有理数的乘方教案
- 格式:doc
- 大小:29.99 KB
- 文档页数:14
有理数的乘方教案一、教学目标:1. 理解有理数乘方的概念,掌握有理数乘方的法则。
2. 能够正确计算正整数、负整数、正分数和负分数的乘方。
3. 能够应用有理数乘方的知识解决实际问题。
二、教学重点:1. 有理数乘方的概念及法则。
2. 不同类型有理数乘方的计算方法。
三、教学难点:1. 有理数乘方的法则的应用。
2. 解决实际问题时的计算方法。
四、教学准备:1. 教学课件或黑板。
2. 练习题。
五、教学过程:1. 导入:通过复习幂的定义,引入有理数乘方的概念。
2. 讲解:讲解有理数乘方的法则,并通过示例进行解释。
a. 正整数乘方:\( a^n = a \times a \times \ldots \times a \)(n 个a)b. 负整数乘方:\( a^{-n} = \frac{1}{a^n} \)c. 正分数乘方:\( a^{\frac{m}{n}} = \sqrt[n]{a^m} \)d. 负分数乘方:\( a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}} \)3. 练习:让学生进行不同类型有理数乘方的计算练习。
4. 应用:通过实际问题,让学生运用有理数乘方的知识进行计算。
5. 总结:对本节课的内容进行总结,强调有理数乘方的法则及应用。
6. 布置作业:布置相关练习题,巩固所学知识。
六、教学拓展:1. 引导学生探讨有理数乘方的性质,如:a. \( (a^m)^n = a^{mn} \)b. \( a^m \times a^n = a^{m+n} \)c. \( \frac{a^m}{a^n} = a^{m-n} \)(a不为0)2. 引导学生思考负整数乘方与负分数乘方的联系和区别。
七、课堂互动:1. 提问环节:让学生回答有理数乘方的概念、法则及应用。
2. 小组讨论:让学生分组讨论有理数乘方的性质,分享彼此的理解和感悟。
八、教学评价:1. 课堂练习:检查学生在课堂上的学习效果,及时发现并解决问题。
有理数的乘方教学设计-教案章节一:有理数乘方的概念引入1. 引入有理数的概念,复习有理数的定义和性质。
2. 引导学生思考有理数乘法的运算规则,复习乘法的定义和性质。
3. 提出问题:如果有理数可以进行乘法,有理数能否进行乘方呢?章节二:有理数的乘方运算规则1. 解释有理数乘方的概念,介绍乘方的定义和性质。
2. 通过示例讲解有理数乘方的运算规则,引导学生理解和掌握乘方的计算方法。
\( (-2)^3 \)\( \frac{3}{4}^2 \)\( (-5)\times (-5)\times (-5) \)章节三:有理数的乘方性质1. 引导学生探索有理数乘方的性质,如乘方的分配律、结合律和幂的乘方规则。
2. 通过示例和练习题目,让学生理解和掌握有理数乘方的性质。
\( (-2)^3 \times (-2)^2 = (-2)^(3+2) \)\( \frac{3}{4}^2 \times \frac{3}{4} = \frac{3}{4}^(2+1) \)章节四:有理数的乘方应用1. 引导学生思考有理数乘方在实际问题中的应用,如计算利息、折扣等。
2. 通过示例和练习题目,让学生学会使用有理数乘方解决实际问题。
一本书的原价是20元,打8折后的价格是16元,问打几折后的价格是12元?银行的年利率是5%,本金是10000元,计算一年后的利息是多少?章节五:有理数的乘方综合练习1. 提供一份综合练习题,涵盖有理数乘方的概念、运算规则和应用。
2. 引导学生独立完成练习题,巩固对有理数乘方的理解和掌握。
3. 解答学生的问题,提供指导和帮助,确保学生能够正确理解和应用有理数乘方。
有理数的乘方教学设计-教案章节六:有理数的乘方运算规则(续)1. 回顾上一章节的有理数乘方运算规则,强调乘方的定义和性质。
2. 进一步讲解有理数乘方的特殊情况,如负数的乘方和分数的乘方。
\( (-3)^2 \)\( \frac{1}{2}^3 \)\( (-2)\times (-2)\times (-2) \)章节七:有理数的乘方性质(续)1. 引导学生深入理解有理数乘方的性质,如乘方的分配律、结合律和幂的乘方规则。
有理数的乘方教学设计-教案第一章:有理数乘方的概念介绍1.1 理解有理数的概念解释有理数的定义:有理数是可以表示为两个整数比的数,包括整数、分数和零。
强调有理数的分类:正有理数、负有理数和零。
1.2 引入乘方的概念解释乘方的意义:乘方表示将一个数连乘多次。
举例说明乘方的表达方式:2^3 表示2 乘以自己3 次,即2 ×2 ×2。
1.3 探究有理数乘方的规律引导学生通过计算理解有理数乘方的规律。
强调乘方的结果:正数的乘方结果仍为正数,负数的乘方结果仍为负数,零的乘方结果为零。
第二章:有理数的乘方运算规则2.1 复习有理数的乘法运算规则回顾乘法的交换律、结合律和分配律。
2.2 引入乘方运算的规则解释乘方运算的规则:同底数乘方相乘,指数相加;乘方与乘法相乘,先进行乘法再进行乘方。
2.3 举例讲解乘方运算的运用通过具体例题,演示乘方运算的步骤和计算方法。
强调乘方运算的关键点:注意底数和指数的关系,以及运算符的使用。
第三章:有理数的乘方练习题3.1 设计练习题设计不同难度的练习题,涵盖各种情况的有理数乘方运算。
3.2 解答练习题与学生一起解答练习题,引导学生运用乘方运算的规则。
强调解题过程中需要注意的细节:符号的判断、指数的计算等。
第四章:有理数的乘方应用4.1 引入有理数乘方的应用解释有理数乘方在实际问题中的应用,如计算利息、折扣等。
4.2 举例讲解有理数乘方的应用通过具体例子,展示有理数乘方在实际问题中的计算方法。
4.3 练习有理数乘方的应用设计实际问题的练习题,让学生运用有理数乘方进行计算。
5.2 强调有理数乘方的注意事项强调在运算中有理数乘方时需要注意的细节:底数和指数的准确性、运算符的正确使用等。
5.3 拓展有理数乘方的应用引导学生思考有理数乘方在其他领域的应用,如科学计算、数学问题解决等。
第六章:有理数的乘方练习题(续)6.1 设计练习题设计不同难度的练习题,涵盖各种情况的有理数乘方运算。
数学教案-有理数的乘方一、教学目标1.知识与技能:1.1理解有理数的乘方的概念。
1.2学会计算有理数的乘方。
2.过程与方法:2.1通过实例,培养学生的观察、分析和归纳能力。
2.2通过练习,提高学生解决问题的能力。
3.情感态度与价值观:3.1激发学生对数学学习的兴趣,培养学生积极探究的精神。
3.2培养学生合作学习的意识,提高学生的团队协作能力。
二、教学重点与难点1.重点:有理数乘方的概念及计算方法。
2.难点:掌握有理数乘方的运算规律。
三、教学过程1.导入新课1.1回顾有理数的加法、减法、乘法运算,引导学生思考:有理数的乘方是什么?1.2通过实例,让学生初步感知有理数乘方的概念。
2.探究新知例1:2的3次方是多少?例2:-3的2次方是多少?例3:-5的4次方是多少?2.2让学生尝试用自己的语言描述有理数乘方的概念。
3.讲解有理数乘方的计算方法3.1讲解正有理数的乘方:将正有理数连乘若干次,乘的次数就是指数。
3.2讲解负有理数的乘方:将负有理数的绝对值连乘若干次,乘的次数就是指数,根据乘积的符号确定结果的符号。
4.练习巩固练习1:计算下列各数的乘方。
①2^3②(-3)^2③(-5)^4练习2:判断下列说法是否正确。
①任何有理数的乘方都是正数。
②负数的乘方一定是负数。
③乘方运算就是连乘运算。
4.2讲解练习过程中遇到的问题,让学生充分理解有理数乘方的计算方法。
5.2强调有理数乘方的运算规律,如:同底数幂的乘法、幂的乘方等。
6.课后作业作业1:计算下列各数的乘方。
①3^4②(-2)^5③4^0作业2:判断下列说法是否正确。
①任何有理数的乘方都是正数。
②负数的乘方一定是负数。
③乘方运算就是连乘运算。
四、教学反思本节课通过实例引入有理数乘方的概念,让学生在探究过程中理解有理数乘方的计算方法。
在教学过程中,注意引导学生观察、分析和归纳,培养学生的观察力和思维能力。
通过练习巩固,让学生充分掌握有理数乘方的运算规律。
有理数的乘方的教案一、教学目标1、理解有理数乘方的意义。
掌握乘方的概念,能够准确说出底数、指数和幂。
理解负数的奇次幂是负数,负数的偶次幂是正数。
2、掌握有理数乘方的运算。
能够熟练进行有理数的乘方运算。
正确运用乘方运算解决实际问题。
3、培养学生的观察、分析、归纳和运算能力。
二、教学重难点1、重点有理数乘方的概念及运算。
幂的符号法则。
2、难点对乘方意义的理解,尤其是负数的乘方。
灵活运用乘方运算解决实际问题。
三、教学方法1、讲授法讲解有理数乘方的概念、性质和运算规则。
2、练习法通过大量的练习题,让学生巩固所学知识。
3、讨论法组织学生讨论乘方运算中的易错点和解题技巧。
四、教学过程1、导入通过实例引出乘方的概念,如折纸、细胞分裂等。
2、知识讲解11 介绍乘方的定义:求 n 个相同因数 a 的积的运算叫做乘方,记作 a^n ,其中 a 叫做底数,n 叫做指数,乘方的结果叫做幂。
111 举例说明不同底数和指数的乘方表达式,如 2^3、(-3)^4 等。
112 讲解幂的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0 的任何正整数次幂都是 0 。
113 进行乘方运算的示范,如 2^3 = 2×2×2 = 8 ,(-2)^3 =(-2)×(-2)×(-2) =-8 。
3、课堂练习21 安排学生进行简单的乘方运算练习,如 3^2、(-4)^2 等。
211 给出一些含有乘方的混合运算题目,如 2^2 + 3^2 4^2 。
212 巡视学生的练习情况,及时给予指导和纠正。
4、小组讨论31 组织学生分组讨论在乘方运算中容易出错的地方及原因。
311 每组选派代表发言,分享讨论结果。
312 教师对学生的讨论进行总结和补充。
5、实际应用41 给出与实际生活相关的乘方问题,如计算面积、体积等。
411 引导学生运用乘方知识解决问题,并进行交流和展示。
412 对学生的解决方案进行评价和总结。
2.4有理数的乘方第1课时乘方的意义1.理解有理数乘方的意义;2.掌握有理数乘方的运算方法,并能熟练地进行有理数的乘方运算.重点理解有理数乘方的概念,掌握计算方法.难点运用乘方的意义进行正确的计算.一、导入新课问题1:在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a呢?问题2:在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明.学生思考后回答,教师点评.二、探究新知1.有理数乘方的相关概念课件出示教材第58页细胞分裂示意图,提出问题:某种细胞每过30 min便由1个分裂成2个.经过5 h,这种细胞由1个能分裂成多少个?引导学生分析题意得出:5 h后要分裂10次,分裂成=1024(个).教师进一步讲解:为了简便,可将记为210.一般地,n个相同的因数a相乘,记作a n,即=a n.这种求n个相同因数a的积的运算叫作乘方,乘方的结果叫作幂,a叫作底数,n叫作指数,a n读作“a的n次幂”.(或“a的n次方”) 强调:①一般地,在a n中,a取任意有理数,n取正整数.②乘方是一种运算,幂是乘方运算的结果.当a n看作a的n次方的结果时,也可以读作a的n次幂.2.有理数乘方的计算教师:我们知道,乘方和加、减、乘、除一样,也是一种运算,a n就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.课件出示:(1)52=________;53=________;54=________;55=________;(2)(-5)2=________;(-5)3=________;(-5)4=________;(-5)5=________;(3)01=________;02=________;03=________.引导学生观察、比较、分析这几道计算题中,底数、指数和幂之间有什么关系?学生独立完成,教师点评,并进一步讲解:(1)正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.(2)互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.(3)任何一个数的偶次幂都是非负数.引导学生把上述的结论用数学符号语言表示:当a >0时,a n >0(n 是正整数);当a =0时,a n =0(n 是正整数);当a <0时,⎩⎪⎨⎪⎧a n >0(n 为偶数),a n <0(n 为奇数).a 2n =(-a )2n (n 是正整数);a 2n -1=-(-a )2n -1(n 是正整数);a 2n ≥0(a 是有理数,n 是正整数).3.有理数乘方的应用有一张厚度是0.1 mm 的纸,将它对折1次后,厚度为2×0.1 mm.(1)将这张纸对折2次后,厚度为多少毫米?(2)假设可以将这张纸对折20次,那么对折20次后厚度为多少毫米?三、课堂练习1.教材第59页“随堂练习”第1、2题.2.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?【答案】2.2个 ±3 没有 任何数的平方都大于或等于零四、课堂小结1.通过本节课的学习,你有什么收获?2.在学习乘方的概念时应注意什么?五、课后作业教材第61页习题2.4第1,2题.本节课通过自主学习与合作交流,多数学生能够掌握乘方和幂的意义,但在负数的乘方时,对于理解加括号和不加括号的区别,部分学生会有困难.而在后续的拓展中,利用乘方的意义解决问题,大部分学生可能存在困难,应用意识不够强.针对这一问题,采取策略是:师生共同对每一个算式先分析幂的意义,再计算,对易混淆的形式,举例辨析.第2课时科学记数法1.理解科学记数法的意义,学会用科学记数法表示大数;2.对用科学记数法表示的数进行简单的运算.重点用科学记数法表示大数,把用科学记数法表示的数还原成原数.难点归纳出科学记数法中指数与整数位数之间的关系.一、导入新课问题1:什么叫作乘方?103,-103,(-10)3,a n的底数、指数、幂分别是什么?问题2:计算:101,102,103,104,105,106,1010.学生完成后举手回答,教师进一步讲解问题2:左边用10的n 次幂表示简洁明了,且不易出错,右边有许多零,很容易出现写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿、一百亿等.又如像太阳的半径大约是696000千米、光速大约是300000000米/秒,中国人口大约是13亿等.教师:我们如何能简单明了地表示大数呢?这就是本节课我们要学习的内容——科学记数法.二、探究新知教师:同学们,请观察第2题:101=10,102=100,103=1000,104=10000,…,1010=10000000000.10n中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?学生:10n=100…0(n个0),n恰巧是1后面0的个数.n比运算结果的位数少1.课件出示:(1)把下面各数写成10的幂的形式:1000,100000000,100000000000.(2)指出下列各数是几位数:103,105,1012,10100.学生完成后举手回答,教师点评,引导学生总结科学记数法的定义:把大于10的数记成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫作科学记数法.教师进一步讲解:现在我们只学习大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.例(课件出示教材第60页例2)要求学生独自完成后汇报答案,教师讲评.三、课堂练习教材第61页“随堂练习”第1,2题.四、课堂小结1.什么是科学记数法?2.10的幂指数与原数整数位位数有什么关系?五、课后作业教材第61页习题2.4第3,4题.本节课的内容是科学记数法.在教学过程中,通过复习乘方的知识,进而引入本课内容.教师引导学生自主探究科学记数法的概念,知道怎样用科学记数法表示大于10的数.理清10的幂指数与原数整数位位数的关系.教学由浅入深,循序渐进,学生探究的问题愈来愈有挑战性,教师适当点拨和学生充分讨论形成共识,教师利用对科学记数法的认识,设置由浅入深的练习题,加深对概念的理解与掌握.通过例题的学习、习题的训练,学生对科学记数法有了一定的认识和掌握.。
有理数的乘方教案一、教学目标:1. 让学生理解有理数的乘方概念,掌握有理数乘方的运算方法。
2. 培养学生运用有理数乘方解决实际问题的能力。
3. 引导学生发现有理数乘方的规律,提高学生的数学思维能力。
二、教学内容:1. 有理数的乘方概念:求n个相同因数相乘的积,写作幂,记作an。
2. 有理数的乘方运算方法:(1)正数的任何次幂都是正数;(2)负数的奇数次幂是负数,负数的偶数次幂是正数;(3)零的任何正整数次幂都是零。
三、教学重点与难点:1. 教学重点:有理数的乘方概念,有理数乘方的运算方法。
2. 教学难点:有理数乘方的规律及其应用。
四、教学方法:1. 采用讲授法,讲解有理数的乘方概念和运算方法。
2. 运用案例分析法,分析有理数乘方在实际问题中的应用。
3. 采用互动教学法,引导学生发现有理数乘方的规律。
五、教学过程:1. 导入:回顾有理数的乘法,引导学生思考有理数乘法的扩展。
2. 新课讲解:(1)介绍有理数的乘方概念,讲解幂的表示方法;(2)讲解有理数乘方的运算方法,举例说明;(3)分析有理数乘方的规律,引导学生发现规律。
3. 案例分析:运用有理数乘方解决实际问题,如计算利息、折扣等。
4. 练习巩固:布置练习题,让学生独立完成,检查掌握情况。
5. 总结:回顾本节课所学内容,强调有理数乘方的关键点。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对有理数乘方概念和运算方法的理解。
2. 练习题:布置课后练习题,评估学生对有理数乘方运算的掌握程度。
3. 小组讨论:组织学生进行小组讨论,共同探讨有理数乘方的规律及应用。
七、教学拓展:1. 探讨有理数乘方在实际问题中的应用,如物理中的速度、面积等。
2. 介绍数学中的幂运算,如指数法则、对数等。
八、教学反思:1. 总结本节课的教学效果,分析学生的掌握情况;2. 针对学生的薄弱环节,调整教学策略,提高教学效果;3. 深入研究有理数乘方的相关知识,提高自身专业素养。
有理数的乘方教学设计-教案一、教学目标1. 理解有理数乘方的概念,掌握有理数乘方的运算规则。
2. 能够正确计算有理数的乘方运算。
3. 能够应用有理数乘方的知识解决实际问题。
二、教学内容1. 有理数乘方的概念:介绍有理数乘方的定义,即一个有理数自乘若干次的结果。
2. 有理数乘方的运算规则:讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。
3. 有理数乘方的计算方法:介绍有理数乘方的计算方法,包括同底数乘方、幂的乘方和积的乘方。
4. 有理数乘方的应用:举例讲解有理数乘方在实际问题中的应用,如计算利息、折扣等。
三、教学重点与难点1. 教学重点:掌握有理数乘方的概念和运算规则,能够正确计算有理数的乘方。
2. 教学难点:理解有理数乘方的计算方法,特别是幂的乘方和积的乘方。
四、教学方法1. 讲授法:讲解有理数乘方的概念和运算规则,引导学生理解和掌握。
2. 示例法:给出具体的例题,引导学生跟随解答,培养学生的计算能力。
3. 练习法:设计相关的练习题,让学生独立完成,巩固所学知识。
五、教学准备1. 教学PPT:制作相关的PPT,展示有理数乘方的概念和运算规则。
2. 练习题:准备一些有关有理数乘方的练习题,用于课堂练习和学生课后巩固。
六、教学过程1. 导入新课:通过复习幂的概念,引导学生过渡到有理数的乘方。
2. 讲解概念:讲解有理数乘方的定义,强调乘方的意义。
3. 运算规则:讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。
4. 计算方法:介绍有理数乘方的计算方法,包括同底数乘方、幂的乘方和积的乘方。
5. 应用实例:举例讲解有理数乘方在实际问题中的应用。
七、课堂练习1. 设计一些有关有理数乘方的练习题,让学生独立完成。
2. 引导学生互相交流解题方法,讨论遇到的困难和问题。
3. 教师对学生的练习进行点评,指出错误和不足之处,并进行讲解。
八、巩固与拓展1. 对本节课的内容进行总结,强调有理数乘方的概念和运算规则。
有理数的乘方教案一、教学目标1、知识与技能目标理解有理数乘方的意义。
掌握有理数乘方的运算。
2、过程与方法目标通过观察、类比、归纳等活动,培养学生的数学思维能力。
在乘方运算的过程中,提高学生的运算能力和解题技巧。
3、情感态度与价值观目标让学生在自主探索和合作交流中,体验数学学习的乐趣。
培养学生的严谨治学态度和勇于探索的精神。
二、教学重难点1、教学重点有理数乘方的意义。
有理数乘方的运算。
2、教学难点负数的乘方运算。
乘方运算与乘法运算的关系。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课(1)通过展示细胞分裂的图片或视频,引导学生思考细胞分裂的次数与细胞数量之间的关系。
(2)提出问题:一个细胞经过一次分裂变成 2 个,经过两次分裂变成4 个,经过三次分裂变成8 个,那么经过n 次分裂会变成多少个?2、讲授新课(1)有理数乘方的意义①以细胞分裂为例,经过 n 次分裂,细胞的数量为 2^n 个。
②给出乘方的定义:求 n 个相同因数 a 的积的运算,叫做乘方,乘方的结果叫做幂。
记作:a^n,其中 a 叫做底数,n 叫做指数。
③举例说明:如 2^3 中,底数是 2,指数是 3,幂是 8。
(2)有理数乘方的运算①正数的任何次幂都是正数。
②负数的奇次幂是负数,负数的偶次幂是正数。
③ 0 的任何正整数次幂都是 0。
(3)计算示例①计算 2^4 ,(-2)^3 ,0^5 等。
②强调运算顺序:先确定符号,再计算绝对值。
3、课堂练习(1)安排一些基础的乘方运算练习,如 3^2 ,(-3)^2 ,-4^2 等。
(2)设置一些综合性的题目,如(-2)^3 ×(-1/2)^2 等。
4、课堂小结(1)回顾有理数乘方的意义和运算方法。
(2)强调负数乘方运算的注意事项。
5、布置作业(1)书面作业:课本上的课后练习题。
(2)拓展作业:让学生自己寻找生活中可以用有理数乘方解决的问题。
五、教学反思在教学过程中,要注重引导学生理解乘方的意义,通过大量的实例和练习帮助学生掌握乘方的运算。
有理数的乘方教案有理数的乘方教案(精选4篇)有理数的乘方教案1一、学什么1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。
二、怎样学归纳概念:n个a相乘aaa=xx,读作:xx。
其中n表示因数的个数。
求相同因数的积的运算叫作乘方。
乘方运算的结果叫幂。
例1:计算(1)26(2)73(3)(3)4(4)(4)3例2:(1)()5(2)()3(3)()4【想一想】1、(1)10,(1)7,()4,()5是正数还是负数?2、负数的幂的符号如何确定?思考题:1、(a2)2+(b+3)2=0,求a和b的值。
2、计算(2)2009+(2)20103、在右边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三学怎样:(1)某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()A8个B16个C4个D32个(2)一根长1cm的绳子,第一次剪去一半。
第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()A()3mB()5mC()6mD()12m(3)(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。
4、计算(1)(3)3(2)(0.8)2(3)02004(4)12004(5)104(6)()5(7)-()3(8)43(9)32(3)3+(2)223(10)-18(3)25.已知(a2)2+|b5|=0,求(a)3(b)2.2.6有理数的乘方(第2课时)一、学什么会用科学计数法表示绝对值较大的数。
二、怎样学定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。
例题教学例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。
截至2003年12月人们最后一次收到它发回的信号时,它已飞离地球12200000000km。
有理数的乘方教案(精选多篇)篇:七年级数学上册有理数的乘方史荦伯人教版能从交流中获益.教学重点:有理数乘方的内涵,幂,底数,指数为的概念及其表示.理解演算法有理数乘法运算与乘方间的联系,处理负数的乘方演算.教学难点:有理数乘方的意义的乘积理解与运用教学过程设计活动.创设情境,引入新课.1.教师展示细胞分裂的图表,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何可以得出结果.2.结合学生熟悉的边长为a的正方形的面积是a·a,棱长为a的正方体的截面是a·a·a及它们的简单本人法,告诉学生几个相同因数a 相乘的就是这堂课所要学习的内容.大体上在实际背景中创设情境激发学生的学习兴趣.通过计算正方体面积和正方体体积的实例,引出课题.活动二.合作交流,得出结论.1.分本人组学习语文课41页,要求能结合课本中的示意图,用自己的语言表达下列几个概念的意义及相互关系.底数是相同的因数,可以是任何有理数,指数是相同因数的数列,在现阶段中是正整数,而幂则是乘方的结果.2.定义:n个相同因数a相乘,即a·a·…·a(个),本人作a,读作a的n次方. 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在a中,a叫做底数,n叫做指数.读作a的n次方或a的n次幂.3(1)补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?①(-2.3)×(-2.3)×(-2.3)×(-2.3).② (-nn1111)×(-)×(-)×(-). 4444③x·x·x·......·x(201*个x的积).(2)课本例题,教师指导学生阅读实证例题,并规书写习题过程.3.此例可由学生口述,教师板述完成.44.本人组讨论: ??2?与?2的区别?教师要提醒学生注意,相同的分数或相同的负数相加时,要加括号,例如(-2)×(-42)×(-2)×(-2)本人作(-2).通过三组补充例题和本人组讨论:??2?与?2的区别的学习,对有理44数的乘方有更进步的理解.活动三.应用新知,课堂练习.1.做做:课本42页练习1题.2.用计算器算,以及课本42页练习2题.3.本人组讨论:通过上面练习,你能察觉到发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结.4.总结规律:负数的个数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0.把弊病再次交给学生,充分发挥学生的主观能动性,鼓励学员学生尽可能地发现规律. 活动四.知识梳理,课堂本人结.1.由学生家长本人结本堂课所学的内容.2.回顾五种已学的运算及其结果.活动五.知识反馈,作业布置.1.课本47页1,2题.2.课外拓展(1)用乘积的意义计算下列各式:22?2?①(?2);②?2;③???;④?. 3?3?443(2)观察下列各等式:1=1; 1+3=2 ; 1+3+5=3;1+3+5+7=4……①通过上述观察,结果你能猜想出反映这种规律的般结论吗?②你能运用上述规律求1+3+5+7+...+201*的值吗? 2222五篇:人教版数学上册教案之有理数的乘方有理数的乘方()教学目标:1、理解有理数之积的意义;2、掌握有理数乘方运算;3、能确定有理数加、减、乘、除、乘方无机运算的顺序;4、会作出有理数的混合运算;5、培养并提高精确迅速的运算能力.教学重点:有理数乘方的意义;运算顺序的确定和性质符号的处理.教学难点:幂、底数、指数为的概念及其表示;有理数的混合运算.教学过程:、学前准备1、看下面的故事:从前,有个“聪明的乞丐”他要到了块面包.他想,天天要饭太辛苦,如果我天喝水这块面包的半,二天再吃剩余面包的半,??依次每天都吃前天剩余面包的半,这样下去,我就永远不要去要饭了!学生交流讨论并计算,如果把整块面包当成整体“1”,那十天他将吃到到面包.2、拉面馆的师傅用根很重的面条,把两头捏合在起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多长尾巴的面条.想想看,捏合次后,就可以拉出32根面条?二、合作探究我们学过正方形的面积式,知道边长为a的正方形面积为a?a;我们还知道棱长为a的正方体的体积是a?a?a.a?a可简本人为a2,读作a的平方(或二次方).a?a?a可简本人为a3,读作a的立方(或三次方).般地,n个相同的因数a相乘,即,本人作an,读作a的n次方.接下来引入乘方的概念:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂;在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂;当指数是1时,通常省略不写.三、新知应用1、将下列各式写成乘方(即幂)的形式:1)(?2.3)×(?2.3)×(?2.3)×(?2.3)×(?2.3)=.(?2.3)52)(?)×(?)×(?)×(?)=.(?)43)x?x?x????x(201*个)=.x201*2、计算:1)(?3)42)(?)33)(?5)34)()2解答:1)(?3)4 = (?3)×(?3)×(?3)×(?3) = 812) (?)3= (?)×(?)×(?) =?3)(?5)3 = (?5)×(?5)×(?5) =?1254) ()2=×=从上题中曾四幅你能发现什么规律?归纳:正数的任何次幂都是正数,负数的洛次幂是负数,负数的偶次幂是正数,0的任何次幂都是0.3、思考:(?2)4和?24意义样吗?为什么?4、混合运算:在2+32×(?6)这个式子中,存在着种运算.(三种,加、乘、乘方)学生本人组讨论、交流,上面这个式子应该先算、再算、最后算.教师总结,在有理数的混合运算中所,运算顺序是:1)、先算乘方,再算乘除,最后算加减;2)、同级运算,从左到右进行;3)、如有括号,先做括号内的运算,按本人括号、中括号、大括号依次进行.四、本人结1、有理数乘方的指导意义;2、幂、底数、股票指数的概念及其表示;3、有理数的混合运算顺序.有理数的乘方(二)教学目标:1、知识目标:利用10的乘方,进行科学本人数,会用科学本人数法表示大于10的数.2、能力目标:会解决与科学本人数法有关的实际问题.3、情感态度和价值观:正确选用科学本人数法表示数,表现出丝不苟的神.教学重点与难点:教学重点:会用科学本人数法表示高于10的数.教学难点:正确取用使用科学本人数法令表示数.教学过程:、科学本人数法用乘方的形式,有时可方便地来表示日常生活中遇到的些的数,如:太阳的半径约696000千米富士山可能爆发,这将造成至少25000亿日元的损失光的速度大约是300000000米/秒;多国人口数大约是6100000000.这样的大数,读、写都不方便,考虑到10的乘方有下列特点:102 = 100,103 = 1000,104 = 10000,?般地,10的n次幂,在1的后面有n个0,这样就可用10的幂表示些大数,如,6100000000=6.1×1000000000=6.1×109.[读作6.1乘10的9次方(幂)]白唇上面这样把个大于10的数本人成a×10n的形式,其中a是整数数位只有位的数,这种本人数法叫做科学本人数法.科学本人数法准则也就是把个数表示成a×10n的形式,其中1≤a 的绝对值<10的数,n的值等于整数部分的位数减1.二、例题例1、用科学本人数法本人出下列各数:(1)1000000; (2)57000000; (3)123000000000解:(1)1000000 = 1×106(2)57000000 = 5.7×107(3)123000000000 = 1.23×1011.用科学本人数法表示个数时,首先要确定这个数的整数部分的位数.注意:个数的科学本人数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.说明:在实际生活中有非常大的数,同样也有非常本人的数.本节课强调的是大数可以用科学本人数法来表示,实际上非常本人的也同样可以用科学本人数法表示,如本章引言中有1纳米=109米1,意思-是1米是1纳米的10亿倍,也就是说1纳米是1米的十亿分.用表达式表示为 1米=109纳米,或本人1-纳米=米=米.三、课堂练习1.用科学本人数法本人出下列各数.(1)30060;(2)15400000;(3)123000.2.下列用科学本数则人数法本人出的数,原来各是什么数?(1)2×105;(2)7.12×103;(3)8.5×106.3.已知长方形的长为7×105mm,宽为5×104mm,求长方形的面积.4.把199 000 000用生态学本人数法写成1.99×10n3的形式,求n的值.-课堂练习答案1.(1)3.006×104;(2)1.54×107;(3)1.23×105.2.(1)100000;(2)7120;(3)8500000. 3.3.5×1010mm.4.n的值为11.四、本人结:。
有理数的乘方教案一、教学目标1、知识与技能目标理解有理数乘方的意义。
掌握有理数乘方的运算。
2、过程与方法目标通过观察、类比、归纳,培养学生的思维能力和运算能力。
经历探索有理数乘方运算的过程,体会转化、分类讨论的数学思想。
3、情感态度与价值观目标让学生感受数学与生活的密切联系,增强学生学习数学的兴趣和信心。
培养学生严谨的治学态度和合作交流的意识。
二、教学重难点1、教学重点有理数乘方的意义和运算。
2、教学难点负数和分数的乘方运算。
三、教学方法讲授法、练习法、讨论法四、教学过程1、导入新课先通过一个小故事引入:“国王下棋”,国王答应了一个大臣的请求,即在棋盘的第一个格子里放 1 粒米,第二个格子里放 2 粒米,第三个格子里放 4 粒米,依此类推,每一个格子里放的米粒数都是前一个格子里的 2 倍。
当放到第 64 个格子时,国王发现就算把全国的米都拿来也不够。
引导学生思考这其中蕴含的数学原理。
2、讲授新课结合上述故事,引出乘方的概念。
乘方:求 n 个相同因数 a 的积的运算叫做乘方,乘方的结果叫做幂。
在 an 中,a 叫做底数,n 叫做指数,an 读作“a 的 n 次方”或“a 的 n 次幂”。
例如:2×2×2×2×2 = 2^5,其中 2 是底数,5 是指数,2^5 读作“2的 5 次方”。
强调乘方的书写格式和注意事项。
3、例题讲解例 1:计算(1)3^2 (2)(-2)^3 (3)(-1/2)^4分析:对于(1),3^2 = 3×3 = 9;对于(2),(-2)^3 =(-2)×(-2)×(-2) =-8;对于(3),(-1/2)^4 =(-1/2)×(-1/2)×(-1/2)×(-1/2) = 1/16。
总结负数和分数的乘方运算方法:负数的奇次幂是负数,负数的偶次幂是正数;分数的乘方,分子分母分别乘方。
【有理数的乘方教案(精选多篇)】第一篇:七年级数学上册有理数的乘方教案人教版有理数的乘方教学目的:知识与才能:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析^p 、比拟、归纳、概括的才能,浸透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探究的精神,并联络实际,加强理解,体会数学给我们的生活带来的便利。
教学重点:正确理解乘方的意义,掌握乘方的运算法那么,进展有理数乘方运算。
教学难点:正确理解乘方、底数、指数的概念并合理运算。
教材分析^p :本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。
教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观察考虑,自主探究,合作交流。
教学用具:电脑多媒体。
课时安排:一课时板书设计:有理数的乘方底数a幂规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数n教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学形式。
整个教学过程从考虑问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、考虑、交流归纳的才能。
缺乏之处:在练习的讲评上,应给学生一个较为自由的空间,让学生互相启发,互相交流。
第二篇:第一章有理数乘方(2)教案第周第节§1.5.1有理数乘方〔2〕教案备课人:李冶学习目的:1、掌握有理数混合运算的顺序,能正确的进展有理数的加,减,乘除,乘方的混合运算。
2、培养学生观察,归纳,猜测,推理的才能。
重点:能正确的进展有理数的混合运算。
难点:灵敏的运用运算律,使计算简单。
教学过程:一课前提问:1、我们已经学习了哪几种有理数的运算?2、有理数的乘方的意义是什么?3、以下的算式里有哪些运算?应按照怎样的顺序运算?3+50÷22×〔-15〕-1二、新课探究:有理数混合运算的顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进展;3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进展;三、例题精析:例1 、计算:〔1〕2?(?3)34(3)15〔2〕(?2)3(3)[(?4)22]?(?3)2(2)例2、观察下面三行数:-2 ,4 ,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1 ,2,-4, 8,-16,32,…。
有理数的乘方的教案(优秀6篇)作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。
那么应当如何写教案呢?下面是整理的6篇《有理数的乘方的教案》,在大家参考的同时,也可以分享一下给您的好友哦。
有理数的乘方教案篇一一、学习目标1.能确定有理数加、减、乘、除、乘方混合运算的顺序;2.掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;3.偶次幂的非负性的应用。
二、知识回顾1.在2+ ×(-6)这个式子中,存在着3种运算。
2.上面这个式子应该先算乘方、再算2 、最后加法。
三、新知讲解1.偶次幂的非负性若a是任意有理数,则(n为正整数),特别地,当n=1时,有。
2.有理数的混合运算顺序①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
四、典例探究1.有理数混合运算的顺序意识【例1】计算:-1-3×(-2)3+(-6)÷总结:做有理数的混合运算时,应注意以下运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
练1计算:-2×(-4)2+3-(-8)÷ +2.有理数混合运算的转化意识【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。
练2计算:3.有理数混合运算的符号意识【例3】计算:-42-5×(-2)× -(-2)3总结:在有理数运算中,最容易出错的就是符号。
符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。
要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。
1.11 有理数的乘方第1课时 乘方及其运算1.使学生理解有理数乘方的概念,掌握有理数乘方的运算;2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3.渗透分类讨论思想.重点有理数乘方的运算.难点有理数乘方运算的符号法则.一、导入新课1.计算:(1)(-934 )÷3;(2)(-6)÷(-4)÷(-115 ).2.在小学我们已经学习过a·a ,记作a 2,读作a 的平方(或a 的2次方);a·a·a 记作a 3,读作a 的立方(或a 的3次方);那么a·a·a·a 可以记作什么?读作什么?a·a·a·a·a 呢?a ·a ·a ·…·a,\s\do4(n 个)) (n 为正整数)呢?例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4.这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.2.在a n 中,a 叫做底数,n 叫做指数,a n 读作a 的n 次方,a n 可看作是a 的n 次方的结果时,也可读作a 的n 次幂.例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂.3.一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写.二、探究新知1.计算:(1)(-2)3;(2)(-2)4;(3)(-2)5.解:(1)原式=(-2)(-2)(-2)=-8;(2)原式=(-2)(-2)(-2)(-2)=16;(3)原式=(-2)(-2)(-2)(-2)(-2)=-32.小结:根据上面的计算,你能总结出有理数乘方运算的符号法则吗?(1)根据有理数乘法运算法则,我们有:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.(2)你能把上述的结论用数学符号语言表示吗?当a>0时,a n >0(n 是正整数);当a<0时,⎩⎪⎨⎪⎧a n >0(n 是偶数),a n <0(n 是奇数); 当a =0时,a n =0(n 是正整数).(以上为有理数乘方运算的符号法则)a 2n =(-a)2n (n 为正整数);a 2n -1=-(-a)2n -1(n 为正整数);a 2n ≥0(a 是有理数,n 是正整数).三、课堂练习1.(-4)5读作什么?其中-4叫做什么数?5叫做什么数?(-4)5是正数还是负数?2.计算:(1)(-1)3; (2)(-1)10; (3)(0.1)3;(4)(32 )4; (5)(-2)3×(-2)2;(6)(-12 )3×(-12 )5; (7)103; (8)105.四、课堂小结1.乘方的有关概念(1)求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.(2)a n 读作a 的n 次方,a n 看作是a 的n 次方的结果时,也可读作a 的n 次幂.(3)一个数可以看作这个数本身的一次方.2.有理数乘方运算的符号法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.要注意括号的作用.五、课后作业教材课后练习第1题,习题2.11第1,2题.有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点,所以我在这一节课的教学中从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学.在每一个知识点的讲授时,结合具体的实际例子来进行讲解,及时进行总结,形成方法.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在教学中要加以引导,逐步渗透这一思想.第2课时科学记数法1.复习和巩固有理数乘方的概念,掌握有理数乘方的运算;2.使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.重点正确运用科学记数法表示较大的数.难点正确掌握10的幂指数特征.一、导入新课同学们,你们能够迅速地读出和记住下列数字吗?1.光的速度约是300 000 000 m/s,它相当于速度为6 m/s的自行车的速度的多少倍?2.全世界人口数大约是7 400 000 000人;3.第五次人口普查时,中国人口约为1 300 000 000人;4.中国的国土面积约为9 600 000平方千米;5.我国信息工业总产值将达到383 000 000 000元.这样的数,读和写都不方便,接下来,让我们一起来探究一种科学的记数方法吧.二、探究新知1.10n的特征(1)计算102,103,104,…并讨论102表示什么,指数与运算结果中的0的个数有什么关系,与运算结果的位数有什么关系.小结:0的个数和指数相同,整数位数比指数多1.(2)练习:①把下面各数写成10的幂的形式:1000,10 000 000,10 000 000 000.②指出下列各数各是几位数:102,105,1012,1025.2科学记数法定义综上所述,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数法叫做科学记数法.三、课堂练习1.设n是一个正整数,则10n+1是()A.n个10相乘所得的积B.是一个n+1位的整数C.10后面有n+1个0的整数D.是一个n+2位的整数2.用科学记数法表示下列各数:(1)100 000;(2)378 000;(3)-112 000; (4)2945;(5)1346.30.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104; (2)6.070×103;(3)104; (4)-2.24×103.四、课堂小结1.什么是科学记数法?一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n 是正整数,这种记数法叫做科学记数法.2.用科学记数法表示一个数时,10的指数与原数的整数位数有什么关系?10的指数比原数的整数位数少1.五、课后作业教材习题2.12第1,2,3题.在上一节课中,学生已学习了有理数乘方的概念,知道了有理数乘方的意义,会利用有理数乘方法则进行有理数乘方运算.本节课在复习上节课内容的基础上,使学生进一步理解乘方的意义,并能用科学记数法表示大于10的数,本节课的重点和难点都是科学记数法.为此,通过实例,引入了科学记数法,而通过例题的讲授,使学生知道怎样用科学记数法表示绝对值大于10的数,在表示中应重点注意10的指数与原数的整数位数的关系.。
有理数的乘方的教案关键信息1、教学目标理解有理数乘方的概念。
掌握有理数乘方的运算。
能运用有理数乘方解决实际问题。
2、教学重难点重点:有理数乘方的运算。
难点:有理数乘方运算中符号的确定。
3、教学方法讲授法练习法讨论法4、教学过程导入新课讲授课堂练习课堂总结课后作业5、教学资源多媒体课件教材练习册11 教学目标111 知识与技能目标学生能够理解有理数乘方的定义,会用数学式子表示有理数的乘方。
能够正确计算有理数的乘方运算,包括正数、负数和零的乘方。
112 过程与方法目标通过观察、类比、归纳等活动,培养学生的逻辑思维能力和运算能力。
让学生经历从特殊到一般的数学探究过程,体会数学的转化思想。
113 情感态度与价值观目标激发学生对数学的兴趣,增强学生学习数学的自信心。
培养学生严谨的科学态度和勇于探索的精神。
12 教学重难点121 教学重点有理数乘方的运算。
重点让学生掌握底数、指数和幂的概念,能够准确计算有理数的乘方。
通过大量的练习,让学生熟练掌握运算方法和技巧。
122 教学难点有理数乘方运算中符号的确定。
由于负数的奇次幂为负,负数的偶次幂为正,这一知识点对于学生来说较难理解和掌握。
在教学中,通过具体的例子和分析,帮助学生理解符号的规律。
13 教学方法131 讲授法通过教师的讲解,让学生理解有理数乘方的概念、性质和运算方法。
在讲授过程中,注重启发式教学,引导学生思考问题。
132 练习法安排适量的课堂练习和课后作业,让学生通过练习巩固所学知识,提高运算能力。
练习的设计要有针对性和层次性,满足不同学生的需求。
133 讨论法组织学生进行小组讨论,让学生在讨论中交流思想,共同解决问题。
通过讨论,培养学生的合作精神和创新能力。
14 教学过程141 导入通过展示拉面师傅拉面的过程,引导学生观察面条根数的变化。
或者提出问题,如“一张厚度为 01 毫米的纸对折 20 次,厚度会是多少?”引发学生的兴趣,从而导入有理数乘方的概念。
1.6有理数的乘方(一)一、教材分析“有理数的乘方”是七年级新教程第一章第6小节的内容。
它是前一部分加、减、乘、除运算知识的完结与提升,对后面学习科学记数法又具有一定的辅助意义。
特别是对于与乘方运算相关概念的理解,有利于拓宽学生的思路、锻炼学生观察、探索、总结的数学思想。
本节内容在教材中起着承上启下的作用,处于非常重要的地位。
二、学情分析七年级学生处在数学思维的一个转变期,对于有理数的相关问题,特别是符号问题是个难点。
在学习时要处理好已有知识与新知识之间的衔接。
根据初一学生好动、好问、好奇的心理特征,课堂上采取由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养了学生学习的积极性和主动性,使学习方式由“学会”变为“会学”。
三、教学目标知识与能力:(1)理解有理数乘方概念;(2)掌握育有理数乘方的运算法则。
过程与方法:(1)通过师生互动,学生观察、类比、联想、归纳等过程,让学生理解概念的形成过程;(2)经历知识的拓展过程,增强学生探究能力和动手操作的能力,体会与他人合作交流的重要性,培养合作精神。
情感态度价值观:(1)通过观察、推理,归纳出有理数乘方的符号法则,进而掌握运算法则,增进学生学好数学的自信心;(2)教师以热情、高涨的主导情绪感染学生,力求教学过程轻松愉快,使学生感受到学习数学的乐趣,感受到数学符号的简洁美,真正体会到学习数学的价值。
四、教学重难点重点:有理数的乘方的概念与运算;难点:有理数的乘方法则的归纳。
五、教与学互动过程(一)创设情景导入新课同学们,这节课我们先来做个热身活动:1.3+3=?2.3+3+3=?3.4. 5×5=?5. 5×5×5=?6.(板书课题) 设计意图:通过类比乘法定义的得来,得出乘方定义的思考。
(二)交流对话 探求新知 5×5=525×5×5=53板书:求几个相同因数的积的运算叫做乘方。
七年级数学《有理数的乘方》教案设计(最新5篇)作为一名人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。
来参考自己需要的教案吧!以下是人见人爱的小编分享的5篇七年级数学《有理数的乘方》教案设计,希望能够满足亲的需求。
七年级数学《有理数的乘方》教案设计篇一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
乘方教案(热门7篇)乘方教案第1篇一、教学目标能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。
初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识.二、教学重难点?有理数乘方的概念及意义,并正确进行有理数乘方的运算有理数乘方的概念及意义,并正确进行有理数乘方的运算三、教学策略本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程.在教学中注意发现问题、思考问题,寻找解决问题的方法.鼓励自主探索、逐步递进.积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性四、教学过程教学进程教学内容学生活动设计意图引入新知问题一:把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张.问:若对折10次可裁成几张?请用一个算式表示(不用算出结果).若对折101次,算式中有几个2相乘?显然,我们遇到了麻烦:如何书写101个、1010个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算.问题二:边长为a的正方形的面积为 ;棱长为a的正方体的体积为 ;学生动手操作,观察纸片,发现规律回忆小学已学知识并独立完成目的是培养学生的观察及归纳能力让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式学习新知2个a相加可记为:a+a=2a3个a相加可记为:a+a+a=3a4个a相加可记为:a+a+a+a=4an个a相加可记为:a+a+a+……+a=na类比可得:2个a相乘可记为: EMBED Unknown3个a相乘可记为: EMBED Unknown4个a相乘可记为什么呢?n个a相乘又记为什么呢?定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂. 如果有n个a相乘,可以写成,也就是 EMBED Unknown 其中叫做的n次方,也叫做的n次幂. 叫做幂的底数可以取任何有理数;n叫做幂的指数,可以取任何正整数.特殊地,可以看作的一次幂,也就是说的指数是例如:读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘. x看作幂的话,指数为1,底数为注意:当底数是负数或分数时,写成乘方形式时,必须加上括号.在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解.例填空:(1) EMBED Unknown 的底数是_____,指数是_____,它表示______;(2) 的底数是______,指数是______,它表示______;(3) 的底数是______,指数是______,它表示_______;例计算:教师引导学生口答学生边记录,边体会、理解正确表达有理数的乘方学生口答分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程体会类比的数学思想乘方教案第2篇【教学目标】(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.(3)培养探索精神,体验小组交流、合作学习的重要性.【教学方法】讲授法、讨论法。
有理数的乘方教学设计-教案第一章:导入1.1 教学目标让学生了解有理数乘方的概念。
让学生掌握有理数乘方的运算规则。
1.2 教学内容引入有理数乘方的概念,解释乘方的意义。
通过实际例子,讲解有理数乘方的运算规则。
1.3 教学方法通过生活实例引入有理数乘方的概念,激发学生兴趣。
使用PPT展示有理数乘方的运算规则,让学生跟随讲解。
提供例题,让学生分组讨论和解答,加深理解。
1.4 教学评估通过提问方式检查学生对有理数乘方概念的理解。
设计练习题,让学生独立完成,评估学生对运算规则的掌握。
第二章:有理数的乘方运算规则2.1 教学目标让学生掌握有理数乘方的运算规则。
让学生能够运用运算规则进行有理数的乘方运算。
2.2 教学内容讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。
提供实际例子,让学生理解和运用运算规则。
使用PPT展示有理数乘方的运算规则,让学生跟随讲解。
提供例题,让学生分组讨论和解答,加深理解。
设计练习题,让学生独立完成,巩固运算规则。
2.4 教学评估通过提问方式检查学生对有理数乘方运算规则的理解。
设计练习题,让学生独立完成,评估学生对运算规则的掌握。
第三章:有理数的乘方运算练习3.1 教学目标让学生能够运用有理数乘方的运算规则进行计算。
提高学生的运算速度和准确性。
3.2 教学内容提供一系列有理数乘方的练习题,包括不同难度的题目。
指导学生运用运算规则,进行计算和解答。
3.3 教学方法引导学生独立完成练习题,提供必要的帮助和指导。
鼓励学生互相交流和讨论,共同解决问题。
通过PPT展示正确答案,让学生核对和纠正错误。
3.4 教学评估通过提问方式检查学生对有理数乘方运算的掌握情况。
评估学生的运算速度和准确性,及时给予反馈和指导。
第四章:有理数的乘方应用让学生理解有理数乘方在实际问题中的应用。
培养学生解决实际问题的能力。
4.2 教学内容提供实际问题,让学生运用有理数乘方的运算规则进行解决。
讲解实际问题中的数量关系和运算步骤。