛】本题考查二元一次方程组的解法,一元一次不等式组的解法,因式分解的方法,熟练掌握基础知识是关键.30.(1)2;(2)【解析】【分析】(1)直接代入平方差公式计算即可;(2)先计算出x+y 和x 2+y 2,原式整理成(x 2+y 2)(x+y )代入计算即可;【详解】(1)xy=)=2-1=2;(2)∵x,y1,xy=2,∴∴x 2+y 2=(x+y )2-2xy=8,则x 3+x 2y +xy 2+y 3= x 2(x+y )+y 2(x+y )=(x 2+y 2)(x+y )【点睛】此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001...2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a 2 > b 2D. a / 2 < b / 23. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解为()A. x = 2, x = 3B. x = 3, x = 2C. x = 1, x = 4D. x = 4, x = 14. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x^2D. y = 3x6. 在梯形ABCD中,AD || BC,若AD = 4cm,BC = 6cm,AB = 3cm,CD = 5cm,则梯形ABCD的面积是()A. 12cm^2B. 15cm^2C. 18cm^2D. 20cm^27. 若等差数列的前三项分别是a,b,c,且a + b + c = 9,a + c = 6,则该数列的公差是()A. 1B. 2C. 3D. 48. 下列命题中,正确的是()A. 所有的实数都是有理数B. 所有的有理数都是整数C. 所有的整数都是自然数D. 所有的自然数都是整数9. 若等比数列的首项为a,公比为q,则第n项an =()A. a q^(n-1)B. a q^nC. a / q^(n-1)D. a / q^n10. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 8,c = 10,则角A的余弦值cosA =()A. 1/2B. 1/3C. 2/3D. 3/4二、填空题(每题3分,共30分)11. 若x + y = 5,xy = 6,则x^2 + y^2 = _______。
初三数学毕业考试数学试卷含详细答案一、选择题1.下列说法:①三角形的一个外角等于它的任意两个内角和;②内角和等于外角和的多边形只有四边形;③角是轴对称图形,角的对称轴是角平分线.其中正确的有()个.A.0 B.1 C.2 D.32.若关于x的分式方程1233m xx x-=---有增根,则实数m的值是()A.2B.2-C.1D.03.若分式21xx--的值为零,则x的值为()A.2-B.2±C.2 D.24.分式方程3111xx x=-+-的解是()A.4 B.2 C.1 D.-25.钝角三角形三条高所在的直线交于()A.三角形内B.三角形外C.三角形的边上D.不能确定6.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于12AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①②B.②③C.①②③D.①②③④7.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x|=2,则x=2;④同旁内角的平分线互相垂直.其中真命题的个数为()A.1个B.2个C.3个D.4个8.已知一个多边形的内角和与一个外角的和是1160度,则这个多边形是()A.五边形B.六边形C.七边形D.八边形9.下列计算正确的是( )A.a2+a3=a5B.a6÷a2=a3 C.(a2)3=a6D.2a×3a=6a10.在平面直角坐标系中,若干个等腰直角三角形按如图所示的规律摆放.点P从原点O出发,沿着“1234O A A A A →→→→…”的路线运动(每秒一条直角边),已知1A 坐标为()()()231,12,0,,1,3A A ()44,0A ···,设第n 秒运动到点(n P n 为正整数),则点2020P 的坐标是)( )A .()2020,0B .()2019,1C .()1010,0D .()2020,1-二、填空题11.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________12.若3m =2,9n =10,则3m﹣2n=_____.13.已知多项式x 2+mx+25是完全平方式,且m <0,则m 的值为_____. 14.已知32×9m ÷27=321,则m=______.15.如图,在ABC 中,A β∠=度,ABC ∠与ACD ∠的平分线交于点1A ,则1A ∠=______度;1A BC ∠与1ACD ∠的平分线交于点2A ,得2A ∠;…2018∠A BC 与2018A CD ∠的平分线交于点2019A ,得2019A ∠.则2019A ∠=______度.16.如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB =6,AC =3,则BE =_______.17.已知,如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30ABC ∠=︒;60ACB ∠=︒,则DAE =∠__________.18.如图,是一块缺角的四边形钢板,根据图中所标出的结果,可得所缺损的∠A 的度数是_____.19.如图,90E F ∠=∠=︒,B C ∠=∠,AE AF =.给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ∆≅∆;④CD DN =.其中正确结论的序号是__________.20.如图,在△ABC 中,BC 的垂直平分线ED 交AB 于点E ,交BC 于点D ,连接CE .如果△AEC 的周长为12,AC =5,那么AB 的长为__________.三、解答题21.如图,在ABC 中,110ABC ∠=,40A ∠=.(1)作ABC 的角平分线BE (点E 在AC 上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求BEC ∠的度数.22.如图,在△ABC 中,AC 的垂直平分线交AC 于点D ,交BC 延长线交于点E ,连接AE ,如果∠B =50°,∠BAC =21°,求∠CAE 的度数.23.把下列各式分解因式: (1)226x y x -; (2)3222x x y xy -+;24.化简求值:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2,其中a =﹣12,b =2. 25.已知分式:222222()1211x x x x xx x x x +--÷--++,解答下列问题: (1)化简分式;(2)当x =3时,求分式的值;(3)原分式的值能等于-1吗?为什么?26.如图,在ABC 中,4654,B C AD ∠=︒∠=︒,平分BAC ∠交BC 于点D ,点E 是边AC 上一点,连接DE ,若40ADE ∠=︒,求证://DE AB .27.先化简,再求值:2()()(2)()x y x y y x y x y +-++--,其中3x =,13y =-. 28.如图,在ABC 中,点D 为BC 上一点,过点D 作DE AB ⊥于点,E DF AC ⊥于点F .连接EF .(1)若,3,5BAD DAC DE AC ∠=∠==,求ADC 的面积; (2)若DF AF =,求证:2AE DE EF +=.29.先化简,再求值:2221a ab a b--+,其中6a =,02b =. 30.已知:如图,ABC 中,∠ABC=45°,CD AB ⊥于D ,BE 平分∠ABC ,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G(1)求证:BF=AC ;(2)判断CE 与BF 的数量关系,并说明理由【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义知识点逐个判断即可. 【详解】解: ①应为三角形的一个外角等于与它不相邻的两个内角的和,故本选项错误; ②内角和等于外角和的多边形只有四边形,故正确;③角是轴对称图形,角的对称轴是角的平分线所在的直线,③错误; 综上所述, ②正确,故选B . 【点睛】本题考查了三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义相关知识点,能熟记知识点的内容是解此题的关键.2.A解析:A 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值. 【详解】去分母得:m=x-1-2x+6,由分式方程有增根,得到x-3=0,即x=3, 把x=3代入整式方程得:m=2, 故选:A . 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.B解析:B 【解析】 【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案. 【详解】 解:∵分式21x x --的值为0,∴|x|-2=0,且x-1≠0, 解得:x=2±. 故选:B . 【点睛】本题考查分式值为零的条件,解题关键是熟练掌握分式值为零的条件.4.B解析:B 【解析】 【分析】各项乘以(1)(1)x x +-去分母,然后移项合并,即可求出方程的解. 【详解】解:去分母得:22331x x x x -=+-+, 移项、合并得:24=x , 解得:2x =,经检验2x =是分式方程的解, 故选:B . 【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法,注意需要检验.5.B解析:B 【解析】 【分析】由图形可知:钝角三角形三条高所在的直线交于三角形外.【详解】解:如图可知:钝角△ABC 三边的高交于三角形外部一点D , 即钝角三角形三条高所在的直线交于三角形外, 故选:B .【点睛】本题考查三角形的高线的交点问题,解答的关键是会画三角形的高线,并能根据三角形的形状得出三条高线所在的直线的交点与三角形的关系.6.C解析:C 【解析】 【分析】证明ABC ≌()ADE SAS ,得出45ACF E ∠=∠=︒,①正确;由ABCACDABCD S SS=+四边形,得出212ADEACDACEABCD S SSSAC =+==四边形,②正确;证出AF AG =,2CE AF =,③正确;由ABFADEABFABCACFS SSSS+=+=,不能确定ACFBCD SS=,④不正确;即可得出答案.【详解】解:∵∠CAE =90°,AE =AC , ∴∠E =∠ACE =45°, ∵∠BAD =∠CAE =90°, ∴∠BAC +∠CAD =∠EAD +∠CAD ∴∠BAC =∠EAD , 在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (SAS ), ∴∠ACF =∠E =45°,①正确; ∵S 四边形ABCD =S △ABC +S △ACD ,∴S四边形ABCD=S△ADE+S△ACD=S△ACE=12AC2,②正确;∵△ABC≌△ADE,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.7.B解析:B【解析】【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x|=2,则x=±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B.【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.8.D解析:D【解析】【分析】设多边形的边数为n,多加的外角度数为x,根据内角和与外角度数的和列出方程,由多边形的边数n为整数求解可得.【详解】设多边形的边数为n,多加的外角度数为x,根据题意列方程得,(n-2)•180°+x=1160°,∵0°<x<180°,∴1160°-180°<(n-2)×180°<1160°,∴549<n−2<649,∵n是整数,∴n=8.故选:D.【点睛】本题主要考查了多边形的内角和公式,利用多边形的内角和是180°的倍数是解题的关键.9.C解析:C【解析】试题分析: A、a2与a3是相加,不是相乘,不能运用同底数幂的乘法计算,故本选项错误;B、根据同底数幂相除,底数不变,指数相减,可得a6÷a2=a4,故本选项错误;C、根据幂的乘方,底数不变,指数相乘,可得(a2)3=a6,故正确;D、单项式乘单项式:把系数和相同字母分别相乘,只在一个单项式里含有的字母,则连同它的指数,作为积的一个因式.因此可得2a×3a=6a2,故本选项错误.故选C.考点:同底数幂的除法;幂的乘方与积的乘方10.A解析:A【解析】【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可. 【详解】 解:由题意知, A 1(1,1), A 2(2,0), A 3(3,1), A 4(4,0), A 5(5,-1), A 6(6,0), A 7(7,1), …由上可知,每个点的横坐标等于序号,纵坐标每6个点依次为:1,0,1,0,-1,0这样循环,∴A 2020(2020,0), 故选:A . 【点睛】本题是一个规律题,根据题意求出点的坐标,从中找出规律来,这是解题的关键所在.二、填空题11.120°或75°或30° 【解析】∵∠AOB=60°,OC 平分∠AOB,点E 在射线OA 上, ∴∠COE=30°.如下图,当△OCE 是等腰三角形时,存在以下三种情况: (1)当OE=CE 时,∠OC解析:120°或75°或30° 【解析】∵∠AOB=60°,OC 平分∠AOB ,点E 在射线OA 上, ∴∠COE=30°.如下图,当△OCE 是等腰三角形时,存在以下三种情况:(1)当OE=CE 时,∠OCE=∠COE=30°,此时∠OEC=180°-30°-30°=120°;(2)当OC=OE 时,∠OEC=∠OCE=180302=75°; (3)当CO=CE 时,∠OEC=∠COE=30°.综上所述,当△OCE 是等腰三角形时,∠OEC 的度数为:120°或75°或30°.点睛:在本题中,由于题中没有指明等腰△OCE的腰和底边,因此要分:(1)OE=CE;(2)OC=OE;(3)CO=CE;三种情况分别讨论,解题时不能忽略了其中任何一种情况.12.【解析】【分析】直接利用同底数幂的除法运算法则、幂的乘方运算法则将原式变形得出答案即可.【详解】解:∵3m=2,9n=(32)n=32n,∴3m﹣2n=3m÷32n=2÷10=.故解析:1 5【解析】【分析】直接利用同底数幂的除法运算法则、幂的乘方运算法则将原式变形得出答案即可.【详解】解:∵3m=2,9n=(32)n=32n,∴3m﹣2n=3m÷32n=2÷10=15.故答案为:15.【点睛】本题考查了同底数幂相除,幂的乘方等知识,理解好两个公式,灵活运用是解题关键.13.-10【解析】【分析】根据完全平方公式得到x2+mx+25=(x+5)2或x2+mx+25=(k-5)2,然后展开即可得到m的值.【详解】∵x2+mx+25是一个完全平方式,∴x2+mx解析:-10【解析】【分析】根据完全平方公式得到x2+mx+25=(x+5)2或x2+mx+25=(k-5)2,然后展开即可得到m的值.【详解】∵x2+mx+25是一个完全平方式,∴x2+mx+25=(x+5)2或x2+mx+25=(k﹣5)2,∴m=±10.∵m<0,∴m的值为﹣10.故答案是:﹣10.【点睛】本题考查了完全平方公式,掌握(a±b)2=a2±2ab+b2是解答此题的关键.14.【解析】【分析】根据32×9m÷27=321,可得:32+2m-3=321,据此求出m的值是多少即可.【详解】解:∵32×9m÷27=321,∴32+2m-3=321,∴2+2m-3=解析:【解析】【分析】根据32×9m÷27=321,可得:32+2m-3=321,据此求出m的值是多少即可.【详解】解:∵32×9m÷27=321,∴32+2m-3=321,∴2+2m-3=21,解得:m=11.故答案为:11.【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,以及同底数幂的乘法的运算方法,要熟练掌握.15.β,β【解析】【分析】已知∠A,求∠A1,利用外角定理可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,把∠ACD 利用角平分线转成2∠A1CD,∠ABC 转成2∠A1 解析:12β, 201912β 【解析】【分析】已知∠A ,求∠A 1,利用外角定理可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,把∠ACD 利用角平分线转成2∠A 1CD ,∠ABC 转成2∠A 1BC ,消去∠A 1BC ,∠A 1CD 即可,再用类似的办法求∠A 2,以此类推即可【详解】∵BA 1平分∠ABC ,CA 1平分∠A 1CD ,∴∠AB A 1=∠A 1BC=12∠ABC ,∠AC A 1=∠A 1CD=12∠ACD , 由三角形的外角得∴∠A 1CD=∠A 1+∠A 1BC ,∴∠A 1CD=∠A 1+∠A 1BC ①∴2∠A 1CD=∠A+2∠A 1BC ②把①代入②得∠A 1=12∠A=12β CA 2平分∠A 2CD ,∠A 2C A 1=∠A 2CD=12∠A 1CD , 由三角形的外角得∴∠A 1CD=∠A 1+∠A 1BC ,∴∠A 2CD=∠A 2+∠A 2BC ③∴2∠A 2CD=∠A 1+2∠A 2BC ④解得∠A 2=12∠A 1, ∠A 2=12∠A 114∠A=14β=212β 同理∠A 3=12∠A 2=18∠A=18β=312β …∠A 2019= 201912β故答案为:①12β,②201912β【点睛】本题考查(第二内角的)外角平分线与(第一)内角平分线所夹的角问题,找到两平分线的夹角与第三个角的关系是解决问题关键16.【解析】【分析】连接CD 、BD ,由∠BAC 的平分线与BC 的垂直平分线相较于点D ,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,从而得到AF=AE解析:32【解析】【分析】连接CD 、BD ,由∠BAC 的平分线与BC 的垂直平分线相较于点D ,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,从而得到AF=AE ,可证的Rt △CDF ≌Rt △BDE ,则可得BE=CF ,即可得到结果.【详解】解:如图所示,连接CD 、BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中CD BD DF DE =⎧⎨=⎩∴Rt △CDF ≌Rt △BDE∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=6,AC=3,∴BE=32.故答案为:3 2【点睛】本题主要考查的是线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,掌握以上知识点是解题的关键.17.15°【解析】【分析】根据三角形的内角和等于180°求出∠B AC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAE-∠BAD计算即可得解.【解析:15°【解析】【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAE-∠BAD计算即可得解.【详解】解:∵∠ABC=30°,∠ACB=60°,∴∠BAC=180°-∠B-∠C=180°-30°-60°=90°,∵AE是三角形的平分线,∴∠BAE=12∠BAC=12×90°=45°,∵AD是三角形的高,∴∠BAD=90°-∠B=90°-30°=60°,∴∠DAE=∠BAD-∠BAE=60°-45°=15°.故答案为:15.【点睛】本题考查了三角形的内角和定理,三角形的角平分线的定义,高线的定义, 熟记定理与概念并准确识图,理清图中各角度之间的关系是解题的关键.18.73°【解析】【分析】先求出∠ABC度数,再求出四边形的内角和,再代入求出即可.【详解】如图;∵∠EBC=62°,∴∠ABC=180°-∠EBC=118°,∵∠A+∠ABC+∠C+解析:73°【解析】【分析】先求出∠ABC度数,再求出四边形的内角和,再代入求出即可.【详解】如图;∵∠EBC=62°,∴∠ABC=180°-∠EBC=118°,∵∠A+∠ABC+∠C+∠D=(4-2)×180°=360°,∠C=80°,∠D=89°,∴∠A=360°-∠ABC-∠C-∠D=73°,故答案为73°.【点睛】本题考查了多边形的内角和外角,能求出四边形的内角和是即此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°.19.①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD 和DN所在的三角形解析:①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD和DN所在的三角形全等,也不能用其它方法证出CD=DN.【详解】∵∠E=∠F=90∘,∠B=∠C ,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘,∴∠EAB=∠FAC ,∴∠EAB−CAB=∠FAC−∠CAB ,即∠1=∠2,∴①正确;在△EAB 和△FAC 中AF AE B C E F =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△EAB ≌△FAC ,∴BE=CF ,AC=AB ,∴②正确;在△ACN 和△ABM 中C B CAN BAM AC AB =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACN ≌△ABM ,∴③正确;∵根据已知不能推出CD=DN ,∴④错误;【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断. 20.7【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等,得BE=CE ,所以△AEC 的周长等于边长AB 与AC 的和.【详解】∵DE 垂直平分BC ,∴BE=CE ,∴△AEC 的周长=A解析:7【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等,得BE=CE ,所以△AEC 的周长等于边长AB 与AC 的和.【详解】∵DE 垂直平分BC ,∴BE=CE ,∴△AEC 的周长=AC+CE+AE=AC+AB=12.∵AC=5,∴AB=12-5=7.故答案是:7.【点睛】本题主要考查线段垂直平分线上的点到线段两端点的距离相等的性质,熟练掌握性质是解题的关键.三、解答题21.(1)见解析;(2)95°【解析】【分析】(1)依据角平分线的作法,即可得到△ABC 的角平分线BE ;(2)依据三角形内角和定理,即可得到∠AEB 的度数,再根据邻补角的定义,即可得到∠BEC 的度数.【详解】(1)如图(满足“三弧一线”可得)线段BE 即为所求(2)由(1)得,BE 平分ABC ∠∵110ABC ∠=︒ ∴1552ABE ABC ∠=∠=︒ ∵40A ∠=︒∴180554085AEB ∠=︒-︒-︒=︒∵180AEB BEC ∠+∠=︒∴1808595BEC ∠=︒-︒=︒【点睛】本题主要考查了三角形内角和定理以及基本作图,解决问题的关键是掌握角平分线的作法.22.∠EAC =71°【解析】【分析】根据三角形外角的性质得出∠ACE=71°,再根据线段垂直平分线的性质得AE=CE ,从而得出∠EAC=∠ECA=71°.【详解】∵AC 的垂直平分线交AC 于点D∴EA =EC∴∠EAC =∠ECA∵∠B =50°,∠BAC =21°∴∠ECA =∠B +∠BAC =71°∴∠EAC =71°【点睛】本题考查了线段垂直平分线性质,等腰三角形性质,三角形的外角性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.23.(1)2(3)x xy -;(2)2()x x y -【解析】【分析】(1)直接了利用提公因式法分解因式即可;(2)先提公因式,再利用完全平方公式进行分解因式即可.【详解】解:(1)226x y x -2(3)x xy =-;(2)3222x x y xy -+22(2)x x xy y =-+2()x x y =-;【点睛】本题考查了分解因式的方法,解题的关键是掌握提公因式法和公式法进行分解因式.24.2ab ,-2【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】解:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2=4a 2﹣b 2+2ab +b 2﹣4a 2=2ab ,当a =﹣12,b =2时,原式=2×(﹣12)×2=﹣2. 【点睛】本题考查了整式的混合运算和求值的应用以及学生的计算和化简能力,题目比较好,难度适中.25.(1)11x x +-;(2)当3x =时,分式的值为2;(3)原分式的值不能等于-1.理由见解析.【解析】【分析】(1)先做括号内的减法,注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式;(2)将x=3代入计算即可;(3)令111x x +=--,求解即可判断. 【详解】(1)222222()1211x x x x x x x x x +--÷--++ 22(1)(1)1()(1)(1)(1)x x x x x x x x x⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21()11x x x x x x +=-⋅-- 11x x x x +=⋅- 11x x +=-; (2)当3x =时,原式31231+==-; (2)如果111x x +=--, 那么()11x x +=--,解得0x =,又因为0x =时,原分式无意义.故原分式的值不能等于1-.【点睛】本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.26.证明见解析【解析】【分析】先求出∠BAC 的度数,进而得出∠BAD ,因为∠BAD=40°=∠ADE ,由“内错角相等,两直线平行”即可判断.【详解】证明:在ABC ∆中,46,54,B C ︒︒∠=∠=180465480BAC ︒︒︒︒∴∠=--=, AD 平分,BAC ∠ 1402BAD BAC ︒∴∠=∠=, 40,ADE ︒∠=.ADE BAD ∴∠=∠//.DE AB ∴【点睛】本题考查角的运算,角平分线的性质定理以及平行线的判定,掌握角平分线的性质是解题的关键.27.3xy ,3-.【解析】【分析】先计算平方差公式、完全平方公式、整式的乘法,再计算整式的加减法,然后将x 、y 的值代入即可得.【详解】原式222222(2)x y xy y x xy y =-++--+,2222222x y xy y x xy y =-++-+-,3xy =,将3x =,13y =-代入得:原式133333xy ⎛⎫==⨯⨯-=- ⎪⎝⎭. 【点睛】本题考查了平方差公式、完全平方公式、整式的加减法与乘法,熟记公式和整式的运算法则是解题关键.28.(1)152;(2)证明见解析. 【解析】【分析】 (1)由题意易得AD 为BAC ∠的角平分线,DEDF =,然后根据三角形面积计算公式可求解;(2)延长EA 到点G ,使AG DE =,连接FG ,则有360AED EDF DFA FAE ∠+∠+∠+∠=︒,进而得到EDF GAF ∠=∠,故EDF GAF ∆∆≌,然后根据全等三角形的性质及等腰三角形可进行求解.【详解】(1)解:BAD DAC ∠=∠∴AD 为BAC ∠的角平分线,DE AB DF AC ⊥⊥∴DE DF =∴11115532222ADCS AC DF AC DE ∆=⨯=⨯=⨯⨯=; (2)证明:延长EA 到点G ,使AG DE =,连接FG ,在四边形AEDF 中,360AED EDF DFA FAE ∠+∠+∠+∠=︒,90AED ∠=︒,90DAF ∠=︒,∴180EDF FAE ∠+∠=︒,180GAF FAE ∠+∠=︒,∴EDF GAF ∠=∠,在EDF ∆和GAF ∆中,DE AG DF AFEDF GAF =⎧⎪=⎨⎪∠=∠⎩, ∴EDF GAF ∆∆≌,∴,13EF GF =∠=∠,1290∠+∠=︒,∴3290∠+∠=︒,∴90EFG ∠=︒,∴GAF ∆是等腰三角形,∴2EG EF =,,EG EA AG AG DE =+=,∴EG AE DE =+,∴AE DE +=.【点睛】本题主要考查等腰三角形的性质与判定及全等三角形的判定与性质,关键是根据全等三角形的判定与性质及直角三角形的性质得到角、线段的等量关系,然后利用等腰三角形的性质求解即可.29.1a b -,15【解析】【分析】对原式分母平方差公式变形后通分、约分化简原式,再代值求解即可.【详解】 解:原式2()()()()a ab a b a b a b a b -=-+-+-, 1()()a b a b a b a b+==+--, 当6a =,021b ==时,原式11615==-. 【点睛】 本题考查了分式的化简求值、异分母的分式加减法,借助平方差公式变形找最简公分母是解答的关键.30.(1)证明见解析;(2)12CE BF =,理由见解析 【解析】【分析】(1)由题意可以得到Rt ⊿DFB ≅Rt ⊿DAC ,从而得到BF=AC ;(2)由题意可以得到Rt ⊿BEA ≅Rt ⊿BEC ,所以1122CE AE AC BF ===. 【详解】证明:∵CD ⊥AB ,∠ABC=45°, ∴BCD 是等腰直角三角形,∠DBF=90°-∠BFD ,∠A=90°-∠DCA ,又BE AC ⊥,∴∠EFC =90°-∠DCA ,∴∠A=∠EFC∵∠BFD=∠EFC ,∴∠A=∠DFB ,∴在Rt ⊿DFB 和Rt ⊿DAC 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=DC ,∴Rt ⊿DFB ≅Rt ⊿DAC ,∴BF=AC ; (2) 12CE BF = 理由是:∵BE 平分ABC ,∴∠ABE=∠CBE ,在Rt ⊿BEA 和Rt ⊿BEC 中,∠AEB=∠CEB ,BE=BE ,∠ABE=∠CBE ,∴Rt⊿BEA≅Rt⊿BEC,∴12 CE AE AC ==由(1)得:12CE BF=.【点睛】本题考查三角形的综合问题,熟练掌握三角形全等的判定和性质是解题关键.。
初三数学毕业考试试卷含详细答案一、压轴题1.对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C 交于点Q (点Q 可以与点P 重合),且12PA QA ≤≤,则点P 称为点A 关于⊙C 的“生长点”. 已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标________;(2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan BAO 2∠=,求点B 的纵坐标t 的取值范围;(3)直线3y x b =+与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是_____________________________.2.已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点(0,3)C ,顶点为点D .(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB SS =,求直线CE 的解析式 (3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、C 、P 、Q 为顶点的四边形是平行四边形时,求点P 的坐标;(4)已知点450,,(2,0)8H G ⎛⎫ ⎪⎝⎭,在抛物线对称轴上找一点F ,使HF AF +的值最小此时,在抛物线上是否存在一点K ,使KF KG +的值最小,若存在,求出点K 的坐标;若不存在,请说明理由.3.已知函数1221,(21)1y x m y m x =+-=++均为一次函数,m 为常数.(1)如图1,将直线AO 绕点()1,0A -逆时针旋转45°得到直线l ,直线l 交y 轴于点B .若直线l 恰好是1221,(21)1y x m y m x =+-=++中某个函数的图象,请直接写出点B 坐标以及m 可能的值;(2)若存在实数b ,使得||(1)10m b b ---=成立,求函数1221,(21)1y x m y m x =+-=++图象间的距离;(3)当1m 时,函数121y x m =+-图象分别交x 轴,y 轴于C ,E 两点,(21)1y m x =++图象交x 轴于D 点,将函数11y y y =的图象最低点F 向上平移5621m +个单位后刚好落在一次函数121y x m =+-图象上,设12y y y =的图象,线段OD ,线段OE 围成的图形面积为S ,试利用初中知识,探究S 的一个近似取值范围.(要求:说出一种得到S 的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)4.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC 在(2)的旋转变换下,若2PC =(如图).①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长. 5.已知:如图,抛物线2134y x x =--交x 正半轴交于点A ,交y 轴于点B ,点()4,C n -在抛物线上,直线l :34y x m =-+过点B ,点E 是直线l 上的一个动点,ACE △的外心是P .(1)求m ,n 的值.(2)当点E 移动到点B 时,求ACE △的面积.(3)①是否存在点E ,使得点P 落在ACE △的边上,若存在,求出点E 的坐标,若不存在,请说明理由.②过点A 作直线AD x ⊥轴交直线l 于点D ,当点E 从点D 移动到点B 时,圆心P 移动的路线长为_____.(直接写出答案)6.如图,A 是以BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,G 是AD 的中点,连接并延长CG 与BE 相交于点F ,连接并延长AF 与CB 的延长线相交于点P .(1)求证:BF =EF ;(2)求证:PA 是圆O 的切线;(3)若FG =EF =3,求圆O 的半径和BD 的长度.7.如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A ,B 两点,A 点坐标为(2,0)-,与y 轴交于点(0,4)C ,直线12y x m =-+与抛物线交于B ,D 两点.(1)求抛物线的函数表达式;(2)求m 的值和D 点坐标;(3)点P 是直线BD 上方抛物线上的动点,过点P 作x 轴的垂线,垂足为H ,交直线BD 于点F ,过点D 作x 轴的平行线,交PH 于点N ,当N 是线段PF 的三等分点时,求P 点坐标;(4)如图2,Q 是x 轴上一点,其坐标为4,05⎛⎫- ⎪⎝⎭,动点M 从A 出发,沿x 轴正方向以每秒5个单位的速度运动,设M 的运动时间为t (0t >),连接AD ,过M 作MG AD ⊥于点G ,以MG 所在直线为对称轴,线段AQ 经轴对称变换后的图形为A Q '',点M 在运动过程中,线段A Q ''的位置也随之变化,请直接写出运动过程中线段A Q ''与抛物线有公共点时t 的取值范围.8.公司经销某种商品,经研究发现,这种商品在未来40天的销售单价1y (元/千克)关于时间t 的函数关系式分别为11602y t =-+(040t <≤,且t 为整数); ()()21030,3033040,20t t t y t t ⎧<≤-+⎪=⎨<≤⎪⎩且为整数且为整数,他们的图像如图1所示,未来40天的销售量m (千克)关于时间t 的函数关系如图2的点列所示.(1)求m 关于t 的函数关系式;(2)那一天的销售利润最大,最大利润是多少?(3)若在最后10天,公司决定每销售1千克产品就捐赠a 元给“环保公益项目”,且希望扣除捐赠后每日的利润不低于3600元以维持各种开支,求a 的最大值(精确到0.01元).9.如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒25OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.10.在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点.(1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB 交于P 点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ .……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)11.新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P 分别作x 轴、y 轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P 是“和谐点”.(1)点M (1,2)_____“和谐点”(填“是”或“不是”);若点P (a ,3)是第一象限内的一个“和谐点”,3x a y =⎧⎨=⎩是关于x ,y 的二元一次方程y x b =-+的解,求a ,b 的值. (2)如图②,点E 是线段PB 上一点,连接OE 并延长交AP 的延长线于点Q ,若点P (2,3),2OBE EPQ S S ∆∆-=,求点Q 的坐标;(3)如图③,连接OP ,将线段OP 向右平移3个单位长度,再向下平移1个单位长度,得到线段11O P .若M 是直线11O P 上的一动点,连接PM 、OM ,请画出图形并写出OMP ∠与1MPP ∠,1MOO ∠的数量关系.12.如图1,抛物线M 1:y =﹣x 2+4x 交x 正半轴于点A ,将抛物线M 1先向右平移3个单位,再向上平移3个单位得到抛物线M 2,M 1与M 2交于点B ,直线OB 交M 2于点C . (1)求抛物线M 2的解析式;(2)点P 是抛物线M 1上AB 间的一点,作PQ ⊥x 轴交抛物线M 2于点Q ,连接CP ,CQ .设点P 的横坐标为m ,当m 为何值时,使△CPQ 的面积最大,并求出最大值; (3)如图2,将直线OB 向下平移,交抛物线M 1于点E ,F ,交抛物线M 2于点G ,H ,则EG HF的值是否为定值,证明你的结论.13.如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若60180MPN ︒︒≤∠<,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在123(1,0),(1,1),(0,2)P P P 中,⊙O 的环绕点是___________;②直线y =2x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为1,圆心为(0,t ),以3,(0)3m m m ⎛⎫> ⎪ ⎪⎝⎭为圆心,33m 为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的取值范围. 14.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.15.如图1,已知Rt ABC ∆中,90ACB ∠=,2AC =,23BC =,它在平面直角坐标系中位置如图所示,点,A C 在x 轴的负半轴上(点C 在点A 的右侧),顶点B 在第二象限,将ABC ∆沿AB 所在的直线翻折,点C 落在点D 位置(1)若点C 坐标为()1,0-时,求点D 的坐标; (2)若点B 和点D 在同一个反比例函数的图象上,求点C 坐标;(3)如图2,将四边形BCAD 向左平移,平移后的四边形记作四边形1111B C A D ,过点1D 的反比例函数(0)k y k x=≠的图象与CB 的延长线交于点E ,则在平移过程中,是否存在这样的k ,使得以点1,,E B D 为顶点的三角形是直角三角形且点11,,D B E 在同一条直线上?若存在,求出k 的值;若不存在,请说明理由16.已知,在平面直角坐标系中,二次函数212y x bx c =++的图象与x 轴交于点A B ,,与y 轴交于点C ,点A 的坐标为()3,0-,点B 的坐标为()1,0.(1)如图1,分别求b c 、的值;(2)如图2,点D 为第一象限的抛物线上一点,连接DO 并延长交抛物线于点E ,3OD OE =,求点E 的坐标;(3)在(2)的条件下,点P 为第一象限的抛物线上一点,过点P 作PH x ⊥轴于点H ,连接EP 、EH ,点Q 为第二象限的抛物线上一点,且点Q 与点P 关于抛物线的对称轴对称,连接PQ ,设2AHE EPH α∠+∠=,tan PH PQ α=⋅,点M 为线段PQ 上一点,点N 为第三象限的抛物线上一点,分别连接MH NH 、,满足60MHN ∠=︒,MH NH =,过点N 作PE 的平行线,交y 轴于点F ,求直线FN 的解析式.17.我们规定:有一组邻边相等,且这组邻边的夹角为60︒的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD 中,270A C ∠+∠=︒,30D ∠=︒,AB BC =,求证:四边形ABCD 是“准筝形”;(2)如图2,在“准筝形”ABCD 中,AB AD =,60BAC BCD ∠=∠=︒,4BC =,3CD =,求AC 的长;(3)如图3,在ABC 中,45A ∠=︒,120ABC ∠=︒,33AB =-D 是ABC 所在平面内一点,当四边形ABCD 是“准筝形”时,请直接写出四边形ABCD 的面积.18.在平面直角坐标系中,经过点()0,2A 且与33y x =-平行的直线,交x 轴于点B ,如图1所示.(1)试求B 点坐标,并直接写出ABO ∠的度数;(2)过()1,0M 的直线与AB 成45︒夹角,试求该直线与AB 交点的横坐标; (3)如图2,现有点(,)C m n 在线段AB 上运动,点,(320)D m -+在x 轴上,N 为线段CD 的中点.①试求点N 的纵坐标y 关于横坐标x 的函数关系式; ②直接写出N 点的运动轨迹长度为 . 19.已知四边形ABCD 是矩形.(1)如图1,E F 、分别是AB CD 、上的点,CE 垂直平分BF ,垂足为G ,连接DG .①求证:DG CG =;②若2BC AB =,求DGC ∠的大小;(2)如图2,6AB BC ==,M N P 、、分别是AB CD AD 、、上的点,MN 垂直平分BP ,点Q 是CD 的中点,连接,MP PQ ,若PQ MP ⊥,直接写出CN 的长.20.如图,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l .(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与△EAD 相似时,求出BF 的长.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)(2,0)(答案不唯一);(2)8455t -≤≤-或4855t ≤≤;(3)431b -≤≤-或143b ≤≤ 【解析】 试题分析:(1)由题意可知,在x 轴上找点P 是比较简单的,这样的P 点不是唯一的,如点(2,0)、(1,0)等;(2)如图1,在x 轴上方作射线AM 交⊙O 于点M ,使tan ∠MAO=12,并在射线AM 是取点N ,使MN=AM ,则由题意可知,线段MN 上的点都是符合条件的B 点,过点M 作MH ⊥x 轴于点H ,连接MC ,结合已知条件求出点M 和点N 的纵坐标即可得到所求B 点的纵坐标t 的取值范围;根据对称性,在x 轴的下方得到线段M′N′,同理可求得满足条件的B 点的纵坐标t 的另一取值范围;(3)如图2,3,由3y x b =+与x 轴交于点M ,与y 轴交于点N ,可得点M 的坐标为(?0)3,点N 的坐标为(0)b ,,由此结合∠OMN 的正切函数可求得∠OMN=60°; 以点D (1,0)为圆心,2为半径作圆⊙D ,则⊙D 和⊙O 相切于点A ,由题意可知,点A 关于⊙O 的“生长点”都在⊙O 到⊙D 之间的平面内,包括两个圆(但点A 除外). 然后结合题意和∠OMN=60°分b>0和b<0两种情况在图2和图3中求出ON 1和ON 2的长即可得到b 的取值范围了. 试题解析:(1)由题意可知,在x 轴上找点P 是比较简单的,这样的P 点不是唯一的,如点(2,0)、(1,0)等;(2)如图1,在x 轴上方作射线AM ,与⊙O 交于M ,且使得1tan OAM 2∠=,并在AM 上取点N ,使AM=MN ,并由对称性,将MN 关于x 轴对称,得M N '',则由题意,线段MN 和M N ''上的点是满足条件的点B.作MH ⊥x 轴于H ,连接MC , ∴ ∠MHA=90°,即∠OAM+∠AMH=90°. ∵ AC 是⊙O 的直径,∴ ∠AMC=90°,即∠AMH+∠HMC=90°. ∴ ∠OAM=∠HMC.∴ 1tan HMC tan OAM 2∠∠==. ∴MH HC 1HA MH 2==. 设MH y =,则AH 2y =,1CH y 2=, ∴ 5AC AH CH y 22=+==,解得4y 5=,即点M 的纵坐标为45. 又由AN 2AM =,A 为(-1,0),可得点N 的纵坐标为85, 故在线段MN 上,点B 的纵坐标t 满足:48t 55≤≤. 由对称性,在线段M N ''上,点B 的纵坐标t 满足:84t 55-≤≤-. ∴ 点B 的纵坐标t 的取值范围是84t 55-≤≤-或48t 55≤≤. (3)如图2,以点D (1,0)为圆心,2为半径作圆⊙D ,则⊙D 和⊙O 相切于点A ,由题意可知,点A 关于⊙O 的“生长点”都在⊙O 到⊙D 之间的平面内,包括两个圆(但点A 除外).∵直线3y x b +与x 轴交于点M ,与y 轴交于点N ,∴点M 的坐标为(?0)3b -,,点N 的坐标为(0)b ,, ∴tan ∠OMN=3ONOM=, ∴∠OMN=60°,要在线段MN 上找点A 关于⊙O 的“生长点”,现分“b>0”和“b<0”两种情况讨论: I 、①当直线3y x b =+过点N 1(0,1)时,线段MN 上有点A 关于⊙O 的唯一“生长点”N 1,此时b=1;②当直线3y x b =+与⊙D 相切于点B 时,线段MN 上有点A 关于⊙O 的唯一“生长点”B ,此时直线3y x b =+与y 轴相交于点N 2,与x 轴相交于点M 2,连接DB ,则DB=2, ∴DM 2=243sin 603=, ∴OM 2=4313-, ∴ON 2=tan60°·OM 2=43(31)433-=-,此时b=43-. 综合①②可得,当b>0时,若线段MN 上存在点A 关于⊙O 的“生长点”,则b 的取值范围为:143b ≤≤-;II 、当b<0时,如图3,同理可得若线段MN 上存在点A 关于⊙O 的“生长点”,则b 的取值范围为:431b -≤≤-;综上所述,若在线段MN 上存在点A 关于⊙O 的“生长点”,则b 的取值范围为:43b 1-≤≤-或1b 43≤≤2.(1)2y x 2x 3=-++;(2)63y x =-+;(3)点P 的坐标为(15,1),(13,1)-;(4)存在,点K 的坐标为(2,3)【解析】 【分析】(1)由于点A 、B 为抛物线与x 轴的交点,可设两点式求解;也可将A 、B 、C 的坐标直接代入解析式中利用待定系数法求解即可;(2)根据两个三角形的高相等,则由面积比得出:3:5AE EB =,求出AE,根据点A 坐标可解得点E 坐标,进而求得直线CE 的解析式;(3)分两种情况讨论①当四边形DCPQ 为平行四边形时;②当四边形DCQP 为平行四边形时,根据平行四边形的性质和点的坐标位置关系得出纵坐标的关系式,分别代入坐标数值,解方程即可解答;(4)根据抛物线的对称性,AF=BF ,则HF+AF=HF+BF ,当H 、F 、B 共线时,HF+AF 值最小,求出此时点F 的坐标,设()00,K x y ,由勾股定理和抛物线方程得0174KF y =-,过点K 作直线SK ,使//SK y 轴,且点S 的纵坐标为174,则点S 的坐标为017,4x ⎛⎫⎪⎝⎭,此时,0174KS y =-,∴KF+KG=KS+KG,当S 、K 、G 共线且平行y 轴时,KF+KG 值最小,由点G 坐标解得0x ,代入抛物线方程中解得0y ,即为所求K 的坐标. 【详解】解:(1)方法1:设抛物线的解析式为(3)(1)ya x x将点(0,3)C 代入解析式中,则有1(03)31a a ⨯-=∴=-.∴抛物线的解析式为()222323y x x x x =---=-++.方法二:∵经过,,A B C 三点抛物线的解析式为2y ax bx c =++, 将(1,0),(3,0),(0,3)A B C -代入解析式中,则有30930c a b c a b c =⎧⎪∴-+=⎨⎪++=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩, ∴抛物线的解析式为2y x 2x 3=-++. (2):3:5ACE CEB S S ∆∆=,132152AE COEB CO ⋅∴=⋅.:3:5AE EB ∴=.3334882AE AB ∴==⨯=.31122E x ∴=-+=. E ∴的坐标为1,02⎛⎫ ⎪⎝⎭.又C 点的坐标为(0,3).∴直线CE 的解析式为63y x =-+.(3)2223(1)4y x x x =-++=--+.∴顶点D 的坐标为(1,4).①当四边形DCPQ 为平行四边形时,由DQ ∥CP ,DQ=CP 得:D Q C P y y y y -=-,即403P y -=-.1p y ∴=-.令1y =-,则2231x x -++=-.1x ∴=∴点P的坐标为(11)-.②当四边形DCQP 为平行四边形时,由CQ ∥DP ,CQ=DP 得:c Q D p y y y y -=-,即304P y -=-1p y ∴=.令1y =,则2231x x -++=.1x ∴=∴点P的坐标为(1.∴综合得:点P的坐标为(11),(1)-(4)∵点A 或点B 关于对称轴1x =对称 ∴连接BH 与直线1x =交点即为F 点. ∵点H 的坐标为450,8⎛⎫⎪⎝⎭,点B 的坐标为(3,0), ∴直线BH 的解析式为:154588y x =-+. 令1x =,则154y =. 当点F 的坐标为151,4⎛⎫⎪⎝⎭时,HF AF +的值最小.11分 设抛物线上存在一点()00,K x y ,使得FK FG +的值最小.则由勾股定理可得:()222001514KF x y ⎛⎫=-+- ⎪⎝⎭. 又∵点K 在抛物线上,()20014y x ∴=--+()20014x y ∴-=-代入上式中,()2220001517444KF y y y ⎛⎫⎛⎫∴=-+-=- ⎪ ⎪⎝⎭⎝⎭0174KF y ∴=-. 如图,过点K 作直线SK ,使//SK y 轴,且点S 的纵坐标为174. ∴点S 的坐标为017,4x ⎛⎫ ⎪⎝⎭. 则0174SK y =-. 000171717,444y y y ⎛⎫<∴-=- ⎪⎝⎭(两处绝对值化简或者不化简者正确.)KF SK ∴=.KF KG SK KG ∴+=+当且仅当,,S K G 三点在一条直线上,且该直线干行于y 轴,FK FG +的值最小. 又∵点G 的坐标为(2,0),02x ∴=,将其代入抛物线解析式中可得:03y =.∴当点K 的坐标为(2,3)时,KF KG +最小.【点睛】本题主要考查了二次函数与几何图形的综合,涉及待定系数法、平行四边形的性质、、三角形面积、求线段和的最小值(即将军饮马模型)等知识,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算.3.(1)(0,1);1或0 (22(3)348131200010S << 【解析】 【分析】(1)由题意,可得点B 坐标,进而求得直线l 的解析式,再分情况讨论即可解的m 值; (2)由非负性解得m 和b 的值,进而得到两个函数解析式,设1y 与x 轴、y 轴交于T ,P ,2y 分别与x 轴、y 轴交于G ,H ,连接GP ,TH ,证得四边形GPTH 是正方形,求出GP 即为距离;(3)先根据解析式,用m 表示出点C 、E 、D 的坐标以及y 关于x 的表达式为()221221421y y y m x m x m =⋅+++-=,得知y 是关于x 的二次函数且开口向上、最低点为其顶点()222212,2121m m F m m ⎛⎫- ⎪-- ⎪++⎝⎭,根据坐标平移规则,得到关于m 的方程,解出m 值,即可得知点D 、E 的坐标且抛物线过D 、E 点,观察图象,即可得出S 的大体范围,如:ODES S <,较小的可为平行于DE 且与抛物线相切时围成的图形面积.【详解】解:(1)由题意可得点B 坐标为(0,1),设直线l 的表达式为y=kx+1,将点A (-1,0)代入得:k=1, 所以直线l 的表达式为:y=x+1,若直线l 恰好是121y x m =+-的图象,则2m-1=1,解得:m=1, 若直线l 恰好是2(21)1y m x =++的图象,则2m+1=1,解得:m=0, 综上,()0,1B ,1m =或者0m = (2)如图,(110m b b ---=()110m b b ∴+--=0m ≥,10b -≥ 0m ∴=,10b -=0m ∴=11y x ∴=-,21y x =+设1y 与x 轴、y 轴交于T ,P ,2y 分别与x 轴、y 轴交于G ,H ,连接GP ,TH1OG OH OP OT ====,PH GT ⊥ ∴四边形GPTH 是正方形//GH PT ∴,90HGP ∠=︒,即HG GP ⊥2HP =2GP ∴=(3)121y x m =+-,()2211y m x =++121y x m =+-分别交x 轴,y 轴于C ,E 两点()12,0C m ∴-,()0,21E m -()2211y m x =++图象交x 轴于D 点1,021D m -∴+⎛⎫⎪⎝⎭()()()22122121121421y y y x m m x m x m x m =⋅=+-++=+++-⎡⎤⎣⎦1m >210m ∴+>∴二次函数()2221421y m x m x m =+++-开口向上,它的图象最低点在顶点∴顶点()222212,2121m m F m m ⎛⎫- ⎪-- ⎪++⎝⎭抛物线顶点F 向上平移5621m +,刚好在一次函数121y x m =+-图象上 ()()2222156*********m m m m m m -∴-+=-+-+++且1m2m ∴=2125163(3)(51)y y y x x x x =⋅=+=∴+++,∴13y x =+,251y x =+∴由13y x =+,251y x =+得到1,05D ⎛⎫- ⎪⎝⎭,()0,3E ,由25163y x x =++得到与x 轴,y 轴交点是()3,0-,1,05⎛⎫- ⎪⎝⎭,()0,3,∴抛物线经过1,05D ⎛⎫- ⎪⎝⎭,()0,3E 两点12y y y ∴=⋅的图象,线段OD ,线段OE 围成的图形是封闭图形,则S 即为该封闭图形的面积探究办法:利用规则图形面积来估算不规则图形的面积. 探究过程:①观察大于S 的情况. 很容易发现ODES S<1,05D ⎛⎫- ⎪⎝⎭,()0,3E 11332510ODES=⨯⨯=,310S ∴< (若有S 小于其他值情况,只要合理,参照赋分.) ②观察小于S 的情况.选取小于S 的几个特殊值来估计更精确的S 的近似值,取值会因人而不同,下面推荐一种方法,选取以下三种特殊位置: 位置一:如图当直线MN 与DE 平行且与抛物线有唯一交点时,设直线MN 与x ,y 轴分别交于M ,N1,05D ⎛⎫- ⎪⎝⎭,()0,3E ∴直线:153DE y x =+设直线1:15MN y x b =+25163y x x =++ 21530x x b ∴++-=()1430b ∴∆=-⨯-=,15920b = ∴直线59:1520MN y x =+ ∴点59,0300M ⎛⎫- ⎪⎝⎭15959348122030012000OMN S =⨯⨯=∴,348112000S ∴> 位置二:如图当直线DR 与抛物线有唯一交点时,直线DR 与y 轴交于点R设直线2:DR y kx b =+,1,05D ⎛⎫- ⎪⎝⎭∴直线1:5DR y kx k =+ 25163y x x =++()21516305x k x k +-∴+-= ()211645305k k ⎛⎫∴∆=--⨯⨯-= ⎪⎝⎭,14k = ∴直线14:145DR y x =+ ∴点140,5R ⎛⎫ ⎪⎝⎭1141725525ODR S ∴=⨯⨯=,725S ∴> 位置三:如图当直线EQ 与抛物线有唯一交点时,直线EQ 与x 轴交于点Q设直线:3EQ y tx =+25163y x x =++()25160x t x +∴-=()2160t ∴∆=-=,16t = ∴直线:163EQ y x =+∴点3,016Q ⎛⎫- ⎪⎝⎭ 139321632OEQ S =⨯⨯=∴,932S ∴> 348197120003225>> 我们发现:在曲线DE 两端位置时的三角形的面积远离S 的值,由此估计在曲线DE 靠近中间部分时取值越接近S 的值探究的结论:按上述方法可得一个取值范围348131200010S << (备注:不同的探究方法会有不同的结论,因而会有不同的答案.只要来龙去脉清晰、合理,即可参照赋分,但若直接写出一个范围或者范围两端数值的差不在0.01之间不得分.)【点睛】本题是一道综合性很强的代数与几何相结合的压轴题,知识面广,涉及有旋转的性质、坐标平移规则、非负数的性质、一次函数的图象与性质、二次函数的图象与性质、一元二次方程、不规则图形面积的估计等知识,解答的关键是认真审题,找出相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,利用相关信息进行推理、探究、发现和计算.4.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =1或CM =1+【解析】【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F (m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由PC =EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长.【详解】(1)∵点()6,0C 在抛物线上, ∴103664b c =-⨯++, 得到6=9b c +,又∵对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =, ∴3c =,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4),∴AB=AC=4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF ,∴FM=CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6-m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m ,直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵2PC 2)知∠BCA=45°,∴PG=GC=1,∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF ,∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°,∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴EA=22(12)(50)m m --+--=221634m m -+,又∵D 为线段BC 的中点,B (2,4),C (6,0),∴点D (4,2),∴ED=22(14)(52)m m --+--=221634m m -+,∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED .②当点E 在(1)所求的抛物线2134y x x =-++上时, 把E (m-1,5-m )代入,整理得:m 2-10m+13=0,解得:m=523+m=523-,∴CM =231或CM =123+.【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键.5.(1)3,5m n =-=;(2)30ACE S =;(3)①点E 的坐标为:1653,1122⎛⎫-- ⎪⎝⎭或6415,1111E ⎛⎫- ⎪⎝⎭或3660,1111E ⎛⎫- ⎪⎝⎭; ②圆心P 移动的路线长 【解析】【分析】(1)令2130,4y x x =--=求出点A (6,0),把点C (-4,n )代入在抛物线方程,解得:n=5,把点B (0,-3)代入34y x m =-+,从而可得答案; (2)记AC 与y 轴的交点为H ,利用()1.2ACE A C S BH x x =••-即可求解; (3)①分当点P 落在CA 上时,点P 落在AE 上时,点P 落在CE 上时三种情况讨论即可; ②分E 在D 和B 点两种情况,求出圆心12,P P 点的坐标,则圆心P 移动的路线长=12PP ,即可求解.【详解】解:(1)令2130,4y x x =--= 24120,x x ∴--=()()260,x x ∴+-=122,6,x x ∴=-=∴ 点A (6,0),把点C (-4,n )代入在抛物线方程, 解得:()()214435,4n =⨯----= ()4,5C ∴-,把点B (0,-3)代入34y x m =-+, 解得:3m =-,则:直线l :334y x =--,…① 3,5,m n ∴=-=(2)由(1)知:A (6,0)、B (0,-3)、C (-4,5)、AC 中点为51,,2⎛⎫ ⎪⎝⎭设AC 为:,y kx b =+6045k b k b +=⎧∴⎨-+=⎩解得:123k b ⎧=-⎪⎨⎪=⎩ AC ∴所在的直线方程为:132y x =-+, 如图,AC 与y 轴交点H 坐标为:(0,3),()1161030.22ACE A C S BH x x ∴=••-=⨯⨯=(3)如下图: ①当点P 落在CA 上时, 圆心P 为AC 的中点51,,2⎛⎫ ⎪⎝⎭其所在的直线与AC 垂直, 1,2AC k =- AC ∴的垂直平分线即圆心P 所在的直线方程为:2,y x a =+把51,2⎛⎫⎪⎝⎭代入得:52,2a =+ 1,2a ∴= 122y x ∴=+…②, 334122y x y x ⎧=--⎪⎪∴⎨⎪=+⎪⎩①②解得:11,5322y ⎪⎪⎨⎪=-⎪⎩E 的坐标为1653,1122⎛⎫-- ⎪⎝⎭; 当点P 落在AE 上时, 设点3,3,4E m m ⎛⎫-- ⎪⎝⎭ 则点P 的坐标633,282m m +⎛⎫--⎪⎝⎭, 则PA=PC , 2222633633645282282m m m m ++⎛⎫⎛⎫⎛⎫⎛⎫∴-++=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解得:64,11m =-故点6415,.1111E ⎛⎫- ⎪⎝⎭ 当点P 落在CE 上时, 则PC=PA ,同理可得:36,11m =故点3660,1111E ⎛⎫- ⎪⎝⎭ 综上,点E 的坐标为:1653,1122⎛⎫-- ⎪⎝⎭或6415,1111E ⎛⎫- ⎪⎝⎭或3660,1111E ⎛⎫- ⎪⎝⎭; ②当E 在D 点时,作AD 的垂直平分线交AC 的垂直平分线于1P 点,则156,2D ⎛⎫- ⎪⎝⎭,1P 的纵坐标为15,4- 代入②式,解得:11715,,84P ⎛⎫-- ⎪⎝⎭ 同理当当E 在B 点时, 作AB 的垂直平分线交AC 的垂直平分线于2P 点,()()6,0,0,3,A B -AB ∴的中点为:33,2⎛⎫- ⎪⎝⎭,设AB 为:y ex f =+, 603e f f +=⎧∴⎨=-⎩解得:23f ⎨⎪=-⎩ ∴ AB 直线方程为:132y x =-, 设AB 的垂直平分线方程为:12,y x b =-+1323,2b ∴-⨯+=- 192b ∴=, ∴ AB 的垂直平分线方程为:92,2y x =-+ 122922y x y x ⎧=+⎪⎪∴⎨⎪=-+⎪⎩解得:152x y =⎧⎪⎨=⎪⎩251,,2P ⎛⎫∴ ⎪⎝⎭则圆心P 移动的路线长=221217515251 5.8248PP ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭故答案为:255. 8【点评】本题是二次函数的综合题,考查了二次函数与x轴的交点坐标,利用待定系数法求解一次函数的解析式,三角形的外心的性质、一次函数的交点问题,勾股定理的应用,综合性很强,是难度较大类题目.6.(1)详见解析;(2)详见解析;(3)BD=22,r=32.【解析】【分析】(1)根据已知条件得到∠EBC=∠ADC=90°,根据平行线分线段成比例定理得出AG CG GD==EF CF BF,等量代换即可得到结论;(2)证明∠PAO=90°,连接AO,AB,根根据直角三角形斜边中线的性质,切线的性质和等量代换,就可得出结论;(3)连接AB,根据圆周角定理得到∠BAC=∠BAE=90°,推出FA=FB=FE=FG=3,过点F作FH⊥AG交AG于点H,推出四边形FBDH是矩形,得到FB=DH=3,根据勾股定理得到FH=22,设半径为r,根据勾股定理列方程即可得到结论.【详解】解:(1)∵EB是切线,AD⊥BC,∴∠EBC=∠ADC=90°,∴AD∥EB,(同位角相等,两直线平行)∴AG CG GD==EF CF BF,(平行线分线段成比例)∵G是AD的中点,∴AG=GD,∴EF=FB;(2)证明:连接AO,AB,∵BC是⊙O的直径,∴∠BAC=90°,(直径所对圆周角为直角)在Rt△BAE中,由(1)知,F是斜边BE的中点,直角三角形斜边中线为斜边一半,∴AF=FB=EF,且等边对等角,∴∠FBA=∠FAB,又∵OA=OB,∴∠ABO =∠BAO ,∵BE 是⊙O 的切线,∴∠EBO =90°,∵∠EBO =∠FBA+∠ABO =∠FAB+∠BAO =∠FAO =90°,∴PA 是⊙O 的切线;(3)如图2,连接AB ,AO ,∵BC 是直径,∴∠BAC =∠BAE =90°,∵EF =FB ,∴FA =FB =FE =FG =3,过点F 作FH ⊥AG 交AG 于点H ,∵FA =FG ,FH ⊥AG ,∴AH =HG ,∵∠FBD =∠BDH =∠FHD =90°,∴四边形FBDH 是矩形,∴FB =DH =3,∵AG =GD ,∴AH =HG =1,GD =2,FH 2222AF AH =31=22--,∴BD =22设半径为r ,在Rt ADO 中,∵222AO =AD +OD , ∴222r =4+(r-22),解得:r =32综上所示:BD =22r =32【点睛】本题主要考察了平行线的性质及定理、平行线分线段成比例定理、等边对等角、直角三角形斜边中线的性质、圆周角定理、勾股定理及圆的切线及其性质,该题较为综合,解题的关键是在于掌握以上这些定理,并熟练地将其结合应用.7.(1)21y=x +x+42﹣;(2)m=2,D(﹣1,52);(3)P (52,278 )或P(1,92); (4)0<t≤261200. 【解析】【分析】(1)根据A ,C 两点坐标,代入抛物线解析式,利用待定系数法即可求解.(2)通过(1)中的二次函数解析式求出B 点坐标,代入一次函数12y x m =-+,即可求出m 的值,联立二次函数与一次函数可求出D 点坐标.(3)设出P 点坐标,通过P 点坐标表示出N ,F 坐标,再分类讨论PN=2NF ,NF=2PN ,即可求出P 点(4)由A ,D 两点坐标求出AD 的函数关系式,因为以MG 所在直线为对称轴,线段AQ 经轴对称变换后的图形为A Q '',所以QQ '∥AD ,即可求出QQ '的函数关系式,设直线QQ '与抛物线交于第一象限P 点,所以当Q '与P 重合时,t 有最大值,利用中点坐标公式求出PQ 中点H 点坐标,进而求出MH 的函数关系式,令y=0求出函数与x 轴交点坐标,从而可求出t 的值,求出t 的取值范围.【详解】解:(1)∵A (2,0)-,(0,4)C把A,C 代入抛物线212y x bx c =-++, 得:142b+c=02c=4⎧⨯⎪⎨⎪⎩﹣- 解得b=1c=4⎧⎨⎩∴21y=x +x+42﹣. (2)令y=0即21x +x+4=02﹣, 解得1x =2﹣,2x =4 ∴B (4,0)把B (4,0)代入12y x m =-+ 得1042m =-⨯+m=2 122y x =-+, ∴21y=x +x+42122y x ⎧⎪⎪⎨⎪=-+⎪⎩﹣ 得11x =15y =2⎧⎪⎨⎪⎩﹣ 或22x =4y =0⎧⎨⎩。
初三数学毕业考试数学试卷含详细答案一、压轴题1.(概念认识)如图①,在∠ABC 中,若∠ABD =∠DBE =∠EBC ,则BD ,BE 叫做∠ABC 的“三分线”.其中,BD 是“邻AB 三分线”,BE 是“邻BC 三分线”.(问题解决)(1)如图②,在△ABC 中,∠A =70°,∠B =45°,若∠B 的三分线BD 交AC 于点D ,则∠BDC = °;(2)如图③,在△ABC 中,BP 、CP 分别是∠ABC 邻AB 三分线和∠ACB 邻AC 三分线,且BP ⊥CP ,求∠A 的度数;(延伸推广) (3)在△ABC 中,∠ACD 是△ABC 的外角,∠B 的三分线所在的直线与∠ACD 的三分线所在的直线交于点P .若∠A =m°,∠B =n°,直接写出∠BPC 的度数.(用含 m 、n 的代数式表示)2.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.3.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.4.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE .(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.5.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.6.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.7.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.8.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.9.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.10.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.11.完全平方公式:()2222a b a ab b ±=±+适当的变形,可以解决很多的数学问题.例如:若3,1a bab ,求22a b +的值. 解:因为3,1a bab 所以()29,22a b ab +==所以2229,22a b ab ab ++==得227a b +=.根据上面的解题思路与方法,解决下列问题:(1)若228,40x y x y +=+=,求xy 的值;(2)①若()45x x -=,则()224x x -+= ;②若()()458x x --=则()22()45x x -+-= ; (3)如图,点C 是线段AB 上的一点,以AC BC 、为边向两边作正方形,设6AB =,两正方形的面积和1218S S +=,求图中阴影部分面积.12.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC= ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.13.Rt △ABC 中,∠C =90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=60°,则∠1+∠2= ;(2)若点P 在线段AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为 ; (3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.14.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)15.(阅读材料):(1)在ABC ∆中,若90C ∠=︒,由“三角形内角和为180°”得1801809090A B C ∠︒+∠=-∠︒︒-=︒=.(2)在ABC ∆中,若90A B ∠+∠=︒,由“三角形内角和为180°”得180()1809090C A B ∠=︒-∠+∠=︒-︒=︒.(解决问题):如图①,在平面直角坐标系中,点C 是x 轴负半轴上的一个动点.已知//AB x 轴,交y 轴于点E ,连接CE ,CF 是∠ECO 的角平分线,交AB 于点F ,交y 轴于点D .过E 点作EM 平分∠CEB ,交CF 于点M .(1)试判断EM 与CF 的位置关系,并说明理由;(2)如图②,过E 点作PE ⊥CE ,交CF 于点P .求证:∠EPC=∠EDP ;(3)在(2)的基础上,作EN 平分∠AEP ,交OC 于点N ,如图③.请问随着C 点的运动,∠NEM 的度数是否发生变化?若不变,求出其值:若变化,请说明理由.16.已知:MN ∥PQ ,点A ,B 分别在MN ,PQ 上,点C 为MN ,PQ 之间的一点,连接CA ,CB .(1)如图1,求证:∠C=∠MAC+∠PBC ;(2)如图2,AD ,BD ,AE ,BE 分别为∠MAC ,∠PBC ,∠CAN ,∠CBQ 的角平分线,求证:∠D+∠E=180°;(3)在(2)的条件下,如图3,过点D 作DA 的垂线交PQ 于点G ,点F 在PQ 上,∠FDA=2∠FDB ,FD 的延长线交EA 的延长线于点H ,若3∠C=4∠E ,猜想∠H 与∠GDB 的倍数关系并证明.17.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.18.直线MN 与PQ 相互垂直,垂足为点O ,点A 在射线OQ 上运动,点B 在射线OM 上运动,点A 、点B 均不与点O 重合.(1)如图1,AI 平分BAO ∠,BI 平分ABO ∠,若40BAO ∠=︒,求AIB ∠的度数; (2)如图2,AI 平分BAO ∠,BC 平分ABM ∠,BC 的反向延长线交AI 于点D . ①若40BAO ∠=︒,则ADB =∠______度(直接写出结果,不需说理);②点A 、B 在运动的过程中,ADB ∠是否发生变化,若不变,试求ADB ∠的度数:若变化,请说明变化规律.(3)如图3,已知点E 在BA 的延长线上,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F ,在ADF 中,如果有一个角的度数是另一个角的4倍,请直接写出ABO ∠的度数.19.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒; (1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.20.在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、E 处,请问:(1)如图1,在爬行过程中,CD 和BE 始终相等吗,请证明?(2)如果将原题中的“由A 向B 和由C 向A 爬行”,改为“沿着AB 和CA 的延长线爬行”,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中∠CQE 的大小保持不变,请利用图2说明:∠CQE =60°;(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,如图3,则爬行过程中,证明:DF =EF【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)85或100;(2)45°;(3)23m 或13m 或23m +13n 或13m -13n 或13n -13m 【解析】【分析】(1)根据题意可得B 的三分线BD 有两种情况,画图根据三角形的外角性质即可得BDC ∠的度数;(2)根据BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线,且BP CP ⊥可得135ABC ACB ,进而可求A ∠的度数;(3)根据B 的三分线所在的直线与ACD ∠的三分线所在的直线交于点P .分四种情况画图:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时;情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时;情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时;情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,再根据A m ∠=︒,B n ∠=︒,即可求出BPC ∠的度数.【详解】解:(1)如图,当BD 是“邻AB 三分线”时,701585BD C; 当BD 是“邻BC 三分线”时,7030100BD C; 故答案为:85或100;(2)BP CP , 90BPC ∴∠=︒,90PBC PCB , 又BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线, 23PBC ABC ,23PCB ACB ∠=∠, ∴229033ABC ACB , 135ABC ACB ,在ABC ∆中,180A ABC ACB ∠+∠+∠=︒ 180()45A ABCACB . (3)分4种情况进行画图计算:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时,2233BPC A m ; 情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时,1133BPC A m ;情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时, 21213333BPC A ABC m n ; 情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,①当m n >时,11113333BPC A ABC m n ∠=∠-∠=-; ②当m n <时,11113333P ABC A n m ∠=∠-∠=-. 【点睛】 本题考查了三角形的外角性质,解决本题的关键是掌握三角形的外角性质.注意要分情况讨论.2.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.3.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD =⎧⎨=⎩()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF ∴∆是等边三角形,60MF DM F DMF ∴=∠=∠=︒60BMG ∠=︒DMF DM B M G G D M G ∴∠+∠=+∠∠,即FMG DMB ∠=∠在FMG ∆和DMB ∆中,60F MDB MF MD FMG DMB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA ∴∆≅∆GF BD ∴=,即DF DG BD +=AD DF DG MD DG ∴=+=+即AD DG MD =+;(3)结论:AD DG ND =-,证明过程如下:如图,延长BD 使得DH ND =,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD ∠=︒∠=︒-∠-∠=︒= HDN ∴∆是等边三角形,60NH ND H HND ∴=∠=∠=︒60BNG ∠=︒HND BND BND BNG ∠+∠=+∠∴∠,即N HNB D G ∠=∠在HNB ∆和DNG ∆中,60H NDG NH ND HNB DNG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA ∴∆≅∆HB DG ∴=,即DH BD DG +=ND AD DG ∴+=即AD DG ND =-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.4.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE ,∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF ,∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.5.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE =180°-2β,∴∠BAE =2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE 为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD =∠BEF ,在AF 上截取AG =EF ,连接BG ,BF ,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.6.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.7.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆, CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =, ∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.8.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.9.(1)∠BPC =122°;(2)∠BEC =2a ;(3)∠BQC =90°﹣12∠A ,证明见解析 【解析】【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠1表示出∠2,再利用∠E 与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC 与∠ECB ,然后再根据三角形的内角和定理列式整理即可得解.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠,1180902A =-︒+︒∠, 9032122=︒+=︒,故答案为:122︒;(2)CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论:1902BQC A ∠=︒-∠.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.10.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM= ME ,∴DE = 2CM .∴AE = DE+AD=2CM+BE .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.11.(1)12;(2)①6;②17;(3)92【解析】【分析】(1)根据完全平方公式的变形应用,解决问题;(2)①两边平方,再将(4)5x x -=代入计算;②两边平方,再将()()458x x --=代入计算;(3)由题意可得:6AC BC +=,2218AC BC +=,两边平方从而得到9AC BC =,即可算出结果.【详解】解:(1)8x y +=;22()8x y ∴+=;22264x xy y ++=;又2240x y +=;22264()xy x y ∴=-+,2644024xy ∴=-=,∴12xy =.(2)①(4)4x x -+=,22[(4)]4x x ∴-+=222[(4)](4)2(4)16x x x x x x -+=-+-+=;又(4)5x x -=,22(4)162(4)16256x x x x ∴-+=--=-⨯=.②由(4)(5)1x x ---=-,2222[(4)(5)](4)2(4)(5)(5)(1)x x x x x x ∴---=----+-=-;又(4)(5)8x x --=,22(4)(5)12(4)(5)12817x x x x ∴-+-=+--=+⨯=.(3)由题意可得,6AC BC +=,2218AC BC +=;22()6AC BC +=,22236AC AC BC BC ++=;22236()361818AC BC AC BC ∴=-+=-=,9AC BC =;图中阴影部分面积为直角三角形面积,BC CF =, ∴1922ACF S AC CF ∆==.【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①(4)4x x -+=,②(4)(5)1x x ---=-是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段6AB BC +=,再根据两个正方形面积和为18,利用完全平方公式变形应用得到9AC BC =,再根据直角三角形面积公式得出答案. 12.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠, 12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119; 由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.13.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1) ∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2) ∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如图3,设DP与BE的交点为F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE与AC的交点为G,∵∠PGD=∠EGC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.14.(1)90︒;(2)12K K ∠∠=,证明见解析;(3)111902n n K ∠++=⨯︒ 【解析】【分析】(1) 过 K 作KG ∥AB ,交 EF 于 G ,证出//AB CD ∥KG ,得到BEK EKG ∠∠=,GKF KFD ∠∠=,根据角平分线的性质及平行线的性质得到()2180BEK DFK ∠∠+=,即可得到答案;(2)根据角平分线的性质得到1112BEK KEK KEB ∠∠∠==,1112KFK DFK DFK ∠∠∠==,根据90BEK KFD ∠∠+=求出1145KEK KFK ∠∠+=,根据()()111180K KEF EFK KEK KFK ∠∠∠∠∠=-+-+求出答案;(3)根据(2)得到规律解答即可.【详解】(1) 过 K 作KG ∥AB ,交 EF 于 G ,∵//AB CD ,∴//AB CD ∥KG ,BEK EKG ∠∠∴=,GKF KFD ∠∠=,EK ,FK 分别为BEF ∠与EFD ∠的平分线,BEK FEK ∠∠∴=,EFK DFK ∠∠=,∵//AB CD ,180BEK FEK EFK DFK ∠∠∠∠∴+++=,()2180BEK DFK ∠∠∴+=,90BEK DFK ∠∠∴+=,则 90EKF EKG GKF ∠∠∠=+=;(2) 12K K ∠∠=,理由为:BEK ∠,DFK ∠的平分线相交于点1K ,1112BEK KEK KEB ∠∠∠∴==,1112KFK DFK DFK ∠∠∠==, 180BEK FEK EFK DFK ∠∠∠∠+++=,即 ()2180BEK KFD ∠∠+=, 90BEK KFD ∠∠∴+=,1145KEK KFK ∠∠∴+=,()()11118045K KEF EFK KEK KFK ∠∠∠∠∠∴=-+-+=,12K K ∠∠∴=;(3)由(2)知90K ∠=;1119022K K ∠∠==⨯ 同理可得2112K K ∠∠==14K ∠1904=⨯, ∴111902n n K ∠++=⨯. 【点睛】此题考查平行线的性质:两直线平行,内错角相等;平行公理的推论:平行于同一直线的两直线平行;角平分线的性质;(3)是难点,注意总结前两问的做题思路得到规律进行解答.15.(1)EM ⊥CF ,理由见解析;(2)证明见解析;(3)不变,且∠NEM=45°,理由见解析.【解析】【分析】(1)EM ⊥CF ,分别利用角平分线的性质、平行线的性质、三角形的内角和定理进行求证即可;(2)根据垂直定义和三角形的内角和定理证得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和对顶角相等即可证得结论;(3)不变,且∠NEM=45°,先利用平行线的性质得到∠AEC=∠ECO=2∠ECP ,进而有∠AEP=∠CEP+∠AEC=90°+2∠ECP ,再由角平分线的定义∠NEP=∠AEN=45°+∠ECP ,再根据同角的余角相等得到∠ECP=∠MEP ,然后等量代换证得∠NEM=45°,是定值.【详解】解:(1)EM ⊥CF ,理由如下:∵CF 平分∠ECO ,EM 平分∠FEC ,∴∠ECF=∠FCO=12ECO ∠,∠FEM=∠CEM=12CEF ∠ ∵AB ∥x 轴 1111()180902222ECF CEM ECO CEF ECO CEF ∴∠+∠=∠+∠=∠+∠=⨯︒=︒ ∴∠ECO+∠CEF=180°∴∠EMC=180°-(∠CEM+∠ECF )=180°-90°=90°。
初三数学毕业考试试卷含详细答案一、压轴题1.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.解析:(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.2.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=30°,∠ABC =40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0°<α<180°),在旋转过程中;(1)如图2,当∠α= 时,//DE BC ,当∠α= 时,DE ⊥BC ;(2)如图3,当顶点C 在△DEF 内部时,边DF 、DE 分别交BC 、AC 的延长线于点M 、N , ①此时∠α的度数范围是 ;②∠1与∠2度数的和是否变化?若不变求出∠1与∠2度数和;若变化,请说明理由; ③若使得∠2≥2∠1,求∠α的度数范围.解析:(1)10°,100°;(2)①55°<α<85°;②∠1与∠2度数的和不变,理由见解析③55°<α≤60°.【解析】【分析】(1)当∠EDA =∠B =40°时,//DE BC ,得出30°+α=40°,即可得出结果;当//DE AC 时,DE ⊥AB ,得出50°+α+30°=180°,即可得出结果;(2)①由已知得出∠ACD =45°,∠A =50°,推出∠CDA =85°,当点C 在DE 边上时,α+30°=85°,解得α=55°,当点C 在DF 边上时,α=85°,即可得出结果;②连接MN ,由三角形内角和定理得出∠CNM +∠CMN +∠MCN =180°,则∠CNM +∠CMN =90°,由三角形内角和定理得出∠DNM +∠DMN +∠MDN =180°,即∠2+∠CNM +∠CMN +∠1+∠MDN =180°,即可得出结论;③由221∠≥∠,∠1+∠2=60°,得出∠2≥2(60°−∠2),解得∠2≥40°,由三角形内角和定理得出∠2+∠NDM +α+∠A =180°,即∠2+30°+α+50°=180°,则∠2=100°−α,得出100°−α≥40°,解得α≤60°,再由当顶点C 在△DEF 内部时,55°<α<85°,即可得出结果.【详解】解:(1)∵∠B =40°,∴当∠EDA =∠B =40°时,//DE BC ,而∠EDF =30°,∴3040α︒+=︒,解得:α=10°;当//DE AC 时,DE ⊥AB ,此时∠A+∠EDA =180°,9050A B ∠=︒-∠=︒,∴5030180α︒++︒=︒,解得:α=100°;故答案为10°,100°;(2)①∵∠ABC =40°,CD 平分∠ACB ,∴∠ACD =45°,∠A =50°,∴∠CDA =85°,当点C 在DE 边上时,3085α+︒=︒,解得:55α=︒,当点C 在DF 边上时,85α=︒,∴当顶点C 在△DEF 内部时,5585α︒<<︒;故答案为:5585α︒<<︒;②∠1与∠2度数的和不变;理由如下:连接MN ,如图所示:在△CMN 中,∵∠CNM+∠CMN+∠MCN =180°,∴∠CNM+∠CMN =90°,在△MND 中,∵∠DNM+∠DMN+∠MDN =180°,即∠2+∠CNM+∠CMN+∠1+∠MDN =180°,∴12180903060∠+∠=︒-︒-︒=︒;③∵∠2≥2∠1,∠1+∠2=60°,∴22602∠≥︒-∠(), ∴∠2≥40°,∵2180NDM A α∠+∠++∠=︒,即23050180α∠+︒++︒=︒,∴2100α∠=︒-,∴10040α︒-≥︒,解得:α≤60°,∵当顶点C 在△DEF 内部时,5585α︒<<︒,∴∠α的度数范围为5560α︒<≤︒.【点睛】本题考查了平行线的性质、直角三角形的性质、三角形内角和定理、不等式等知识,合理选择三角形后利用三角形内角和定理列等量关系是解决问题的关键.3.完全平方公式:()2222a b a ab b ±=±+适当的变形,可以解决很多的数学问题.例如:若3,1a b ab ,求22a b +的值. 解:因为3,1a b ab 所以()29,22a b ab +==所以2229,22a b ab ab ++==得227a b +=.根据上面的解题思路与方法,解决下列问题:(1)若228,40x y x y +=+=,求xy 的值; (2)①若()45x x -=,则()224x x -+= ; ②若()()458x x --=则()22()45x x -+-= ; (3)如图,点C 是线段AB 上的一点,以AC BC 、为边向两边作正方形,设6AB =,两正方形的面积和1218S S +=,求图中阴影部分面积.解析:(1)12;(2)①6;②17;(3)92 【解析】【分析】(1)根据完全平方公式的变形应用,解决问题;(2)①两边平方,再将(4)5x x -=代入计算;②两边平方,再将()()458x x --=代入计算;(3)由题意可得:6AC BC +=,2218AC BC +=,两边平方从而得到9AC BC =,即可算出结果.【详解】解:(1)8x y +=;22()8x y ∴+=;22264x xy y ++=;又2240x y +=;22264()xy x y ∴=-+,2644024xy ∴=-=,∴12xy =.(2)①(4)4x x -+=,22[(4)]4x x ∴-+=222[(4)](4)2(4)16x x x x x x -+=-+-+=;又(4)5x x -=,22(4)162(4)16256x x x x ∴-+=--=-⨯=.②由(4)(5)1x x ---=-,2222[(4)(5)](4)2(4)(5)(5)(1)x x x x x x ∴---=----+-=-;又(4)(5)8x x --=,22(4)(5)12(4)(5)12817x x x x ∴-+-=+--=+⨯=.(3)由题意可得,6AC BC +=,2218AC BC +=;22()6AC BC +=,22236AC AC BC BC ++=;22236()361818AC BC AC BC ∴=-+=-=,9AC BC =;图中阴影部分面积为直角三角形面积,BC CF =, ∴1922ACF S AC CF ∆==.【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①(4)4x x -+=,②(4)(5)1x x ---=-是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段6AB BC +=,再根据两个正方形面积和为18,利用完全平方公式变形应用得到9AC BC =,再根据直角三角形面积公式得出答案.4.直线MN 与PQ 相互垂直,垂足为点O ,点A 在射线OQ 上运动,点B 在射线OM 上运动,点A 、点B 均不与点O 重合.(1)如图1,AI 平分BAO ∠,BI 平分ABO ∠,若40BAO ∠=︒,求AIB ∠的度数; (2)如图2,AI 平分BAO ∠,BC 平分ABM ∠,BC 的反向延长线交AI 于点D . ①若40BAO ∠=︒,则ADB =∠______度(直接写出结果,不需说理);②点A 、B 在运动的过程中,ADB ∠是否发生变化,若不变,试求ADB ∠的度数:若变化,请说明变化规律.(3)如图3,已知点E 在BA 的延长线上,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F ,在ADF 中,如果有一个角的度数是另一个角的4倍,请直接写出ABO ∠的度数.解析:(1)135°;(2)①45°;②不变;45°;(3)45°或36°【解析】【分析】灵活运用三角形的一个外角等于与其不相邻的两个内角和;(1)求出IBA ∠,IAB ∠,根据180()AIB IBA IAB ∠=-∠+∠,即可解决问题; (2)①求出CBA ∠,BAI ∠,根据CBA ADB BAD ∠=∠+∠,即可求出ADB ∠的值; ②根据D CBA BAD ∠=∠-∠1122MBA BAO =∠-∠12AOB =∠即可得出结论; (3)首先证明90DAF ∠=,2ABO D ∠=∠,再分四种情况讨论①当4DAF D ∠=∠时,②4DAF F ∠=∠时, ③4F D ∠=∠时,④4D F ∠=∠时, 分别计算,符合题意得保留即可.【详解】解:(1)如图1中,MN PQ ⊥,90AOB ∴∠=,40BAO ∠=︒,∴905040ABO ∠=-=︒, 又AI 平分BAO ∠,BI 平分ABO ∠,∴1252IBA ABO ∠==,1202IAB OAB ∠==, ∴180()135AIB IBA IAB ∠=-∠+∠=,(2)如图2中:①MBA AOB BAD ∠=∠+∠(三角形的一个外角等于与其不相邻的两个内角和), 9040=+130=AI 平分BAO ∠,BC 平分ABM ∠,∴1652CBA MBA ∠=∠=,1202BAI BAO ∠=∠=, CBA ADB BAD ∠=∠+∠,∴45ADB ∠=;②结论:点A 、B 在运动过程中,45ADB ∠=, 理由:D CBA BAD ∠=∠-∠1122MBA BAO =∠-∠ 1()2MBA BAO =∠-∠ 12AOB =∠ 1902=⨯ 45=∴点A 、B 在运动过程中,ADB ∠的角度不变,45ADB ∠=;(3)如图3中,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F , ∴12DAO BAO ∠=∠,12FAO EAP ∠=∠, 又BAO EAP ∠+∠为平角,∴11118090222DAF BAO EAP ∠=∠+∠=⨯=, ∴111222D POD DAO POB BAO ABO ∠=∠-∠=∠-∠=∠, ∴2ABO D ∠=∠, 又在AOB 中:AOB 90∠=,∴ABO ∠﹤90,在ADF 中,如果有一个角的度数是另一个角的4倍,则:①当4DAF D ∠=∠时,22.5D ∠=,此时245ABO D ∠=∠=,②4DAF F ∠=∠时,22.5F ∠=,67.5D ∠=,此时2135ABO D ∠=∠=(不符合题意舍去),③4F D ∠=∠时,18D ∠=,此时236ABO D ∠=∠=,④4D F ∠=∠时,72D ∠=,此时2144ABO D ∠=∠=(不符合题意舍去),综上所述,当45ABO ∠=或36时,在ADF 中,有一个角的度数是另一个角的4倍.【点睛】本题主要考查角平分线的定义,三角形内角和定理,以及分类讨论的数学思想的理解及应用,分类讨论时,没有讨论完全是本题的易错点.5.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:2114x x =+,求代数式x 2+21x 的值. 解:∵2114x x =+,∴21x x+=4 即21x x x+=4∴x +1x =4∴x 2+21x =(x +1x )2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k ”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x =3y =4z ,且xyz ≠0,求x y z+的值. 解:令2x =3y =4z =k (k ≠0) 则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c ++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.解析:(1)5;(2)95; (3)78【解析】【分析】(1)仿照材料一,取倒数,再约分,利用等式的性质求解即可;(2)仿照材料二,设5a =2b =3c =k (k ≠0),则a =5k ,b =2k ,c =3k ,代入所求式子即可;(3)本题介绍两种解法:解法一:(3)解法一:设yz bz cy +=zx cx az +=xy ay bx +=1k(k ≠0),化简得:b c k y z +=①,c a k z x +=②,a b k x y +=③,相加变形可得x 、y 、z 的代入222222x y z a b c ++++=1k中,可得k 的值,从而得结论; 解法二:取倒数得:bz cy yz +=cx az zx +=ay bx xy +,拆项得b c c a a b y z z x x y +=+=+,从而得x =ay b ,z =cy b,代入已知可得结论. 【详解】解:(1)∵21x x x -+=14, ∴21x x x-+=4, ∴x ﹣1+1x =4, ∴x +1x=5; (2)∵设5a =2b =3c =k (k ≠0),则a =5k ,b =2k ,c =3k , ∴342b c a +=61210k k k +=1810=95; (3)解法一:设yz bz cy +=zx cx az +=xy ay bx +=1k (k ≠0), ∴b c k y z +=①,c a k z x+=②,a b k x y +=③, ①+②+③得:2(b c a y z x ++)=3k , b c a y z x ++=32k ④, ④﹣①得:a x =12k , ④﹣②得:12b k y =, ④﹣③得:12c z =k , ∴x =2a k ,y =2b k ,z =2c k 代入222222x y z a b c ++++=1k 中,得: ()22222224a b c k a b c ++++=1k ,241kk =, k =4,∴x =24a ,y =24b ,z =24c , ∴xyz =864abc =8764⨯=78; 解法二:∵yz zx xy bz cy cx az ay bx==+++, ∴bz cy cx az ay bx yz zx xy+++==, ∴b c c a a b y z z x x y+=+=+, ∴,b a c b y x z y==, ∴,ay cy x z b b==, 将其代入222222zx x y z cx az a b c ++=+++中得: cy ay b b acy acy b b⋅+=2222222222a y c y yb b a bc ++++ 2y b =22y b ,y =2b , ∴x =22ab a b =,z =cy 2y =2c , ∴xyz =222a b c ⋅⋅=78. 【点睛】 本题考查了以新运算的方式求一个式子的值,题目中涉及了求一个数的倒数,约分,等式的基本性质,求代数式的值,解决本题的关键是正确理解新运算的内涵,确定一个数的倒数并能够根据等式的基本性质将原式变为能够进一步运算的式子.6.数学活动课上,老师出了这样一个题目:“已知:MF NF ⊥于F ,点A 、C 分别在NF 和MF 上,作线段AB 和CD (如图1),使90FAB MCD ∠-∠=︒.求证://AB CD ”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A 作//AG FM ,交CD 于G .请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点E 在直线CD 下方,且知30BED ∠=︒,直接写出ABE ∠和CDE ∠之间的数量关系.解析:(1)见解析;(2)30ABE CDE ∠-∠=︒【解析】【分析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:AGC MCD ∠=∠,90F GAF ∠+∠=︒,再证明MCD BAG ∠=∠,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A 作//AG FM ,交CD 于G ,AGC MCD ∴∠=∠,90F GAF ∠+∠=︒,FN FM ⊥,90F ∴∠=︒,90GAF ∴∠=︒,90FAB MCD ∠-∠=︒,FAB GAF MCD BAG ∴∠-∠=∠=∠,//AB CD ∴;(2)解:30ABE CDE ∠-∠=︒,理由如下:如图3,//AB CD ,BPD ABE ∴∠=∠,BPD CDE BED ∠=∠+∠,30BED ∠=︒,30BPD CDE ∴∠-∠=︒,∴30ABE CDE ∠-∠=︒.【点睛】本题主要考查了平行线的性质和判定以及三角形外角性质的运用,熟练掌握平行线的性质和判定是解决问题的关键.7.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.解析:(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【解析】【分析】(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠ADB =∠CEA =90°∵∠BAC =90°∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°∴∠CAE =∠ABD∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE即:DE =BD +CE(2)解:数量关系:DE =BD +CE理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD ,∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC ,∴∠ABD=∠CAE ,在△ABD 和△CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABD ≌△CAE (AAS )∴AE=BD ,AD=CE ,∴DE=AD+AE=BD+CE ;(3)解:如图,作AE ⊥x 轴于E ,BF ⊥x 轴于F ,由(1)可知,△AEC ≌△CFB ,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴点B 的坐标为B (1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.8.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.解析:(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECB AC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=10 11;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.9.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.解析:(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】 (1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠,1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒; (2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q1 18090582 119;由(2)可得:115829 22R Q;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.10.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF解析:(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E ,∴△ADG 为等边三角形,∴AD=DG=CE ,在△DGF 和△ECF 中,∠GFD=∠CFE ,∠GDF=∠E ,DG=EC∴△DGF ≌△EDF (AAS ),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.11.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由. 解析:(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】 考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.12.如图,若要判定纸带两条边线a ,b 是否互相平行,我们可以采用将纸条沿AB 折叠的方式来进行探究.(1)如图1,展开后,测得12∠=∠,则可判定a//b ,请写出判定的依据_________; (2)如图2,若要使a//b ,则1∠与2∠应该满足的关系是_________;(3)如图3,纸带两条边线a ,b 互相平行,折叠后的边线b 与a 交于点C ,若将纸带沿11A B (1A ,1B 分别在边线a ,b 上)再次折叠,折叠后的边线b 与a 交于点1C ,AB//11A B ,137BB AC ==,,求出1A C 的长.解析:(1)内错角相等,两直线平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根据平行线的判定定理,即可得到答案;(2)由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,结合三角形内角和定理,即可得到答案;(3)分两种情况:①当B 1在B 的左侧时,如图2,当B 1在B 的右侧时,如图3,分别求出1A C 的长,即可得到答案.【详解】(1)∵12∠=∠,∴a ∥b (内错角相等,两直线平行),故答案是:内错角相等,两直线平行;(2)如图1,由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a ∥b ,则1∠与2∠应该满足的关系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①当B 1在B 的左侧时,如图2,∵AB//11A B ,a ∥b ,∴AA 1=BB 1=3,∴1A C =AC- AA 1=7-3=4;②当B 1在B 的右侧时,如图3,∵AB//11A B ,a ∥b ,∴AA1=BB1=3,∴1A C=AC+AA1=7+3=10.综上所述:1A C=4或10.【点睛】本题主要考查平行线的判定和性质定理,折叠的性质以及三角形的内角和定理,掌握“平行线间的平行线段长度相等”是解题的关键.13.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.解析:(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE , ∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF , ∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC >30°,而没办法判断∠OBC 大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC 至P ,使DP=DB ,∵∠BDC=60°,∴△BDP 是等边三角形,∴BD=BP ,∠DBP=60°,∵∠BAC=60°=∠DBP ,∴∠ABD=∠CBP ,∵AB=CB ,∴△ABD ≌△CBP (SAS ),∴∠BCP=∠A ,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.14.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.解析:(1)∠BPC =122°;(2)∠BEC =2a ;(3)∠BQC =90°﹣12∠A ,证明见解析【解析】【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠1表示出∠2,再利用∠E 与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC 与∠ECB ,然后再根据三角形的内角和定理列式整理即可得解.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122=︒+=︒,故答案为:122︒;(2)CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论:1902BQC A ∠=︒-∠.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.15.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①.(1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)解析:(1)证明见解析;(2)证明见解析;(3)当AC =2BD 时,对于满足条件的任意点N ,AN =CP 始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM ;(2)过点N 作NE ⊥AC 于E ,由“AAS ”可证△NEC ≌△CDM ,可得NE=CD ,由三角形面积公式可求解;(3)过点N 作NE ⊥AC 于E ,由“SAS ”可证△NEA ≌△CDP ,可得AN=CP .【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .∵∠NCM=135°,∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;(2)过点N 作NE ⊥AC 于E ,∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,∴△NEC ≌△CDM (AAS ),∴NE=CD ,CE=DM ;∵S 112=AC•NE ,S 212=AB•CD , ∴12S AC S AB=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,理由如下:过点N 作NE ⊥AC 于E ,由(2)可得NE=CD ,CE=DM .∵AC=2BD ,BP=BM ,CE=DM ,∴AC ﹣CE=BD+BD ﹣DM ,∴AE=BD+BP=DP .∵NE=CD ,∠NEA=∠CDP=90°,AE=DP ,∴△NEA ≌△CDP (SAS ),∴AN=PC .【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.二、选择题16.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b 解析:A【解析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和.【详解】∵线段AB 长度为a ,∴AB=AC+CD+DB=a ,又∵CD 长度为b ,∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b ,故选A .【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.17.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x = 解析:A【解析】【分析】 把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】 解:A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.18.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 解析:D【解析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43xy=,交叉相乘得到34x y =,故D 对.故答案为:D.【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.19.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是()A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b解析:D【解析】【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a <0<b ,∴ab <0,即-ab >0又∵|a |>|b |,∴a <﹣b .故选:D .【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.20.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .4解析:B【解析】【分析】根据线段中点的性质,可得AC 的长.【详解】解:由线段中点的性质,得AC =12AB =2.故选B .【点睛】本题考查了两点间的距离,利用了线段中点的性质.-++的结果是()21.计算(3)(5)A.-8 B.8 C.2 D.-2解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.22.如图,数轴的单位长度为1,点A、B表示的数互为相反数,若数轴上有一点C到点B 的距离为2个单位,则点C表示的数是()A.-1或2 B.-1或5 C.1或2 D.1或5解析:D【解析】【分析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C表示的数为m,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,-=2,∴3m∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.。
初三数学毕业考试数学试卷及答案一、压轴题1.如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.(3)如图②,点Q 是线段OB 上一动点,连接BC ,在线段BC 上是否存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形?若存在,求M 的坐标;若不存在,请说明理由.2.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式; (2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC 在(2)的旋转变换下,若2PC =①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.3.如图,在平面直角坐标系中,抛物线21322y x bx =-++与x 轴正半轴交于点A ,且点A 的坐标为()3,0,过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ l ⊥于点Q ;M 是直线l 上的一点,其纵坐标为32m -+,以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.4.已知:如图,抛物线2134y x x =--交x 正半轴交于点A ,交y 轴于点B ,点()4,C n -在抛物线上,直线l :34y x m =-+过点B ,点E 是直线l 上的一个动点,ACE △的外心是P .(1)求m ,n 的值.(2)当点E 移动到点B 时,求ACE △的面积.(3)①是否存在点E ,使得点P 落在ACE △的边上,若存在,求出点E 的坐标,若不存在,请说明理由.②过点A 作直线AD x ⊥轴交直线l 于点D ,当点E 从点D 移动到点B 时,圆心P 移动的路线长为_____.(直接写出答案)5.已知抛物线2y ax bx c =++经过原点,与x 轴相交于点F ,直线132y x =+与抛物线交于()()2266A B -,,,两点,与x 轴交于点C ,与y 轴交于点D ,点E 是线段OC 上的一个动点(不与端点重合),过点E 作//EG BC 交BF 于点C ,连接DE DG ,.(1)求抛物线的解析式及点F 的坐标;(2)当DEG ∆的面积最大时,求线段EF 的长;(3)在(2)的条件下,若在抛物线上有一点()4H n ,和点P ,使EHP ∆为直角三角形,请直接写出点P 的坐标.6.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C .(1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,点B 、C′平移后对应的点分别记为B′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.7.如图1,抛物线24y ax bx =+-与x 轴交于(3,0)A -、(4,0)B 两点,与y 轴交于点C ,作直线BC .点D 是线段BC 上的一个动点(不与B ,C 重合),过点D 作DE x ⊥轴于点E .设点D 的横坐标为(04)m m <<.(1)求抛物线的表达式及点C 的坐标;(2)线段DE 的长用含m 的式子表示为 ; (3)以DE 为边作矩形DEFC ,使点F 在x 轴负半轴上、点G 在第三象限的抛物线上. ①如图2,当矩形DEFC 成为正方形时,求m 的值;②如图3,当点O 恰好是线段EF 的中点时,连接FD ,FC .试探究坐标平面内是否存在一点P ,使以P ,C ,F 为顶点的三角形与FCD ∆全等?若存在,直接写出点P 的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于点,的解析式为,若将抛物线平移,使平移后的抛物线经过点, 对称轴为直线,抛物线与轴的另一个交点是,顶点是,连结.(1)求抛物线的解析式;(2)求证:∽(3)半径为的⊙的圆心沿着直线从点运动到,运动速度为1单位/秒,运动时间为秒,⊙绕着点顺时针旋转得⊙,随着⊙的运动,求的运动路径长以及当⊙与轴相切的时候的值.9.定义:对于二次函数2y ax bx c =++(0)a ≠,我们称函数221()1111()222ax bx c x m y ax bx c x m ⎧++-≥⎪=⎨---+<⎪⎩为它的m 分函数(其中m 为常数).例如:2y x 的m 分函数为221()11()2x x m y x x m ⎧-≥⎪=⎨-+<⎪⎩.设二次函数244y x mx m =-+的m 分函数的图象为G .(1)直接写出图象G 对应的函数关系式.(2)当1m =时,求图象G 在14x -≤≤范围内的最高点和最低点的坐标.(3)当图象G 在x m ≥的部分与x 轴只有一个交点时,求m 的取值范围.(4)当0m >,图象G 到x 轴的距离为m 个单位的点有三个时,直接写出m 的取值范围.10.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A ,与y 轴交于点C ,抛物线y=12x 2+bx+c 经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1, △BCE 的面积为S 2, 求12S S 的最大值; ②过点D 作DF⊥AC,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由11.如图,在矩形ABCD 中,AB =6,BC =8,点E ,F 分别在边BC ,AB 上,AF =BE =2,连结DE ,DF ,动点M 在EF 上从点E 向终点F 匀速运动,同时,动点N 在射线CD 上从点C 沿CD 方向匀速运动,当点M 运动到EF 的中点时,点N 恰好与点D 重合,点M 到达终点时,M ,N 同时停止运动.(1)求EF 的长.(2)设CN =x ,EM =y ,求y 关于x 的函数表达式,并写出自变量x 的取值范围. (3)连结MN ,当MN 与△DEF 的一边平行时,求CN 的长.12.在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(0)4,,直线CM x ∥轴(如图所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD 是等腰三角形,求点P 的坐标;13.如图,Rt △ABC 中,∠C =90°,AB =15,BC =9,点P ,Q 分别在BC ,AC 上,CP =3x ,CQ =4x (0<x <3).把△PCQ 绕点P 旋转,得到△PDE ,点D 落在线段PQ 上. (1)求证:PQ ∥AB ;(2)若点D 在∠BAC 的平分线上,求CP 的长;(3)若△PDE 与△ABC 重叠部分图形的周长为T ,且12≤T ≤16,求x 的取值范围.14.如图,已知矩形ABCD 中,AB=8,AD=6, 点E 是边CD 上一个动点,连接AE ,将△AED 沿直线AE 翻折得△AEF.(1) 当点C 落在射线AF 上时,求DE 的长;(2)以F 为圆心,FB 长为半径作圆F ,当AD 与圆F 相切时,求cos ∠FAB 的值;(3)若P 为AB 边上一点,当边CD 上有且仅有一点Q 满∠BQP=45°,直接写出线段BP 长的取值范围.15.已知,在平面直角坐标系中,二次函数212y x bx c =++的图象与x 轴交于点A B ,,与y 轴交于点C ,点A 的坐标为()3,0-,点B 的坐标为()1,0.(1)如图1,分别求b c 、的值;(2)如图2,点D 为第一象限的抛物线上一点,连接DO 并延长交抛物线于点E ,3OD OE =,求点E 的坐标;(3)在(2)的条件下,点P 为第一象限的抛物线上一点,过点P 作PH x ⊥轴于点H ,连接EP 、EH ,点Q 为第二象限的抛物线上一点,且点Q 与点P 关于抛物线的对称轴对称,连接PQ ,设2AHE EPH α∠+∠=,tan PH PQ α=⋅,点M 为线段PQ 上一点,点N 为第三象限的抛物线上一点,分别连接MH NH 、,满足60MHN ∠=︒,MH NH =,过点N 作PE 的平行线,交y 轴于点F ,求直线FN 的解析式.16.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++>与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点C ,且30OBC ∠=︒.点E 在第四象限且在抛物线上.(1)如(图1),当四边形OCEB 面积最大时,在线段BC 上找一点M ,使得12EM BM +最小,并求出此时点E 的坐标及12EM BM +的最小值; (2)如(图2),将AOC △沿x 轴向右平移2单位长度得到111AO C △,再将111AO C △绕点1A 逆时针旋转α度得到122AO C △,且使经过1A 、2C 的直线l 与直线BC 平行(其中0180α︒<<︒),直线l 与抛物线交于K 、H 两点,点N 在抛物线上.在线段KH 上是否存在点P ,使以点B 、C 、P 、N 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.17.如图,在矩形ABCD 中,已知AB=4,BC=2,E 为AB 的中点,设点P 是∠DAB 平分线上的一个动点(不与点A 重合).(1)证明:PD=PE .(2)连接PC ,求PC 的最小值.(3)设点O 是矩形ABCD 的对称中心,是否存在点P ,使∠DPO=90°?若存在,请直接写出AP 的长.18.如图,在平面直角坐标系中,四边形ABCD 的顶点A 、B 在函数(0)m y x x =>的图象上,顶点C 、D 在函数(0)n y x x=>的图象上,其中0m n <<,对角线//BD y 轴,且BD AC ⊥于点P .已知点B 的横坐标为4.(1)当4m =,20n =时,①点B 的坐标为________,点D 的坐标为________,BD 的长为________.②若点P 的纵坐标为2,求四边形ABCD 的面积.③若点P 是BD 的中点,请说明四边形ABCD 是菱形.(2)当四边形ABCD 为正方形时,直接写出m 、n 之间的数量关系.19.在Rt △ABC 中,∠ACB =90°,AC =1,记∠ABC =α,点D 为射线BC 上的动点,连接AD ,将射线DA 绕点D 顺时针旋转α角后得到射线DE ,过点A 作AD 的垂线,与射线DE 交于点P ,点B 关于点D 的对称点为Q ,连接PQ .(1)当△ABD 为等边三角形时,①依题意补全图1;②PQ 的长为 ;(2)如图2,当α=45°,且BD =43时,求证:PD =PQ ; (3)设BC =t ,当PD =PQ 时,直接写出BD 的长.(用含t 的代数式表示) 20.在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点.(1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB 交于P 点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ .……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2315344y x x =-+;(2)9;(3)存在点M 的坐标为(315,28)或(1212,77)使△CQM 为等腰三角形且△BQM 为直角三角形【解析】【分析】(1)根据抛物线经过A 、B 两点,带入解析式,即可求得a 、b 的值.(2)根据PA=PB ,要求四边形PAOC 的周长最小,只要P 、B 、C 三点在同一直线上,因此很容易计算出最小周长.(3)首先根据△BQM 为直角三角形,便可分为两种情况QM ⊥BC 和QM ⊥BO ,再结合△QBM ∽△CBO ,根据相似比例便可求解. 【详解】解:(1)将点A (1,0),B (4,0)代入抛物线23y ax bx =++中,得:3016430a b a b ++=⎧⎨++=⎩ 解得:34154a b ⎧=⎪⎪⎨⎪=-⎪⎩所以抛物线的解析式为2315344y x x =-+.(2)由(1)可知,抛物线的对称轴为直线52x =.连接BC ,交抛物线的对称轴为点P ,此时四边形PAOC 的周长最小,最小值为OA+OC+BC=1+3+5=9. (3) 当QM ⊥BC 时,易证△QBM ∽△CBO 所以QM BMOC OB=, 又因为△CQM 为等腰三角形 ,所以QM=CM.设CM=x , 则BM=5- x 所以534x x -= 所以157x .所以QM=CM=157,BM=5- x=207,所以BM:CM=4:3. 过点M 作NM ⊥O B 于N ,则MN//OC, 所以 NM BM BNOC CB OB==, 即4374NM BN == ,所以1216,77MN BN ==, 127ON OB BN =-= 所以点M 的坐标为(1212,77) 当QM ⊥BO 时, 则MQ//OC, 所以QM BQ OC OB =, 即34QM BQ= 设QM=3t , 则BQ=4t , 又因为△CQM 为等腰三角形 ,所以QM=CM=3t,BM=5-3t 又因为QM 2+QB 2=BM 2, 所以(3t )2+(4t )2=(5-3t )2, 解得58t = MQ=3t=158,32OQ OB BQ =-=, 所以点M 的坐标为(315,28).综上所述,存在点M 的坐标为(315,28)或(1212,77)使△CQM 为等腰三角形且△BQM 为直角三角形 【点睛】本题是一道二次函数的综合型题目,难度系数较高,关键在于根据图形化简问题,这道题涉及到一种分类讨论的思想,这是这道题的难点所在,分类讨论思想的关键在于根据直角三角形的直角进行分类的.2.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM=1或CM=1+【解析】 【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F (m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由PC =EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长. 【详解】 (1)∵点()6,0C在抛物线上,∴103664b c =-⨯++,得到6=9b c +, 又∵对称轴2x =, ∴2122()4b b x a =-=-=⨯-, 解得1b =, ∴3c =,∴二次函数的解析式为2134y x x =-++;(2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4), ∴AB=AC=4,∴△ABC 是等腰直角三角形, ∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF , ∴FM=CM ,∠2=∠1=45°, 设点M 的坐标为(m ,0), ∴点F (m ,6-m ), 又∵∠2=45°,∴直线EF 与x 轴的夹角为45°, ∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m , 直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点,∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=,∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点. 综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵2PC 2)知∠BCA=45°, ∴PG=GC=1, ∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF , ∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°, ∴∠HEM=∠GMP , 在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EHM ≌△MGP (AAS ), ∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴EA=22(12)(50)m m --+--=221634m m -+, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED=22(14)(52)m m --+--=221634m m -+, ∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED . ②当点E 在(1)所求的抛物线2134y x x =-++上时,把E (m-1,5-m )代入,整理得:m 2-10m+13=0, 解得:m=523+m=523-, ∴CM =231或CM =123+. 【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键. 3.(1)1b =;(2)120,4m m ;(3)71m =-;(4)03m <<或4m >.【解析】 【分析】(1)将A 点坐标代入函数解析式即可求得b 的值;(2)分别表示出P 、Q 、M 的坐标,根据Q 、M 的横坐标相同,它们重合时纵坐标也相同,列出方程求解即可;(3)分别表示出PQ 和MQ 的长度,根据矩形PQMN 是正方形时PQ MQ =,即可求得m 的值,再根据顶点在正方形内部,排除不符合条件的m 的值;(4)分1m ,13m <<,3m =,3m >四种情况讨论,结合图形分析即可. 【详解】解:(1)将点()3,0A 代入21322y x bx =-++ 得21303322b =-⨯++, 解得b=1,;(2)由(1)可得函数的解析式为21322y x x =-++, ∴213,22P m m m ⎛⎫-++ ⎪⎝⎭, ∵PQ l ⊥于点Q , ∴233,122m m Q ⎛⎫ ⎪⎝-+⎭+, ∵M 是直线l 上的一点,其纵坐标为32m -+, ∴3(3,)2m M -+, 若点Q 与点M 重合,则2133222m m m -++=-+, 解得120,4m m ;(3)由(2)可得|3|PQm ,223131)2222|(()||2|MQ m m mm m,当矩形PQMN 是正方形时,PQ MQ = 即212|2||3|m m m , 即22123m m m 或22123mm m ,解22123m m m 得1271,71m m , 解22123mm m 得3233,33m m ,又2131(1)2222y x x x =-++=--+, ∴抛物线的顶点为(1,2), ∵抛物线的顶点在该正方形内部,∴P 点在抛物线对称轴左侧,即1m <,且M 点的纵坐标大于抛物线顶点的纵坐标,即322m,解得12m <-,故m 的值为71;(4)①如下图当1m 时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该小于P 点纵坐标,且P 点应该在x 轴上侧, 即2313222m m m 且213022m m -++>, 解2313222m m m得04m <<, 解213022m m -++>得13m -<<, ∴01m <≤,②如下图当13m <<时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该小于P 点纵坐标, 即2313222mm m,解得04m <<, ∴13m <<;③当3m =时,P 点和M 点都在直线x=3上不构成矩形,不符合题意;④如下图当3m >时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该大于P 点纵坐标, 即2313222mm m,解得0m <或4m >, 故4m >,综上所述03m <<或4m >. 【点睛】本题考查二次函数综合,正方形的性质定理,求二次函数解析式.能分别表示出M 、P 、Q 的坐标并结合图形分析是解决此题的关键,注意分类讨论. 4.(1)3,5m n =-=;(2)30ACES=;(3)①点E 的坐标为:1653,1122⎛⎫-- ⎪⎝⎭或6415,1111E ⎛⎫- ⎪⎝⎭或3660,1111E ⎛⎫- ⎪⎝⎭; ②圆心P 移动的路线长255 【解析】 【分析】 (1)令2130,4y x x =--=求出点A (6,0),把点C (-4,n )代入在抛物线方程,解得:n=5,把点B (0,-3)代入34y x m =-+,从而可得答案;(2)记AC 与y 轴的交点为H ,利用()1.2ACEA C SBH x x =••-即可求解; (3)①分当点P 落在CA 上时,点P 落在AE 上时,点P 落在CE 上时三种情况讨论即可; ②分E 在D 和B 点两种情况,求出圆心12,P P 点的坐标,则圆心P 移动的路线长=12PP ,即可求解. 【详解】解:(1)令2130,4y x x =--= 24120,x x ∴--=()()260,x x ∴+-= 122,6,x x ∴=-=∴ 点A (6,0),把点C (-4,n )代入在抛物线方程,解得:()()214435,4n =⨯----= ()4,5C ∴-,把点B (0,-3)代入34y x m =-+,解得:3m =-, 则:直线l :334y x =--,…① 3,5,m n ∴=-=(2)由(1)知:A (6,0)、B (0,-3)、C (-4,5)、 AC 中点为51,,2⎛⎫⎪⎝⎭设AC 为:,y kx b =+6045k b k b +=⎧∴⎨-+=⎩ 解得:123k b ⎧=-⎪⎨⎪=⎩AC ∴所在的直线方程为:132y x =-+, 如图,AC 与y 轴交点H 坐标为:(0,3),()1161030.22ACEA C SBH x x ∴=••-=⨯⨯=(3)如下图: ①当点P 落在CA 上时, 圆心P 为AC 的中点51,,2⎛⎫⎪⎝⎭其所在的直线与AC 垂直,1,2AC k =-AC ∴的垂直平分线即圆心P 所在的直线方程为:2,y x a =+把51,2⎛⎫⎪⎝⎭代入得:52,2a =+1,2a ∴=122y x ∴=+…②,334122y x y x ⎧=--⎪⎪∴⎨⎪=+⎪⎩①②解得:1611,5322x y ⎧=-⎪⎪⎨⎪=-⎪⎩E 的坐标为1653,1122⎛⎫-- ⎪⎝⎭; 当点P 落在AE 上时, 设点3,3,4E m m ⎛⎫-- ⎪⎝⎭则点P 的坐标633,282m m +⎛⎫-- ⎪⎝⎭, 则PA=PC ,2222633633645282282m m m m ++⎛⎫⎛⎫⎛⎫⎛⎫∴-++=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解得:64,11m =- 故点6415,.1111E ⎛⎫-⎪⎝⎭当点P 落在CE 上时, 则PC=PA , 同理可得:36,11m =故点3660,1111E ⎛⎫-⎪⎝⎭综上,点E 的坐标为:1653,1122⎛⎫-- ⎪⎝⎭或6415,1111E ⎛⎫- ⎪⎝⎭或3660,1111E ⎛⎫- ⎪⎝⎭;②当E 在D 点时,作AD 的垂直平分线交AC 的垂直平分线于1P 点,则156,2D ⎛⎫- ⎪⎝⎭,1P 的纵坐标为15,4- 代入②式,解得:11715,,84P ⎛⎫-- ⎪⎝⎭ 同理当当E 在B 点时, 作AB 的垂直平分线交AC 的垂直平分线于2P 点,()()6,0,0,3,A B -AB ∴的中点为:33,2⎛⎫- ⎪⎝⎭,设AB 为:y ex f =+,603e f f +=⎧∴⎨=-⎩解得:123e f ⎧=⎪⎨⎪=-⎩∴ AB 直线方程为:132y x =-, 设AB 的垂直平分线方程为:12,y x b =-+1323,2b ∴-⨯+=-192b ∴=,∴ AB 的垂直平分线方程为:92,2y x =-+122922y x y x ⎧=+⎪⎪∴⎨⎪=-+⎪⎩解得:152x y =⎧⎪⎨=⎪⎩251,,2P ⎛⎫∴ ⎪⎝⎭则圆心P 移动的路线长=221217515251 5.8248PP ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭255【点评】本题是二次函数的综合题,考查了二次函数与x 轴的交点坐标,利用待定系数法求解一次函数的解析式,三角形的外心的性质、一次函数的交点问题,勾股定理的应用,综合性很强,是难度较大类题目. 5.(1)抛物线的解析式为21142y x x =-,点F 的坐标为()20,;(2)4EF =;(3)点P 的坐标为()()()466121456---,,,,,或()22.-, 【解析】 【分析】(1)因为抛物线经过原点,A,B 点,利用待定系数法求得抛物物线的解析式,再令y=0,求得与x 轴的交点F 点的坐标。
初三毕业考试数学试卷(命题:郎绍波)一、填空题(本大题共6个小题,每小题3分,满分18分)1.运算:(-2)2=.2.一种细菌的半径是0.000039 m ,用科学记数法表示那个数是 m . 3.函数y=1x+2中自变量x 的取值范畴是 . 4.点P(3,-2)关于x 轴对称的点的坐标是 . 5.如图,已知AC=DB ,再添加一个适当的条件 ,使△ABC ≌△DCB . (只需填写满足要求的一个条件即可) 6.观看下列排列的等式:1×2-1=12,2×3-2=22,3×4-3=32,4×5-4=42,…….猜想:第n 个等式(n 为正整数)应为 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是( )(A)a 2a 3=a 6 (B)(a 2)3=a 6 (C)a 6÷a 2=a 3 (D)a 6-a 2=a 4 8.下列图形中,是中心对称图形但不是轴对称图形的是( ) (A)等边三角形 (B)平行四边形 (C)等腰梯形 (D)圆ADBCO9.如图,四边形ABCD 内接于⊙O ,假如它的一个外角 ∠DCE=64°,那么∠BOD=( )(A)128° (B)100° (C)64° (D)32° 10.如图,∠1=∠2,则下列结论一定成立的是( ) (A) AB ∥CD (B) AD ∥BC (C) ∠B=∠D (D) ∠3=∠411.把a 3-ab 2分解因式的正确结果是( ) (A)(a+ab)(a -ab) (B)a(a 2-b 2) (C)a(a+b)(a -b) (D)a(a -b)2 12.关于函数y=x3,下列判定正确的是( ) (A)图象通过点(-1,3) (B)图象在第二、四象限 (C)图象所在的每个象限内,y 随x 的增大而减小 (D)不论x 为何值时,总有y>013.假如圆柱的底面半径为4cm ,母线长为5cm ,那么它的侧面积等于( ) (A )220cm (B )240cm (C )220cm π (D )240cm π 14.关于x 的一元二次方程01)12(2=-+++k x k x 根的情形是( ) (A )有两个不相等实数根 (B )有两个相等实数根 (C )没有实数根 (D )根的情形无法判定三、解答题(本大题共9个小题,满分70分)15.(本小题5分)运算:20050-│-2│+4+121+得分 评卷人得分 评卷人16.(本小题6分)解方程:212312=---x xx x17.(本小题8分)已知一个二次函数的图象通过点(0,0),(1,﹣3),(2,﹣8). (1)求那个二次函数的解析式; (2)写出它的对称轴和顶点坐标.18.(本小题6分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米. 一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?19.(本小题9分)在学校开展的综合初中活动中,某班进行了小制作评比,作品上交时刻为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图如图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加了评比? (2)哪组上交的作品数量最多?有多少件? (3)通过评比,第四组和第六组分别有10 件和2件作品获奖,问这两组哪组获奖 率较高?得分评卷人得分 评卷人161116212631日期频率/组距(每组含最小日期,不含最大日期)得分评卷人20.(本小题8分)如图,AB是⊙O的直径,过A作⊙O的切线,在切线上截取AC=AB,连结OC 交⊙O于D,连结BD并延长交AC于E,⊙F是△ADE的外接圆,F在AE上.求证:(1)CD是⊙F的切线;(2)CD=AE.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小明家有4人,明年小明家减少多少农业税?(3)小明所在的乡约有6000农民,问该乡农民明年减少多少农业税.得分评卷人22.(本小题9分)已知:△ABC中,AB=10(1)如图①,若点D、E分别是AC、BC边的中点,求DE的长;(2)如图②,若点A1、A2把AC边三等分,过A1、A2作AB边的平行线,分别交BC 边于点B1、B2,求A1B1+A2B2的值;(3)如图③,若点A1、A2、…、A10把AC边十一等分,过各点作AB边的平行线,分别交BC边于点B1、B2、…、B10.依照你所发觉的规律,直截了当写出A1B1+A2B2+…+A10B10的结果.23.(本小题10分)已知:如图,在平面直角坐标系中,点C在y轴上,以C为圆心,4cm为半径的圆与x轴相交于点A、B,与y轴相交于D、E,且︵AB=︵BD.点P是⊙C上一动点(P点与A、B点不重合).连结BP、AP.(1)求∠BPA的度数;(2)若过点P的⊙C的切线交x轴于点G,是否存在点P,使△APB与以A、G、P为顶点的三角形相似?若存在,求出点P的坐标;若不存在,说明理由.得分评卷人初三毕业考试数学试卷参考答案一、填空题(每小题3分,共18分) 1.4 2.3.9×10-5 3.x≠-2 4.(3,2)5.AB=DC 或∠ACB=∠DBC 或OB=OC 或OA=OD 6.n(n+1)-n=n 2 二、选择题(每小题4分,共32分)7.B 8.B 9.A 10.B 11.C 12.C 13.D 14.A 三、解答题(本大题共9个小题,满分70分) 15.(本小题5分)20050-│-2│+4+121+=1-2+2+2-1=216.(本小题6分)2133221x x y x x y -===-3设, 则, 那么原方程为:y-y, 即:y 2-2y-3=0 , 解得y 1=3,y 2=-1 当y 1=3时,x=-1,当y 2=-1时,x=13经检验,x 1= -1, x 2=13是原方程的根 ∴x 1= -1, x 2=1317.(本小题8分)(1)设那个二次函数的解析式为:y=ax 2+bx+c ,∵二次函数图象通过三点(0,0),(1,-3),(2,-8), ∴03428c a a b c a b c =⎧⎧⎪⎪++=-⎨⎨⎪⎪++=-⎩⎩=-1解得b=-2c=0∴那个二次函数的解析式为:y=-x 2-2x ;(2) ∵y=-x 2-2x=-(x+1)2+1 ∴那个二次函数的对称轴为x=-1,顶点坐标为(-1,1). 18.(本小题6分)如图,设大树高为AB=10m ,小树高为CD=10m ,过C 点作CE ⊥AB 于E , 则EBDC 是正方形,连接AC ,∴EB=4m ,EC=8m ,AE=AB-EB=10-4=6m在Rt △AEC 中,22226810AC AE EC m =+=+=19.(本小题9分)(1) 60件;(2)第四组交了18件; (3)第六组获奖率较高; 20.(本小题8分)(1)连结DF ,∵OA=OD ,∴∠OAD=∠ODA ,又∵FA=FD ,∴∠FAD=∠FDA ,∴∠BAC=∠FDO .又∵ AC 为⊙O 的切线,∴∠BAC=90°. ∴∠FDO=90°. 即:CD ⊥DF . ∴CD 是O F 的切线; (2) ∵DF ⊥CD ∴Rt △CDF ∽Rt △CAO ∴DF/CD=OA/AC 又∵AC=AB=2OA ∴DF/CD=OA/2OA=1/2 CD=2DF . ∵AE=2DF .∴CD=AE .E BACD21.(本小题9分)(1)设降低的百分率为x ,依题意有 解得x 1=0.2=20%,x 2 =1.8(舍去)(2)小明全家少上缴税 25×20%×4=20(元) (3)全乡少上缴税 6000×25×20%=30000(元)22.(本小题9分)(1)∵D 、E 分别是AC 、BD 的中点,且AB=10,∴DE=12AB=5. (2)设A 1B 1=x,则A 2B 2=2x. ∵A 1、A 2是AC 的三等分点,且A 1B 1∥A 2B 2∥AB ,∴A 2B 2是梯形A 1ABB 1的中位线,即: x+10=4x ,得x=103,∴A 1B 1+A 2B 2=10[另解] 分别过B 1、B 2作B 1C 1∥CA ,作B 2C 2∥CA ,交AB 于C 1、C 2,则C 1、C 2是AB的三等分点,∴A 1B 1=AC 1=103,A 2B 2=1020332⨯=,∴A 1B 1+A 2B 2=10(3)同理可得:A 1B 1+A 2B 2+…+A 10B 10=1020301001111111150++++=23.(本小题10分)(1)∠BPA=60° 或∠BPA=120°;(2)设存在点P ,使△APB 与以点A 、G 、P 为顶点的三角形相似. ①当P 在弧EAD 上时,(图1) GP 切O C 于点P , ∴∠GPA=∠PBA 又∵∠GAP 是△ABP 的外角,∴∠GAP>∠BPA ,∠GA P>∠PBA .欲使△APB 与以点A 、G 、P 为顶点的三角形相似,须∠GAP=∠PAB=90° ∴BP 为⊙C 的直径.在Rt △PAB 中,∠BPA=60°,PB=8, ∴PA=4,AB=43 OA=23 ∴P(23,4).②当P 在弧EBD 上时,(图2)在△PAB 和△GAP 中, ∵∠PBA 是△GBP 的外角,∴∠PBA>∠PGB . 又∵∠PAB=∠GAP ,欲使△APB 与以点A 、G 、P 为顶点的三角形相似,须∠APB=∠PGB ∴GP 切⊙C 于点P ,∴∠GPB=∠PAG 由三角形内角和定理知:∠ABP=∠GBP ∴∠ABP=∠GBP=90° 在Rt △PAB ,∠BPA=60°,PA=8, ∴PB=4,AB=43∴OB=23 ∴P(-23,4).∴存在点P 1(23,4)、P 2(-23,4)使△APB 与以点A 、G 、P 为顶点的三角形相似.图 1图2225(1)16x -=。