函数奇偶性与单调性的综合应用 专题
- 格式:doc
- 大小:168.50 KB
- 文档页数:7
函数单调性和奇函数性质的综合应用题题目描述给定函数 $f(x) = x^3 - 3x^2 + 2x + 1$,请回答以下问题:1. 函数 $f(x)$ 的定义域是什么?2. 函数 $f(x)$ 的奇偶性如何?3. 在开区间 $(0, 3)$ 上,函数 $f(x)$ 的单调性如何?4. 在闭区间 $[-1, 2]$ 上,函数 $f(x)$ 的最大最小值分别是多少?解答1. 函数 $f(x)$ 的定义域是所有实数集 $(-\infty, +\infty)$,因为对任意实数 $x$,$f(x)$ 的定义都存在。
2. 函数 $f(x)$ 的奇偶性是奇函数。
为了验证函数的奇偶性,我们需要检查函数是否满足 $f(-x) = -f(x)$。
对于函数 $f(x) = x^3 -3x^2 + 2x + 1$,我们有 $f(-x) = (-x)^3 - 3(-x)^2 + 2(-x) + 1 = -x^3 +3x^2 - 2x + 1$。
可以看到 $f(-x) = -f(x)$ 成立,所以函数 $f(x)$ 是奇函数。
3. 在开区间 $(0, 3)$ 上,函数 $f(x)$ 是递增函数。
为了验证函数的单调性,我们需要检查函数在该区间上的导数是否大于等于零。
计算函数的导数 $f'(x)$,我们有 $f'(x) = 3x^2 - 6x + 2$。
将其带入$0 < x < 3$,我们可以看到 $f'(x) > 0$。
因此,函数 $f(x)$ 在开区间$(0, 3)$ 上是递增的。
4. 在闭区间 $[-1, 2]$ 上,函数 $f(x)$ 的最大值是 $f(2) = 11$,最小值是 $f(-1) = -1$。
为了找出最大最小值,我们可以求函数在该区间内的驻点和区间的端点处的函数值。
计算导数 $f'(x) = 3x^2 -6x + 2$ 的根,可得 $x = 1 \pm \frac{\sqrt{3}}{3}$。
函数的单调性、奇偶性综合应用一、利用函数单调性求函数最值例1、已知函数y=f(x)对任意x,y ∈R 均为f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)= -32. (1)判断并证明f(x)在R 上的单调性;(2)求f(x)在[-3,3]上的最大、小值。
思维分析:抽象函数的性质要紧扣定义,并同时注意特殊值的应用。
解:(1)令x=y=0,f(0)=0,令x=-y 可得:f(-x)= -f(x),在R 上任取x 1<x 2,则x 2-x 1>0,所以f(x 2) -f(x 1)=f(x 2)+f(-x 1)=f(x 2-x 1).因为x 1<x 2,所以x 2-x 1>0。
又因为x>0时f(x)<0,所以f(x 2-x 1)<0,即f(x 2)<f(x 1).由定义可知f(x)在R 上是减函数.(2)因为f(x)在R 上是减函数,所以f(x)在[-3,3]上也是减函数.所以f(-3)最大,f(3)最小。
所以f(-3)= -f(3)=2即f(x)在[-3,3]上最大值为2,最小值为-2。
二、复合函数单调性例2、求函数y=322--x x 的单调区间,并对其中一种情况证明。
思维分析:要求出y=322--x x 的单调区间,首先求出定义域,然后利用复合函数的判定方法判断.解:设u=x 2-2x -3,则y=u .因为u ≥0,所以x 2-2x -3≥0.所以x ≥3或x ≤-1.因为y=u 在u ≥0时是增函数,又当x ≥3时,u 是增函数,所以当x ≥3时,y 是x 的增函数。
又当 x ≤-1时,u 是减函数,所以当x ≤-1时,y 是x 的减函数。
所以y=322--x x 的单调递增区间是[3,+ ∞),单调递减区间是(-∞,-1]。
证明略三、利用奇偶性,讨论方程根情况例3、已知y=f(x)是偶函数,且图象与x 轴四个交点,则方程f(x)=0的所有实根之和是( )A.4B.2C.0D.不知解析式不能确定 思维分析:因为f(x)是偶函数且图象与x 轴有四个交点,这四个交点每两个关于原点一定是对称的,故x 1+x 2+x 3+x 4=0.答案:C四、利用奇偶性,单调性解不等式例4、设f(x)是定义在[-2,2]上的偶函数,当x ≥0时,f(x)单调递减,若f(1-m)<f(m)成立,求m 的取值范围。
函数单调性与奇偶性综合运用例1;设定义在[−3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a−1)<f(a)时,求a的取值范围.解:∵f(a−1)<f(a) ∴f(|a−1|)<f(|a|)而|a−1|,|a|∈[0,3].例2;定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)−f(−a)>g(a)−g(−b);②f(b)−f(−a)<g(a)−g(−b);③f(a)−f(−b)>g(b)−g(−a);④f(a)−f(−b)<g(b)−g(−a).答案:①③.例3;设a为实数,函数f(x)=x2+|x−a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x−a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为.小练习;选择题1.下面说法正确的选项( )A.函数的单调区间就是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是( )A.B.C.D.3.已知函数为偶函数,则的值是( )A. B. C. D.4.若偶函数在上是增函数,则下列关系式中成立的是( )A.B.C.D.5.如果奇函数在区间上是增函数且最大值为,那么在区间上是( )A.增函数且最小值是B.增函数且最大值是C.减函数且最大值是D.减函数且最小值是6.函数f(x)是定义在[−6,6]上的偶函数,且在[−6,0]上是减函数,则( )A. f(3)+f(4)>0B. f(−3)−f(2)<0C. f(−2)+f(−5)<0D. f(4)−f(−1)>0 7.若函数在上是单调函数,则的取值范围是( ) A.B.C.D.8.若是偶函数,其定义域为,且在上是减函数,则的大小关系是( )A.>B.<C.D.填空题1.设奇函数的定义域为,若当时,的图象如右图,则不等式的解是____________.2.已知定义在上的奇函数,当时,,那么时,______.3.若函数在上是奇函数,则的解析式为________. 4.奇函数在区间上是增函数,在区间上的最大值为8,最小值为−1,则__________.5.若函数在上是减函数,则的取值范围为__________.6.若在区间上是增函数,则的取值范围是________.解答题1. 已知函数f(x)=x2−2ax+a2−1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[−1,1]时,求函数f(x)的最小值g(a).解:(1)∵f(x)=(x−a)2−1 ∴a≤0或a≥2(2)1°当a<−1时,如图1,g(a)=f(−1)=a2+2a2°当−1≤a≤1时,如图2,g(a)=f(a)=−13°当a>1时,如图3,g(a)=f(1)=a2−2a,如图2. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x−2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x−2)≤3可转化为:f[x(x−2)]≤f(8).3. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1−x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2−1<0∴f(x1)−f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.难点:x1·x2−1的符号的确定,如何分段.4.已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围.解:,则,5.已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数.证明:(1)设,则,而∴∴函数是上的减函数;(2)由得即,而∴,即函数是奇函数.6.设函数与的定义域是且,是偶函数,是奇函数且,求和的解析式.解:∵是偶函数,是奇函数,∴,且而,得,即,∴,.7.已知函数的定义域是,且满足,,如果对于,都有,(1)求;(2)解不等式. 解:(1)令,则(2),则.8.已知函数的最大值不大于,又当,求的值. 解:,对称轴,当时,是的递减区间,而,即与矛盾,即不存在;当时,对称轴,而,且即,而,即∴.。
专题四函数性质的综合问题一、题型全归纳题型一 函数的奇偶性与单调性【题型要点】函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再根据函数的奇偶性与单调性,列出不等式(组),要注意函数定义域对参数的影响.【例1】已知函数y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 13,b =(ln 3)2,c =ln 3,则( ) A .f (a )>f (b )>f (c ) B .f (b )>f (a )>f (c ) C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )【解析】 由题意易知f (x )在(0,+∞)上是减函数,又因为|a |=ln 3>1,b =(ln 3)2>|a |,0<c =ln 32<|a |,所以f (c )>f (|a |)>f (b ).又由题意知f (a )=f (|a |),所以f (c )>f (a )>f (b ).故选C.题型二 函数的奇偶性与周期性【题型要点】周期性与奇偶性结合,此类问题多考查求值问题,常利用奇偶性及周期性进行转换,将所求函数值的自变量转化到已知解析式的定义域内求解.【例1】(2020·武昌区调研考试)已知f (x )是定义域为R 的奇函数,且函数y =f (x -1)为偶函数,当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f = .【解析】解法一:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),f (x +4)=f (x ),即f (x )的周期T =4,因为0≤x ≤1时,f (x )=x 3,所以⎪⎭⎫⎝⎛25f =⎪⎭⎫ ⎝⎛4-25f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛+211-f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫⎝⎛21-f =-18. 解法二:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),由题意知,当-1≤x <0时,f (x )=x 3,故当-1≤x ≤1时,f (x )=x 3,当1<x ≤3时,-1<x -2≤1,f (x )=-(x -2)3,所以⎪⎭⎫ ⎝⎛25f =32-25-⎪⎭⎫⎝⎛=-18.题型三 函数的综合性应用【题型要点】求解函数的综合性应用的策略(1)函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x =0处有定义,则一定有f (0)=0;偶函数一定有f (|x |)=f (x )”在解题中的应用.(2)解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.【例1】(2020·陕西榆林一中模拟)已知偶函数f (x )满足f (x )+f (2-x )=0,现给出下列命题:①函数f (x )是以2为周期的周期函数;②函数f (x )是以4为周期的周期函数;③函数f (x -1)为奇函数;④函数f (x -3)为偶函数,其中真命题的个数是( ) A .1 B .2 C .3D .4【解析】 偶函数f (x )满足f (x )+f (2-x )=0,所以f (-x )=f (x )=-f (2-x ),f (x +2)=-f (x ), f (x +4)=-f (x +2)=f (x ),可得f (x )的最小正周期为4,故①错误,②正确; 由f (x +2)=-f (x ),可得f (x +1)=-f (x -1).又f (-x -1)=f (x +1),所以f (-x -1)=-f (x -1),故f (x -1)为奇函数,③正确; 若f (x -3)为偶函数,则f (x -3)=f (-x -3),又f (-x -3)=f (x +3),所以f (x +3)=f (x -3),即f (x +6)=f (x ),可得6为f (x )的周期,这与4为最小正周期矛盾,故④错误,故选B.题型四 函数性质中“三个二级”结论的灵活应用结论一、奇函数的最值性质【题型要点】已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0,且若0∈D ,则f (0)=0.【例1】设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m = .【解析】函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin xx 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),所以g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,所以M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.结论二、抽象函数的周期性(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .【例2】已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (1)=2,则f (17)= .【解析】由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数. 由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ),所以f (x )是最小正周期为8的偶函数,所以f (17)=f (1+2×8)=f (1)=2.结论三、抽象函数的对称性已知函数f (x )是定义在R 上的函数.(1)若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称,特别地,若f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称.(2)若函数y =f (x )满足f (a +x )+f (a -x )=0,即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称.【例2】(2020·黑龙江牡丹江一中期末)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定,其中正确命题的个数为( ) ①f (4)=0;②f (x )是以4为周期的函数;③f (x )的图象关于x =1对称;④f (x )的图象关于x =2对称. A .1 B .2 C .3 D .4【解析】 因为f (x )是(-∞,+∞)上的奇函数,所以f (-x )=-f (x ),f (0)=0,因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是以4为周期的周期函数,f (4)=f (0)=0, 因为f (x +2)=-f (x ),所以f [(x +1)+1]=f (-x ),令t =x +1,则f (t +1)=f (1-t ),所以f (x +1)=f (1-x ), 所以f (x )的图象关于x =1对称,而f (2+x )=f (2-x )显然不成立.故正确的命题是①②③,故选C.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)已知定义域为(-1,1)的奇函数f (x )是减函数,且f (a -3)+f (9-a 2)<0,则实数a 的取值范围是( )A .(22,3)B .(3,10)C .(22,4)D .(-2,3)【解析】:由f (a -3)+f (9-a 2)<0得f (a -3)<-f (9-a 2).又由奇函数性质得f (a -3)<f (a 2-9).因为f (x )是定义域为(-1,1)的减函数,所以⎩⎪⎨⎪⎧-1<a -3<1,-1<a 2-9<1,a -3>a 2-9,解得22<a <3.2.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=( ) A .-2 B .2 C .-98D .98【解析】:由f (x +4)=f (x )知,f (x )是周期为4的周期函数,f (2 019)=f (504×4+3)=f (3)=f (-1). 由f (1)=2×12=2得f (-1)=-f (1)=-2,所以f (2 019)=-2.故选A.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4D .-4【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.(2020·广东六校第一次联考)定义在R 上的函数f (x )满足f (x )=f (2-x )及f (x )=-f (-x ),且在[0,1]上有f (x )=x 2,则⎪⎭⎫⎝⎛212019f =( ) A.94 B.14 C .-94D .-14【解析】:函数f (x )的定义域是R ,f (x )=-f (-x ),所以函数f (x )是奇函数.又f (x )=f (2-x ),所以f (-x )=f (2+x )=-f (x ),所以f (4+x )=-f (2+x )=f (x ),故函数f (x )是以4为周期的奇函数,所以⎪⎭⎫ ⎝⎛212019f =⎪⎭⎫ ⎝⎛21-2020f =⎪⎭⎫⎝⎛21-f =⎪⎭⎫⎝⎛21-f .因为在[0,1]上有f (x )=x 2,所以⎪⎭⎫ ⎝⎛21f =221⎪⎭⎫ ⎝⎛=14, 故⎪⎭⎫ ⎝⎛212019f =-14,故选D. 5.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<⎪⎭⎫ ⎝⎛31f 的x 的取值范围是( )A.⎪⎭⎫ ⎝⎛3231, B.⎪⎭⎫⎢⎣⎡3231, C.⎪⎭⎫⎝⎛3221,D.⎪⎭⎫⎢⎣⎡3221,【解析】:因为f (x )是偶函数,所以其图象关于y 轴对称,又f (x )在[0,+∞)上单调递增,f (2x -1)<⎪⎭⎫⎝⎛31f ,所以|2x -1|<13,所以13<x <23.6.(2020·石家庄市模拟(一))已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x -1,则在(1,3)上,f (x )≤1的解集是( )A.⎥⎦⎤ ⎝⎛231,B.⎥⎦⎤⎢⎣⎡2523,C.⎪⎭⎫⎢⎣⎡323,D .[2,3)【解析】因为0≤x ≤1时,f (x )=4x -1,所以f (x )在区间[0,1]上是增函数,又函数f (x )是奇函数,所以函数f (x )在区间[-1,1]上是增函数,因为f (x )=f (2-x ),所以函数f (x )的图象关于直线x =1对称,所以函数f (x )在区间(1,3)上是减函数,又⎪⎭⎫ ⎝⎛21f =1,所以⎪⎭⎫ ⎝⎛23f =1,所以在区间(1,3)上不等式f (x )≤1的解集为⎪⎭⎫⎢⎣⎡323,,故选C.6.(2020·黑龙江齐齐哈尔二模)已知函数f (x )是偶函数,定义域为R ,单调增区间为[0,+∞),且f (1)=0,则(x -1)f (x -1)≤0的解集为( ) A .[-2,0] B .[-1,1]C .(-∞,0]∪[1,2]D .(-∞,-1]∪[0,1]【解析】:由题意可知,函数f (x )在(-∞,0]上单调递减,且f (-1)=0,令x -1=t ,则tf (t )≤0,当t ≥0时,f (t )≤0,解得0≤t ≤1;当t <0时,f (t )≥0,解得t ≤-1,所以0≤x -1≤1或x -1≤-1,所以x ≤0或1≤x ≤2.故选C. 7.对于函数f (x )=a sin x +bx +c (其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( ) A .4和6 B .3和1 C .2和4D .1和2【解析】:设g (x )=a sin x +bx ,则f (x )=g (x )+c ,且函数g (x )为奇函数.注意到c ∈Z ,所以f (1)+f (-1)=2c 为偶数.故选D.8.(2020·甘肃甘谷一中第一次质检)已知定义在R 上的函数f (x )满足条件:①对任意的x ∈R ,都有f (x +4)=f (x );②对任意的x 1,x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2);③函数f (x +2)的图象关于y 轴对称,则下列结论正确的是( )A .f (7)<f (6.5)<f (4.5)B .f (7)<f (4.5)<f (6.5)C .f (4.5)<f (7)<f (6.5)D .f (4.5)<f (6.5)<f (7)【解析】:因为对任意的x ∈R ,都有f (x +4)=f (x ),所以函数是以4为周期的周期函数,因为函数f (x +2)的图象关于y 轴对称,所以函数f (x )的图象关于x =2对称, 因为x 1,x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2).所以函数f (x )在[0,2]上为增函数, 所以函数f (x )在[2,4]上为减函数.易知f (7)=f (3),f (6.5)=f (2.5),f (4.5)=f (0.5)=f (3.5),则f (3.5)<f (3)<f (2.5),即f (4.5)<f (7)<f (6.5).9.(2020·甘肃静宁一中一模)函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<⎪⎭⎫ ⎝⎛25f <⎪⎭⎫ ⎝⎛27fB .⎪⎭⎫ ⎝⎛27f <⎪⎭⎫ ⎝⎛25f <f (1)C .⎪⎭⎫ ⎝⎛27f <f (1)<⎪⎭⎫ ⎝⎛25fD .⎪⎭⎫ ⎝⎛25f <f (1)<⎪⎭⎫ ⎝⎛27f【解析】:函数f (x +2)是偶函数,则其图象关于y 轴对称,所以函数y =f (x )的图象关于x =2对称,则⎪⎭⎫⎝⎛25f =⎪⎭⎫ ⎝⎛23f ,⎪⎭⎫ ⎝⎛27f =⎪⎭⎫ ⎝⎛21f ,函数y =f (x )在[0,2]上单调递增,则有⎪⎭⎫ ⎝⎛21f <f (1)<⎪⎭⎫ ⎝⎛23f ,所以⎪⎭⎫ ⎝⎛27f <f (1)<⎪⎭⎫⎝⎛25f .故选C. 10.(2020·辽宁沈阳东北育才学校联考(二))函数f (x )是定义在R 上的奇函数,且f (-1)=0,若对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有x 1f (x 1)-x 2f (x 2)x 1-x 2<0成立,则不等式f (x )<0的解集为( )A .(-∞,-1)∪(1,+∞)B .(-1,0)∪(0,1)C .(-∞,-1)∪(0,1)D .(-1,0)∪(1,+∞)【解析】:令F (x )=xf (x ),因为函数f (x )是定义在R 上的奇函数,所以F (-x )=-xf (-x )=xf (x )=F (x ), 所以F (x )是偶函数,因为f (-1)=0,所以F (-1)=0,则F (1)=0,因为对任意x 1,x 2∈(-∞,0),且x 1≠x 2时,都 有x 1f (x 1)-x 2f (x 2)x 1-x 2<0成立,所以F (x )在(-∞,0)上单调递减,所以F (x )在(0,+∞)上单调递增,所以不等式f (x )<0的解集为(-∞,-1)∪(0,1),故选C.二、填空题1.若偶函数f (x )满足f (x )=x 3-8(x ≥0),则f (x -2)>0的条件为 .【解析】:由f (x )=x 3-8(x ≥0),知f (x )在[0,+∞)上单调递增,且f (2)=0.所以,由已知条件可知f (x -2)>0⇒f (|x -2|)>f (2).所以|x -2|>2,解得x <0或x >4. 2.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________; 【解析】 易知函数f (x )的定义域为R ,且f (x )为偶函数.当x ≥0时,f (x )=ln(1+x )-11+x 2,易知此时f (x )单调递增.所以f (x )>f (2x -1)⇒f (|x |)>f (|2x -1|),所以|x |>|2x -1|,解得13<x <1.3.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)= . 【解析】:因为f (x )为偶函数,所以f (-1)=f (1).又f (x )的图象关于直线x =2对称,所以f (1)=f (3).所以f (-1)=3.4.已知定义在R 上的函数f (x )满足f (x +2)=1f (x ),当x ∈[0,2)时,f (x )=x +e x ,则f (2020)=________.【解析】因为定义在R 上的函数f (x )满足f (x +2)=1f (x ),所以f (x +4)=1f (x +2)=f (x ),所以函数f (x )的周期为4.当x ∈[0,2)时,f (x )=x +e x ,所以f (2020)=f (505×4+0)=f (0)=0+e 0=1. 5.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )= .【解析】:根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.6.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为 .【解析】:因为f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0,所以f (-1)=-f (1)=0,且在(-∞,0)上也是增函数.因为f (x )-f (-x )x =2·f (x )x <0,即⎩⎪⎨⎪⎧x >0,f (x )<0或⎩⎪⎨⎪⎧x <0,f (x )>0,解得x ∈(-1,0)∪(0,1). 三、解答题1.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论.【解析】:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0.(2)f (x )为偶函数.证明如下:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),所以f (-x )=f (x ),所以f (x )为偶函数.2.已知函数f (x )对任意x ∈R 满足f (x )+f (-x )=0,f (x -1)=f (x +1),若当x ∈[0,1)时,f (x )=a x +b (a >0且a ≠1),且⎪⎭⎫ ⎝⎛23f =12.(1)求实数a ,b 的值;(2)求函数f (x )的值域.【解析】:(1)因为f (x )+f (-x )=0,所以f (-x )=-f (x ),即f (x )是奇函数. 因为f (x -1)=f (x +1),所以f (x +2)=f (x ),即函数f (x )是周期为2的周期函数,所以f (0)=0,即b =-1.又⎪⎭⎫⎝⎛23f =⎪⎭⎫⎝⎛21-f =⎪⎭⎫⎝⎛21-f =1-a =12,解得a =14. (2)当x ∈[0,1)时,f (x )=a x +b =x⎪⎭⎫⎝⎛41-1∈⎥⎦⎤⎢⎣⎡043-,,由f (x )为奇函数知,当x ∈(-1,0)时,f (x )∈⎪⎭⎫ ⎝⎛430,, 又因为f (x )是周期为2的周期函数,所以当x ∈R 时,f (x )∈⎪⎭⎫⎝⎛4343-,.。
函数的单调性和奇偶性的综合应用教案第一章:函数的单调性1.1 单调性的定义引导学生理解函数单调性的概念,了解函数单调递增和单调递减的定义。
通过示例来说明函数单调性的判断方法。
1.2 单调性的性质引导学生了解单调性的几个重要性质,如单调性的传递性、复合函数的单调性等。
通过示例来演示这些性质的应用。
第二章:函数的奇偶性2.1 奇偶性的定义引导学生理解函数奇偶性的概念,了解奇函数和偶函数的定义。
通过示例来说明函数奇偶性的判断方法。
2.2 奇偶性的性质引导学生了解奇偶性的几个重要性质,如奇偶性的对称性、奇偶性与单调性的关系等。
通过示例来演示这些性质的应用。
第三章:单调性和奇偶性的综合应用3.1 单调性和奇偶性的关系引导学生了解单调性和奇偶性之间的关系,如奇函数的单调性、偶函数的单调性等。
通过示例来说明单调性和奇偶性在解决问题时的综合应用。
3.2 单调性和奇偶性的应用实例给出一些实际问题,引导学生运用单调性和奇偶性的知识来解决这些问题。
通过示例来说明单调性和奇偶性在实际问题中的应用。
第四章:函数的单调性和奇偶性的判断4.1 单调性和奇偶性的判断方法引导学生了解判断函数单调性和奇偶性的方法,如导数法、图像法等。
通过示例来说明这些方法的运用。
4.2 单调性和奇偶性的判断实例给出一些具体的函数,引导学生运用判断方法来确定这些函数的单调性和奇偶性。
通过示例来说明单调性和奇偶性的判断过程。
第五章:函数的单调性和奇偶性的综合应用练习5.1 单调性和奇偶性的综合应用练习题提供一些练习题,引导学生运用单调性和奇偶性的知识来解决问题。
通过练习来巩固学生对单调性和奇偶性的理解和应用能力。
5.2 练习题解答和解析对练习题进行解答和解析,帮助学生理解和巩固解题思路和方法。
通过解答和解析来提高学生对单调性和奇偶性的应用能力。
第六章:函数的单调性和奇偶性在图像分析中的应用6.1 图像的单调区间引导学生如何通过函数图像来判断函数的单调区间。
函数奇偶性与单调性的综合应用专题【寄语:亲爱的孩子,将来的你一定会感谢现在拼命努力的自己!】教学目标:1.掌握函数的单调性与奇偶性的概念以及基本性质;.2.能综合运用函数的单调性与奇偶性来分析函数的图像或性质;3.能够根据函数的一些特点来判断其单调性或奇偶性. 教学重难点:函数单调性的证明;根据单调性或奇偶性分析函数的性质.【复习旧识】1.函数单调性的概念是什么?如何证明一个函数的单调性?2.函数奇偶性的概念是什么?如何证明一个函数的奇偶性?3.奇函数在关于原点对称的区间上,其单调性有何特点?偶函数呢?【新课讲解】一、常考题型1.根据奇偶性与单调性,比较两个或多个函数值的大小;2.当题目中出现“2121)()(x x x f x f -->0(或<0)”或“)(x xf >0(或<0)”时,往往还是考察单调性;3.证明或判断某一函数的单调性;4.证明或判断某一函数的奇偶性;5.根据奇偶性与单调性,解某一函数不等式(有时是“)(x f >0(或<0)”时x 的取值范围);6.确定函数解析式或定义域中某一未知数(参数)的取值范围.二、常用解题方法1.画简图(草图),利用数形结合;2.运用奇偶性进行自变量正负之间的转化;3.证明或判断函数的单调性时,有时需要分类讨论.三、误区1.函数的奇偶性是函数的整体性质,与区间无关;2.判断函数奇偶性,应首先判断其定义域是否关于原点对称;3.奇函数若在“0=x ”处有定义,必有“0)0(=f ”;4.函数单调性可以是整体性质也可以是局部性质,因题而异;5.运用单调性解不等式时,应注意自变量取值范围受函数自身定义域的限制.四、函数单调性证明的步骤:(1)根据题意在区间上设;(2)比较大小;(3)下结论.函数奇偶性证明的步骤: (1)考察函数的定义域;(2)计算的解析式,并考察其与的解析式的关系;(3)下结论.【典型例题】例1设)(x f 是定义在(-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若a =)31(log 2f ,b =)21(log 3f ,c =)2(-f ,则a ,b ,c 的大小关系是( ) A .c b a >> B .a c b >>C .b a c >>D .a b c >> 【考点】函数单调性;函数奇偶性,对数函数的性质.【解析】 因为log)<log)2=2,0<log)<log)=1,所以log)<log)<2. 因为f (x )在[0,+∞)上单调递增,所以f (log))<f (log))<f (2),因为f (x )是偶函数,所以a =)31(log 2f =f (-log))=f (log)), b =)21(log 3f =f (-log))=f (l og)), c =)2(-f =f (2).所以b a c >>.【答案】 C例2(2014?成都一模)已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时有>0.(1)判断f(x)在[﹣1,1]上的单调性,并证明你的结论;(2)解不等式:f(x+)<f();(3)若f(x)≤t2﹣2at+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.【考点】函数的奇偶性;函数单调性的判断与证明;函数的最值与恒成立问题.【解析】解:(1)任取﹣1≤x1<x2≤1,则f(x1)﹣f(x2)=f(x1)+f(﹣x2)=∵﹣1≤x1<x2≤1,∴x1+(﹣x2)≠0,由已知>0,又x1﹣x2<0,∴f(x1)﹣f(x2)<0,即f(x)在[﹣1,1]上为增函数;(2)∵f(x)在[﹣1,1]上为增函数,故有(3)由(1)可知:f(x)在[﹣1,1]上是增函数,且f(1)=1,故对x∈[﹣l,1],恒有f(x)≤1.所以要使f(x)≤t2﹣2at+1,对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,即要t2﹣2at+1≥1成立,故t2﹣2at≥0成立.即g(a)=t2﹣2at对a∈[﹣1,1],g(a)≥0恒成立,只需g(a)在[﹣1,1]上的最小值大于等于零.故g(﹣1)≥0,且g(1)≥0,解得:t≤﹣2或t=0或t≥2.【点评】本题主要考查单调性和奇偶性的综合应用及函数最值、恒成立问题的转化化归思想.【课堂练习】一、选择题1.函数y =2-|x |的单调递增区间是( )A .(-∞,+∞)B .(-∞,0]C .[0,+∞)D .(0,+∞) 2.已知f (x )是定义在R 上的偶函数,它在[0,+∞)上是减函数,如果f (lg x )>f (1),那么x 的取值范围是( )A .(,1)B .(0,)∪(1,+∞)C .(,10)D .(0,1)∪(10,+∞)3.下列函数中既是奇函数,又在定义域上是增函数的是( )A .y =3x +1B .f (x )=x 1C .y =1-x 1D .f (x )=x 34.如图是偶函数y =f (x )的局部图像,根据图像所给信息,下列结论正确的是( )A .f (-1)-f (2)>0B .f (-1)-f (2)=0C .f (-1)-f (2)<0D .f (-1)+f (2)<05.定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)上的图像与f (x )的图像重合,设a >b >0,给出下列不等式:①f (b )-f (-a )>g (a )-g (-b );②f (b )-f (-a )<g (a )-g (b );③f (a )-f (-b )>g (b )-g (-a );④f (a )-f (-b )<g (b )-g (-a ).其中成立的是________.6.设f (x )为定义在(-∞,+∞)上的偶函数,且f (x )在[0,+∞)上为增函数,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (-π)<f (3)<f (-2)D .f (-π)<f (-2)<f (3)7.已知f (x )是奇函数且对任意正实数x 1,x 2(x 1≠x 2),恒有2121)()(x x x f x f -->0,则一定正确的是( ) A .f (3)>f (-5)B .f (-5)>f (-3)C .f (-5)>f (3)D .f (-3)>f (-5)8.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,若f (a )<f (b ),则一定可得( )A .a <bB .a >bC .|a |<|b |D .0≤a <b 或a >b ≥09.若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是( )A .(0,10) B.⎪⎭⎫ ⎝⎛10101,精心整理 C.⎪⎭⎫ ⎝⎛∞+,101 D.⎪⎭⎫ ⎝⎛1010,∪(10,+∞) 二、选择题10.若奇函数f (x )在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f (-6)+f (-3)的值为________.11.若函数f (x )是R 上的偶函数,且在[0,+∞)上是减函数,则满足f (π)<f (a )的实数a 的取值范围是________.三、解答题12.已知函数f (x )=x 2-2|x |-1,-3≤x ≤3. (1)证明:f (x )是偶函数;(2)指出函数f (x )的单调区间;(3)求函数的值域.13.定义在[-2,2]上的偶函数f (x )在区间[0,2]上是减函数,若f (1-m )<f (m ).求实数m 的取值范围.14.已知函数f (x )=ax 2+bx +3a +b 为偶函数,其定义域是[a -1,2a ],求f (x )的值域.15.(1)已知y =f (x )是定义在R 上的奇函数,且在R 上为增函数,求不等式f (4x -5)>0的解集;(2)已知偶函数f (x )(x ∈R ),当x ≥0时,f (x )=x (5-x )+1,求f (x )在R 上的解析式.16.(本小题满分12分)设函数y =f (x )的定义域为R ,并且满足f (x +y )=f (x )+f (y ),f )(31=1,当x >0时,f (x )>0.(1)求f (0)的值;(2)判断函数的奇偶性;(3)如果f (x )+f (2+x )<2,求x 的取值范围. 参考答案BCDCADCD5.答案 ①③解析 -f (-a )=f (a ),g (-6.b )=g (b ),∵a >b >0,∴f (a )>f (b ),g (a )>g (b ).∴f (b )-f (-a )=f (b )+f (a )=g (b )+g (a )>g (a )-g (b )=g (a )-g (-b ),∴①成立.又∵g(b)-g(-a)=g(b)-g(a),∴③成立.10.答案-15 11.答案(-π,π)解析若a≥0,f(x)在[0,+∞)上是减函数,且f(π)<f(a),得a<π.若a<0,∵f(π)=f(-π),则由f(x)在[0,+∞)上是减函数,得知f(x)在(-∞,0]上是增函数.由于f(-π)<f(a),得到a>-π,即-π<a<0.由上述两种情况知a∈(-π,π).12.解析(1)略(2)f(x)的单调区间为[-3,-1],[-1,0],[0,1],[1,3].(3)f(x)的值域为[-2,2].13.解析∵f(x)为偶函数,∴f(1-m)<f(m)可化为f(|1-m|)<f(|m|),又f(x)在[0,2]上是减函数,∴|1-m|>|m|,两边平方,得m<,又f(x)定义域为[-2,2],∴解之得-1≤m≤2,综上得m∈[-1,).14.解∵f(x)=ax2+bx+3a+b是定义在区间[a-1,2a]上的偶函数,∴∴∴f(x)=x2+1.∴f(x)=x2+1在上的值域为.15.解(1)∵y=f(x)在R上为奇函数,∴f(0)=0.又f(4x-5)>0,即f(4x-5)>f(0),又f(x)为增函数,∴4x-5>0,∴x>.即不等式f(4x-5)>0的解集为.(2)当x<0时,-x>0,∴f(-x)=-x(5+x)+1,又f(-x)=f(x),∴f(x)=-x(5+x)+1.∴f(x)=?x≥0?,,-x?5+x?+1?x<0?.))16.解(1)令x=y=0,则f(0)=f(0),∴f(0)=0.(2)令y=-x,得f(0)=f(x)+f(-x)=0,∴f(-x)=-f(x),故函数f(x)是R上的奇函数.(3)任取x1,x2∈R,x1<x2,则x2-x1>0.∵f(x2)-f(x1)=f(x2-x1+x1)-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0,∴f(x1)<f(x2).故f(x)是R上的增函数.∵f=1,∴f=f=f+f=2.∴f(x)+f(2+x)=f[x+(2+x)]=f(2x+2)<f.又由y=f(x)是定义在R上的增函数,得2x+2<,解之得x<-.故x∈.。