空间向量及其运算
- 格式:docx
- 大小:444.48 KB
- 文档页数:16
3.1 空间向量及其运算1.空间向量的概念空间向量的概念包括空间向量、相等向量、零向量、向量的长度(模)、共线向量等. 2.空间向量的加法、减法和数乘运算平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算对于有限个向量求和,交换相加向量的顺序其和不变.三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.加法和数乘运算满足运算律: ①交换律,即a +b =b +a ;②结合律,即(a ()()+=+a +b c a b+c ;③分配律,即()λμλμ+a =a +a 及()λλλ=+a +b a b (其中λμ,均为实数). 3.空间向量的基本定理(1)共线向量定理:对空间向量,a b (0)≠,b a b ∥的充要条件是存在实数λ,使λa =b .(2)共面向量定理:如果空间向量,a b 不共线,则向量c 与向量a,b 共面的充要条件是,存在惟一的一对实数x y ,,使c =x y a +b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组x ,y ,z ,使x y z p =a +b+c .其中{},,a b c 是空间的一个基底,a ,b ,c 都叫做基向量,该定理可简述为:空间任一向量p 都可以用一个基底{},,a b c 惟一线性表示(线性组合).4.两个向量的数量积两个向量的数量积是cos <>,a b =a b a b ,数量积有如下性质: ①cos <> ,a e =a a e (e 为单位向量);②0⇔ a b a b =⊥;③2a a =a ;④ ab a b ≤. 数量积运算满足运算律:①交换律,即 a b =b a ;②与数乘的结合律,即()()λλ a b =a b ;③分配律,即() a +b c =a c +b c .5.空间直角坐标系若一个基底的三个基向量是互相垂直的单位向量,叫单位正交基底,用{},,i j k 表示;在空间选定一点O 和一个单位正交基底{},,i j k ,可建立一个空间直角坐标系O xyz -,作空间直角坐标系O xyz -时,一般使∠xOy =135°(或45°),∠yOz =90°;在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系(立体几何中建立的均为右手系). 6.空间直角坐标系中的坐标运算给定空间直角坐标系O -xyz 和向量a ,存在惟一的有序实数组使123a a a a =i +j +k ,则123()a a a ,,叫作向量a 在空间的坐标,记作123()a a a ,,a =.对空间任一点A ,存在惟一的OA x y z =i +j +k ,点A的坐标,记作()A x y z x y z ,,,,,分别叫A的横坐标、纵坐标、竖坐标.7.空间向量的直角坐标运算律(1)若123123()()a a a b b b ,,,,,a =b =,则a +b 112233()a b a b a b =+++,,,-a b 112233()a b a b a b =---,,,123()a a a λλλλ=,,a ,112233()a b a b a b ,,a b =,112233()a b a b a b λλλλ⇔===∈R ,,a b ∥,1122330a b a b a b ⇔++=a b ⊥.(2)若111222()()A x y z B x y z ,,,,,,则212121()AB x x y y z z =---,,.即一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.8.直线的方向向量与向量方程(1)位置向量:已知向量a ,在空间固定一个基点O ,作向量OA =a ,则点A 在空间的位置被a 所惟一确定,a 称为位置向量.(2)方向向量与向量方程:给定一个定点A和一个向量a ,再任给一个实数t ,以A为起点作向量AP t =a ,则此向量方程称为动点P 对应直线l 的参数方程,向量a 称为直线l 的方向向量.当堂训练一、选择题(每小题6分,共36分)1.如图,在底面为平行四边形的四棱柱ABCD -A 1B 1C 1D 1中,M 是AC 与BD的交点,若AB=a ,11A D =b ,1A A =c ,则下列向量中与1B M 相等的向量是( )(A)-12a +12b +c (B)12a +12b +c(C)12a -12b +c (D)-12a -12b +c 2.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则sin〈CM ,1D N〉的值为( )(A)19 (B)49 5 (C)29 5 (D)233.有以下命题:①如果向量a ,b 与任何向量不能构成空间向量的一个基底,那么a ,b 的关系是不共线;②O ,A ,B ,C 为空间四点,且向量OA ,OB ,OC不构成空间的一个基底,那么点O ,A ,B ,C 一定共面;③已知向量a ,b ,c 是空间的一个基底,则向量a +b ,a -b ,c 也是空间的一个基底.其中正确的命题是( )(A)①② (B)①③ (C)②③ (D)①②③4.设A 、B 、C 、D 是空间不共面的四个点,且满足AB ²AC =0,AD ²AC =0,AD ²AB=0,则△BCD 的形状是( ) (A)钝角三角形 (B)直角三角形 (C)锐角三角形 (D)无法确定5.已知ABCD 为四面体,O 为△BCD 内一点(如图),则AO =13(AB +AC+AD)是O 为△BCD 重心的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分又不必要条件6.正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在1AC 上且AM =121MC,N 为B 1B 的中点,则|MN |为( ) (A)216 (B)66 (C)156 (D)153二、填空题(每小题6分,共18分)7.若空间三点A(1,5,-2),B(2,4,1),C(p,3,q +2)共线,则p +q = .8.已知O 是空间中任意一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA =2x BO +3y CO +4z DO,则2x +3y +4z = .9.空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值等于 .三、解答题(每小题15分,共30分)10.已知a =(1,-3,2),b =(-2,1,1),点A(-3,-1,4),B(-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE⊥b ?(O 为原点)11.如图,直三棱柱ABC -A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点.(1)求BN的模;(2)求cos 〈1BA ,1CB〉的值;(3)求证:A 1B ⊥C 1M.【探究创新】(16分)在棱长为1的正四面体OABC 中,若P 是底面ABC 上的一点,求|OP|的最小值. 同步提升一、选择题1.下列命题正确的有( )(1)若|a |=|b |,则a =b ;(2)若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 是平行四边形的充要条件; (3)若a =b ,b =c ,则a =c ;(4)向量a ,b 相等的充要条件是⎩⎪⎨⎪⎧|a |=|b |,a ∥b ;(5)|a |=|b |是向量a =b 的必要不充分条件; (6)AB →=CD →的充要条件是A 与C 重合,B 与D 重合. A .1个 B .2个 C .3个D .4个2.设A ,B ,C 是空间任意三点,下列结论错误的是( ) A.AB →+BC →=AC → B.AB →+BC →+CA →=0 C.AB →-AC →=CB → D.AB →=-BA →3.已知空间向量AB →,BC →,CD →,AD →,则下列结论正确的是( ) A.AB →=BC →+CD → B.AB →-DC →+BC →=AD → C.AD →=AB →+BC →+DC → D.BC →=BD →-DC →4.已知空间四边形ABCD ,连接AC ,BD ,则AB →+BC →+CD →为( )A .AD →B .BD →C .AC →D .05.点D 是空间四边形OABC 的边BC 的中点,OA →=a ,OB →=b ,OC →=c ,则AD →为( )A.12(a +b )-cB.12(c +a )-bC.12(b +c )-a D .a +12(b +c ) 6.已知P 是正六边形ABCDEF 外一点,O 为ABCDEF 的中心,则PA →+PB →+PC →+PD →+PE →+PF → 等于( )A.PO → B .3PO → C .6PO →D .07.设a 表示向东3 m ,b 表示向北4 m ,c 表示向上5 m ,则( )A .a -b +c 表示向东3 m ,向南4 m ,向上5 mB .a +b -c 表示向东3 m ,向北4 m ,向上5 mC .2a -b +c 表示向东3 m ,向南4 m ,向上5 mD .2(a +b +c )表示向东6 m ,向北8 m ,向上5 m8.空间四边形ABCD 中,若E 、F 、G 、H 分别为AB 、BC 、CD 、DA 边上的中点,则下列各式中成立的是( )A.EB →+BF →+EH →+GH →=0B.EB →+FC →+EH →+GE →=0 C.EF →+FG →+EH →+GH →=0 D.EF →-FB →+CG →+GH →=09、平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 和BD 的交点,若11B A =a ,11D A =b ,A A 1 =c ,则下列式子中与M B 1相等的是1A.-21a + 21b +cB.21a + 21b +c C. 21a - 21b +cD.- 21a - 21b +c10.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算的结果为向量1AC 的共有( ) (1)1CC )BC AB (++ (2)C D )D A AA (1111++ (3)111C B )BB AB (++ (4)11111C B )B A AA (++ A .1个 B .2个 C .3个 D .4个11.已知点G是正方形ABCD 的中心,P 是正方形ABCD 所在平面外的一点,则A 1PD PC PB PA +++等于( )A .4PGB .3PGC .2PGD .PG12.在空间四边形OABC 中, OA →+AB →-CB →等于( )A .OA →B .AB →C . OC →D .AC →二、填空题1、在空间直角坐标系中,点M 的坐标是(4,5,6),则点M 关于y 轴的对称点在坐标平面xOz 上的射影的坐标为_______.2、已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =3、已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 .4、如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的是①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.选做:已知在四面体ABCD 中,= a ,= b ,PC = c ,G ∈平面ABC . 若G 为△ABC 的重心,试证明31=PG (a +b +c );ABCDGP三、解答题1.已知A(3,2,1)、B(1,0,4),求: (1)线段AB 的中点坐标和长度;(2)到A 、B 两点距离相等的点P(x,y,z)的坐标满足的条件.2. 已知''''ABCD A B C D -是平行六面体.(1)化简'1223AA BC AB ++,并在图形中标出其结果;(2)设M 是底面A B C D 的中心,N 是侧面''BCC B 的对角线'BC 上的点,且':3:1BN NC =,设'MN AB AD AA αβγ=++,试求,,αβγ之值。
空间向量的概念与运算空间向量是指在空间中有大小和方向的量。
它在物理学、几何学和工程学等领域具有重要的应用。
空间向量的概念和运算是研究空间中物体位置和运动的基础。
一、空间向量的概念空间向量由大小和方向来确定。
空间中的向量通常用箭头来表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
例如,一个位移向量可以表示为⃗d,箭头的长度表示位移的大小,箭头的方向表示位移的方向。
空间向量的大小也称为向量的模或长度,通常使用两点之间的距离来计算。
二、空间向量的运算1. 向量的加法空间中的两个向量可以进行加法运算。
向量的加法可以表示为:⃗a + ⃗b = ⃗c其中,⃗a和⃗b是两个空间向量,⃗c是它们的和向量。
向量的加法满足交换律和结合律。
即:⃗a + ⃗b = ⃗b + ⃗a(⃗a + ⃗b) + ⃗c = ⃗a + (⃗b + ⃗c)2. 向量的减法空间中的两个向量可以进行减法运算。
向量的减法可以表示为:⃗a - ⃗b = ⃗d其中,⃗a和⃗b是两个空间向量,⃗d是它们的差向量。
向量的减法可以通过向量的加法来实现,即:⃗a - ⃗b = ⃗a + (-⃗b)3. 向量的数量积空间中的两个向量可以进行数量积运算。
向量的数量积可以表示为:⃗a ⋅ ⃗b = abcosθ其中,⃗a和⃗b是两个空间向量,a和b分别是它们的大小,θ是它们之间的夹角。
向量的数量积满足交换律和分配律。
即:⃗a ⋅ ⃗b = ⃗b ⋅ ⃗a⃗a ⋅(⃗b + ⃗c) = ⃗a ⋅ ⃗b + ⃗a ⋅ ⃗c4. 向量的矢量积空间中的两个向量可以进行矢量积运算。
向量的矢量积可以表示为:⃗a × ⃗b = |⃗a||⃗b|sinθ⃗n其中,⃗a和⃗b是两个空间向量,|⃗a|和|⃗b|分别是它们的大小,θ是它们之间的夹角,⃗n是法向量。
向量的矢量积满足反交换律和分配律。
即:⃗a × ⃗b = -⃗b × ⃗a⃗a ×(⃗b + ⃗c) = ⃗a × ⃗b + ⃗a × ⃗c以上是对空间向量的概念与运算进行的简要介绍。
空间向量及其运算空间向量是一门有趣而又重要的数学学科,它主要研究三维空间内的点、线、面及其运动的运算。
涉及的数学知识有向量的概念及矢量场概念,用空间向量来分析三维空间中的运动是一种更加完整、易于理解的方法。
空间向量是一个有方向性的实数组成的三元组,具有起始点和方向的信息。
可以用来描述平移和旋转的大小,常被用来表示物体在空间中的位置和运动。
在三维环境中,可以表示长度的向量可以称作“矢量”,它们可以使用一对坐标(x,y,z)表示。
表示速度向量则需要三个量,其中包括(横向速度,纵向速度,垂直速度)。
空间向量的运算主要涉及加减法和乘除法,其中加减法可以用来计算两个空间向量的和或差,乘除法则可以计算空间向量和数值的乘积和商。
空间向量的加法可以用组合的形式描述,即首先将两个向量的起点连接,然后将他们的终点连接,得到的向量的起点即为两个向量的和,而终点即为这两个向量的差。
空间向量加法也可以用简便的算术方式描述,即:两个向量的每一个分量之和即为新向量的各分量,即:A+B=(a1+b1,a2+b2,a3+b3)。
空间向量的减法可以通过组合的形式描述,即以第一个向量的终点为起点,以第二个向量的起点为终点,连接两个点,即得到两个空间向量的差。
此外,这种形式的减法也可以用简便的算术方式来描述,即:A-B=(a1-b1, a2-b2, a3-b3)。
空间向量的乘除法也可以采取组合的形式描述:两个空间向量中,乘数向量的起点与被乘数向量的终点相连,连接后的新向量就是乘数向量与被乘数向量的乘积,而之所以称之为乘法,是因为两个向量的长度的积,即新向量的长度,就是乘数以及被乘数的乘积。
此外,这种乘法还可以用简便的数学方式来描述,即:乘法A*B=(a1*b1, a2*b2, a3*b3),除法A/B= (a1/b1, a2/b2, a3/b3)。
空间向量的加减乘除运算是空间向量分析和应用中的重要运算,它可以用来研究物体在空间中的运动、物体在空间中的位置关系等等。
空间向量及其运算1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下b a AB OA OB +=+=;b a OB OA BA -=-=;)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3.平行六面体: 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''它的六个面都是平行四边形,每个面的边叫做平行六面体的棱 4. 平面向量共线定理方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa .要注意其中对向量a的非零要求. 5 共线向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a、b 的有向线段所在的直线可能是同一直线,也可能是平行直线.6. 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP +=a .其中向量a叫做直线l 的方向向量. 空间直线的向量参数表示式:t OA OP +=a或)(OA OB t OA OP -+=OB t OA t +-=)1(,中点公式.)(21OB OA OP +=7.向量与平面平行:已知平面α和向量a ,作O A a = ,如果直线O A 平行于α或在α内,那么我们说向量a平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的8.共面向量定理:如果两个向量,a b 不共线,p与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面M A B 内的充分必要条件是存在有序实数对,x y ,使M P x M A y M B =+①或对空间任一点O ,有O P O M x M A y M B =++②或,(1)O P xO A yO B zO M x y z =++++=③上面①式叫做平面M A B 的向量表达式9 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使O P xO A yO B zO C =++10 空间向量的夹角及其表示:已知两非零向量,a b,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <> ;且规定0,a b π≤<>≤ ,显然有,,a b b a <>=<>;若,2a b π<>= ,则称a 与b 互相垂直,记作:a b ⊥.11.向量的模:设O A a = ,则有向线段O A 的长度叫做向量a 的长度或模,记作:||a.12.向量的数量积:已知向量,a b ,则||||c o s ,a b a b ⋅⋅<> 叫做,a b的数量积,记作a b ⋅ ,即a b ⋅= ||||c o s ,a b a b ⋅⋅<>.已知向量AB a = 和轴l ,e是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B '' 叫做向量AB 在轴l 上或在e上的正射影. 可以证明A B '' 的长度||||c o s ,|A B A B a e a e''=<>=⋅. 13.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅= . (3) 2||a a a =⋅.14.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅ (交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律)空间向量的直角坐标及其运算1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1基底,用{,,}i j k表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zO x 平面;2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使O A xi yj z k =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.常见坐标系①正方体如图所示,正方体''''A B C D A B C D -的棱长为a ,一般选择点D 为原点,D A 、D C 、'D D 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,则各点坐标为亦可选A 点为原点.在长方体中建立空间直角坐标系与之类似. ②正四面体如图所示,正四面体A B C D -的棱长为a ,一般选择A 在B C D ∆上的射影为原点,O C 、O D (或O B )、O A 所在直线分别为x 轴、y轴、z 轴建立C空间直角坐标系O xyz -,则各点坐标为③正四棱锥如图所示,正四棱锥P A B C D -的棱长为a ,一般选择点P 在平面A B C D 的射影为原点,O A (或O C )、O B (或O D )、O P 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为④正三棱柱如图所示,正三棱柱 '''A B C A B C -的底面边长为a ,高为h ,一般选择A C 中点为原点,O C (或O A )、O B 、O E (E 为O 在''A C 上的射影)所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为3.空间向量的直角坐标运算律:(1)若123(,,)a a a a = ,123(,,)b b b b =,则 112233(,,)a b a b a b a b +=+++ , 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++ , 112233//,,()a b a b a b a b R λλλλ⇔===∈ , 1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4 模长公式:若123(,,)a a a a = ,123(,,)b b b b =,则||a ==||b == .5.夹角公式:cos ||||a ba b a b ⋅⋅==⋅ .6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则||AB ==,或,A B d = 空间向量应用一、直线的方向向量把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.在空间直角坐标系中,由111(,,)A x y z 与222(,,)B x y z 确定直线A B 的方向向量是212121(,,)AB x x y y z z =---.平面法向量 如果a α⊥ ,那么向量a叫做平面α的法向量. 二、证明平行问题1.证明线线平行:证明两直线平行可用112233//,,()a b a b a b a b R λλλλ⇔===∈或312123//a a aa b b b b ⇔== .2.证明线面平行直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若a n ⊥ 即0a n ⋅= 则//a α. 3.证明面面平行平面α的法向量为1n ,平面β的法向量为2n ,若12//n n 即12n n λ=则//αβ.三、证明垂直问题 1.证明线线垂直 证明两直线垂直可用1122330a b a b a b a b a b ⊥⇔⋅=++=2.证明线面垂直x y直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若//a n 即a n λ= 则a α⊥. 3.证明面面垂直平面α的法向量为1n ,平面β的法向量为2n ,若12n n ⊥ 即120n n ⋅= 则αβ⊥.四、夹角1.求线线夹角设123(,,)a a a a = ,123(,,)b b b b =,(0,90]θ∈︒︒为一面直线所成角,则:||||cos ,a b a b a b ⋅=⋅⋅<>;cos ,||||a ba b a b ⋅<>==⋅;cos |cos ,|a b θ=<> . 2.求线面夹角如图,已知P A 为平面α的一条斜线,n为平面α的一个法向量,过P 作平面α的垂线P O ,连结O A 则P A O ∠为斜线P A 和平面α所成的角,记为θ易得sin |sin(,)|2O P A P πθ=-<> |cos ,|O P A P =<>|cos ,|n A P =<> |cos ,|n PA =<> ||||||n P A n P A ⋅=. 3.求面面夹角设1n 、2n 分别是二面角两个半平面α、β的法向量,当法向量1n 、2n同时指向二面角内或二面角外时,二面角θ的大小为12,n n π-<>;当法向量1n 、2n 一个指向二面角内,另一外指向二面角外时,二面角θ的大小为12,n n <>.五、距离1.求点点距离设111(,,)A x y z ,222(,,)B x y z,,A B d =||AB ==2.求点面距离如图,A 为平面α任一点,已知P A 为平面α的一条斜线,n为平面α的一个法向量,过P 作平面α的垂线P O ,连结O A 则P A O ∠为斜线P A 和平面α所成的角,记为θ易得||||sin |||cos ,|PO PA PA PA n θ=⋅=⋅<> ||||||||PA n PA PA n ⋅=⋅⋅||||P A n n ⋅= . 3.求线线距离求异面直线间的距离可以利用向量的正射影性质直接计算.如图,设两条异面直线a 、b 的公垂线的方向向量为n , 这时分别在a 、b 上任取A 、B 两点,则向量在n上的正射影长就是两条异面直线a 、b 的距离.即两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.直线a 、b 的距离||||||||n AB n d AB n n ⋅=⋅= .4.求线面距离一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离叫做这条直线到这个平面的距离.直线到平面的距离可转化为求点到平面的距离. 5.求面面距离和两个平行平面同时垂直的直线叫做两个平行平面的公垂线.公垂线夹在这两个平行平面间的部分叫做两个平行平面的公垂线段.公垂线段的长度叫做两个平行平面间的距离. 平面和平面间的距离可转化为求点到平面的距离.。
空间向量及其运算1.空间向量(1)定义:空间中既有大小又有方向的量称为空间向量. (2)模(或长度):向量的大小. (3)表示方法:①几何表示法:可以用有向线段来直观的表示向量,如始点为A 终点为B 的向量,记为AB →,模为|AB →|.②字母表示法:可以用字母a ,b ,c ,…表示,模为|a |,|b |,|c |,…. 2.【几类特殊的向量】(1)零向量:始点和终点相同的向量称为零向量,记作0. (2)单位向量:模等于1的向量称为单位向量.(3)相等向量:大小相等、方向相同的向量称为相等向量. (4)相反向量:方向相反,大小相等的向量称为相反向量.(5)平行向量:方向相同或者相反的两个非零向量互相平行,此时表示这两个非零向量的有向线段所在的直线平行或重合.通常规定零向量与任意向量平行. (6)共面向量:一般地,空间中的多个向量,如果表示它们的有向线段通过平移后,都能在同一平面内,则称这些向量共面. 3.空间向量的线性运算类似于平面向量,可以定义空间向量的加法、减法及数乘运算.图1 图2(1)如图1,OB →=OA →+AB →=a +b ,CA →=OA →-OC →=a -b . (2)如图2,DA →+DC →+DD 1→=DB 1→.即三个不共面向量的和,等于以这三个向量为邻边的平行六面体中,与这三个向量有共同始点的对角线所表示的向量.(3)给定一个实数λ与任意一个空间向量a ,则实数λ与空间向量a 相乘的运算称为数乘向量,记作λa .其中:①当λ≠0且a ≠0时,λa 的模为|λ||a |,而且λa 的方向:(ⅰ)当λ>0时,与a 的方向相同;(ⅰ)当λ<0时,与a 的方向相反. ②当λ=0或a =0时,λa =0.(4)空间向量的线性运算满足如下运算律:对于实数λ与μ,向量a 与b ,有①λa +μa =(λ+μ)a ;②λ(a +b )=λa +λb . 4.空间向量的数量积 (1)空间向量的夹角如果〈a ,b 〉=π2,那么向量a ,b 互相垂直,记作a ⊥b . (2)空间向量数量积的定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积(或内积),记作a·b . (3)数量积的几何意义 ①向量的投影如图所示, 过向量a 的始点和终点分别向b 所在的直线作垂线,即可得到向量a 在向量b 上的投影a ′.②数量积的几何意义:a 与b 的数量积等于a 在b 上的投影a ′的数量与b 的长度的乘积,特别地,a 与单位向量e 的数量积等于a 在e 上的投影a ′的数量.规定零向量与任意向量的数量积为0. (4)空间向量数量积的性质:①a ⊥b ⇔a ·b =0;②a ·a =|a |2=a 2;③|a ·b |≤|a ||b |;④(λa )·b =λ(a ·b );⑤a ·b =b ·a (交换律);5.共面向量定理如果两个向量a,b不共线,则向量a,b,c共面的充要条件是存在唯一的实数对(x,y),使c=x a+y b.思考1:平面向量基本定理中对于向量a与b有什么条件,在空间中能成立吗?【名师提醒】平面向量基本定理中要求向量a与b不共线,在空间中仍然成立.【新高二数学专题】考点一概念的辨析【例1】(2020·全国高二课时练习)下列命题中,假命题是()A.同平面向量一样,任意两个空间向量都不能比较大小B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.共线的单位向量都相等【新高二数学专题】1.(2020•龙岩期末)在平行六面体中,与向量相等的向量共有A. 1个B. 2个C. 3个D. 4个2.(2020·全国高二课时练习)在下列命题中:①若向量,a b共线,则,a b所在的直线平行;②若向量,a b所在的直线是异面直线,则,a b一定不共面;③若三个向量,a b c,三个向量一定也共面;,两两共面,则,a b c④已知三个向量,a b c=++.,,则空间任意一个向量p总可以唯一表示为p xa yb zc 其中正确命题的个数为()A.0B.1C.2D.3考点二 空间向量的线性运算【例2】2020·江西赣州.高二期中(理))在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于()A .1223EF AC AB AD →→→→=+-B .112223EF AC AB AD →→→→=--+C .112223EF AC AB AD →→→→=-+D .112223EF AC AB AD →→→→=-+-【新高二数学专题】1.(多选题)已知平行六面体ABCD A B C D ''''-,则下列四式中其中正确的有( ) A .AB CB AC -= B .AC AB B C CC ''''=++ C .AA CC ''=D .AB BB BC C C AC '''+++=2.(2020·宝山.上海交大附中高二期末)在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点,若,AB a AD b ==,1AA c =,则与BM 相等的向量是( )A .1122a b c ++B .1122a b c --+C .1122a b c -+D .1122-++a b c3.(2020·张家口市宣化第一中学高二月考)如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD +12(BC -BD )等于( )A .ADB .FAC .AFD .EF 考点三 空间向量的共线、共面问题【例3】如图所示,在空间四边形ABCD 中,点E ,F 分别是AB ,CD 的中点,请判断向量EF 与AD +BC 是否共线?【例4】(2020•珠海期末)已知A ,B ,C 三点不共线,点M 满足.,,三个向量是否共面点M 是否在平面ABC 内【新高二数学专题】1.(2020·全国高二)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =______. 2.(2020•日照期末)如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且,.求证:向量,,共面.3.(2020·浙江高二期末)在棱长为1的正方体1111ABCD A BC D -中,,,E F G 分别在棱1,,BB BC BA 上,且满足134BE BB =,12BF BC =,12BG BA =,O 是平面1B GF ,平面ACE 与平面11B BDD 的一个公共点,设BO xBG yBF zBE =++,则x y z ++= A.45B.65C.75D.85考点四 空间向量的数量积【例5】 (2020·山东高二期末(理))在棱长为2的正四面体ABCD 中,E ,F 分别是BC ,AD 的中点,则(AE CF ⋅= ) A .0B .2-C .2D .3-【例6】 (2020·全国高二课时练习)已知平行六面体ABCD ﹣A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.。
2021年新高考数学总复习第八章《立体几何与空间向量》空间向量及其运算1.空间向量的有关概念名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a =b相反向量 方向相反且模相等的向量a 的相反向量为-a共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量 平行于同一个平面的向量2.空间向量中的有关定理 (1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb . (2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a·ba 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗?提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ ) (6)若a·b <0,则〈a ,b 〉是钝角.( × ) 题组二 教材改编。
空间向量及其运算
空间向量是指在三维空间中的一个有方向的矢量,由一个点和一个方向确定,可以用一个箭头表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。
空间向量的运算包括:
1.
加法:两个空间向量可以相加,结果是一个新的空间向量,其大小和方向是由两个空间向量的大小和方向决定的。
2.
减法:两个空间向量可以相减,结果是一个新的空间向量,其大小和方向是由两个空间向量的大小和方向决定的。
3.
乘法:空间向量可以与一个标量相乘,结果是一个新的空间向量,其大小是原空间向量的大小乘以标量,方向不变。
4.
除法:空间向量可以与一个标量相除,结果是一个新的空间向量,其大小是原空间向量的大小除以标量,方向不变。
空间向量及其运算最新考纲考情考向分析1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线和垂直. 本节是空间向量的基础内容,涉及空间直角坐标系、空间向量的有关概念、定理、公式及四种运算等内容.一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行、垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a=b相反向量方向相反且模相等的向量a的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a∥b共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb.(2)共面向量定理共面向量定理的向量表达式:p=x a+y b,其中x,y∈R,a,b为不共线向量.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p =x a+y b+z c,{a,b,c}叫作空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫作向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a·ba 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0 (a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a | a 21+a 22+a 23夹角〈a ,b 〉 (a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗?提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ ) (6)若a·b <0,则〈a ,b 〉是钝角.( × ) 题组二 教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2,∴|EF →|=2,∴EF 的长为 2.题组三 易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直 B.平行C.异面D.相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD . 5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________. 答案 2 6 解析 ∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0, ∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______. 答案 18解析 ∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一 空间向量的线性运算例1 如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解 (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1————→ +D 1P → =a +AD →+12D 1C 1————→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫a +12c =32a +12b +32c . 思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 ∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. (2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( )A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) 答案 B解析 NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ). 题型二 共线定理、共面定理的应用例2 如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH . 证明 (1)连接BG , 则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH → =EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB → =12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH 平面EFGH ,BD ⊈平面EFGH , 所以BD ∥平面EFGH .思维升华 证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线 空间四点(M ,P ,A ,B )共面P A →=λPB →且同过点P MP →=xMA →+yMB →对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB → 对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →跟踪训练2 如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行?解 (1)∵AM →=kAC 1→,BN →=kBC →, ∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1→)+AB → =kB 1A →+AB →=AB →-kAB 1→ =AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合, MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面, ∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内; 当0<k ≤1时,MN ∥平面ABB 1A 1. 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值. (1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →,即MN ⊥AB . 同理可证MN ⊥CD .(2)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝⎛⎭⎫q -12p =12⎝⎛⎭⎫q 2-12q ·p +r ·q -12r ·p =12⎝⎛⎭⎫a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60° =12⎝⎛⎭⎫a 2-a 24+a 22-a 24=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求平面与平面的夹角. (3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( )A.(0,3,-6)B.(0,6,-20)C.(0,6,-6)D.(6,6,-6)答案 B解析 由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ) A.0 B.1 C.2 D.3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32 B.-2 C.0 D.32或-2 答案 B解析 当m =0时,a =(1,3,-1),b =(2,0,0), a 与b 不平行,∴m ≠0,∵a ∥b , ∴2m +12=3m =m -1-m,解得m =-2. 4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|P A |=|PB |,则P 点坐标为( ) A.(3,0,0) B.(0,3,0) C.(0,0,3) D.(0,0,-3)答案 C解析 设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2 =(2-0)2+(2-0)2+(2-z )2, 解得z =3.5.已知a =(1,0,1),b =(x,1,2),且a·b =3,则向量a 与b 的夹角为( ) A.5π6 B.2π3 C.π3 D.π6 答案 D解析 ∵a·b =x +2=3,∴x =1,∴b =(1,1,2), ∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2C.1D.3- 2 答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2, 故|BD →|=3- 2.7.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=________. 答案 -9解析 由题意知c =x a +y b , 即(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.8.已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =________. 答案 (3,-2,2)解析 因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1), 又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2).9.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13VC →,VM →=23VB →,VN →=23VD →.则VA 与平面PMN 的位置关系是________. 答案 平行解析 如图,设VA →=a ,VB →=b ,VC →=c ,则VD →=a +c -b , 由题意知PM →=23b -13c ,PN →=23VD →-13VC →=23a -23b +13c .因此VA →=32PM →+32PN →,∴VA →,PM →,PN →共面.又VA ⊈平面PMN ,∴VA ∥平面PMN . 10.已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________. 答案 ①②解析 ①中,(A 1A →+A 1D 1————→ +A 1B 1————→ )2=A 1A ————→ 2+A 1D 1————→ 2+A 1B 1————→ 2=3A 1B 1————→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题意知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M , ∴M ,A ,B ,C 四点共面. ∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点) 解 (1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+(-5)2+52=5 2. (2)令AE →=tAB →(t ∈R ), 所以OE →=OA →+AE →=OA →+tAB → =(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E 点的坐标为⎝⎛⎭⎫-65,-145,25.13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案 56解析 连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM → =12(OB →+OC →)-12OA →=12b +12c -12a , OG →=OM →+MG →=12OA →+23MN →=12a +23⎝⎛⎭⎫12b +12c -12a =16a +13b +13c . 又OG →=xOA →+yOB →+zOC →,所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.不确定答案 C解析 ∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________. 答案 (1,1,2)解析 由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点. (1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |, 且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=AC ′→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。