九年级数学教学质量检测
- 格式:doc
- 大小:175.00 KB
- 文档页数:10
2025届浙江省(温州)九年级数学第一学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.下列事件中,属于必然事件的是( )A .任意画一个正五边形,它是中心对称图形B .某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C .不等式的两边同时乘以一个数,结果仍是不等式D .相等的圆心角所对的弧相等2.若点(3,4)A 是反比例函数k y x=图象上一点,则下列说法正确的是( ) A .图象位于二、四象限B .当0x <时,y 随x 的增大而减小C .点()2,6-在函数图象上D .当4y ≤时,3x ≥3.如图,在平面直角坐标系中抛物线y =(x +1)(x ﹣3)与x 轴相交于A 、B 两点,若在抛物线上有且只有三个不同的点C 1、C 2、C 3,使得△ABC 1、△ABC 2、△ABC 3的面积都等于m ,则m 的值是( )A .6B .8C .12D .164.用配方法解方程2x -4x +3=0,下列配方正确的是( )A .2(2)x -=1B .2(2)x +=1C .2(2)x -=7D .2(2)x -=45.如图,已知AB ∥CD ∥EF ,:1:2BD DF =,那么:AC AE 的值是( )A .13B .12C .23D .26.二次函数y =ax 2+bx +c 的图象如图所示,在ab 、ac 、b 2﹣4ac ,2a +b ,a +b +c ,这五个代数式中,其值一定是正数的有( )A .1个B .2个C .3个D .4个7.在比例尺为1:10000000的地图上,测得江华火车站到永州高铁站的距离是2cm ,那么江华火车站到永州高铁站的实际距离为( )kmA .20000000B .200000C .2000D .200 8.sin60°的值是( )A .12B .33C .32D .39.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A .4B .6C .9D .1210.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-二、填空题(每小题3分,共24分)百分率为x ,则根据题意可列方程_______________12.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是 .13.二次函数y =4(x ﹣3)2+7的图象的顶点坐标是_____.14.某学生想把放置在水平桌面上的一块三角板ABC (90ACB ∠=,30A ∠=),绕点C 按顺时针方向旋转θ角,转到A B C '''∆的位置,其中A '、B '分别是A 、B 的对应点,B 在A B ''上(如图所示),则θ角的度数为______.15.若关于x 的一元二次方程(a ﹣1)x 2﹣2x+2=0有实数根,则整数a 的最大值为______.16.图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙).图乙中,点E 、F 、G 、H 分别为矩形AB 、BC 、CD 、DA 的中点,若AB =4,BC =6,则图乙中阴影部分的面积为 _____.17.如图,直线y =-x +b 与双曲线()()00k m y k y m x x==<,>分别相交于点A ,B ,C ,D ,已知点A 的坐标为(-1,4),且AB :CD =5:2,则m =_________.侧抛物线上一点,且tan 3DCB ∠=,则点D 的坐标为___________.三、解答题(共66分)19.(10分)如图,ABC ∆的顶点坐标分别为()2,4A --,()0B ,-4,()1C ,-1. (1)画出ABC ∆关于点O 的中心对称图形111A B C ∆;(2)画出ABC ∆绕原点O 逆时针旋转90︒的222A B C ∆,直接写出点2C 的坐标为_________;(3)若ABC ∆内一点()P m n ,绕原点O 逆时针旋转90︒的对应点为Q ,则Q 的坐标为____________.(用含m ,n 的式子表示)20.(6分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则售价应定为多少?这时应进货多少个?21.(6分)计算:2|1﹣sin60°|+.22.(8分)随着人民生活水平的不断提高,某市家庭轿车的拥有量逐年增加,据统计,该市2017年底拥有家庭轿车64万辆,2019年底家庭轿车的拥有量达到100万辆.(1)求2017年底至2019年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2020年底全市汽车拥有量不超过118万辆,预计2020年报废的汽车数量是2019年底汽车拥有量的8%,求2019年底至2020年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.23.(8分)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C(3≈1.73).24.(8分)如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.25.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)每件衬衫降价多少元时,商场平均每天的盈利是1050元?(2)每件衬衫降价多少元时,商场平均每天盈利最大?最大盈利是多少?26.(10分)如图,A(8,6)是反比例函数y=mx(x>0)在第一象限图象上一点,连接OA,过A作AB∥x轴,且AB=OA(B在A右侧),直线OB交反比例函数y=mx的图象于点M(1)求反比例函数y=mx的表达式;(2)求点M的坐标;(3)设直线AM关系式为y=nx+b,观察图象,请直接写出不等式nx+b﹣mx≤0的解集.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据随机事件、必然事件、不可能事件的定义,分别进行判断,即可得到答案.【详解】解:A、正五边形不是中心对称图形,故A是不可能事件;B、某课外实践活动小组有13名同学,至少有2名同学的出生月份相同,是必然事件,故B正确;C、不等式的两边同时乘以一个数,结果不一定是不等式,是随机事件,故C错误;D、在同圆或等圆中,相等的圆心角所对的弧相等,故D是随机事件,故D错误;故选:B.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,解题的关键是熟练掌握定义,正确的进行判断.2、B【分析】先根据点A(3、4)是反比例函数y=kx图象上一点求出k的值,求出函数的解析式,由此函数的特点对四个选项进行逐一分析.【详解】∵点A(3,4)是反比例函数y=kx图象上一点,∴k=xy=3×4=12,∴此反比例函数的解析式为y=12x,A、因为k=12>0,所以此函数的图象位于一、三象限,故本选项错误;B、因为k=12>0,所以在每一象限内y随x的增大而减小,故本选项正确;D 、当y≤4时,即y=12x≤4,解得x <0或x≥3,故本选项错误. 故选:B .【点睛】 此题考查反比例函数图象上点的坐标特点,根据题意求出反比例函数的解析式是解答此题的关键.3、B【分析】根据题目中的函数解析式可以求得该抛物线与x 轴的交点坐标和顶点的坐标,再根据在抛物线上有且只有三个不同的点C 1、C 2、C 3,使得△ABC 1、△ABC 2、△ABC 3的面积都等于m ,可知其中一点一定在顶点处,从而可以求得m 的值.【详解】∵抛物线y=(x+1)(x-3)与x 轴相交于A 、B 两点,∴点A (-1,0),点B (3,0),该抛物线的对称轴是直线x=-1+32=1, ∴AB=3-(-1)=4,该抛物线顶点的纵坐标是:y=(1+1)×(1-3)=-4,∵在抛物线上有且只有三个不同的点C 1、C 2、C 3,使得△ABC 1、△ABC 2、△ABC 3的面积都等于m ,∴m=442⨯-=8,故选B .【点睛】本题考查抛物线与x 轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.4、A【解析】用配方法解方程2x -4x+3=0,移项得:2x -4x =-3,配方得:2x -4x +4=1,即2(2)x -=1.故选A.5、A【分析】根据平行线分线段成比例定理得到AC :CE=BD :DF=1:2,然后利用比例性质即可得出答案进行选择.【详解】解:∵AB ∥CD ∥EF ,∴AC :CE=BD :DF ,∴AC :CE=BD :DF=1:2,即CE=2AC ,∴AC :AE=1:3=13. 故选A.【点睛】本题考查平行线分线段成比例即三条平行线截两条直线,所得的对应线段成比例.6、B【解析】试题分析:根据图象可知:a 0b 0c 0><<,,,则ab 0ac 0<<,;图象与x 轴有两个不同的交点,则24ac 0b ->;函数的对称轴小于1,即12b a-<,则2a b 0+>;根据图象可知:当x=1时,y 0<,即a b c 0++<;故本题选B .7、D【分析】由题意根据图上的距离与实际距离的比就是比例尺,列出比例式求解即可.【详解】解:设江华火车站到永州高铁站的实际距离为xcm ,根据题意得:2:x=1:10000000,解得:x=20000000,20000000cm=200km .故江华火车站到永州高铁站的实际距离为200km .故选:D .【点睛】本题主要考查比例线段,解题的关键是熟悉比例尺的含义进行分析.8、C【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=2, 故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键.9、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.10、C【解析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:∵(1)(2)0x x --=,∴x -1=0或x -2=0,解得:1x =或2x =.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.二、填空题(每小题3分,共24分)11、2500(1)720x +=【分析】根据增长率公式即可列出方程.【详解】解:根据题意可列方程为:2500(1)720x +=,故答案为:2500(1)720x +=.【点睛】本题考查一元二次方程的应用——增长率问题.若连续两期增长率相同,那么a (1+x )2=b ,其中a 为变化前的量,b 为变化后的量,增长率为x .12、1.【解析】试题分析:易得底数为8的幂的个位数字依次为8,2,1,6,以2个为周期,个位数字相加为0,呈周期性循环.那么让1012除以2看余数是几,得到相和的个位数字即可:∵1012÷2=503…1,∴循环了503次,还有两个个位数字为8,2.∴81+81+83+82+…+81012的和的个位数字是503×0+8+2=11的个位数字.∴81+81+83+82+…+81012的和的个位数字是1.考点:探索规律题(数字的变化类——循环问题).13、(3,7)【分析】由抛物线解析式可求得答案.【详解】∵y=4(x ﹣3)2+7,∴顶点坐标为(3,7),故答案为(3,7).14、60°【分析】根据题意有∠ACB =90︒,∠A =30︒,进而可得∠ABC =60︒,又有∠ACA ′=BCB ′=∠ABA ′=θ,可得∠CBB ′=12(180︒−θ),代入数据可得答案. 【详解】∵∠ACB =90︒,∠A =30︒,∴∠ABC =60︒,∴∠ACA ′=BCB ′=∠ABA ′=θ,∠CBB ′=12(180︒−θ), ∴θ=∠ABC =60︒.故答案为:60︒.【点睛】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点是旋转中心;②旋转方向;③旋转角度.15、1【解析】试题分析:根据一元二次方程的根的判别式,直接可求△=24b ac -=2(2)4(1)2a --⨯-⨯=4-8a+8≥0,解得a≤32,因此a 的最大整数解为1. 故答案为1.点睛:此题主要考查了一元二次方程根的判别式△=b 2-4ac ,解题关键是确定a 、b 、c 的值,再求出判别式的结果.可根据下面的理由:(2)当△=0时,方程有两个相等的实数根;(3)当△<0时,方程没有实数根.16、225【分析】根据S 阴=S 菱形PHQF ﹣2S △HTN ,再求出菱形PHQF 的面积,△HTN 的面积即可解决问题.【详解】如图,设FM =HN =a .由题意点E 、F 、G 、H 分别为矩形AB 、BC 、CD 、DA 的中点,∴四边形DFBH 和四边形CFAH 为平行四边形, ∴DF ∥BH,CH ∥AF ,∴四边形HQFP 是平行四边形又HP=12CH=DP=PF , ∴平行四边形HQFP 是菱形,它的面积=14S 矩形ABCD =14×4×6=6, ∵FM ∥BJ ,CF =FB ,∴CM =MJ ,∴BJ =2FM =2a ,∵EJ ∥AN ,AE =EB ,∴BJ =JN =2a , ∵S △HBC =12•6•4=12,HJ =35BH , ∴S △HCJ =35×12=365, ∵TN ∥CJ ,∴△HTN ∽△HCJ ,∴HTNHCJ S S =(HN HJ )2=19,∴S △HTN =19×365=45, ∴S 阴=S 菱形PHQF ﹣2S △HTN =6﹣85=225, 故答案为225. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质、菱形的判定与性质及相似三角形的性质. 17、54【解析】如图由题意:k =﹣4,设直线AB 交x 轴于F ,交y 轴于E .根据反比例函数y 4x -=和直线AB 组成的图形关于直线y =x 对称,求出E 、F 、C 、D 的坐标即可.【详解】如图由题意:k =﹣4,设直线AB 交x 轴于F ,交y 轴于E .∵反比例函数y 4x-=和直线AB 组成的图形关于直线y =x 对称,A (﹣1,4),∴B (4,﹣1),∴直线AB 的解析式为y =﹣x +3,∴E (0,3),F (3,0),∴AB =52,EF =32.∵AB :CD =5:2,∴CD =22,∴CE =DF 22=.设C (x ,-x +3),∴CE =2222(33)()2x x +-+-=,解得:x =12±(负数舍去),∴x =12,-x +3=52,∴C (1522,),∴m =1522⨯=54. 故答案为:54.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用轴对称的性质解决问题,属于中考常考题型.18、715,24⎛⎫ ⎪⎝⎭【分析】根据已知条件tan 3DCB ∠=,需要构造直角三角形,过D 做DH ⊥CR 于点H,用含字母的代数式表示出PH 、RH,即可求解. 【详解】解:过点D 作DQ ⊥x 轴于Q,交CB 延长线于R,作DH ⊥CR 于H,过R 做RF ⊥y 轴于F,∵抛物线232y x x =-+与x 轴交于A 、B 两点,与y 轴交于点C , ∴A(1,0), B(2,0)C(0,2)∴直线BC 的解析式为y=-x+2设点D 坐标为(m,m ²-3m+2),R(m,-m+2),∴DR=m ²-3m+2-(-m+2)=m ²-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴2m ,2(2)DH RH m ==- 222(2)(4)CH CR HR m m m ∴=-=--=- ∵tan 3DCB ∠=2(2)232(4)m DH CH m m -∴==- 72m ∴= 经检验是方程的解.2277153232224m m ⎛⎫∴-+=-⨯+= ⎪⎝⎭ 715(,)24D ∴ 故答案为:715(,)24D 【点睛】本题考查了函数性质和勾股定理逆定理的应用还有锐角三角函数值的应用,本题比较复杂,先根据题意构造直角三角形.三、解答题(共66分) 19、(1)详见解析;(2)图详见解析,点2C 的坐标为()11,;(3)Q 的坐标为()-n m ,. 【分析】(1)利用关于原点对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A 2、B 2、C 2,从而得到C 2点的坐标;(3)利用(2)中对应点的坐标变换规律写出Q 的坐标.【详解】解:(1) 如图,111A B C ∆为所作;(2)如图,222A B C ∆为所作;点2C 的坐标为()11,(3)由(2)中的规律可知Q 的坐标为()-n m ,.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20、当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.【解析】试题分析:利用销售利润=售价-进价,根据题中条件可以列出利润与x 的关系式,求出即可.试题解析:设每个商品的定价是x 元.由题意,得()()40[1801052]2000.x x ---=整理,得211030000.x x -+=解得125060.x x ==, 都符合题意.答:当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.21、2+【解析】先代入特殊角三角函数值,再根据实数的运算,可得答案.【详解】解:2|1﹣sin 60°|+=2(1﹣)+=2﹣=2﹣=2+. 【点睛】本题考查了特殊角三角函数值、实数的混合运算;熟记特殊角三角函数值是解题关键.22、(1)2017年底至2019年底该市汽车拥有量的年平均增长率为25%;(2)2019年底至2020年底该市汽车拥有量的年增长率要小于等于26%才能达到要求.【分析】(1)设2017年底至2019年底该市汽车拥有量的年平均增长率为x ,根据2017年底及2019年底该市汽车拥有量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设2019年底至2020年底该市汽车拥有量的年增长率为y ,根据2020年底全市汽车拥有量不超过118万辆,即可得出关于y 的一元一次不等式,解之即可得出结论.【详解】解:(1)设2017年底至2019年底该市汽车拥有量的年平均增长率为x ,依题意,得:64(1+x )2=100,解得:x 1=0.25=25%,x 2=﹣2.25(不合题意,舍去).答:2017年底至2019年底该市汽车拥有量的年平均增长率为25%.(2)设2019年底至2020年底该市汽车拥有量的年增长率为y ,依题意,得:100(1+y )﹣100×8%≤118,解得:y≤0.26=26%.答:2019年底至2020年底该市汽车拥有量的年增长率要小于等于26%才能达到要求.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、隧道AB的长约为635m.【分析】首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算. 【详解】如图,过点C作CO⊥直线AB,垂足为O,则CO=1500m∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO 中,OA=1500tan60=1500×33m在Rt△CBO 中,OB=1500×tan45°=1500m∴AB=1500-3≈1500-865=635(m)答:隧道AB的长约为635m.考点:锐角三角函数的应用.24、(1)当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);(2)m为1时△PCD的面积最大,最大面积是2;(3)n=m2﹣2m+6或n=m2﹣2m+1.【分析】(1)根据抛物线过原点和题目中的函数解析式可以求得m的值,并求出此时抛物线的解析式及对称轴和项点坐标;(2)根据题目中的函数解析式和二次函数的性质,可以求得m为何值时△PCD的面积最大,求得点C、D的坐标,由此求出△PCD的面积最大值;(3)根据题意抛物线能把线段AB分成1:2,存在两种情况,求出两种情况下线段AB与抛物线的交点,即可得到当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.【详解】(1)当y=﹣(x﹣1)2﹣m2+2m+1过原点(0,0)时,0=﹣1﹣m2+2m+1,得m1=0,m2=2,当m1=0时,y=﹣(x﹣1)2+1,当m 2=2时,y =﹣(x ﹣1)2+1,由上可得,当m =0或m =2时,抛物线过原点,此时抛物线的解析式是y =﹣(x ﹣1)2+1,对称轴为直线x =1,顶点为(1,1);(2)∵抛物线y =﹣(x ﹣1)2﹣m 2+2m+1,∴该抛物线的顶点P 为(1,﹣m 2+2m+1),当﹣m 2+2m+1最大时,△PCD 的面积最大,∵﹣m 2+2m+1=﹣(m ﹣1)2+2,∴当m =1时,﹣m 2+2m+1最大为2,∴y =﹣(x ﹣1)2+2,当y =0时,0=﹣(x ﹣1)2+2,得x 1=,x 2=1,∴点C 的坐标为(1,0),点D 的坐标为(,0)∴CD =()﹣(1)=,∴S △PCD =22=,即m 为1时△PCD 的面积最大,最大面积是;(3)将线段AB 沿y 轴向下平移n 个单位A (2,3﹣n ),B (5,3﹣n )当线段AB 分成1:2两部分,则点(3,3﹣n )或(4,3﹣n )在该抛物线解析式上,把(3,3﹣n )代入抛物线解析式得,3﹣n =﹣(3﹣1)2﹣m 2+3m+1,得n =m 2﹣2m+6;把(4,3﹣n )代入抛物线解析式,得3﹣n =﹣(3﹣1)2﹣m 2+3m+1,得n =m 2﹣2m+1;∴n =m 2﹣2m+6或n =m 2﹣2m+1.【点睛】此题是二次函数的综合题,考查抛物线的对称轴、顶点坐标,最大值的计算,(3)是题中的难点,由图象向下平移得到点的坐标,再将点的坐标代入解析式,即可确定m 与n 的关系.25、(1)每件衬衫降价5元或25元时,商场平均每天的盈利是1050元.(2)每件衬衫降价15元时,商场平均每天的盈利最大,最大盈利是1250元.【分析】(1)设每件衬衫应降价x 元,则每天多销售2x 件,根据盈利=每件的利润×数量建立方程求出其解即可;(2)根据盈利=每件的利润×数量表示出y 与x 的关系式,由二次函数的性质及顶点坐标求出结论.【详解】解:(1)设每件衬衫降价x 元根据题意,得(40)(202)1050x x -+=整理,得2301250x x -+=解得125,25x x ==答:每件衬衫降价5元或25元时,商场平均每天的盈利是1050元.(2)设商场每天的盈利为W 元.根据题意,得22(40)(202)2608002(15)1250W x x x x x =-+=-++=--+∵20-<∴当15x =时,W 有最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天的盈利最大,最大盈利是1250元.【点睛】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,销售问题的数量关系的运用,二次函数的运用,解答时求出函数的解析式是关键.26、 (1)y =48x;(2)M(1,4);(3)0<x≤8或x≥1. 【分析】(1)根据待定系数法即可求得;(2)利用勾股定理求得AB =OA =10,由AB ∥x 轴即可得点B 的坐标,即可求得直线OB 的解析式,然后联立方程求得点M 的坐标;(3)根据A 、M 点的坐标,结合图象即可求得.【详解】解:(1)∵A(8,6)在反比例函数图象上∴6=8m ,即m =48, ∴反比例函数y =的表达式为y =48x; (2)∵A(8,6),作AC ⊥x 轴,由勾股定理得OA =10,∵AB =OA ,∴AB =10,∴B(18,6),设直线OB 的关系式为y =kx ,∴6=18k ,∴k=13,∴直线OB的关系式为y=13 x,由1348y xyx⎧=⎪⎪⎨⎪=⎪⎩,解得x=±1又∵在第一象限∴x=1故M(1,4);(3)∵A(8,6),M(1,4),观察图象,不等式nx+b﹣mx≤0的解集为:0<x≤8或x≥1.【点睛】本题主要考查一次函数与反比例函数的交点问题,解题的关键是掌握待定系数法求函数解析式及求直线、双曲线交点的坐标.。
浙江省宁波市2022~2023学年九年级第二学期数学试卷教学质量检测(一)参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标是)442(2ab ac a b --,.一、选择题:(本大题12个小题,每小题3分,共36分) 1.9的平方根是( )A .3B .一3C .±3D .3±2.2022年我国的国民生产总值约为471600亿元,那么471600用科学记数法表示正确的是 ( )A. 2471610⨯B. 447.1610⨯C. 44.71610⨯D. 54.71610⨯3.下列运算正确的是( )A. 222()x y x y -=- B. 326x x x ⋅= C. 642x x x ÷= D.236(2)2x x = 4.下列事件是随机事件的是 ( )A .度量四边形的内角和为180°B .通常加热到100℃,水沸腾C .袋中有2个黄球,3个绿球,共5个球,随机摸出一个球是红球D .抛掷一枚硬币两次,第一次正面向上,第二次反面向上5.桌面上按如图所示放着1个长方体和1个圆柱体,其左视图是( )6.下列五个多边图:①等边三角形;②菱形;③平行四边形;④正六边形;⑤等腰梯形.其 中,既是轴对称图形又是中心对称图形的概率是( )A .51 B . 52 C .53 D .54 7.等腰三角形的周长为15,其中一边长为3,它的底边长为( ) A. 3 B.5 C.9 D. 3或98.如图所示为小李上学途中经过的上山坡道,为测出上山坡道 的倾斜度,小李测得图中所示的数据(单位:米), 则该坡道倾斜角α的正切值是( )A. 14B.4C. 1717D. 417179.如图在折纸活动中,小明制作了一张△ABC 纸片,点D ,E 分别在边AB ,AC 上,将△ABC 沿着DE 折叠压平,点A 与点A ′ 重合,若∠A =75°,则∠1+∠2=( )A .150°B .210°C .105°D .75°10.如图所示,给出下列条件:①ACD ADC ∠=∠; ②ADC ACB ∠=∠; ③AC AB CD BC=; ④AC ABAD AC =.其中单独能够判定ABC ACD △∽△的个数为( ) A .1 B .2 C .3 D .411.如图所示是二次函数)0(2≠++=a c bx ax y 图象的一部分,图象过点A (3,0),二次函数图象对称轴为直线1=x ,给出四个结论:① ac b 42>; ②0<bc ; ③02=+b a ; ④当y>0时,0< x< 3 其中正确的结论个数是……………………………………………………… ( ) A .1个 B .2个 C .3个 D.4个12.如图,在△ABC 中,90C ∠=,M 是AB 的中点, 动点P 从点A 出发,沿AC 方向匀速运动到终点C , 动点Q 从点C 出发,沿CB 方向匀速运动到终点B 。
山东省济南市章丘区2024-2025学年上学期第一次质量检测九年级数学试卷一、单选题1.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .2112x x +=C .2221x x x +=-D .23(1)2(1)x x +=+ 2.柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是( )A .12B .16C .14 D .133.用配方法解一元二次方程2870x x ++=,则方程可化为( )A .2(4)9x -=B .2(4)9x +=C .2(8)23x +=D .2(8)9x -= 4.如图,一条处处等宽的丝带部分重叠,则丝带重叠的部分一定是( )A .正方形B .矩形C .菱形D .都有可能 5.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或15 6.关于x 的一元二次方程2420kx x +-=有实数根,则k 的取值范围是( ) A .2k ≥- B .2k >-且0k ≠ C .2k ≥-且0k ≠ D .2k ≤- 7.如图,在菱形ABCD 中,∠A=60°,AD=4,点P 是AB 边上的一个动点,点E 、F 分别是DP 、BP 的中点,则线段EF 的长为( )A .2B .4C .D .8.手卷是国画装裱中横幅的一种体式,以能握在手中顺序展开阅览得名,它主要由“引首”、“画心”、“拖尾”三部分组成(这三部分都是矩形形状),分隔这三部分的其余部分统称为“隔水”.如图,墨涵同学装裱了一幅《雀华秋色图》的手卷,手卷长1000厘米,宽40厘米.引首和拖尾完全相同,其宽度都为100厘米,若隔水的宽度为x 厘米,画心的面积为15200厘米2,根据题意,可列方程是( )A .()()1000440215200x x --=B .()()10002100240415200x x -⨯--=C .()()10002100240215200x x -⨯--=D .()()10002100440215200x x -⨯--=9.如图,下列四组条件中,能判定ABCD Y 是正方形的有( )①AB =BC ,∠A =90°;②AC ⊥BD ,AC =BD ;③OA =OD ,BC =CD ;④∠BOC =90°,∠ABD =∠DCAA .1个B .2个C .3个D .4个10.对于两个实数a ,b ,用()max ,a b 表示其中较大的数,则方程()max ,21x x x x ⨯-=+的解是( )A .1,1B .1,1C .1-,1D .1-,1二、填空题11.在某次试验数据整理过程中,某个事件发生的频率情况如表所示.估计这个事件发生的概率是(精确到0.01).12.已知方程2560x x +-=的两个根分别为12,x x ,则1212x x x x ++的值为.13.直角三角形斜边的中线长是4cm ,则它的两条直角边中点的连线长为cm .14.如图,菱形ABCD 的周长为26,对角线AC BD 、交于点O ,过A 作AE BC ⊥交CB 延长线于点E ,连接OE BD ,的长为5,则OE =.15.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:①AE =BF ;②AE ⊥BF ;③S △AOB =S 四边形DEOF ;④AO =OE ;⑤∠AFB +∠AEC =180°,其中正确的有(填写序号).三、解答题16.解方程:(1)225x x -=;(2)215204x -+=;(3)()()2454x x +=+;(4)27120x x -+=17.如图,在菱形ABCD 中,点E F 、分别在BC CD 、边上,AEB AFD ∠=∠,求证:BE DF =.18.已知关于x 的方程220x ax a ++-=(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.19.如图,在ABC V 中,90BAC ∠=︒,AD 是中线,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF .(1)求证:BD AF =;(2)试判断四边形ADCF 的形状,并证明你的结论.20.端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出100只粽子,为了使每天获利的利润更多,该店决定把零售单价下降()01m m <<元.(1)零售单价下降m 元后,该店平均每天可卖出___________只粽子,利润为__________元.(2)不在考虑其他因素的条件下,当m 定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?21.有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m ,再随机地摸取一张,将卡片上的数字记为n .(1)请画出树状图并写出(m ,n )所有可能的结果;(2)求所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的概率. 22.如图,学校在教学楼后面搭建了两个简易的矩形自行车车棚,一边利用教学楼的后墙(可利用墙长为60m),其他的边用总长70m的不锈钢栅栏围成,左右两侧各开一个1m的出口后,不锈钢栅栏状如“山”字形.(备注信息:距院墙7米处,规划有机动车停车位)x,则车棚长度BC为_______m;(1)若设车棚宽度AB为m(2)若车棚面积为2285m,试求出自行车车棚的长和宽.(3)若学校拟利用现有栅栏对车棚进行扩建,请问能围成面积为2450m的自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.23.在矩形ABCD中,已知5cm6cm,,点P从点A开始沿边AB向终点B以1cm/sAB BC==的速度运动;同时,点Q从点B开始沿边BC向终点C以2cm/s的速度运动.当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)分别用含t的代数式表示PB与BQ;(2)当t为何值时,PQ的长度等于5cm?(3)是否存在t的值,使得五边形APQCD的面积等于226cm?若存在,请求出此时t的值;若不存在,请说明理由.DE BE.24.如图1,四边形ABCD为正方形,E为对角线AC上一点,且不与点,A C重合,连接,(1)求证:BE DE=.D EE F为邻边作矩形DEFG,连接CG.(2)如图2,过点E作EF DE⊥,交边BC于点F,以,①求证:矩形DEFG是正方形;②若正方形ABCD 的边长为9,CG =DEFG 的边长.25.通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整.原题:如图1,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,连接EF ,试猜想EF 、BE 、DF 之间的数量关系.(1)思路梳理把ABE V 绕点A 逆时针旋转90°至ADG △,可使AB 与AD 重合,由90ADG B ∠=∠=︒,得180FDG ∠=︒,即点F 、D 、G 共线,易证AFG ≅△______,故EF 、BE 、DF 之间的数量关系为______.(要求写出必要的推理过程)(2)类比引申如图2,点E 、F 分别在正方形ABCD 的边CB 、DC 的延长线上,45EAF ∠=︒,连接EF ,试猜想EF 、BE 、DF 之间的数量关系为______,并给出证明.(3)联想拓展如图3,在ABC V 中,90BAC ∠=︒,AB AC =,点D 、E 均在边BC 上,且45BAD EAC ∠+∠=︒,若3BD =,6EC =,求DE 的长.。
福建省龙岩市第一中学2024-2025学年数学九年级第一学期开学教学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若分式21x x -无意义,则x 的值为()A .1x =±B .1x >C .1x =D .1x =-2、(4分)如图,一油桶高0.8m ,桶内有油,一根木棒长1m ,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,拍出木棒,量得棒上没油部分长0.8m ,则桶内油的高度为()A .0.28m B .0.64m C .0.58m D .0.32m 3、(4分)如图是甲、乙两个探测气球所在位置的海拔高度y (单位:m )关于上升时间x (单位:min )的函数图像.有下列结论:①当10x =时,两个探测气球位于同一高度②当10x >时,乙气球位置高;③当010x ≤<时,甲气球位置高;其中,正确结论的个数是()A .0个B .1个C .2个D .3个4、(4分)已知()A 3,m -,()B 2,n 是一次函数y 2x 1=-的图象上的两个点,则m ,n 的大小关系是()A .m n <B .m n =C .m n >D .不能确定5、(4分)向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()A .B .C .D .6、(4分)在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,则ADE ∆与ABC ∆的面积之比为()A .12B .13C .14D .167、(4分)如图,在矩形ABCD 中,AB=3,AD=4,点P 在AB 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于()A .75B .125C .135D .1458、(4分)当0b <时,一次函数y x b =+的图象大致是()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)菱形的两条对角线长分别为10cm 和24cm ,则该菱形的面积是_________;10、(4分)如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为米.11、(4分)若关于x 的不等式组2()102153x m x +->⎧⎨+<⎩的解集为﹣172<x <﹣6,则m 的值是_____.12、(4分)如图,直线l 1∶y =ax 与直线l 2∶y =kx+b 交于点P ,则不等式ax >kx+b 的解集为_________.13、(4分)一种运算:规则是x ※y =1x -1y ,根据此规则化简(m+1)※(m -1)的结果为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点,连结DE 并延长交射线AB 于点F ,连结BE .(1)求证:∠AFD=∠EBC ;(2)若∠DAB=90°,当△BEF 为等腰三角形时,求∠EFB 的度数.15、(8分)如图,四边形ABCD 中,//AD BC ,AD BC ≠,AC DB =.(1)求证:AB DC =;(2)若E ,F ,G ,H 分别是AD ,BC ,DB ,AC 的中点,求证:线段EF 与线段GH 互相平分.16、(8分)如图,四边形ABCD 是平行四边形,E 、F 是对角线AC 上的两点,且AE =CF ,顺次连接B 、E 、D ,F .求证:四边形BEDF 是平行四边形.17、(10分)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)连接BF ,求证:CF =EF .(2)若将图①中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF =DE .(3)若将图①中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF 、EF 与DE 之间的数量关系.18、(10分)已知:如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为A (2,0),B (0,﹣2),P 为y 轴上B 点下方一点,以AP 为边作等腰直角三角形APM ,其中PM =PA ,点M 落在第四象限,过M 作MN ⊥y 轴于N .(1)求直线AB 的解析式;(2)求证:△PAO ≌△MPN ;(3)若PB =m (m >0),用含m 的代数式表示点M 的坐标;(4)求直线MB 的解析式.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =CE 的长为_______20、(4分)如图,将△ABC 向右平移到△DEF 位置,如果AE =8cm ,BD =2cm ,则△ABC 移动的距离是___.21、(4分)如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2;以此下去…,则正方形A 4B 4C 4D 4的面积为_____.22、(4分)已知一次函数24y x =+的图象经过点(m,6),则m=____________23、(4分)如图,在△ABC 中,∠ACB=90°,AC=4,BC=3,将△ABC 绕点A 顺时针旋转得到△ADE (其中点B 恰好落在AC 延长线上点D 处,点C 落在点E 处),连接BD ,则四边形AEDB 的面积为______.二、解答题(本大题共3个小题,共30分)24、(8分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.25、(10分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者面试笔试甲8790乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?26、(12分)解不等式组:()3242+113x xx x⎧--≥⎪⎨-⎪⎩>,并把它的解集在数轴上表示出来参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据分式无意义的条件即可求出答案.【详解】由题意可知:x-1=0,即x=1,分式无意义,故选:C.此题考查分式无意义的条件,解题的关键是熟练运用分式无意义的条件,本题属于基础题型.2、B【解析】根据题意,画出图形,因为油面和桶底是平行的,所以可构成相似三角形,根据对应边成比例列方程即可解答.【详解】如图:AB表示木棒长,BC表示油桶高,DE表示油面高度,AD表示棒上浸油部分长,∴DE∥BC∴△ADE∽△ABC∴AD:AB=DE:BC∵AD=0.8m,AB=1m,BC=0.8m∴DE=0.64m∴桶内油面的高度为0.64m.故选B.本题考查勾股定理的运用,熟练掌握计算法则是解题关键.【解析】根据图象进行解答即可.【详解】解:①当x=10时,两个探测气球位于同一高度,正确;②当x>10时,乙气球位置高,正确;③当0≤x<10时,甲气球位置高,正确;故选:D.本题考查了一次函数的应用、解题的关键是根据图象进行解答.4、A【解析】根据一次函数中k的值确定函数的增减性,然后比较m、n的大小即可.【详解】解:∵一次函数y=2x-1中的k=2>0,∴y随x的增大而增大,∵图象经过A(-3,m),B(2,n)两点,且-3<2,∴m<n,故选A.本题考查了一次函数的性质,熟练掌握一次函数的性质是解决此类问题的关键.一次函数y=kx+b(k≠0),当k>0时,y随着x的增大而增大,当k<0时,y随着x的增大而减小.5、D【解析】注水需要60÷10=6分钟,注水2分钟后停止注水1分钟,共经历6+1=7分钟,排除A、B;再根据停1分钟,再注水4分钟,排除C.故选D.6、C【解析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,则DE∥BC,进而得出△ADE ∽△ABC ,再利用相似三角形的性质即可求出△ADE 与△ABC 的面积之比.【详解】如图所示,∵点D 、E 分别为边AB 、AC 的中点,∴DE 为△ABC 的中位线,∴DE ∥BC ,DE =12BC ,∴△ADE ∽△ABC ,∴214ADE ABC S DE S BC ⎛⎫== ⎪⎝⎭.故选C .本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE ∥BC 是解题的关键.7、B 【解析】试题解析:因为AB =3,AD =4,所以AC =5,1522AO AC ==,由图可知1122AOB S AO PE BO PF =⋅+⋅,AO =BO ,则()12AOB S AO PE PF =+,因此223122.55AOB S PE PF AO ⨯+===,故本题应选B.8、A 【解析】根据k=1>0可得图象的斜率,根据b <0可得直线与y 轴的交点在x 轴的下方.【详解】解:∵k=1>0,∴y 随x 的增大而增大,又∵b <0,∴函数图象与y 轴交于负半轴.故选A.本题主要考查一次函数的图象性质,当=kx+b (k ,b 为常数,k≠0)时:当k>0,b>0,这时此函数的图象经过一,二,三象限;当k>0,b<0,这时此函数的图象经过一,三,四象限;当k<0,b>0,这时此函数的图象经过一,二,四象限;当k<0,b<0,这时此函数的图象经过二,三,四象限.二、填空题(本大题共5个小题,每小题4分,共20分)9、110cm 1.【解析】试题解析:S=12×10×14=110cm 1.考点:菱形的性质.10、1.【解析】试题分析:设小道进出口的宽度为x 米,依题意得(32-2x )(22-x )=532,整理,得x 2-35x+3=2.解得,x 1=1,x 2=3.∵3>32(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.考点:一元二次方程的应用.11、1【解析】先解不等式组得出其解集为1262m x -<<﹣,结合1762x -<<﹣可得关于m 的方程,解之可得答案.【详解】解不等式()210x m +->,得:122mx ->,解不等式2153x +<,得:6x <-,∵不等式组的解集为1762x -<<﹣,∴121722m -=-,解得9m =,故答案为:1.本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12、x >1;【解析】观察图象,找出直线l 1∶y=ax 在直线l 2∶y=kx+b 上方部分的x 的取值范围即可.【详解】∵直线l 1∶y=ax 与直线l 2∶y=kx+b 交于点P 的横坐标为1,∴不等式ax >kx+b 的解集为x>1,故答案为x>1.本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.13、221m --【解析】根据题目中的运算法则把(m+1)※(m -1)化为1111m m -+-,再利用异分母分式的加减运算法则计算即可.【详解】∵x ※y =1x -1y ,∴(m+1)※(m -1)=1111m m -+-=11(1)(1)(1)(1)m m m m m m -+-+-+-=11(1)(1)m m m m ---+-=221m --故答案为:221m --.本题考查了新定义运算,根据题目中的运算法则把(m+1)※(m -1)化为1111m m -+-是解本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)∠EFB=30°或120°.【解析】(1)直接利用全等三角形的判定方法得出△DCE ≌△BCE (SAS ),即可得出答案;(2)利用正方形的性质结合等腰三角形的性质得出:①当F 在AB 延长线上时;②当F 在线段AB 上时;分别求出即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴CD=AB ,∠ACD=∠ACB ,在△DCE 和△BCE 中,∴△DCE ≌△BCE (SAS ),∴∠CDE=∠CBE ,∵CD ∥AB ,∴∠CDE=∠AFD ,∴∠EBC=∠AFD.(2)分两种情况,①如图1,当F 在AB 延长线上时,∵∠EBF 为钝角,∴只能是BE=BF ,设∠BEF=∠BFE=x°,可通过三角形内角形为180°得:90+x+x+x=180,解得:x=30,∴∠EFB=30°.②如图2,当F 在线段AB 上时,∵∠EFB 为钝角,∴只能是FE=FB ,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE ,得x+2x=90,解得:x=30,∴∠EFB=120°.综上:∠EFB=30°或120°.此题主要考查了菱形的性质以及正方形的性质以及全等三角形的判定与性质等知识,利用分类讨论得出是解题关键.15、(1)见解析;(2)见解析【解析】(1)过点D 作DM ∥AC 交BC 的延长线于点M ,由平行四边形的性质易得AC=DM=DB ,∠DBC=∠M=∠ACB ,由全等三角形判定定理及性质得出结论;(2)连接EH ,FH ,FG ,EG ,E ,F ,G ,H 分别是AD ,BC ,DB ,AC 的中点,易得四边形HFGE 为平行四边形,由平行四边形的性质及(1)结论得□HFGE 为菱形,易得EF 与GH 互相垂直平分.【详解】解:(1)证明:(1)过点D 作DM ∥AC 交BC 的延长线于点M ,如图1,∵AD ∥CB ,∴四边形ADMC 为平行四边形,∴AC=DM=DB ,∠DBC=∠M=∠ACB ,在△ACB 和△DBC 中,AC DB ACB DBC CB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACB ≌△DBC (SAS ),∴AB=DC ;(2)连接EH ,FH ,FG ,EG ,如图2,∵E ,F ,G ,H 分别是AD ,BC ,DB ,AC 的中点,∴GE ∥AB ,且GE=12AB ,HF ∥AB ,且HF=12AB ,∴GE ∥HF ,GE=HF ,∴四边形HFGE 为平行四边形,由(1)知,AB=DC ,∴GE=HE ,∴□HFGE 为菱形,∴EF 与GH 互相垂直平分.本题主要考查了平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解答此题的关键.16、见解析【解析】首先连接BD ,交AC 于点O ,由四边形ABCD 是平行四边形,根据平行四边形的对角线互相平分,即可求得OA =OC ,OB =OD ,又由AE =CF ,可得OE =OF ,然后根据对角线互相平分的四边形是平行四边形得出结论.【详解】解:证明:连接BD ,交AC 于点O ,如图所示,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵AE =CF ,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形DEBF 是平行四边形.本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.17、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)连接BF ,证明Rt △BCF ≌Rt △BEF ,根据全等三角形的性质即可证得CF =EF ;(2)连接BF ,证明Rt △BCF ≌Rt △BEF ,根据全等三角形的性质可得CF =EF ,由此即可证得结论;(3)连接BF ,证明Rt △BCF ≌Rt △BEF ,根据全等三角形的性质可得CF =EF ,由此即可证得结论.【详解】(1)证明:如图1,连接BF ,∵△ABC ≌△DBE ,∴BC =BE ,∵∠ACB =∠DEB =90°,在Rt △BCF 和Rt △BEF 中,BC BE BF BF =⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF (HL ),∴CF =EF ;(2)如图2,连接BF ,∵△ABC ≌△DBE ,∴BC =BE ,AC =DE,∵∠ACB =∠DEB =90°,在Rt △BCF 和Rt △BEF 中,BC BE BF BF=⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF (HL ),∴EF =CF ,∴AF +EF =AF +CF =AC =DE ;(3)如图3,连接BF ,∵△ABC ≌△DBE ,∴BC =BE ,AC =DE ,∵∠ACB =∠DEB =90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,BC BE BF BF =⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF (HL ),∴CF =EF ,∵AC =DE ,∴AF =AC +FC =DE +EF .本题考查了全等三角形的性质与判定,证明Rt △BCF ≌Rt △BEF 是解决问题的关键.18、(3)y =x ﹣3.(3)详见解析;(3)(3+m ,﹣4﹣m );(4)y =﹣x ﹣3.【解析】(3)直线AB 的解析式为y =kx +b (k ≠2),利用待定系数法求函数的解析式即可;(3)先证∠APO =∠PMN ,用AAS 证△PAO ≌△MPN ;(3)由(3)中全等三角形的性质得到OP =NM ,OA =NP .根据PB =m ,用m 表示出NM 和ON =OP +NP ,根据点M 在第四象限,表示出点M 的坐标即可.(4)设直线MB 的解析式为y =nx ﹣3,根据点M (m +3,﹣m ﹣4).然后求得直线MB 的解析式.【详解】(3)解:设直线AB :y =kx +b (k ≠2)代入A (3,2),B (2,﹣3),得202k b b +=⎧⎨=-⎩,解得k 1b 2=⎧⎨=-⎩,∴直线AB 的解析式为:y =x ﹣3.(3)证明:作MN ⊥y 轴于点N .∵△APM 为等腰直角三角形,PM =PA ,∴∠APM =92°.∴∠OPA +∠NPM =92°.∵∠NMP +∠NPM =92°,∴∠OPA =∠NMP .在△PAO 与△MPN 中90AOP PNM OPA NMP PA MP ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△PAO ≌△MPN (AAS ).(3)由(3)知,△PAO ≌△MPN ,则OP =NM ,OA =NP .∵PB =m (m >2),∴ON =3+m +3=4+m MN =OP =3+m .∵点M 在第四象限,∴点M 的坐标为(3+m ,﹣4﹣m ).(4)设直线MB 的解析式为y =nx ﹣3(n ≠2).∵点M (3+m ,﹣4﹣m ).在直线MB 上,∴﹣4﹣m =n (3+m )﹣3.整理,得(m +3)n =﹣m ﹣3.∵m >2,∴m +3≠2.解得n =﹣3.∴直线MB 的解析式为y =﹣x ﹣3.本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、或【解析】分析:由菱形的性质证出△ABD 是等边三角形,得出BD =AB =6,132OB BD ==,由勾股定理得出OC OA ===,即可得出答案.详解:∵四边形ABCD 是菱形,∴AB =AD =6,AC ⊥BD ,OB =OD ,OA =OC ,∵60BAD ∠=︒,∴△ABD 是等边三角形,∴BD =AB =6,∴132OB BD ==,∴OC OA ===∴2AC OA ==∵点E 在AC 上,OE =∴当E 在点O 左边时CE OC =+=当点E 在点O 右边时CE OC =-=∴CE =故答案为.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.20、3cm.【解析】根据平移的性质,对应点间的距离等于平移距离求出AD 、BE ,然后求解即可.【详解】∵将△ABC 向右平移到△DEF 位置,∴BE =AD ,又∵AE =8cm ,BD =2cm ,∴AD =82322AE DB --==cm .∴△ABC 移动的距离是3cm ,故答案为:3cm.本题考查了平移的性质,熟记对应点间的距离等于平移距离是解题的关键.21、1【解析】先求出每次延长后的面积,再发现规律即可求解.【详解】解:最初边长为1,面积1,5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N =4时,正方形A 4B 4C 4D 4的面积为:54=1.故答案为:1.此题主要考查勾股定理的应用,解题的关键是根据题意找到规律进行求解.22、1【解析】把(m,6)代入y=2x+4中,得到关于m的方程,解方程即可.【详解】解:把(m,6)代入y=2x+4中,得6=2m+4,解得m=1.故答案为1.本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.23、27 2【解析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【详解】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AD=AB=5,∴CD=AD−AC=1,∴四边形AEDB的面积为1127 24313222⨯⨯⨯+⨯⨯=,故答案为27 2.本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.二、解答题(本大题共3个小题,共30分)24、(1)40;(2)详见解析,72°;(3)420人.【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用1200乘以样本中最想去B景点的人数所占的百分比即可.【详解】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D ”的扇形圆心角的度数为840×360°=72°;(3)1200×1440=420,所以估计“最想去景点B “的学生人数为420人.故答案为(1)40;(2)图形见解析,72°;(3)420人.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.25、甲将被录取【解析】试题分析:根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.试题解析:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.考点:加权平均数.26、14x ≤<.【解析】分析:按照解一元一次不等式组的一般步骤进行解答,并把解集规范的表示在数轴上即可.详解:解不等式3(2)4x x --≥得:1x ≥;解不等式2113x x +>-得:4x <;∴原不等式组的解集为:14x ≤<,将解集表示在数轴上如下图所示:点睛:熟记“一元一次不等式组的解法和不等式组的解集在数轴上的表示方法”是解答本题的关键.。
数学质量检测九年级上册人教版一、一元二次方程。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
一般形式为ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x = ±√(k)。
例如方程(x -3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法:将一元二次方程通过配方转化为(x + m)^2=n(n≥0)的形式,然后再用直接开平方法求解。
例如对于方程x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
例如方程2x^2-3x - 1 = 0,其中a = 2,b=-3,c=-1,代入公式可得x=(3±√(9 + 8))/(4)=(3±√(17))/(4)。
- 因式分解法:将方程化为两个一次因式乘积等于零的形式,即(mx +n)(px+q)=0,则mx + n = 0或px+q = 0。
例如方程x^2-3x+2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 在一元二次方程ax^2+bx + c = 0(a≠0)中,Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
例如方程x^2-2x+1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1。
4. 一元二次方程的应用。
- 增长率问题:若原来的量为a,平均增长率为x,增长后的量为b,则a(1 + x)^n=b(n为增长次数)。
2023-2024学年度第一学期第一次教学质量检测九年级数学试卷一.选择题(共8小题)1.下列方程中,是一元二次方程的是( )A.2x2=5x﹣1B.x+=2C.(x﹣3)(x+1)=x2﹣5D.3x﹣y=52.已知⊙O的半径为5cm,当线段OA=5cm时,则点A在( )A.⊙O内B.⊙O上C.⊙O外D.无法确定3.方程x(x﹣1)=0的根是( )A.x=0B.x=1C.x1=0,x2=1D.x1=1,x2=﹣1 4.若关于x的一元二次方程kx2﹣6x+9=0有实数根,则k的取值范围是( )A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0 5.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于( )A.100°B.110°C.120°D.135°6.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=327.如图,AB是⊙O的直径,AB=8,△BCD内接于⊙O,若∠BCD=60°,则圆心O到弦BD的距离是( )A.5B.3C.2 D.18.如图,B为线段AC的中点,过C点的直线l与线段AC成60°的角,在直线l上取一点P,使得∠APB=30°,则满足条件的点P的个数是( )A.1个B.2个C.3个D.4个二.填空题(共8小题)9.若a是方程x2﹣2x﹣5=0的一个根,则2a2﹣4a= .10.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 .11.用配方法解一元二次方程x2﹣6x+5=0,将它化成(x+p)2=q的形式,则p+q的平方根为 .12.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA.若∠AOC=120°,则∠D的度数是 .13.某商场今年1月盈利3000万,3月盈利3630万,若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是 .14.如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O 于点D,则CD长的最大值为 .15.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠A=55°,∠F=30°,则∠E= °.16.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作平行四边形PCED,当C,D点在圆周上运动时,线段PE长的最小值是 .三.解答题(共10小题)17.解方程(1)x2+4x=0 (2)x2+6x=518.4x(2x﹣1)2=36.解:(2x﹣1)2=9;2x﹣1=3……第一步;2x=4……第二步;x=2……第三步;(1)以上解方程的过程中从第 步开始出现错误,错误的原因是 .(2)请写出正确的解方程过程.19.已知k为实数,关于x的方程为x2﹣2(k+1)x+k2=0.(1)若方程有两个不相等的实数根,请求出k的范围;(2)请判断x=﹣1是否可为此方程的根,说明理由.20.如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:.21.如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.(1)请完成以下操作:①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D ;(填“上”、“内”、“外”)∠ADC的度数为 .23.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,请你根据图中的数据求出该球的半径.24.某商场以每件30元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于55元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数y=﹣2x+140的关系.(1)当每件售价35元时,每天的利润是多少元?(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)该商场销售这种商品每天是否能获得900元的利润?请说明理由.25.如图,AB为⊙O的直径,点C,D为直径AB同侧圆上的点,且点D为的中点,过点D作DE⊥AB于点E,延长DE,交⊙O于点F,AC与DF交于点G.(Ⅰ)如图①,若点C为的中点,求∠AGF的度数;(Ⅱ)如图②,若AC=12,AE=3,求⊙O的半径.26.代数推理:例题:求x2+8x+21的最小值解:x2+8x+21=x2+2x⋅4+42﹣42+21=(x+4)2+5无论x取何值,(x+4)2总是非负数,即(x+4)2≥0所以(x+4)2+5≥5所以:当x=﹣4时,x2+8x+21有最小值,最小值为5阅读材料:利用完全平方式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可以求出多项式x2+bx+c的最小值.根据上述材料,解答下列问题:(1)填空:x2﹣12x+ =(x﹣ )2;(2)将多项式x2+16x﹣1变形为(x+m)2+n的形式,并求出x2+16x﹣1的最小值;(3)若一个长方形的长和宽分别为(2a+3)和(3a+5),面积记为S1,另一个长方形的长和宽分别为5a和(a+3),面积记为S2,试比较S1和S2的大小,并说明理由.。
2024~2025学年度第一学期期中质量检测九年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.在一元二次方程2x2+x-1=0中,二次项系数、一次项系数、常数项分别是(A)2,1,-1. (B)2,-1,1. (C)2,1,1. (D)2,-1,-1.2.下列APP图标中,是中心对称图形的是3.一元二次方程x2-2x-1=0的根的情况是(A)有两个相等的实数根. (B)有两个不相等的实数根.(C)只有一个实数根. (D)没有实数根.4.关于抛物线y=-2(x+5)2-4,下列说法正确的是(A)开口向上. (B)对称轴是直线x=-5. (C)函数有最小值-4.(D)可由抛物线y=-2x2向右平移5个单位再向下平移4个单位而得.5.如图,△ABC内接于⊙O,连OA,OB,若∠BOA-∠C=35°,则∠OAB的度数是(A)70°. (B)65°. (C)55°. (D)50°.6.如图,将△ABC绕点C逆时针旋转,点A的对应点为D,点B的对应点为E,若B恰好是线段CD与AE的交点,且∠DCE=34°,则∠A的度数是(A)34°. (B)39°. (C)42°. (D)45°.7.在平面直角坐标系中,点P坐标(3,-4),以P为圆心,4个单位长度为半径作圆,下列的是(A)原点O在⊙P内. (B)原点O在⊙P上.(C)⊙P与x轴相切,与y轴相交. (D)⊙P与y轴相切,与x轴相交.8.已知抛物线y =x 2-x+c 上有三个点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),若-2<x 1<-1, 0<x 2<1,1<x 3<2,则y 1,y 2,y 3的大小关系是(A )y 1<y 2<y 2. (B )y 2<y 1<y 3 (C )y 2<y 2<y 1 (D )y 2<y 3<y 1.9.如图,四边形ABCD 内接于⊙O ,AB =BC ,∠ABC =90°,⊙O 的直径为10,四边形ABCD 的周长为y ,BD 的长为x ,则y 关于x 的函数关系式是(A )y =√2x 2+10√2.(B )y =√2x +10√2.(C )y =√22x 2+10√2.(D )y =√22x +10√2. 10.在平面直角坐标系中,将函数y =x 2-2x+t 的图象记为C 1,将C ,绕原点旋转180°得到图象C 2,把C 1和C 2合起来的图形记为图形C.则当-1≤t ≤1时,直线y =x+1与图形C 的交点的个数是(A )2. (B )4. (C )2或3. (D )3或4.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.点A (2,-1)关于原点对称的点的坐标是____________________.12.某航空公司有若干个飞机场,每两个飞机场之间都开辟了一条航线,一共开辟了6条航线,这个航空公司共有__________________个飞机场.13.若关于x 的方程x 2+(k -2)x+1-k =0的两个实数根互为相反数,则k 的值是 _____________.14.中国传统数学重要的著作《九章算术》中记载了一个“圆材理壁”的问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?“用几何语言表达为:如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,EB =1寸,CD =10寸,则直径AB 长是__________________________寸.15.已知抛物线y =ax 2+bx+c (a ,b ,c 为常数,a <0)经过点(m ,0),m >0,且4a -2b+c =0,则下列四个结论:① c >0;② b -3a >0;③ 若方程ax 2+bx+c =b 有两个不相等的实数根x 1,x 2 (且x 1<x 2),则x 2<m;④ 若0<m <2,抛物线过点(0,1),且s =a+b+c ,则s <34.其中正确的结论是____________(填序号). 16.如图,已知△ABC ,△DEF 均为等腰直角三角形,∠BAC =∠DEF =90°,A 为DF 的中点,BF 的延长线交线段EC 于点G ,连接GD.若GD =10,GE =4,则GF =_____.三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题8分)解方程:x 2-x -5=0.18.(本小题8分)如图,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 从点C 开始沿边CA 运动,速度为1cm/s.与此同时,点E 从点B 开始沿边BC 运动,速度为2cm/s.当点E 到达点C 时,点D ,E 同时停止运动.连接AE ,DE ,设运动时间为ts ,△ADE 的面积为Scm 2.(1)用含t 的代数式表示:CD =______cm ,CE =______cm;(2)当CD 为何值时S =58S △ABC ?19.(本小题8分)二次函数y =ax 2+bx -3中的x ,y 的部分取值如下表:根据表中数据填空:(1)该函数图象的对称轴是_________;(2)该函数图象与x 轴的交点的坐标是_________;(3)当0<x <3时,y 的取值范围是__________;(4)不等式ax 2+bx -3>x -3的解集是__________.x *** - I 0 1 2 3 *** y … m -3 n -3 0 ***如图,已知直线MA交⊙O于A,B两点,BD为⊙O的直径,E为⊙O上一点,BE平分∠DBM,过点E作EF⊥AB于点F.小求证:EF为⊙O的切线;2.若已知⊙O的半径为5,且EF-BF=2,求AB的长.21.(本小题8分)如图是由小正方形组成的5×5的网格,小正方形的顶点称为格点,A,B,C,D,E五个点均为格点,F是线段CD与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,每个画图任务的画线不得超过三条.(1)在图(1)中,若点A和B关于点O中心对称,画点O;2)在图(1)中,若点F绕点E逆时针旋转90°后得到点G,画点G;(3)在图(2)中,在线段BC上画点M,使∠AMB=∠BAC;(4)在图(2)中,画满足条件的格点N,使∠ANC=2∠ABC.(2)(第21题)在2024年巴黎奥运会上,全红鲜凭借总分425.60分的成绩蝉联奥运会女子10米跳台的冠军,成为中国奥运史上最年轻的三金王.在进行跳水训练时,运动员身体(视作一点)在空中的运动路线可视作一条抛物线,如图所示,建立平面直角坐标系xOy.已知AB为3米,OB为10米,跳水曲线在离起跳点A水平距离为0.5米时达到距水面最大垂直高度k米.(1)当k=11.25时,①求这条抛物线的解析式;②求运动员落水点与点A的距离;(2)图中OE=4.5米,OF=5.5米,若跳水运动员在区域EF内(含点E,F)人水时才能达到训练要求,请直接写出k的取值范围.23.(本小题10分)如图,在△ABC中,AC=BC,∠ACB=120°,点P为△ABC内一点.(1)如图(1),CP=CQ,∠QCP=120°,连接BP,AQ,求证:BP=AQ;(2)如图(2),D为AB的中点,若PC=2,PA=5,∠CPD=150°,求线段PD的长;(3)如图(3),在(2)的条件下,若点M为平面内一点,PM=PC,连BM,将线段BM绕点B顺时针旋转120°至BN,连PN,请直接写出PN的最大值.(第23题)已知抛物线y=ax2+bx+3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图(1),Q为抛物线上第一象限内一点,若∠AQC=2∠BAQ,求点Q 的坐标;(3)如图(2),P为x轴上方一动点,直线PM,PN与抛物线均只有唯一公共点M,N, OH⊥MN于点H,且△PAB的面积是10,求线段OH长度的最大值.(1)(2)(第24题)。
―――――――――――――――――――――密――――封――――线――――――――――――――――――――――――――― 九年级第一学期期末教学质量检测试题——数 学——一、选择题(每小题2分,共12分)1.抛物线y=(x-2) 2 +1的对称轴是 ( )A x=2B x=-2C x=1D x=-1 2.如图,在下面的扑克牌中,牌面是中心对称图形的有 ( )(第2题图)A 2张B 3张C 4张D 5张 3.若⊙O 的直径为12,点P 在⊙O 外,则OP 的长可能是 ( ) A 4B 5C 6D 74.有一人患了流感,经过两轮传染后共有16人患了流感,设每轮传染中平均一个人传染了x 个人, 则可列方程为 ( ) A x (x+1)=16 B x (x-1)=16 C (1+x )2=16 D (1+2x )=16(第5题图) (第6题图)5.二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=bx+a 的图象不经过 ( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限6.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是 ( ) A 8≤AB ≤10B 8<AB ≤10C 4≤AB ≤5D 4<AB ≤5二、填空题(每小题3分,共24分﹚7. “种瓜得瓜,种豆得豆”这一事件是 。
(填“必然事件”“不可能事件”“随机事件”)8.一元二次方程4x 2-3x+2=0的一次项系数是 。
9. 已知⊙O 的半径为8,圆心到直线L 的距离是6,则直线L 与⊙O 的位置关系是 。
10.将抛物线y=x 2向下平移5个单位长度后得到的新抛物线解析式为______________。
11.圆锥的底面半径为2cm ,母线长为3cm ,则该圆锥的侧面展开图的面积为________cm 2。
12.如图,在平面直角坐标系中,已知A (-2,1),B (1,0),将线段AB 绕着点B 顺时针旋转90°得到线段BA ′,则A ′的坐标为__________。
2025届安徽省合肥市42中学数学九年级第一学期开学教学质量检测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下面式子是二次根式的是()A .B .C .D .a 2、(4分)如图,在四边形ABCD 中,90,A AB AD ︒∠===,M N 分别为线段,BC AB 上的动点(含端点,但点M 不与点B 重合),点,E F 分别为,DM MN 的中点,则EF 长度的最大值为()A B .2.5C .5D .3.53、(4分)甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是2=S 甲28,2=S 乙18.6,2=S 丙 1.1.导游小李最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A .甲团B .乙团C .丙团D .三个团都一样4、(4分)如图,,A B 的坐标为(2,0),(0,1),若将线段AB 平移至11A B ,则+a b 的值为()A .5B .4C .3D .25、(4分)如图,以正方形ABCD 的边AD 为一边作等边△ADE ,则∠AEB 等于()A .10°B .15°C .20°D .12.5°6、(4分)如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A .邻边不等的矩形B .等腰梯形C .有一角是锐角的菱形D .正方形7、(4分)已知△ABC 的三个角是∠A ,∠B ,∠C ,它们所对的边分别是a ,b ,c.①c 2-a 2=b 2;②∠A =12∠B =13∠C ;③c =a b ;④a =2,b =2,c .上述四个条件中,能判定△ABC 为直角三角形的有()A .1个B .2个C .3个D .4个8、(4分)若函数y =(k +1)x +k 2﹣1是正比例函数,则k 的值为()A .0B .1C .±1D .﹣1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将正比例函数6y x =-的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是__________.10、(4分)方程260x x +-=的两个根是1x 和2x ,则1212x x x x ++的值为____.11、(4分)如图,在矩形ABCD 中,已知AB=3,BC=4,则BD=________.12、(4分)已知()()1,32,1A B -、,点P 在y 轴上,则当y 轴平分APB ∠时,点P 的坐标为______.13、(4分)如图,在矩形ABCD 中,AB=6,BC=4,将矩形沿AC 折叠,点D 落在'D 处,则重叠部分△AFC 的面积为___________三、解答题(本大题共5个小题,共48分)14、(12分)如图,在ABC 中,E 点为AC 的中点,且有1BD =,3CD =,BC =,AD =求DE 的长.15、(8分)如图:BE 、CF 是锐角△ABC 的两条高,M 、N 分别是BC 、EF 的中点,若EF =6,BC =24.(1)证明:∠ABE =∠ACF ;(2)判断EF 与MN 的位置关系,并证明你的结论;(3)求MN 的长.16、(8分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-4,1),B (-1,3),C (-1,1)(1)将△ABC 以原点O 为旋转中心旋转180°,画出旋转后对应的△;平移△ABC ,若A 对应的点坐标为(-4,-5),画出△;(2)若△绕某一点旋转可以得到△,直接写出旋转中心坐标是__________;(3)在x 轴上有一点P 是的PA+PB 的值最小,直接写出点P 的坐标___________;17、(10分)如图,矩形ABCD 的边BC 在x 轴上,点A (a ,4)和D 分别在反比函数y =-和y =(m >0)的图象上.(1)当AB =BC 时,求m 的值。
2024—2025学年度第一学期期中学业质量检测九年级数学试题(满分分值: 150分 考试时间: 120分钟)一、选择题(本大题共8小题,每小题3分,共24分. 在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上........) 1.下列方程中,是关于x 的一元二次方程的是 ( ▲ ) A. 2x=72.下列图形中,既是中心对称图形、又是轴对称图形的是 ( ▲ )3.O 是ABC ∆的内切圆,则点O 是ABC ∆的( )A .三条边的垂直平分线的交点B .三条中线的交点C .三条角平分线的交点D .三条高的交点4.已知O 的半径为3,点P 在O 外,则OP 的长可以是( )A .1B .2C .3D .45.习近平总书记强调:“青年一代有理想、有本领、有担当,国家就有前途,民族就有希望”.如图①是 一块弘扬“新时代青年励志奋斗”的扇面宣传展板,该展板的部分示意图如图②所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3OA m =, 1.5OB m =,则阴影部分的面积为( )A .294m πB .23mC .2174m πD 225π 6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .10080100807644x x ⨯--=B .2(100)(80)7644x x x --+=C .(100)(80)7644x x --=D .10080356x x +=7.如图,在ABC ∆中,90C ∠=︒,25B ∠=︒.若以点C 为圆心,CA 长为半径的圆与AB 交于点D ,则AD 的度数为( )A .25︒B .50︒C .60︒D .65︒8.有两个一元二次方程:2:0A ax bx c ++=,2:0B cx bx a ++=,其中 a-c ≠0, 下列四个结论中,错误的是 ( )A. 如果方程A 有两个不相等的实数根,那么方程B 也有两个不相等的实数根;B. 如果方程A 两根符号相同,那么方程B 的两根符号也相同;C. 如果2是方程A 的一个根,那么12是方程B 的一个根D. 如果方程A 和方程B 有一个相同的根,那么这个根必是1.二、填空题 (本大题共10小题,每小题3分,共30分. 不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.写出一个解为2的一元二次方程: ▲ .10.已知圆锥的底面半径是1cm ,母线长为3cm ,则该圆锥的侧面积为 2cm .11.如图,四边形ABCD 内接于O ,110A ∠=︒,则C ∠= ︒,依据是 .12.如图,点A ,B ,C 在O 上,54BAC ∠=︒,则BOC ∠的度数为 .13.如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为 厘米.14.某药品由原售价连续两次降价,每次下降的百分率相同,每瓶零售价由150元降为96元,那么下降的百分率是 .15.如图,点O 是正五边形ABCDE 的中心,连接BD 、OD ,则BDO ∠= ︒.16.若x m =是一元二次方程2310x x ++=的一个解,则22023412m m --的值为 .17.如图,点A ,B ,C 在O 上,90AOC ∠=︒,22AB =,1BC =,则O 的半径为 .18.如图,在平面直角坐标系xOy 中,O 的半径是1.过O 上一点P 作等边三角形PDE ,使点D ,E 分别落在x 轴、y 轴上,则PD 的取值范围是 .三、解答题 (本大题共9小题,共96分. 请在答题卡上指定区域内作答. 解答时写出必要的文字说明、证明过程或演算步骤...............)19. (本题满分8分) 解方程:20.关于x的方程22(2)0+++=.x m x m(1)求证:方程总有两个实数根;(2)请你选择一个合适的m的值,使得方程的两个根都是整数,并求此时方程的根.21.已知ABC∆在平面直角坐标系中位置如图.(1)利用格点画出ABC∆的外接圆P,并写出圆心P的坐标为.(2)画出ABC';∆绕点C按顺时针方向旋转90︒后的△A B C'(3)求(2)中点A旋转到点A'所经过的路线长(结果保留)π.22.如图,在ABCBAC∠=︒.∆中,90(1)请你画一个半圆使得圆心O在边BC上,并与AB、AC都相切(保留画图痕迹);(2)已知4AB=,3AC=,求(1)中所画圆的半径.23.如图,在Rt ABCBAC∠=︒,BD是角平分线,以点D为圆心,DA为半径的D与AC相交∆中,90于点E(1)求证:BC是D的切线;(2)若5BC=,求CE的长.AB=,1324.某水果商场销售一种高档水果,若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,(1) 若每千克涨价2元,则每天可售▲千克.(直接写出答案);(2) 现该商场要保证这种水果每天盈利6000元,且尽可能减轻顾客负担,那么每千克应涨价多少元?(3) 商场每天能盈利7000元吗? 为什么?(4) 请直接写出商场这种水果每天盈利的最大值为▲元.25.“转化”是一种重要的数学思想,回顾我们学过的各类方程的解法:解二元一次方程组,把它利用消元法转化为一元一次方程;解一元二次方程,利用直接开平方法或因式分解法,将它转化为解两个一元一次方程;解分式方程,利用去分母的方法,将它转化为整式方程,由于“去分母”可能产生增根,所以解分式方程必须检验,用“转化”的数学思想,我们还可以解一些新的方程,例如:解无理方程12x+=解:方程两边同时平方,得:14x+=,解这个一元一次方程,得:3x=,检验:当3=+==右边,x=时,左边312所以,3x=是原方程的解.通过“方程两边平方”,有可能产生增根,必须对解得的根进行检验.通过上面的学习,请解决以下两个问题:(1)解无理方程:23+=;x x(2)如图,在平面直角坐标系xOy中,点(5,3)B,90+=,求点C的坐标.OC BCOAB B∠=∠=︒,726.由两个全等的Rt△ABE和构成如图①所示的四边形ABCD,已知直角三角形的直角边长分别为m、n,斜边长为q.分别以m、q、n为二次项系数、一次项系数和常数项构造的一元二次方程称为勾股方程.(1) 方程(填“是”或“不是”)“勾股方程”;(2)若勾股方程220mx qx n++=有两个相等的实数根,求mq的值.27.某数学活动小组对一个数学问题作如下探究:(1)【问题发现】如图①, 正方形ABCD的四个顶点在⊙O上, 点E在AB上, 连接AE、BE、DE, 若在 DE上取一点F, 使得DF=BE, 连接AF, 发现与△ABE全等,请说明理由;(2)【变式探究】如图②, 正方形ABCD的四个顶点在⊙O 上, 若点E在AD上,过点A作AG⊥BE, 探究线段BE、DE 、AG间的数量关系, 并说明理由;(3)【结论运用】如图③,在 Rt△ABC中, ∠ACB=90°,∠ABC=60°,BC=4.点D为AB边上一动点, 连接CD, 点E为CD边上一动点, 连接BE, 以BE为边, 在BE右侧作等边△BEF,连接CF. 当点 D从AB的四等分点(靠近点B) 出发,向终点A 运动,同时,点E从点 D 出发,向终点C运动,运动过程中,始终保持∠BEC=90°,则CF的最小值为▲,点F所经过的路径长为▲ .(直接写出结果)。
峨边彝族自治县教学质量检测九年级数 学2015年1月题号一 二 三 四 五 六 总分 得分一、选择题(本大题共10小题,每小题3分,共30分。
下列各小题只有一个答案正确,请把正确答案的番号填在括号内)1.若式子5 x 在实数范围内有意义,则( )。
A. x >5 B. x ≥5 C. x >-5 D. x ≥-52.实数a 、b 在数轴上的位置如图所示,化简︱a-b ︱-2a 的结果是( )。
A. 2a-b B. b C. -b D. -2a+b3.某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月每月平均增长的百分率为x ,则( )。
A.500(1+x 2)=720B. 500(1+x)2=720C. 500(1+2x)=720D. 720(1+x)2=500 4.若方程x 2-4x+k=0 的一根为3,则k=( ),另一根为( )。
A. 3 ,1 B. 2 ,4 C. 1 ,2 D. 3 ,55.如图,菱形ABCD 的周长为40cm ,D E ⊥AB ,垂足为E , sinA=53,则下列结论:①DF=6cm ;②BE=2cm ;③菱形 面积为60cm 2 ;④BD=104cm .正确的有( )。
A.1个B.2个C.3个D. 4个6.一元二次方程mx 2+n=0 (m ≠0),若方程有解,则必须( )A.n=0B.m ,n 同号码C.n 是m 的整数解D.m,n 异号或n 为0 .得分 评卷人ACDBE F7. 已知x ,y 为实数,且,02)2(31=-+-y x 则x-y 的值为( )A.3B.-3C.1D.-18.已知:如图,在△ABC 中,∠C=900 ,正方形DEFC 内接于三角形,E D ∥AC ,EF ∥BC ,AC=1,BC=2 ,则AF:FC 等于( )。
A.1:3B.1:4C.1:2D.2:39.如图△ABC 是等边三角形,C F ⊥AB , EF ∥DC ,AE=3.5cm ,则AD= 。
A.7 B.5 C. 2 D.810.如图:小明作出了边长为1的第一个正△A 1B 1C 1 ,算出了正△A 1B 1C 1的面积。
然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2 ,作出了第二个正△A 2B 2C 2 ,算出了正△A 2B 2C 2的面积。
用同样的方法,作出了第三个正△A 3B 3C 3 ,算出了正△A 3B 3C 3的面积……由此可得,第10个正△A 10B 10C 10的面积是( )。
A.9)41(43⨯ B. 10)41(43⨯ C. 9)21(23⨯ D. 10)21(43⨯二、填空题(本大题共6小题,每小题3分,共18分,把正确答案填在题中的横线上)11. 化简:32= . 得分 评卷人A BCD (B1)FE A 112. 已知方程x 2+mx+2m-1=0的两根互为相反数,则m= ,两根分别为 . 13. 要做甲乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm ,60cm ,80cm,三角形框架乙的一边为20cm ,那么符合条件的三角形框架乙共 有 种。
14.在1个袋里有2个红球,1个白球,从中任意摸出1个球后不放回去,再从袋里摸1个球,那么这次摸到红球的概率是 。
15. 如图:△ABC 中AB=AC ,A D ⊥BC ,M 为AD 中点,DF ∥CE ,AC=9cm ,则AE= 。
16. 把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和D 重合,折痕为EF 。
若AB=3cm ,BC=5cm ,则重叠部分△DEF 的面积是 。
三、(本大题3个小题,每小题9分,共27分)17. 计算:已知x=1+2 ,求代数式。
x xx x x 的值111222---++18.已知关于x 的方程x 2-2(m+1)x+m 2-3=0 .得分 评卷人(1)当m为何值时,方程有两个不相等的实数根?(2)设方程的两个实数根分别为x1 ,x2 ,当(x1 +x2)2-(x1+x2 )-12=0时,求m的值。
19. 已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0 (1)x2+x-2=0(2)x2+2x-3=0 (3)……x2+(n-1)x-n=0 ,(n)(1)请解上述一元二次方程(1) ,(2) ,(3) ,(n);(2)请你指出这n个方程的根具有什么特点,写一条即可能。
四、(本大题3个小题,每小题10分,共30分20. 如图,∠C=900,M为AB的中点,BC=6,AM=5 ,D M⊥AB 交AC于D ,求DM的值。
得分评卷人21. 转动如图所示的两个大小不同的转盘,你认为转盘停下来时,指针有可能指向哪些数字?指向偶数数字的概率在两个转盘一样吗?概率分别是多少?22. 在数学活动课上,老师带领学生去测河宽,如下图所示,某学生在点A处观测到河对岸水边处有一点C ,并测得∠CAD=450,在距离A点30m的B处测得∠CBD=300,求河宽CD(结果可带根号)。
CD A B五、本大题共2小题,每小题12分,共24分23. 如图 ,梯形ABCD 中,A B ∥CD ,且AB=2CD ,E 、F 分别是AB 、BC 的中点,EF 与BD 相交于点M 。
求证:(1)△EDM ∽△FBM ;(2)若DB=9 ,求BM 的值。
24. 如图,△ABC 中,∠C=900 ,BC=8cm ,5AC-3AB=0 ,点P 从B 出发,沿BC 方向以2cm/s 的速度移动,点Q 从C 出发,沿CA 方向以1cm/s 的速度移动。
若P 、Q 分别从B 、C 同时出发,经过多长时间△CPQ 与△CBA 相似?ABCDE FMAD BC300450六、(本大题共2小题,第25题10分,第26题13分,共23分)25. 幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由450降为300 ,已知原滑滑板AB 的长为4米,点D 、B 、C 在同一水平面上。
(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由。
(参考数据:449.26,732.13,414.12===以上结果均保留到小数点后两位)AB CP Q26.正方形ABCD的边长为4 ,M ,N ,分别是BC , CD上的两个动点,当M点在BC上运动时,保持AM⊥MN ,设MB=x(1)证明:△ABM∽△MCN ;( 2)若四边形ABCN的面积等于9 ,求x的值。
(3)当M点运动到什么位置时,以A、B、M为顶点的三角形和以A、M 、N为顶点的三角形相似。
并加以证明。
参考答案一、选择题,每小题3分,共30分1. D2.C3.B4. A5.C6.D7.D8.C9. A 10. A 二.填空题:每小题3分,共18分。
11.36 12. 0 ,±1 13. 7 14.9515. 3 16.5.1 三、每小题9分,共27分。
17.解:将代数式化简得,11-x ,将x=1+2代入得22到。
18. 解:(1)△=4( m+1)2-4(m 2-3)>0 =m >-2(2)4m 2-6m-10=0 ,解得m 1=-1 ,m 2=2519.解:(1)(x+1)(x-1)=0 ,∴x 1=-1 ,x 2=1 (2)(x+2)(x-1)=0 , ∴ x 1=-2 ,x 2=1 (3)(x+3)(x-1)=0 , ∴x 1=-3 ,x 2=1……(n)(x+n)(x-1)=0 , ∴x 1=-n ,x 2=1(2).共同特点是:都有一个根为1 ,都有一根为负整数;两个根都是整数根等。
四、每小题10分,共30分20. △ABC 是Rt △ BC=6 ,AB=5+5=10 ,得AC=8 .又由∠A=∠A , ∠AND=∠C=900,得△AMD ∽△ACB ,即得:685DM =,得出DM=41521.(1)略 (2)2122. 在Rt △ACD 中,∠CAD=450,得AD=DC ,在Rt △BCD 中,∠B=300,即得3030tan 0++=AD CD CD ,tan300=302+CD CD CD=33330- CD=40.87(m)五、每小题12分,共24分。
23.(1)证明 :E 是AB 中点,得AE=BE ,又AB=2CD ,DC=EB ,DC ∥BE 得四边形DEBC 是平行四边形。
即平行且等于BE ,得BC ∥DE,∠CBM=∠EDM,∠DME=∠BMF 得出△EDM ∽△FBM(2)设BM=x ,则BM=9-x 根据上题得:xxDE BF -=9 ,解得x=3 ,即BM=3 24. 根据勾股定理得AB=10 ,当△CPQ ∽△CAB 时,设经过x 秒△CPQ 与△CBA 相似。
(1)8286x x -=解得x=512 (2)6288x x -=解得x=1132六、25题10分,26题13分,共23分。
25. (1)在△ABC 中,∠ABC=450, ∠C=900,则AC=BC ,sin450=4AC,AC=22(米) 在Rt △ACD 中,tan300=DCDC AC 22= ,得出DC=2(米) DC=2-22(米)26. (1)∠NMC+∠AMB=900, ∠AMB+∠MAB=900,则∠CMN=∠MAB, ∠B=∠C ,△ABM ∽△MCN(2) S 梯形=21BC (NC+AB )=21(X-241x +4)×4 ,解得x=2+2 (3) 当∠BAM=∠MAN , △BAM ∽△MAN , △ABM ∽△MCN ,得出MCABBM AB =,BC=4 当∠BAM=∠ANM , △BAM ∽△MNA △BAM ∽△MNA , △ABM ∽△AMN ,ACABAB BA =,BM=x ,MC=4x AB=4 ,得出x=23+2>4(舍去) 综合以上,当BM=2时,△BAM ∽△M NA .。