仪器分析色谱法的基本原理
- 格式:ppt
- 大小:446.50 KB
- 文档页数:39
有机分析气相色谱分析法一、GC的原理GC是一种基于样品挥发性物质在固定相柱中传质的方法。
样品在高温下气化,进入气相色谱柱。
柱子中填充了一种固定相,用来分离混合物中的化合物。
不同化合物在固定相上的亲和力不同,因此会按照相对亲和力的大小顺序通过柱子,最终达到分离的目的。
二、GC的仪器设备GC仪器主要由进样系统、色谱柱、检测器和数据处理系统组成。
进样系统用于将样品引入色谱柱。
色谱柱是分离化合物的关键,通常由玻璃制成,内部填充着固定相。
检测器用于检测化合物,并将信号转化为电信号。
数据处理系统用于记录和分析检测到的信号。
三、GC的操作步骤1.样品制备:将待分析的样品制备成气相可挥发的形式,例如通过溶解或萃取等方法。
2.进样:将样品注入进样器中,通过进样系统引入柱子中。
3.分离:样品在柱子中被分离,分离速度取决于化合物的挥发性和在固定相上吸附的亲和力大小。
4.检测:化合物通过柱子后,进入检测器。
根据检测器的原理,可以获得不同化合物的信号。
5.数据处理:将检测到的信号转化为峰,通过峰的面积和高度等参数来定量和分析化合物。
四、GC的应用领域1.环境分析:GC可用于检测大气、水体和土壤中的有机化合物,例如揮发性有机化合物(VOCs)、农药残留等。
2.药物分析:GC可用于药物分析,如药物的质量控制和生物样品中药物的测定。
3.食品安全:GC可用于检测食品中的添加剂、农药残留和食品中有害物质的分析。
4.石油和化学工业:GC用于石油和化学工业中原料和产品的质量控制和分析。
5.化妆品和香料:GC可用于检测和分析化妆品和香料中的挥发性成分。
综上所述,有机分析气相色谱分析法是一种广泛应用于化学、环境和食品等领域的分析方法。
其原理简单、分离效果好、分析速度快且灵敏度高,因而得到了广泛的应用。
名词解释:色谱法(chromatography):也称为色谱分析,是一种物理或物理化学分离分析的方法。
利用分离介质(无机物或有机物,可以是固体、液体或气体)将样品中的各组分进行定性或定量分离和分析的方法。
色谱法基本原理:利用各物质在两相中具有不同的分配系数,当两相做相对运动时,这些物质在两相中进行多次反复的分配来达到分离的目的。
色谱图(Chromatogram):又称色谱流出曲线,是由检测器输出的信号强度对时间作图所绘制的曲线。
基线(Base line):理论上直线,反映样品为零时信号随时间变化的监测器本底信号。
色谱峰(Peak):流出曲线上凸起部分,即组分流经检测器所产生的信号。
峰高(Peak height, h):为色谱峰峰顶与基线之间的垂直距离,定量分析的依据。
峰宽(Peak width, W):色谱峰两侧拐点上切线在基线上的截距。
半峰宽(Peak width at half height, W1/2):h/2处所对应的峰宽。
标准偏差(σ):0.607 h处色谱峰宽一半。
参数关系W = 4σ,后三个反应色谱柱或色谱条件的优劣。
死时间(Death time, t0):溶质不与固定相作用,直接经过色谱柱所需时间。
保留时间(Retention time, tR):进样到出现峰顶的时间。
调整保留时间(Adjusted retention time, tR'):tR' = tR - t0 。
死体积(Death volume, V0):色谱柱中不被固定相占据+进样系统管道+检测系统的空间。
保留体积(Retention volume, VR):进样至出现峰顶时通过的流动相体积。
调整保留体积(Adjusted retentionvolume, VR' ):VR' =VR - V0 。
峰面积(Peak area, A):整个峰曲线所围绕起来的面积。
它和h一般与组分含量或浓度成正比,是定量分析的基本依据。
气相色谱分析仪原理气相色谱分析仪是一种常用的分离和定性分析方法,通过将样品中的化合物分离出来,并通过检测其在气相中的温度或时间等特定条件下的吸收、电导率或其他性质来确定其组分和含量。
气相色谱分析仪主要包括进样系统、色谱柱、分离柱、检测器和数据处理系统。
首先,进样系统将待分析的样品引入色谱柱中。
样品可以通过气态进样或液态进样的方式引入。
气态进样主要用于分析气体样品,液态进样则用于分析液态样品。
进样系统需要保证样品能够均匀地进入色谱柱。
接下来,样品进入色谱柱,色谱柱是一种特定结构和特性的管状材料,常用的有毛细管柱和填充柱。
色谱柱的选择根据待分析样品的性质以及分离效果的要求进行。
当样品进入色谱柱时,不同组分在色谱柱中的分离是通过物质在移动相(载气)与静态相(色谱固定相)之间的相互作用来实现的。
移动相常用的是惰性气体,如氦气或氮气。
静态相则是一种吸附剂或涂层,可选择性地与待分析物相互作用。
根据待分析样品的性质和分离效果的要求,可以选择不同的固定相。
然后,分离柱的作用是将组分进行进一步的分离。
分离柱通常采用长而细的管状结构,以增加样品分离的效果。
同时,分离柱的温度和压力等条件也会对分离效果产生影响。
最后,样品通过检测器进行检测。
检测器可以根据样品的物化性质选择不同的类型,如吸收检测器、电导检测器、质谱检测器等。
检测器会测量样品在特定条件下的吸收、电导率或其他性质,从而确定样品的组分和含量。
数据处理系统会将检测器获得的信号进行处理和分析,生成色谱图,并通过比对标准物质的色谱图来确定样品中不同组分的名称和含量。
总结来看,气相色谱分析仪通过进样系统将样品引入色谱柱,样品在色谱柱中通过移动相和静态相的相互作用分离,然后通过检测器对样品进行检测,最后通过数据处理系统进行进一步分析和定性定量。
仪器分析的原理仪器分析是一种广泛应用于科学研究、工业生产和环境监测等领域的分析技术。
它通过使用各种仪器设备,利用物质的物理、化学性质和相互作用来定量或定性分析样品的成分和性质。
在仪器分析中,有多种原理被应用,下面将逐一介绍其中几种常见的原理。
1. 光谱分析原理:光谱分析是利用物质对光的吸收、发射或散射而进行分析的方法。
常见的光谱分析技术包括紫外可见光谱、红外光谱、质谱等。
光谱分析原理基于不同物质吸收或发射光的特征,通过测量样品与光源的相互作用,从而推断出样品的成分和浓度。
2. 色谱分析原理:色谱分析是利用物质在固定相和流动相中不同的分配或吸附性质进行分离分析的方法。
常见的色谱分析技术包括气相色谱、液相色谱等。
色谱分析原理基于样品成分在不同相中的携带速度差异,通过测量携带速度,从而实现对样品进行定性和定量分析。
3. 电化学分析原理:电化学分析是利用物质在电极上与电流或电势的关系进行分析的方法。
常见的电化学分析技术包括电解法、电沉积法、电化学阻抗谱等。
电化学分析原理基于物质在电场或电流的作用下,引起电势变化或电流变化,通过测量这些变化来推断样品的性质和浓度。
4. 质谱分析原理:质谱分析是利用物质在质谱仪中通过分子碎片的质量-电荷比进行分析的方法。
常见的质谱分析技术包括质谱质量分析、质谱图谱等。
质谱分析原理基于样品分子在高能状态下发生断裂,形成一系列碎片离子,根据这些离子的质量-电荷比进行分析。
5. 核磁共振分析原理:核磁共振分析是利用核自旋在外加磁场和射频电磁场的作用下发生共振而进行分析的方法。
常见的核磁共振分析技术包括核磁共振成像、核磁共振波谱等。
核磁共振分析原理基于不同核自旋在不同磁场中的共振频率差异,通过测量共振信号来推断样品的成分和分子结构。
综上所述,仪器分析的原理涵盖了光谱分析、色谱分析、电化学分析、质谱分析和核磁共振分析等多个领域,每种原理都有其独特的应用和优势。
仪器分析通过高效、准确的手段提供了快速分析样品成分和性质的方法,为科学研究和生产工作提供了重要的技术支持。
第二章气相色谱分析1.简要说明气相色谱分析的基本原理借在两相间分配原理而使混合物中各组分分离。
气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。
组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。
2.气相色谱仪的基本设备包括哪几部分?各有什么作用?气路系统.进样系统、分离系统、温控系统以及检测和记录系统.气相色谱仪具有一个让载气连续运行管路密闭的气路系统.进样系统包括进样装置和气化室.其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中.3.试以塔板高度H做指标,讨论气相色谱操作条件的选择.解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑流速的影响,选择最佳载气流速.P13-24。
(1)选择流动相最佳流速。
(2)当流速较小时,可以选择相对分子质量较大的载气(如N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H2,He),同时还应该考虑载气对不同检测器的适应性。
(3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。
在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。
(4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。
(5)对担体的要求:担体表面积要大,表面和孔径均匀。
粒度要求均匀、细小(但不宜过小以免使传质阻力过大)(6)进样速度要快,进样量要少,一般液体试样0.1~5uL,气体试样0.1~10mL.(7)气化温度:气化温度要高于柱温30-70℃。
4.试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些因素的影响? 解:参见教材P14-16A 称为涡流扩散项,B 为分子扩散项,C 为传质阻力项。
下面分别讨论各项的意义:(1) 涡流扩散项A 气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”的流动,因而引起色谱的扩张。