相交线与平行线全章知识点归纳及典型题目试
- 格式:doc
- 大小:2.51 MB
- 文档页数:23
第五章 相交线与平行线 1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________. 2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________. 3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________. 4. 直线外一点到这条直线的垂线段的长度,叫做________________________. 5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________. 6. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种. 7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______. 推论:如果两条直线都与第三条直线平行,那么_____________________. 8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________. ⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成: ________________________________________. 9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ . 10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ . 11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题. 12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的. 平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.
相交线与平行线两直线相交所成的四个角中, 有一条公共边,它们的另一边互为反向延长线, 具有这种关系的两个角,互为 ______________ .两直线相交所成的四个角中, 有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线, 具有这种关系的两个角,互为 _____________ .对顶角的性质: ___________________ .两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互 _______ .垂线的性质:⑴过一点 ______________ 一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,直线外一点到这条直线的垂线段的长度,叫做 _____________________________ .两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直 线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做 ___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做 _____________ ;⑶如 果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做在同一平面内,不相交的两条直线互相 _______________ .同一平面内的两条直线的位置关系只有 ___________ 与 _________ 两种.平行公理:经过直线外一点,有且只有一条直线与这条直线 ___________ . 推论:如果两条直线都与第三条直线平行,那么 ___________________________ . 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:____________________________________________ .⑵两条直线被第三条直线所截,如果内错角相等,那么这 两条直线平行.简单说成: ________________________ . ⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线 ______ .平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: ____________________________________________ .⑵两条平行直线被第三条直线所截,内错角相等.简单说成: .⑶两条平行直线被第三条直线所截,同旁内角互补 .简单说成:判断一件事情的语句,叫做 ________ .命题由 _______ 和 _________ 两部分组成.题设是已知事项,结论1.2.3.4. 5.6.7.8.9. 10.11.是 _______________________ .命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是 _________ ,“那么”后接的部分是__________ .如果题设成立,那么结论一定成立•像这样的命题叫做 ___________ .如果题设成立时,不能保证结论一定成立,像这样的命题叫做 ___________ .定理都是真命题•12.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称____________图形平移的方向不一定是水平的•平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全 _____ .⑵新图形中的每一点,线段.都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的熟悉以下各题:13.如图,BC AC,CB8cm, AC6cm, AB 10cm,那么点A A到BC的距离是,点B到AC的距离是,点A、B两点的距离C是,点C 到AB的距离是______________ .14. 设a、b、c为平面上三条不同直线,a)若a//b,b//c,贝U a与c的位置关系是_____________ ;b)若a b,b c,则a与c的位置关系是________________ ;c)若a//b, b c,则a与c的位置关系是 _______________ .15. 如图,已知AB、CD、EF 相交于点O, AB丄CD , OG 平分/ A0E , / F0D = 28°,求/ C0E、/ A0E、/ A0G的度数.16.如图,A0C与B0C是邻补角,0D、0E分别是A0C与B0C的平分线,试判断0D与0EM的位置关系,并说明理由.17.如图,AB // DE ,试问/ B 、/ E 、/ BCE 有什么关系.解:/ B +Z E =Z BCE 过点C 作CF // AB , 则 B _______ ( )又••• AB // DE , AB // CF ,•- __________ ( )「•Z E =Z ___ ()•••Z B +Z E = Z 1 + Z 2即Z B +Z E = Z BCE .18.⑴如图,已知Z 1 = Z 2 求证:a // b .⑵直线a//b ,求证:1 2 .19•阅读理解并在括号内填注理由:如图,已知AB // CD , Z 1 = Z 2,试说明EP // FQ .证明:••• AB // CD ,• Z MEB =Z MFD ()又T Z 1 = Z 2,•••/ MEB —上 1 = Z MFD —上 2, 即 / MEP =Z _________ • EP // _____ .()20.已知DB // FG // EC, A是FG 上一点,/ ABD = 60°,/ ACE = 36°, AP 平分/ BAC,求:⑴/ BAC 的大小;⑵/ FAG的大小.21.如图,已知ABC , AD BC于D, E为AB上一点,EF BC于F, DG//BA交CA于G.求证1 2.E22.已知:如图/ 1 = / 2, / C=/ D,问/ A与/ F相等吗?试说明理由.错角相等).。
最大最全最精的教育资源网 www.xsjjyw.com 新世纪教育网 天量课件、教案、试卷、学案免费下载 第 1 页 共 3 页 《命题、定理、证明》教案 【学习目标】 1、掌握命题的概念,并能分清命题的组成部分. 2、经历判断命题真假的过程,对命题的真假有一个初步的了解。 3、初步培养不同几何语言相互转化的能力。 【学习重点】命题的概念和区分命题的题设与结论
【学习难点】区分命题的题设和结论
【学前准备】 1、预习疑难: 。 2、填空:①平行线的3个判定方法的共同点是 。 ②平行线的判定和性质的区别是 。 【自主学习】
(一)命题: 1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等; ④如果两条直线不平行,那么同位角不相等. 这些句子都是对某一件事情作出“是”或“不是”的判断 2、定义: 的语句,叫做命题 3、练习:下列语句,哪些是命题?哪些不是? (1)过直线AB外一点P,作AB的平行线. (2)过直线AB外一点P,可以作一条直线与AB平行吗? (3)经过直线AB外一点P, 可以作一条直线与AB平行. 请你再举出一些例子。 (二)命题的构成: 1、许多命题都由 和 两部分组成. 是已知事项, 是由已知事项推出的事项. 2、命题常写成“如果„„那么„„”的形式,这时,“如果”后接的部分.....是 , “那么”后接的的部分......是 . (三)命题的分类 真命题: 。 (定理: 的真命题。) 假命题: 。 最大最全最精的教育资源网 www.xsjjyw.com 新世纪教育网 天量课件、教案、试卷、学案免费下载 第 2 页 共 3 页 【合作探究】 1、指出下列命题的题设和结论: (1)如果两个数互为相反数,这两个数的商为-1; (2)两直线平行,同旁内角互补; (3)同旁内角互补,两直线平行; (4)等式两边乘同一个数,结果仍是等式; (5)绝对值相等的两个数相等; (6)如果AB⊥CD,垂足是O,那么∠AOC=90°. 2、把下列命题改写成“如果„„那么„„”的形式: (1)互补的两个角不可能都是锐角: 。 (2)垂直于同一条直线的两条直线平行: 。 (3)对顶角相等: 。 3、判断下列命题是否正确: (1)同位角相等 (2)如果两个角是邻补角,这两个角互补; (3)如果两个角互补,这两个角是邻补角. 【学习体会】 1、本节课你有哪些收获?你还有哪些疑惑? 2、预习时的疑难解决了吗? 最大最全最精的教育资源网 www.xsjjyw.com
初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____()又∵AB ∥DE ,AB ∥CF ,∴____________()∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA交CA 于G .求证12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。
相交线与平行线全章知识点归纳及典型题目练习1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:BC AC CB cm AC cm AB cm那么点13.如图,,8,6,10,A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.14.设a、b、c为平面上三条不同直线,a b b c,则a与c的位置关系是_________;a)若//,//a b b c,则a与c的位置关系是_________;b)若,a b,b c,则a与c的位置关系是________.c)若//15.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.16.如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.17.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.a b,求证:12.18.⑴如图,已知∠1=∠2求证:a∥b.⑵直线//19.阅读理解并在括号内填注理由:如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.证明:∵AB∥CD,∴∠MEB=∠MFD()又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即∠MEP=∠______∴EP∥_____.()20.已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;⑵∠P AG的大小.DG BA 21.如图,已知ABC,AD BC于D,E为AB上一点,EF BC于F,//交CA于G.求证12.22.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.参考答案。
第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA交CA 于G .求证12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。
第五章_相交线与平⾏线_全章知识点归纳及典型题⽬练习(含答案)第五章相交线与平⾏线(⾮常有⽤)1.两直线相交所成的四个⾓中,有⼀条公共边,它们的另⼀边互为反向延长线,具有这种关系的两个⾓,互为_____________.2.两直线相交所成的四个⾓中,有⼀个公共顶点,并且⼀个⾓的两边分别是另⼀个⾓两边的反向延长线,具有这种关系的两个⾓,互为__________.对顶⾓的性质:______ _________.3.两直线相交所成的四个⾓中,如果有⼀个⾓是直⾓,那么就称这两条直线相互_______.垂线的性质:⑴过⼀点______________⼀条直线与已知直线垂直.⑵连接直线外⼀点与直线上各点的所在线段中,_______________.4.直线外⼀点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成⼋个⾓,在那些没有公共顶点的⾓中,⑴如果两个⾓分别在两条直线的同⼀⽅,并且都在第三条直线的同侧,具有这种关系的⼀对⾓叫做___________ ;⑵如果两个⾓都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的⼀对⾓叫做____________ ;⑶如果两个⾓都在两直线之间,但它们在第三条直线的同⼀旁,具有这种关系的⼀对⾓叫做_______________.6.在同⼀平⾯内,不相交的两条直线互相___________.同⼀平⾯内的两条直线的位置关系只有________与_________两种.7.平⾏公理:经过直线外⼀点,有且只有⼀条直线与这条直线______.推论:如果两条直线都与第三条直线平⾏,那么_____________________. 8.平⾏线的判定:⑴两条直线被第三条直线所截,如果同位⾓相等,那么这两条直线平⾏.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错⾓相等,那么这两条直线平⾏.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内⾓互补,那么这两条直线平⾏.简单说成:________________________________________.9.在同⼀平⾯内,如果两条直线都垂直于同⼀条直线,那么这两条直线_______ .10.平⾏线的性质:⑴两条平⾏直线被第三条直线所截,同位⾓相等.简单说成:_________________.⑵两条平⾏直线被第三条直线所截,内错⾓相等.简单说成:__________________________________.⑶两条平⾏直线被第三条直线所截,同旁内⾓互补.简单说成:____________________________________ .11.判断⼀件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成⽴,那么结论⼀定成⽴.像这样的命题叫做___________.如果题设成⽴时,不能保证结论⼀定成⽴,像这样的命题叫做___________.定理都是真命题.12.把⼀个图形整体沿某⼀⽅向移动,会得到⼀个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的⽅向不⼀定是⽔平的.平移的性质:⑴把⼀个图形整体平移得到的新图形与原图形的形状与⼤⼩完全______.⑵新图形中的每⼀点,都是由原图形中的某⼀点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13.如图,,8,6,10,⊥===那么BC AC CB cm AC cm AB cm点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.14.设a、b、c为平⾯上三条不同直线,a)若//,//a b b c,则a与c的位置关系是_________;b)若,⊥⊥,则a与c的位置关系是_________;a b b cc)若//a b,b c⊥,则a与c的位置关系是________.15.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.16.如图,A O C∠与B O C∠的平分∠是邻补⾓,OD、OE分别是A O C∠与B O C线,试判断OD与OE的位置关系,并说明理由.17.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,则B∠=∠____()⼜∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.18.⑴如图,已知∠1=∠2 求证:a∥b.⑵直线//a b,求证:12∠=∠.19.阅读理解并在括号内填注理由:如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.证明:∵AB∥CD,∴∠MEB=∠MFD()⼜∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即∠MEP=∠______∴EP∥_____.()20.已知DB∥FG∥EC,A是FG上⼀点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的⼤⼩;⑵∠PAG的⼤⼩.21.如图,已知A B CD G B A⊥于F,//?,A D B C⊥于D,E为AB上⼀点,EF BC 交CA于G.求证12∠=∠.22.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.参考答案1.邻补⾓2. 对顶⾓,对顶⾓相等3.垂直有且只有垂线段最短4.点到直线的距离5.同位⾓内错⾓同旁内⾓6.平⾏相交平⾏7.平⾏这两直线互相平⾏8.同位⾓相等两直线平⾏;内错⾓相等两直线平⾏;同旁内⾓互补两直线平⾏.9.平⾏10.两直线平⾏同位⾓相等;两直线平⾏内错⾓相等;两直线平⾏同旁内⾓互补.11.命题题设结论由已知事项推出的事项题设结论真命题假命题 12.平移相同平⾏且相等 13.6cm 8cm 10cm4.8cm. 14.平⾏平⾏垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平⾏,内错⾓相等)DE ∥CF (平⾏于同⼀直线的两条直线平⾏) 2 (两直线平⾏,内错⾓相等). 18.⑴∵∠1=∠2 ,⼜∵∠2=∠3(对顶⾓相等),∴∠1=∠3∴a ∥b (同位⾓相等两直线平⾏)⑵∵a ∥b ∴∠1=∠3(两直线平⾏,同位⾓相等)⼜∵∠2=∠3(对顶⾓相等)∴∠1=∠2. 19. 两直线平⾏,同位⾓相等 MFQ FQ 同位⾓相等两直线平⾏ 20. 96°,12°.21.,AD BC FE BC ⊥⊥ 90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F.∵∠1=∠DGF (对顶⾓相等)⼜∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位⾓相等,两直线平⾏)∴∠DBA =∠C (两直线平⾏,同位⾓相等)⼜∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错⾓相等,两直线平⾏)∴∠A =∠F (两直线平⾏,内错⾓相等).。
v1.0可编辑可修改15相交线与平行线知识点梳理汇总二、基本知识提炼整理 (一)余角与补角1"如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为U 补角,简称为互补,称其中一 U 个角是另 一个角的补角。
3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
1、知识结构图 余角余角补角两线相交 补角对顶角相交线与平行线同位角三线八角 内错角 同旁内角平行线的判定平行线平行线的性质尺规作图4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
5、余角和补角的性质用数学语言可表示为:(1) 1 2 900(1800), 1 3 900(1800),则2(2) 1 2 900(1800), 3 4 90° (180°),且1(或补角)相等)。
3(同角的余角或补角相等)。
4,则2 3(等角的余角6、余角和补角的性质是证明U两角相等的一个重要方法。
(二)对顶角1、两条直线相交成四个角,其中不相邻的两个角是对顶角。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两■个角相等的依据及重要桥梁。
5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。
(三)同位角、内错角、同旁内角1、两条直线被第三条直线所■截,形成了8个角。
2、同位角:两个角都在两条直线的同侧,并且*在第三条直线(截线)的同旁,这样的一对角叫做同位角。
3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。
4、同旁内角■:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。
5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。
相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA交CA 于G .求证12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥ 90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠//,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。
相交线与平行线全章知识点归纳及典型题目试
2
———————————————————————————————— 作者: ———————————————————————————————— 日期: - 3 -
15相交线与平行线知识点梳理汇总 一、知识结构图
余角 余角补角 补角
角 两线相交 对顶角 同位角 三线八角 内错角 同旁内角
平行线的判定 平行线 平行线的性质
尺规作图 二、基本知识提炼整理 (一)余角与补角 1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。 2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。 3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。 4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。 5、余角和补角的性质用数学语言可表示为: (1)00001290(180),1390(180),则23(同角的余角或补角相等)。
相交线与 - 4 -
(2)00001290(180),3490(180),且14,则23(等角的余角(或补角)相等)。 6、余角和补角的性质是证明两角相等的一个重要方法。 (二)对顶角 1、两条直线相交成四个角,其中不相邻的两个角是对顶角。 2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 3、对顶角的性质:对顶角相等。 4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。 5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。 (三)同位角、内错角、同旁内角 1、两条直线被第三条直线所截,形成了8个角。 2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。 3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。 4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。 5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。 (四)六类角 1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。 2、余角、补角只有数量上的关系,与其位置无关。 3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。 4、对顶角既有数量关系,又有位置关系。 - 5 -
(五)平行线的判定与性质 平行线的判定 平行线的性质 1、 同位角相等,两直线平行 2、 内错角相等,两直线平行 3、 同旁内角互补,两直线平行 4、 平行于同一条直线的两直线平行 5、 垂直于同一条直线的两直线平行 1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补 4、经过直线外一点,有且只有一条直线与已知直线平行 (六)尺规作线段和角(了解) 1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。 2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。 3、尺规作图中直尺的功能是: (1)在两点间连接一条线段; (2)将线段向两方延长。 4、尺规作图中圆规的功能是: (1)以任意一点为圆心,任意长为半径作一个圆; (2)以任意一点为圆心,任意长为半径画一段弧; 5、熟练掌握以下作图语言: (1)作射线××; (2)在射线上截取××=××; (3)在射线××上依次截取××=××=××; (4)以点×为圆心,××为半径画弧,交××于点×; (5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×; (6)过点×和点×画直线××(或画射线××); (7)在∠×××的外部(或内部)画∠×××=∠×××; - 6 -
ODCBA
6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。 (1)画线段××=××; (2)画∠×××=∠×××; 第五章 相交线与平行线 (分节知识点)
5.1.1相交线(详见课本第 2 页) 1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点。
如图所示,直线AB与直线CD相交于点O。 2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线,那么这两个角叫做对顶角。
如图所示,∠1与∠3、∠2与∠4都是对顶角。 3、对顶角的性质:对顶角 。 4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角。
如图所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°。
5.1.2垂线(详见课本第 3 页) 1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 。 2、垂线的性质
(1)(垂线公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 。 (2)(垂线推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。即垂线段最 。 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 。 4、 垂线的画法(工具:三角板或量角器)
画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,
432
1A
BCD
O
21
OCB
A
A B C D 1
图1 - 7 -
⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。 5.1.3同位角、内错角、同旁内角(详见课本第 6 页) 1、三线八角 两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角。
如图6,直线ba,被直线l所截
①∠1与∠5在截线l的同侧,同在被截直线ba,的上方,叫做 角(位置相同)同位角是“F”型 ②∠5与∠3在截线l的两旁(交错),在被截直线ba,之间(内), 叫做 角(位置在内且交错)内错角是“Z”型 ③∠5与∠4在截线l的同侧,在被截直线ba,之间(内), 叫做 角。同旁内角是“I”型 2、如何判别三线八角 判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”, 有时需要将有关的部分“抽出”或把无关的线略去不看,
有时又需要把图形补全。如图 温馨提示:在确定同位角、内错角、同旁内角时,先要弄清哪 两条直线被哪一条直线所截,然后依据它们的定义,也可由它们的名字的提示,准确找到所需要的角。同学们要注意:并不是同位角、内错角就相等,同旁内角就互补,而只有当这两条直线平行时,才会有这个性质。
5.2.1平行线(详见课本第11 页) 1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线。 2、两条直线的位置关系 在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ 。
(通常把 的两直线看成一条直线).垂直是特殊的相交关系。
6 B
A D
2 3 4
5 7 8 9 F E C
图7 DCBA - 8 -
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: 3、平行线的表示方法 平行用“ ”表示,如图8所示,直线AB与直线CD平行,记作AB∥CD,
读作AB 平行于CD。 4、平行线的画法: 5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 。
(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 。 如左图8所示
5.2.2平行线的判定(详见课本第 12 页) 1、平行线的判定方法: (1)判定1:两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行。简称: 同位角 ,两直线 (2)判定2:两条直线被第三条直线所截,如果内错角相等, 那么这两条直线平行。简称: 内错角 ,两直线 (3)判定3:两条直线被第三条直线所截,如果同旁内角互补, 那么这两条直线平行。简称: 同旁内角 ,两直线 (4)平行线的概念:如果两条直线没有交点(不 ),那么两直线平行。 (5)两条直线都和第三条直线平行,那么这两条直线 。(平行于同一条直线的两条直线也 )
(6)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线 。(垂直于同一条直线的两条直线 )
5.3.1平行线的性质(详见课本第 18 页) 1、平行线的性质: (1)两条平行线被第三条直线所截,同位角相等。简记:两直线 ,同位角 。 (2)两条平行线被第三条直线所截,内错角相等。简记:两直线 ,内错角 。 (3)两条平行线被第三条直线所截,同旁内角互补。简记:两直线 ,同旁内角 。 2、两条平行线的距离 直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离。 3.平行线的性质与判定是互逆的关系:
○1两直线平行 同位角相等; ○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补。 5.3.2命题、定理(详见课本第 20 页) 1、命题的概念: 一件事情的语句,叫做命题。
a b c
A B C D E F 1 2 3 4
图