151有理数的乘方运算教案-人教版七年级数学上册
- 格式:docx
- 大小:131.27 KB
- 文档页数:4
数学:1.5《有理数的乘方》教案(人教版七年级上)一. 教学内容:有理数的乘方1. 乘方的意义,会用乘法的符号法则进行乘方运算;2. 会用科学记数法表示较大的数,理解近似数和有效数字表示的意义;3. 了解科学记数法在实际生活中的作用。
二. 知识要点:1. 有理数乘方的意义求n个相同因数的积的运算,叫做乘方。
一般地,记作a n。
乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数,a n从运算的角度读作a的n次方,从结果的角度读作a的n次幂。
注:(1)一个数可以看作这个数本身的一次方。
(2)当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写小些。
(3)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方的运算的结果。
2. 乘方运算的性质(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)任何数的偶次幂都是非负数;(4)-1的偶次幂得1,-1的奇次幂得-1;1的任何次幂都得1;(5)现在学习的幂的指数都是正整数,在这个条件下,0的任何次幂都得0。
3. 有理数的混合运算顺序(1)先乘方,再乘除,最后加减。
(2)同级运算,从左到右进行。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
4. 科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,像这样的记数方法叫作科学记数法。
注:科学记数法是有理数的一种记数形式,这种形式就是a×10n,它由两部分组成:a和10n,两者相乘,其中a大于或等于1,且小于10(即1≤a<10),它是由原来的小数点向左移动后的结果,也就是说,a 与原数只是小数点位置不同。
指数n是正整数,等于原数化为a时小数点移动的位数,用科学记数法表示一个数时,10的指数比原数的整数位数小1。
5. 近似数和有效数字(1)近似数与实际完全符合的数是准确数。
与实际有一点偏差但又非常接近的数称为近似数。
1.5.1《有理数的乘方》教案一、 教学目标(一)知识技能1、理解有理数乘方的意义, 能明确底数、指数、幂这几个概念的意义2、掌握有理数乘方的运算(二)过程与方法:通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。
(三)情感态度与价值观:1.在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性。
2.培养学生勤于思考、认真仔细和勇于探索的精神.教学重、难点:教学重点:有理数乘方的概念及运算。
教学难点:有理数乘方运算的符号法则。
二、教学设计(一)有效导入,明确目标提出问题:(1)边长为2的正方形的面积怎么计算?(2)棱长为2的正方体的体积怎么计算?(3)把一张足够大的厚度为0.1毫米的纸对折一次的厚度怎样计算?那么连续对折2次的厚度又怎样计算呢?连续对折3次,4次,...,30次又怎样计算呢? 依次引导学生完成三个问题。
导入新课。
(二)自主学习,合作探究阅读教材41页,完成以下问题:1、什么叫做乘方?什么叫做幂?2、 所代表的意义是什么?请说出 的读法。
3、什么叫做底数?什么叫做指数?n a n a学生以组为单位,展开活动,讨论交流。
教师在学生活动时,深入学生的活动中去,了解学生的讨论情况,帮助各别有困难的小组分析问题,提出思考方向。
(三)大组汇报,教师点拨1、什么是乘方?什么叫做幂?求n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。
对回答问题的小组进行评价,板书。
2、 所代表的意义是什么?请说出 的读法。
n 个相同的因数a 相乘,即 ,记作 ,读作“a 的n 次方”,也可读作“a 的n 次幂”。
对回答问题的小组进行评价,板书。
3、什么是底数?什么叫做指数?在 n a 中, a 叫做底数, n 叫做指数。
对回答问题的小组进行评价,板书。
教师补充提出问题:在教材,你还发现哪些其他的知识,请你提出来有同学们一起分享你的发现!教师鼓励学生发现知识,对发现知识的同学所在的小组进行评价。
人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计一. 教材分析人教版数学七年级上册1.5.1《有理数的乘方(1)》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算法则的理解。
本节课主要让学生掌握有理数的乘方运算,为后续学习幂的运算、指数函数等知识打下基础。
教材通过具体的例子引导学生探究有理数乘方的规律,从而让学生自主发现并掌握有理数乘方的法则。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除运算较为熟悉。
但是,对于有理数的乘方运算,学生可能存在一定的困难,因为乘方运算涉及到多个有理数的乘积,运算规则相对复杂。
因此,在教学过程中,需要引导学生通过实例探究有理数乘方的规律,让学生在理解的基础上掌握乘方运算。
三. 教学目标1.理解有理数乘方的概念,掌握有理数乘方的法则。
2.能够熟练进行有理数的乘方运算。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:有理数乘方的概念,有理数乘方的法则。
2.教学难点:有理数乘方运算的规律,有理数乘方在实际问题中的应用。
五. 教学方法1.实例导入:通过具体的例子引导学生探究有理数乘方的规律。
2.小组讨论:让学生分组讨论,共同发现有理数乘方的法则。
3.练习巩固:通过大量练习,让学生熟练掌握有理数乘方运算。
4.实际应用:引导学生运用有理数乘方知识解决实际问题。
六. 教学准备1.教学课件:制作课件,展示有理数乘方的例子和知识点。
2.练习题:准备适量练习题,巩固学生对有理数乘方的掌握。
3.教学道具:准备一些教学道具,如卡片、小黑板等,方便学生直观地理解乘方运算。
七. 教学过程1.导入(5分钟)利用实例引入有理数乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。
让学生初步认识有理数乘方。
2.呈现(10分钟)展示多个有理数乘方的例子,引导学生发现有理数乘方的法则。
人教版七年级数学上册1.5《有理数的乘方》教学设计一. 教材分析人教版七年级数学上册1.5《有理数的乘方》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算的理解。
本节内容主要介绍有理数的乘方,包括乘方的定义、乘方的运算规则以及乘方在实际问题中的应用。
通过本节课的学习,学生能够掌握有理数乘方的基本概念和运算方法,提高解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除、相反数、绝对值等概念有了初步的认识。
但是,对于有理数的乘方,学生可能存在以下问题:1. 对乘方的概念理解不深,容易与乘法混淆;2. 对乘方的运算规则掌握不牢固,容易出错;3. 不知道如何将乘方运用到实际问题中。
三. 教学目标1.理解有理数的乘方概念,掌握有理数乘方的运算规则;2. 能够运用乘方解决实际问题;3. 培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.有理数的乘方概念;2. 有理数乘方的运算规则;3. 乘方在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考,提高学生的数学思维能力和解决问题的能力。
六. 教学准备1.PPT课件;2. 相关练习题;3. 教学素材(如实际问题案例等)。
七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的实际问题,如计算折扣、计算利息等,引导学生发现这些问题都可以通过乘方来解决。
从而引出本节课的主题——有理数的乘方。
2.呈现(10分钟)通过PPT课件,介绍乘方的定义,如a的n次方表示n个a相乘,同时强调乘方与乘法的区别。
接着,讲解乘方的运算规则,如a的m次方乘以a的n次方等于a的m+n次方,a的m次方除以a的n次方等于a的m-n次方等。
3.操练(10分钟)让学生独立完成一些乘方的运算题,如3的2次方、5的3次方等,同时引导学生总结乘方的运算规则。
《有理数的乘方》第一课时(教案设计)一、教学目标知识技能目标:1让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;2掌握有理数乘方的符号法则及相关性质,能够正确进行有理数的乘方运算;素质能力目标:1让学生经历知识的发生与发展过程,从中感受转化的数学思想;2培养学生观察、比较、分析、归纳、概括与动手操作的能力。
二、教学重难点重点:理解有理数乘方的意义;会进行有理数乘方的运算。
难点:透彻理解乘方、幂、底数、指数这几个概念的意义及相互关系。
三、教学方法本节课学法指导上着重引导学生通过观察、比较、分析、归纳、概括来研究规律性问题,同时,鼓励学生自主探索,解决问题。
教学中借助多媒体辅助教学,投影例题和练习,采取如下教法:(1)用情景导入法让学生感受引入概念的必要性。
(2)用讲授法讲清概念的形成过程,剖析概念的实质。
(3)用讨论法激起学生对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。
(4)用练习法使学生对概念的理解更深刻、更透彻。
四、课时安排1课时五、教学过程(一)创设情境,导入新课珠穆朗玛峰是世界的最高峰,它的海拔高度是8844.43米。
把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。
你信吗?带着这个疑问开启本节课的学习合作探究要求:把一张纸进行对折、再对折……并回答下面的问题,并把答案填写在报告单上(1)对折一次有几层? 2(2)对折二次有几层?2×2(3)对折三次有几层?2×2 ×2(4)对折四次有几层?2×2 ×2 ×220个……(5)对折二十次有几层?2×2 ×2 ……×2×2 ×2(6)对折三十次呢? 2×2 ×2 ……×2×2 ×2问题:像这样的式子表示起来很复杂,那么有没有一种简单的记法呢?(二)新知探究1、通过实例,引出乘方的概念边长为2的正方形的面积是2×2, 简记作22,读作2的二次方(或2的平方); 棱长为2的正方体的体积是2×2×2,简记作23,读作2的三次方(或2的立方). 那么:类似地,2×2×2×2×2 简记作25,读作2的五次方2×2 ×2 ……×2×2 ×2 简记作230,读作2的三十次方2×2 ×2 ……×2×2 ×2 简记作2n ,读作2的n 次方若把2换成有理数aa ×a ×… ×a ×a 简记作 a n 读作a 的n 次方归纳:(1)n 个相同的因数a 相乘,即×a ×… ×a =n a ,读作a 的n 次方求几个相同因数的积的运算,叫做乘方。
人教版七年级数学上册1.5.1《有理数的乘方》教学设计一. 教材分析《有理数的乘方》是人教版七年级数学上册1.5.1的内容,主要介绍了有理数的乘方概念、乘方法则和乘方运算。
本节内容是在学生掌握了有理数的概念和运算基础上进行学习的,对于学生来说,乘方是一个比较抽象的概念,需要通过实例和练习来理解和掌握。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的概念和运算规则有一定的了解。
但是,对于乘方这一概念,学生可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。
三. 教学目标1.理解有理数的乘方概念,掌握有理数的乘方法则。
2.能够进行有理数的乘方运算,并解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.有理数的乘方概念的理解。
2.乘方法则的掌握和运用。
3.有理数乘方运算的熟练掌握。
五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握乘方概念和乘方法则。
2.问题解决法:通过解决实际问题,让学生运用乘方知识,巩固所学内容。
3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括乘方概念、乘方法则和乘方运算的实例和练习题。
2.练习题:准备一些有关有理数乘方的练习题,用于巩固和拓展学生的知识。
3.教学素材:准备一些与乘方相关的实际问题,用于引导学生运用乘方知识解决实际问题。
七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,如“一个物体每次翻倍,翻倍3次后的数量是多少?”来引导学生思考和引入乘方概念。
2.呈现(15分钟)教师通过PPT呈现乘方概念和乘方法则的定义和规则,并用具体的例子来解释和展示乘方的运算过程。
同时,教师引导学生观察和总结乘方的规律。
3.操练(10分钟)教师给出一些有理数的乘方运算题目,让学生独立完成,并及时给予反馈和解释错误的答案。
4.巩固(10分钟)教师学生进行小组合作学习,让学生分组讨论和解决一些与乘方相关的实际问题。
人教版七年级数学上册:1.5.1《乘方》教学设计1一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一部分内容。
本节内容是在学生已经掌握了有理数的乘法、平方根的概念以及性质的基础上进行的。
通过学习乘方,使学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的乘法和平方根的概念有一定的了解。
但是,对于乘方的概念和运算法则可能还比较陌生,需要通过具体例子和实际操作来逐步理解和掌握。
三. 教学目标1.知识与技能目标:学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。
2.过程与方法目标:通过具体例子和实际操作,学生能够逐步理解和掌握乘方的概念和运算法则。
3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。
四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。
2.教学难点:乘方的运算法则的应用。
五. 教学方法1.情境教学法:通过具体例子和实际操作,引导学生理解和掌握乘方的概念和运算法则。
2.启发式教学法:通过提问和讨论,激发学生的思维,培养学生的解决问题的能力。
六. 教学准备1.教学PPT:制作教学PPT,包括具体的例子和实际操作的演示。
2.练习题:准备一些练习题,用于巩固学生的理解和掌握。
七. 教学过程通过一个实际问题,引出乘方的概念。
例如,一个正方形的边长为2,求它的面积。
学生可以通过计算得出答案,进而引出乘方的概念。
2.呈现(10分钟)通过PPT展示乘方的定义和运算法则,结合具体的例子进行解释和演示。
让学生直观地理解乘方的概念和运算法则。
3.操练(10分钟)让学生进行一些乘方的运算练习,巩固对乘方概念和运算法则的理解。
可以设置一些不同难度的题目,让学生根据自己的能力选择练习。
4.巩固(5分钟)通过一些实际问题,让学生运用乘方进行解决。
例如,计算一些数的乘方,或者解决一些与乘方相关的实际问题。
人教版数学七年级上册1.5.1《有理数的乘方》教学设计1一. 教材分析《有理数的乘方》是人教版数学七年级上册第1章第5节第1课时的一节内容。
本节课主要介绍有理数的乘方概念、性质及其运算方法。
通过本节课的学习,学生能够理解有理数乘方的含义,掌握有理数乘方的运算规则,并能够运用乘方解决一些实际问题。
教材通过例题和练习题的形式,帮助学生巩固乘方的运算方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析七年级的学生已经学习了有理数的加减乘除运算,对数学运算有一定的基础。
但是,对于有理数的乘方,学生可能首次接触,理解上可能会有一定的困难。
因此,在教学过程中,需要通过具体实例和实际问题,引导学生理解乘方的概念和运算方法,并通过练习题巩固学生的理解。
三. 教学目标1.理解有理数的乘方概念,掌握有理数乘方的运算规则。
2.能够运用乘方解决一些实际问题。
3.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数的乘方概念的理解。
2.有理数乘方的运算规则的掌握。
五. 教学方法采用问题驱动法和案例教学法。
通过实际问题和具体实例,引导学生探索乘方的概念和运算方法,并通过练习题巩固学生的理解。
同时,采用小组讨论和互助学习的方式,培养学生的合作意识和解决问题的能力。
六. 教学准备1.PPT课件。
2.练习题。
3.教学黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容:小明有一袋糖果,每袋有3个糖果,他吃掉了2袋,然后又吃掉了剩下的糖果的2倍,请问小明一共吃掉了多少个糖果?2.呈现(10分钟)通过PPT课件,呈现有理数的乘方概念和运算规则。
解释有理数的乘方是指将一个有理数连乘若干次,乘方的结果是这个有理数的连乘积。
同时,介绍有理数乘方的运算规则,例如:a^m * a^n = a^(m+n),(a b)^n = a^n b^n, etc.3.操练(10分钟)让学生进行一些有理数乘方的运算练习,教师巡回指导,并给予反馈。
有理数的乘方(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第一课时),内容包括:有理数的乘方、幂、底数、指数的概念及意义、有理数的乘方运算.2.内容解析《有理数的乘方》是义务教育课程标准实验教科书新人教版《数学》七年级上册第一章的内容,有理数的乘方是有理数的一种基本运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和八年级数学开方、整数指数幂的基础,起到承前启后、铺路架桥的作用.基于以上分析,确定本节课的教学重点为:理解并掌握有理数的乘方、幂、底数、指数的概念及意义.二、目标和目标解析1.目标(1)理解并掌握有理数的乘方、幂、底数、指数的概念及意义.(转化思想)(2)能够正确进行有理数的乘方运算.(运算能力)2.目标解析通过自主学习理解有理数乘方的乘方、底数、指数、幂的概念.通过探究掌握乘方运算的符号法则并能正确进行乘方运算.通过现实情境及题组练习让学生经历探索乘方意义及乘方符号法则的过程,发展学生的合情推理能力和演绎推理能力,体会由特殊到一般的数学思想及转化的数学思想.让学生体会在具体的情景中从数学角度去发现和解决问题,在与他人合作交流的过程中,较好地理解他人的思考方法和结论.在乘方运算中增强学生的数感,感悟乘方符号的简捷美;让学生在经历发现问题、探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,增强学生学好数学的自信心.三、教学问题诊断分析七年级学生思维比较活跃,喜欢发表自己的见解而且具备小组合作学习的经验,从知识体系上来说,学生已经学习了有理数的加、减、乘、除运算,对有理数运算法则及特点已经有了初步认识,具备了学习本节课的必要条件.但是学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象.所以在本节课的教学中应予以简单明白,深入浅出的分析.基于以上学情分析,确定本节课的教学难点为:掌握有理数乘方运算的符号法则.四、教学过程设计(一)情境引入某种细胞每过30分钟便由1个分裂成2个. 经过5时,这种细胞由1个能分裂成多少个?(二)自学导航边长为2cm 的正方形的面积是2×2=4(cm 2);棱长为2cm 的正方体的体积2×2×2=8(cm 3).2×2记作22,读作“2的平方”(或“2的二次方”);2×2×2记作23,读作“2的立方”(或“2的三次方”).2×2×2×2×2×2×2×2×2×2记作_____,读作___________.(-2)×(-2)×(-2)×(-2)记作_____,读作___________.(-52)×( -52)×(-52)×(-52)×(-52)记作______,读作___________. 【归纳】一般地,n 个相同的因数a 相乘,记作a n ,读作“a 的n 次幂(或a 的n 次方)”,即乘方的定义:这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素:一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.【迁移应用】1.(-5)3的底数是 ,指数是 ,(-7)6表示6个 相乘,读作 ,也读作-7的 .2.(−32)5表示 个 相乘,读作 的 次方,也读作 的 次幂,其中-32叫做 ,6叫做 .(三)合作探究探究1:(-2)4与-24一样吗?为什么?(-2)4表示4个-2相乘,即:(-2)×(-2)×(-2)×(-2)-24表示4个2相乘的相反数,即:-2×2×2×2(-2)4与-24互为相反数.【归纳】负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来. 探究2:432⎪⎭⎫ ⎝⎛与324一样吗?为什么? 32×32×32×32记作432⎪⎭⎫ ⎝⎛;32222⨯⨯⨯记作324. 432⎪⎭⎫ ⎝⎛与324是不相同的. 【归纳】分数的乘方,在书写时一定要把整个分数(连同负号)用小括号括起来.(四)考点解析例1.下列对于-34的叙述正确的是( )A.读作“-3的4次幂”B.底数是-3,指数是4C.表示4个3相乘的积的相反数D.表示4个-3相乘的积【迁移应用】1.填空:2.-35的4次幂记为( )A.-345B.-(35)4C.-(−35)4D. (−35)4例2.计算:(1)34=__________=_____; (2)(-3)4=____________________=_____;(3)53=________=_____; (4)(-5)3=_______________=_____;(5)(34)3=_________=_____; (6)(−34)3=_________________=_____;(7)-34=___________=_____; (8)(-1)2034=__________________=_____.【迁移应用】1.下列各数:-(-2),(-2)2,-22,(-2)3,其中负数的个数为( )A.1B.2C.3D.42.下列各组数中,其值相等的是( )A.23和32B.-32和(-3)2C.-23和(-2)3D. (−23)3和-233 3.计算:(1)63; (2)-53; (3)(-4)4; (4)06; (5)(-2)7; (6)(-0.3)3; (7)(-12)5. 解:(1)原式=6×6×6=216;(2)原式=-5×5×5=-125;(3)原式=(-4)×(-4)×(-4)×(-4)=256;(4)原式=0;(5)原式=(-2)×(-2)×(-2)×(-2)×(-2)×(-2)×(-2)= -128;(6)原式=(-0.3)×(-0.3)×(-0.3)=-0.027;(7)原式= (-12)×(-12)×(-12)×(-12)×(-12)=-132.(五)自学导航不计算下列各式,你能确定其结果的符号吗?从计算结果中,你能得到什么规律?⑴(-2)51; ⑴(-2)50; ⑴250; ⑴251;⑴(-1)2012; ⑴(-1)2013; ⑴02012; ⑴12013.【归纳】(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(六)考点解析例3.(1)比较各组中两个数的大小:⑴12_____21; ⑴23_____32; ⑴34____43; ⑴45____54.(2)将上题的结果进行归纳,比较n n+1与(n+1)n (n 为正整数)的大小.(3)根据归纳的结论,比较999998与998999的大小.解:(2)当n <3时,n n+1<(n+1)n ;当n≥3时,n n+1>(n+1)n .(3)999998<998999【迁移应用】1.比较大小:(1)(32)2_____(32)3; (2)(12)4_____(13)4.2.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则( )A.a>b>cB.b>c>aC.b>a>cD.c>a>b3.将下列各数用“<”号连接起来:(1)23,(23)2,(23)3,(23)4; (2)15,25,35,45.解:(1)23=5481, (23)2=49=3681,(23)3=827=2481,(23)4=1681;所以 (23)4<(23)3<(23)2<23.(2)15=1,25=32,35=243,45=1024;所以15<25<35<45.例4.计算:(1)2233(-)(-)⨯ (2)-23×(-32) (3)64÷(-2)5(4)(-4)3÷(-1)200+2×(-3)4 22236;33解:(1)(-)(-)=9(-)⨯⨯=-(2)-23×(-32)=-8×(-9)=72;(3)64÷(-2)5=64÷(-32)=-2;(4)(-4)3÷(-1)200+2×(-3)4=-64÷1+2×81=98思考:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?【运算顺序】先算乘方,后算乘除;如果遇到括号就先进行括号里的运算.【迁移应用】计算:(1)−23÷49×(−23)2; (2)−32÷23×(1−13)2; (3)(−1)9×(−2)2017×(−12)2016.(1)解原式 =−8÷49×49 =−8×94×49=-8; (2)解原式=−9×32×49=−6;(3)解原式=(−1)×(−2)×[(−2)2016×(−12)2016]=2×[(−2)×(−12)]2016=2×12016=2×1=2. 例 5.你喜欢吃拉面吗?拉面馆的师傅.用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出______根细面条;(2)若拉出128根细面条,则捏合的次数是多少?解:(1)根据题意得4×2=8故第三次后可以拉出8根细面条;(2)由于27=128,因此若拉出128根细面条,则捏合的次数是7.【迁移应用】当你把纸对折一次时,就得到2层,当对折两次时,就得到4层,照这样折下去.(1)当对折3次时,层数是多少;(2)如果纸的厚度是0.1mm ,求对折8次时,总厚度是多少mm ?(1)解:因为23=8,所以对折3次时,层数是8;(2)解:28×0.1=256×0.1=25.6(mm ),所以总厚度是25.6mm .例6.已知(a -7)2+|b+6|=0,求(-a -b)100的值.解:因为(a -7)2不小于0,|b+6|不小于0,(a -7)2+|b+6|=0,所以(a -7)2=0,|b+6|=0.所以a=7,b=-6.当a=7,b=-6时,原式=[-7-(-6)]100=(-1)100=1.【迁移应用】1.若|x+2|+(y -3)2=0,则x -y 的值为( )A.-5B.5C.1D.-12.若|a -1|+(a -b -2)2=0,则下列式子正确的是( )A.a=1,b=1B.a+b=1C.a+b=0D.a -b=03.|a -4|与(b+5)2互为相反数,则b a 的值为_______.例7.(1)根据已知条件填空:⑴已知(-1.2)2=1.44,计算:(-120)2=_______,(-0.012)2=________.⑴已知(-3)3=-27,计算:(-30)3=________,(-0.3)3=________.(2)观察上述计算结果我们可以看出:⑴当底数的小数点向左(或右)每移动位,它的二次幂的小数点向左(或右)移动_____位; ⑴当底数的小数点向左(或右)每移动一位,它的三次幂的小数点向左(或右)移动_____位.【迁移应用】1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,猜想:32025的个位上的数是_____.2.给出下列两组算式:(4×5)2与42×52; [(-13)×9]3与(-13)3×93. (1)每组的结果相等吗?(2)想一想:当n 是正整数时,(a·b)n =______.(3)用你发现的规律计算:(-0.125)20×820.解:(1)相等.(3)(-0.125)20×820=(-0.125×8)20=(-1)20=1.(七)小结梳理五、教学反思。
人教版七年级上册15《有理数的乘方》教学设计有理数的乘方》教学设计有理数的乘方》是新人教版七年级数学第一章有理数中第五节内容,是学生研究有理数的加、减、乘、除四种运算后的一个有关有理数的运算。
教材分析:有理数的乘方》是有理数乘法中相同因数相乘的简单表示方法,它作为基础知识,对学生以后研究科学记数法,进行幂的五种运算、整式加减等知识有很大帮助。
学情分析:学生在小学阶段学过边长为a的正方形的面积a 2.正方体的体积a3,同时,学生已经熟练掌握有理数乘法的运算,为学生研究有理数的乘方奠定了基础。
教学目标:知识目标:理解有理数乘方的意义,能根据乘方的意义进行有理数的乘方运算。
能力目标:通过学生自学、观察、思考,小组讨论、总结等活动,让学生体会从特殊到一般的归纳过程,培养学生的语言表达能力,学生的观察力、倾听及自学的能力,提高学生的逻辑思维能力。
情感方针:通过小组讨论,配合探究,配合分享成功的喜悦,感触感染团结合作的团队精神,激发学生研究数学的乐趣。
教学重点:有理数乘方的意义。
第1页教学难点:负数的正整数幂的正负。
教学方法:学生自学与四环节教学法相结合。
教学过程设计一)体验感触感染,激发乐趣做游戏:拿出课前让学生准备好的纸,让学活泼手折纸。
半数1次后,纸变成了几层?半数2次后变成几层?按照刚才折纸的规律,将一张充足长的纸继续20次,应该是多少层?第1次对折的层数是:2第2次对折的层数是:2×2第3次半数的层数是:2×2×2第20次对折的层数是:2×2×2×2……×220个220个2相乘的结果是多少?如果这张纸的厚度为0.1毫米,那么折纸的高度比我们学校的教学楼要高得多,你相信吗?学了今天的内容你们就会明白了。
(板书课题——有理数的乘方)设计意图】学生亲主动手,切实体验感触感染,激发其追求规律的欲望,为新课研究作铺垫。
二)比较概括,提炼概念问题:1.边长为5的正方形的面积是多少?2.棱长为5的正方体的体积为多少?(课件出示)5×5=52=255×5×5=53=125第2页我们知道:52读作5的平方;53读作5的立方。
人教版七年级数学上册:1.5.1《乘方》教学设计一. 教材分析人教版七年级数学上册1.5.1《乘方》是学生在学习了有理数乘法和算术平方根的基础上,进一步探究乘方的概念及运算法则的一节课。
本节课的内容在数学知识的体系中起着承前启后的作用,既是对前面所学内容的延伸,又是后面学习指数运算、对数等知识的基础。
教材通过丰富的实例,引导学生探究乘方的规律,让学生在自主学习的过程中体会数学的归纳与演绎思想。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,对于乘法和算术平方根的概念有一定的了解。
但是,对于乘方的概念和运算法则,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的实际情况,用生动形象的实例引导学生理解乘方的本质,逐步掌握乘方的运算法则。
三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握乘方的运算法则,能正确进行乘方运算。
2.过程与方法:通过观察、分析、归纳等方法,引导学生探究乘方的规律,培养学生的逻辑思维能力和归纳演绎能力。
3.情感态度与价值观:让学生在自主学习的过程中,体验数学的乐趣,培养对数学的兴趣,增强自信心。
四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。
2.教学难点:乘方运算的规律,乘方在实际问题中的应用。
五. 教学方法采用情境教学法、问题教学法和小组合作学习法。
情境教学法可以帮助学生形象地理解乘方的概念;问题教学法可以激发学生的思考,引导学生自主探究乘方的规律;小组合作学习法可以培养学生的团队合作精神,提高学生的交流表达能力。
六. 教学准备1.教师准备:教材、PPT、黑板、粉笔等教学工具。
2.学生准备:预习教材,了解乘方的基本概念。
七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:计算3的4次方。
让学生尝试解答,引导学生思考乘方是什么。
2.呈现(10分钟)讲解乘方的概念,用PPT展示乘方的定义和运算法则。
让学生跟随教师一起,用归纳法探究乘方的规律。
人教版数学七年级上册1.5.1《乘方》教学设计1一. 教材分析《乘方》是人教版数学七年级上册的教学内容,本节课主要让学生掌握乘方的概念,理解乘方的运算规律,并能够运用乘方解决实际问题。
通过本节课的学习,为学生后续学习幂的运算、指数函数等知识打下基础。
二. 学情分析七年级的学生已经掌握了有理数的运算,对数学概念有一定的理解能力,但乘方概念较为抽象,学生可能存在一定的理解难度。
因此,在教学过程中,需要通过具体实例、生活中的实际问题引导学生理解和掌握乘方。
三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握乘方的运算规律,能够正确进行乘方运算。
2.过程与方法:通过观察、思考、交流、归纳等方法,培养学生主动探索、合作学习的习惯。
3.情感态度与价值观:激发学生学习乘方的兴趣,感受数学在生活中的运用,提高学生对数学的热爱。
四. 教学重难点1.重点:乘方的概念,乘方的运算规律。
2.难点:乘方在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生理解和掌握乘方。
2.合作学习法:分组讨论,让学生在合作中思考,提高学生解决问题的能力。
3.归纳教学法:引导学生观察、思考、归纳乘方的运算规律。
六. 教学准备1.教学课件:制作乘方的概念、运算规律的课件。
2.实例材料:准备一些生活中的实际问题,用于引导学生运用乘方解决实际问题。
3.练习题:准备一些有关乘方的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如“计算一瓶饮料中有多少粒葡萄”,引导学生思考如何用数学方法表示这个问题。
通过讨论,让学生发现需要用到乘方来解决这个问题。
2.呈现(15分钟)介绍乘方的概念,讲解乘方的运算规律。
通过示例,让学生了解乘方的意义,掌握乘方的运算方法。
3.操练(15分钟)让学生分组进行乘方运算练习,教师巡回指导。
在此过程中,引导学生发现乘方的运算规律,总结乘方的运算方法。
4.巩固(10分钟)让学生运用乘方解决实际问题,如计算游泳池中水温的变化等。
人教版数学七年级上册1.5.1《有理数的乘方》教学设计2一. 教材分析《有理数的乘方》是人民教育出版社出版的初中数学七年级上册第1章第5节的内容。
这一节主要介绍了有理数的乘方概念、性质及运算法则。
通过学习,学生能够理解有理数乘方的含义,掌握有理数乘方的基本性质,熟练运用有理数乘方的运算法则进行计算。
本节课的内容是初中有理数乘方的基础,对于后续的学习具有重要意义。
二. 学情分析学生在七年级上册已经学习了有理数的加减乘除运算,对于有理数的基本概念和运算规则有一定的了解。
但是,对于有理数的乘方,学生可能还比较陌生,需要通过实例和讲解来理解和掌握。
此外,学生可能对于负数的乘方和分数的乘方存在一定的困惑,需要老师在教学中进行重点解释和引导。
三. 教学目标1.知识与技能目标:学生能够理解有理数的乘方概念,掌握有理数乘方的性质和运算法则,能够运用有理数乘方的知识解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,学生能够自主探索有理数乘方的规律,培养学生的逻辑思维能力和运算能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服学习中的困难,增强自信心,培养对数学学科的兴趣。
四. 教学重难点1.教学重点:有理数的乘方概念、性质及运算法则。
2.教学难点:负数的乘方、分数的乘方及其运算规则。
五. 教学方法1.情境教学法:通过生活实例和趣味问题,激发学生的学习兴趣,引导学生自主探索有理数乘方的规律。
2.讲解法:老师对有理数乘方的概念、性质和运算法则进行详细讲解,让学生清晰地理解知识点。
3.互动教学法:老师与学生进行提问、讨论等互动,引导学生积极思考,提高学生的参与度。
4.练习法:布置针对性的习题,让学生在实践中巩固有理数乘方的知识。
六. 教学准备1.教学课件:制作课件,展示有理数乘方的知识点、实例和练习题。
2.教学素材:收集与有理数乘方相关的生活实例和趣味问题。
3.习题库:准备一定数量的有理数乘方练习题,用于课堂巩固和课后作业。
施秉县第三中学教师集体备课教案
主备教师小组教师
上课时间年月日(星期)第周第课时累计课时课题 1.5.1有理数的乘方运算
教学目标:
1、理解乘方的意义,探究有理数乘方的符号法则,会进行乘方的运算
2、通过合作交流及独立思考,培养学生正确迅速的运算及探究新知识的能力。
教学重点:
乘方的意义及运算
教学难点:
乘方的运算
教学方法及措施:
指导预习,合作探究,点拨总结直观教学法、
教学过程修订、增减
课堂流程
【学习流程】:自主学习+展示+点评+练习
【授课流程】:导入+小组对话+小组展示+阅读训练+巩固练习
一、自主学习
乘法运算的符号法则及运算方法:
多个不为0的数相乘,积的符号怎样确定?
二、新课
a a a,记作,读
1. 导学:一般地,几个相同因数a相乘,即........
作
求n个相同因数的,叫作乘方,乘方的结果叫做。
在n a中,a叫做,n叫作。
当n a看作a的n次方的结果时,也可读作。
中.考.资.源.网
特别地一个数也可以看作这数本身的一次方,如5就是5的一次,即1
=,指数为1通常不写。
55
2. 例题讲评
3.课堂练习
4.小结
5.布置作业
导学案
一、预习检测
计算
(
23=)
24=…
22=)
(
(
(
)
21=)
(3=
(
-,)
(4=
-,
-,)
)2
(
)2
(
)
(2=
(1=
)2
(
)2
-,)
)2
(6=
-
(
)
(
)2
(5=
-,)。