当前位置:文档之家› 汽轮机汽缸密封必读资料

汽轮机汽缸密封必读资料

汽轮机汽缸密封必读资料
汽轮机汽缸密封必读资料

汽轮机汽缸密封资料

在汽轮机运行过程中,汽轮机渗漏和汽缸变形是最为常见的设备问题,汽缸结合面的严密性直接影响机组的安全经济运行,检修研刮汽缸的结合面,使其达到严密,是汽缸检修的重要工作,在处理结合面漏汽的过程中,要仔细分析形成的原因,根据变形的程度和间隙的大小,可以综合的运用各种方法,以达到结合面严密的要求。

一、汽轮机汽缸漏气原因分析

1、汽缸是铸造而成的,汽缸出厂后都要经过时效处理,就是要存放一些时间,使汽缸在住铸造过程中所产生的内应力完全消除。如果时效时间短,那么加工好的汽缸在以后的运行中还会变形,这就是为什么有的汽缸在第一次泄漏处理后还会在以后的运行中还有漏汽发生。因为汽缸还在不断的变形。

2、汽缸在运行时受力的情况很复杂,除了受汽缸内外气体的压力差和装在其中的各零部件的重量等静载荷外,还要承受蒸汽流出静叶时对静止部分的反作用力,以及各种连接管道冷热状态下对汽缸的作用力,在这些力的相互作用下,汽缸发生塑性变形造成泄漏。

3、汽缸的负荷增减过快,特别是快速的启动、停机和工况变化时温度变化大、暖缸的方式不正确、停机检修时打开保温层过早等,在汽缸中和法兰上产生很大的热应力和热变形。

4、汽缸在机械加工的过程中或经过补焊后产生了应力,但没有对汽缸进行回火处理加以消除,致使汽缸存在较大的残余应力,在运行中产生永久的变形。

5、在安装或检修的过程中,由于检修工艺和检修技术的原因,使内缸、汽缸隔板、隔板套及汽封套的膨胀间隙不合适,或是挂耳压板的膨胀间隙不合适,运行后产生巨大的膨胀力使汽缸变形。

6、使用的汽缸密封剂质量不好、杂质过多或是型号不对;汽缸密封剂内若有坚硬的杂质颗粒就会使密封面难以紧密的结合。博科思高温密封剂是最新汽轮机汽缸密封材料,高、中、低压缸可通用,避免了型号选择不当而造成的汽缸泄漏。

7、汽缸螺栓的紧力不足或是螺栓的材质不合格。汽缸结合面的严密性主要靠螺栓的紧力来实现的。机组的起停或是增减负荷时产生的热应力和高温会造成螺栓的应力松弛,如果应力不足,螺栓的预紧力就会逐渐减小。如果汽缸的螺栓材质不好,螺栓在长时间的运行当中,在热应力和汽缸膨胀力的作用下被拉长,发生塑性变形或断裂,紧力就会不足,使汽缸发生泄漏的现象。

8、汽缸螺栓紧固的顺序不正确。一般的汽缸螺栓在紧固时是从中间向两边同时紧固,也就是从垂弧最大处或是受力变形最大的地方紧固,这样就会把变形最大的处的间隙向汽缸前后的自由端转移,最后间隙渐渐消失。如果是从两边向中间紧,间隙就会集中于中部,汽缸结合面形成弓型间隙,引起蒸汽泄漏。

二、汽缸密封机理分析

汽缸密封是金属对金属的密封接触,只有在密封接触压力使接触面产生永久变形时,才能形成绝对的密封。但这是不允许的,缸面变形必将影响下一次的密封效果。因此,螺栓预紧力的极限必须保证缸面变形在弹性范围内。然而,这种使缸面产生弹性变形的螺栓力不足以形成耐高温高压的气密性密封,即使在具有超高表面光洁度的完善的缸面情况下,也仍会出现泄漏。因为,尽管表面非常良好,但总是存在着极

其细微的能生成足以通过空气流的泄漏通道的表面缺陷。只有在缸面涂有能在密封区形成油膜的粘性油时,才有可能达到密封,因为油膜很容易把密封接触面的表面缺陷填平,从而防止泄漏。

三、国内密封剂现状及国外密封剂

汽轮机的汽缸结合面是曲线形缸面,密封面积很大,密封性能要求很严格,为减少热损失,要求接近于零泄漏。超高压机组最大压差为13.24MPa,温度540℃,密封剂必须在这种工况下长期运行、性能稳定,无任何形式的破坏造成泄漏,并且能在大修时易于清除。

国产高温密封剂多沿用50年代初苏联专家的老配方,多年来没有大的突破和提高,选料粗糙、加工工艺原始,难以保证产品性能。目前国内不少厂家纷纷研制汽轮机汽缸中分面密封脂,市场占有率比较高的系列密封脂,在高温条件下长期运行,会使油脂挥发、残留物焦化而造成密封性能下降;同时焦化后的残留物非常坚硬,会牢固地粘着在金属表面难以清除,用机械方法强制清除会损伤精加工的密封面,影响再装配时的密封效果。另外,还有保质期较短等缺点。

四、博科斯高温密封剂

博科思的用途:

◆应用于汽轮机、燃气轮机等缸盖结合面的密封和润滑;

◆应用于压缩机、蒸汽机、透平机汽缸端面的密封和润滑;

◆在高温高压下接触酸、碱、蒸汽等部位的密封和润滑;

◆高温热炉管道法兰面、油气田深井钻具的耐高温密封;

◆特别适用于超临界以及超超临界容量火力发电机组的汽轮机气缸结合面的持久密封;

◆应用于航空发动机、船舶用发动机及真空泵等断面密封和润滑;

◆高温热管丝扣螺纹的密封。

如何使用博科思:

根据实测间隙大小选用不同的修复步骤,对于汽缸缸面变形严重,平整度间隙超标的机组,缸面要先做研修整平后,再涂博科斯密封剂扣缸;

使用前,缸面需清理干净,不留异物、灰尘和水;

使用时,首先充分搅拌密封脂,然后用油灰刀沿汽缸结合面均匀涂抹,涂抹厚度0.5mm~0.7mm左右;

螺孔周围及汽缸内侧应留有一定尺寸的空白,以防止密封剂挤压后进入通流系统:

经检查涂抹均匀无遗漏后,设备应立即安装就位。螺丝紧固后,将溢出的密封脂擦拭干净;

设备启动,无需等待密封脂固化。

博科思有哪些优势:

优异的耐温性能,最高耐温可达900℃;

良好的耐压性能,在蒸汽压力下承受25Mpa,无密封环法兰承受45Mpa,螺管接头55Mpa;

极好的密封性能,由于产品具有良好的塑变性,受热不会固化,密封膜不会被破坏,从而保证了机件密封面的密封;

产品易于清除,使用过的密封面可以用无水乙醇或丙酮轻易的擦去,而不会附着于密封面;

保质期较长,产品在正确储存的情况下,我们保证两年的适用期;

使用寿命长,根据应用指导使用并正常运行时,对于蒸汽轮机和燃气轮机,我们保证在机加密封面(对接接头)的使用寿命在10年。

汽轮机安装全套表格资料

Xxxx机组改造安装记录 Xxxx有限公司Xxx年xx月xx日

目录 1#、2#轴径椭圆度与不柱度测量记录 (2) 1#轴承前轴承检查记录 (3) 前轴承紧力检查记录 (4) 前轴承油档间隙测量记录 (5) 后轴承油档间隙测量记录 (6) 3#轴承油档间隙测量记录 (7) 4#轴承油档间隙测量记录 (8) 2#轴瓦检查安装记录 (9) 3#轴瓦检查安装记录 (10) 2#轴瓦紧力检查安装记录 (11) 4#轴瓦检查安装记录 (12) 通流部分间隙安装记录 (13) 单速级通流部分间隙安装记录 (14) 调整风扇风挡间隙安装记录 (15) 发电机气隙及磁力中心记录 (16) 隔板搭子间隙检查记录 (17) 隔板底键与隔板套底键间隙检查记录 (18) 隔板汽封间隙安装记录 (19) 隔板洼窝找中心安装记录 (20) 后汽缸与导板间纵向键安装记录 (21) 后轴承座连接螺母安装记录 (22) 扣空缸测量记录 (23) 汽—发联轴器找中心记录 (24) 汽缸水平测量记录 (25) 汽机转子弯曲度测量安装记录 (26) 汽机转子轴颈扬度安装记录 (27) 前后汽封间隙安装记录 (28) 前后汽封洼窝找中心安装记录 (29) 前后油挡洼窝找中心安装记录 (30) 前汽缸猫爪安装记录 (31) 前轴承座垂直键安装记录 (32) 前座架上的纵向键安装记录 (33) 前座架压板安装记录 (34) 联轴器推力盘端面瓢偏安装记录 (35) 推力轴承检查记录 (36) 危急遮断器飞环检查记录 (37) 叶轮叶片端面瓢偏安装记录 (38) 主油泵联轴器找中心记录 (39) 转子轴向定位检查记录 (40)

汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差

汽轮机在启停和运行工况下——胀差讲义 周国强 关键词:汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差、可谓汽轮机的泊桑效应。 汽轮机在启停和工况变化时,转子和汽缸分别以各自的死点为基准膨胀或收缩。由于汽缸质量大,而接触蒸汽的面积小。转子的质量小而接触蒸汽的面积大,因而各自的受热面不一样,使得汽缸和转子之间热膨胀的数值各不一样,其二者之间的差值称为相对膨胀,即转子和汽缸的胀差。 一般来说,冷态开机过程中是胀差是正值,稳定状态下胀差接近于零,降负荷和停机惰走时胀差向负向发展,单缸机组尤其明显。 但是对于多缸机组,即中间再热机组,其胀差较单缸机组更为复杂。 汽轮机转子与汽缸的相对膨胀,称为胀差。 1 习惯上规定 1.1 转子膨胀大于汽缸膨胀时的胀差值为正胀差; 1.2 汽缸膨胀大于转子膨胀时的胀差值为负胀差; 1.3 根据汽缸分类又可分为:高差、中差、低I差、低II差。 1.4 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。 1.5 汽缸是向后膨胀而转子是向前膨胀的。 释:单缸汽轮机的汽缸膨胀,它的死点是在低压缸排气口的中心线,即从低压缸向机头方向膨胀。转子的膨胀是以机头推力瓦为死点,向发电机方向膨胀。也就是说,汽缸的膨胀方向和转子的膨胀方向是反向的。 2 使胀差向正值增大的主要原因有 2.1 启动时暖机时间太短,升速太快或升负荷太快; 2.2 汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱; 2.3 滑销系统或轴承台板的滑动性能差,易卡涩; 2.4 轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长; 2.5 机组启动时,进汽压力、温度、流量等参数过高; 2.6 推力轴承磨损,轴向位移增大; 2.7汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿 堂冷风;

杭汽轮机调速系统的特点及调整

汽轮机调速系统的特点及调整 摘要:介绍了杭州汽轮机厂引进德国西门子技术生产的抽汽凝汽式汽轮机,该机采用日本西仪-横河电机公司提供的μXL分散控制系统。该机调速系统多采用模块方式,将各电磁阀、电液转换器、试验装置等集于一体,系统简单明了。同时速关油、启动油、二次油等油管路上大量采用节流孔板、可调式节流阀等使系统减少震荡,更趋于稳定。消除了以往小汽轮机调速系统存在的调速机构卡涩、迟缓率高、变动负荷时波动大、停降负荷不及时、油系统泄漏等问题。 我公司1#汽轮机是杭州汽轮机厂引进德国西门子技术生产的,它的调速系统与国产机组的调速系统有很大不同,现简述如下,以利于互相促进、借鉴。 一、调节和控制系统概述 ◆调节系统供油 调节系统为液压系统,系统供油由主油泵提供,该油泵由汽轮机主轴直接驱动,另备有辅助油泵供启动、停机和故障状态时使用。 ◆转速调节系统 转速调节系统是汽轮机调节系统的基本环节,该系统主要有SRⅣ型调节器、转速发送器、油动机和调节汽阀、调节隔板组成。调节器主要部件是:压力变送器、给定值调节器、传动机构及放大器。 ◆转速发送器 转速发送器由汽轮机主轴驱动,它产生一个与汽轮机转速平方成正比例的一次油压,该油压不受供油变化波动的影响,一次油输给压力变送器。 ◆压力变送器 压力变送器将一次油压转换成比例力,在比例杠杆上,比例力与给定值弹簧力是平衡的,如果平衡破坏就立即引起比例杠杆位置变化,同时带动放大器随活塞位移改变。 ◆放大器 放大器随动活塞位移改变引起二次油压变化,放大器有两个通道的二次油输出,通过油动机作用,一个操纵高压调节汽阀,另一个操纵低压调节隔板,放大器供油是压力油经过高精度滤油器单独提供的。 ◆油动机 油动机通过杠杆来操纵汽轮机高压调节阀和低压调节隔板,放大器来的二次油经单向节流阀进入油动机,机械反馈系统保证了二次油压和阀升程之间的线性关系。 ◆转速调节系统的功能 汽轮机转速升高直接导致了一次油压升高,比例杠杆根据一次油压升高量向上相应移动,这种移动在放大器输出端引起二次油压下降,高压调节汽阀和低压调节隔板因二次油压下降而关小,由此汽轮机转速下降,并达到新的平衡状态。汽轮机转速降低时,调节过程则相反。 ◆启动系统 启动系统由启动装置和速关阀组成,它和转速调节系统紧密连接,启动装置借助速关油开高

汽轮机找正网友经验

找中心我的见解 我认为联轴器找中心与每台机组的实际情况差别非常大,我简单讲述几点。 1、与联轴器的型式有关,若为半挠性或挠性联轴器,中心无须太过讲究。不过对于汽轮机而言一般没有采用挠性联轴器,而采用半挠性联轴器的都只限于与发电机的联结上。 2、上面有些同志所说的凝汽器的变化之类,也要看凝汽器的支承型式、与后汽缸的联接型式、后汽缸的刚度、后座架的结构型式等。比如有同志说凝汽器灌水后下降之类的,真空之后又如何,这种说法是靠不住脚的。我简单谈一下自己的看法:1)现在的凝汽器多为弹簧支承,凝汽器与后汽缸为刚性联接。这种型式中需要考虑的是当凝汽器进水后,弹簧支承力变大,从而下沉,但当机组带负荷后凝汽器膨胀,从而基本消除其变形。再加上进水的重量与凝汽器本身的重量轻得不少,而弹簧的刚度很大,所以不至于影响联轴器中心。所以上汽的机组基本上不需要灌水找中心线。 2)真空如何去影响凝汽器的受力呢?当然除了与后汽缸联接采用挠性波纹管联接的结构外,是不会有太大影响的。在这里唯一的影响点就是后汽缸靠台板座落在后座架上的,而汽缸与台板之间要求是接触良好,也就是说之间没有空气存在。而后座架是通过灌浆的方式浇铸在混凝土内的,所以当凝汽器抽真空时,因为这部分面积的影响从而造成了大气自上往下的压力,这种结果当然是产生轴承座可能的向下变形会大点,但此面积很小,不至于影响很大。 3)轴承座受热变形。这样可能会造成轴承位置有所抬高。 4)以上三小点相互作用的结果是相互抵消其对中心线的变化的。也这是设计时认真考虑的。特别对于美国西屋公司的机组及ABB机组这

方面的考虑很详细。 3、关于前轴承箱的问题,大家其实知道,现在的支承方式均为中分面支承,比如上汽采用的下猫爪支承是将下猫爪作成下弯至支承位置处于中分面位置,这样的支承情况,对运行中汽轮机联轴器的张口影响基本是不存在的了。而至于轴承箱的温度,一般也就是50度左右,而轴承中分面离地面很很小,而且其它的轴承座也是一样的离地这样高,所以其受热膨胀对中心线的影响不用考虑。 4、轴承的负荷分配。这对于刚性联轴器是非常严肃的话题!这也是采用张口来进行调整的。大家知道三轴承的联轴器都采用下张口的型式,下张口的数值由厂家提供或经由现场负荷抬轴试验以确定。而大家都知道,汽轮机轴承属于轻型转子,轴承负荷轻。所以这种情况要特别注意。比如说吧,单缸机组而言,联轴器采用刚性联接。调速汽门假设是4个,下面的为1、2#,上面的为#3、4,进汽方式是1、2、3调门全开为满负荷。这时调速级为下部先进汽,必然会使蒸汽对转轴产生一个向上的压力差从而抬高转子,结果是减轻了前轴承的负荷分配量,从而很容易产生轴承的油膜振荡。所以为了轴承的稳定性,在这里的联轴器采用一定的下张口,从而可以更好地稳定轴承的工作状况。 5、至于谈到扬度的影响,我感觉不到。因为,汽缸、转子均按同样的扬度进行安装的,为了使转子形成一条光滑顺畅曲线,一般前轴承上扬,其上扬的结果是以后轴承处为零或稍负一点。但无论如何,均需将联轴器中心线找正。 6、以上所说,我当然没有必要再谈论中心线的具体数值了。因为各种机组不同,且厂均有标准。只是取标准的方向如何而已。

15MW杭汽反动式背压汽轮机运行规程

15M W杭汽反动式背压汽轮机运行规程

第二部分 汽轮机运行规程

目录 第二部分 (1) 汽轮机运行规程 (1) 1岗位管辖范围 (3) 3流程简图 (4) 4.工艺控制指标 (4) 汽轮机型号:NG50/40/25 (4) 生产厂家:杭州汽轮机股份有限公司 (4) 5.汽轮机启动前准备与检查 (5) 8.正常停机步骤 (12) 9紧急停机步骤 (13) 10异常状态的紧急处置规定 (13) 13.操作使用设备时应注意安全防范措施 (25) 14.交接班标准 (28) 15.主要设备参数 (29) 15.1汽轮机 (29)

1岗位管辖范围 锅炉生产出的高温高压的主蒸汽并入主蒸汽母管后再进入汽轮机,在汽轮机中,工作蒸汽先在其喷嘴内进行膨胀,压力降低而速度增大,形成一股高速流,此高速气流推动转子转动,使蒸汽所携带的热能转变为转子转动的机械能,再经联轴器将机械能能传递给发电机转子,带动发电机发电。 在汽轮机中做过功的背压蒸汽首先经过减温器经减温后再进入分汽缸,由分汽缸经用汽管道输送至生产车间等热用户供工艺生产、采暖等用。蒸汽在热用户放出热量后凝结成水再返回,经补充并经化学处理除去硬度后送回到除氧器,除去水中溶解的氧和二氧化碳,再经给水泵提高压力后送至锅炉。这样工质(水、汽)就在热力系统中完成了一个循环,重复以上过程,便能在满足生产用汽的同时,连续地生产出电能。 上面的过程是一个以汽定电的过程,当出现汽电负荷不均衡,汽负荷大于电负荷时,投入减温减压器运行,满足热用户汽负荷的需要,此时高温高压蒸汽不经汽轮机作功,直接减温减压后使用。 2岗位职责 2.1汽机班长: 2.1.1对本专业所属设备巡检和维护。 2.1.2事故发生时领导班组人员进行事故处理。 2.1.3大修期领导本班人员进行设备检修。 2.1.4根据汽轮机操作规程对汽轮机进行控制与调整,保证机组的经济运行。 2.1.5定期检查当班运行人员的职责完成情况。 2.1.6做好本班人员的纪律管理。 2.1.7负责组织和落实班组的各项培训工作。 2.1.8保证人身安全、设备安全、运行安全。 2.1.9负责岗位消防器材的维护。

汽轮机抽汽逆止阀介绍

图 1 图 3 图2 汽轮机抽汽逆止阀介绍 一值 丁湧 抽汽逆止阀的作用 抽汽逆止阀是保证汽轮机安全运行的重要设备之一,当汽轮机甩负荷时,它们迅速关闭,保护汽轮机不致因蒸汽的回流而超速,并防止加热器及管路带水进入汽轮机。机组正常运行中,运行人员要特别注意各抽汽逆止阀在正常状态,以保证在事故情况下能可靠动作,保护汽轮机。 抽汽逆止阀的结构特点 1、采用倾斜阀座,如图1。 1)倾斜角度为30°,开启角度为45°,开启角度小,关闭行程短。 2)倾斜阀瓣对密封面有下压力,有利于密封。 3)介质压降小。 2、由于阀瓣下面斜向布置,不用专门设疏水点,积水直接由逆止阀后的疏水管路疏出。 3、根据不同用途配备不同结构 1)高排逆止阀采用双气缸,即一个辅助关闭气缸,一个强迫开启气缸。 2)小管径抽汽管道采用气缸连杆上下部都带螺母的结构,如1段抽汽、2段抽汽逆止阀,结构如图2。 3)大管径抽汽管道采用气缸连杆上部带螺母,下部不带螺母的结构,如3段抽汽、4段抽汽、5段抽汽和6段抽汽逆止阀,结构如图3。 4)根据阀门尺寸大小,配备适当的重锤。 重锤的重量为阀瓣重量的50%,以平衡50%阀瓣重量,一方面保证阀瓣能自由摆动,另一方面减小逆止阀前后压降。

抽汽逆止阀的工作过程 宁海电厂二期工程采用阿德伍德—莫利公司生产的抽汽逆止阀,阀门的基本构成为一摆动的阀瓣,允许流体从进口进入,自由通过阀体进入管路。该阀门是一种自由摆动,重力关闭的止回阀。当进口压力稍高于出口压力时,阀瓣会开启;当进口压力稍低于出口压力或回流发生时,阀瓣会关闭。阀门通常配备一个侧装气缸,也叫辅助关闭气缸,它的作用是当失气时给阀瓣提供一个正向关闭力,在管内流体倒流前,由于阀瓣紧靠住管壁,这个正向关闭力可以先让阀瓣先关闭一定角度,有助于逆止阀快速关闭。在正常条件下,利用气缸下部进口提供的压缩空气,推动活塞压缩弹簧,使连杆处于伸出位置,这时阀瓣可以自由开关。排除气缸中的压缩空气,弹簧使活塞和杠杆臂向下运动,从而使轴和阀门阀瓣朝关闭方向转动。如果发生逆向流体,阀门将以正常方式关闭。向气缸进口提供压缩空气时,阀门将恢复正常工作。 逆止阀的开启和关闭完全靠管道内介质在阀瓣前后产生的压差,辅助气缸的作用只是在逆止阀需要关闭的时候可以起到辅助关闭的作用。如图4中A部分,是一个特殊的结构,气缸连杆与阀瓣的轴通过两个带60°角度空缺的圆环套在一起,在供气电磁阀带电时,将气缸的连杆向上提起,而实际与阀瓣连接的轴在A的作用下只走了60°的空行程,阀瓣实际并没有动作。当汽轮机需要快速关闭抽汽逆止阀的时候,同时让供气电磁阀失电,这样A又向关闭方向走60°的行程,给逆止阀一个正向关闭的力,如果管道内介质不存在了,则逆止阀快速关闭。 图4 图4

杭州汽轮机

一、凝汽冲动式汽轮机 本公司自行设计的凝汽式汽轮机为单缸单轴冲动式,3000KW以下汽轮带有齿轮减速装置,6000KW以上汽轮机均与发动机直联。 为满足北方寒冷地区冬季取暖需要,本公司可为用户提供低真空循环水采暖两用汽轮机(夏季纯发电),从而提高了中小型电站的经济效益。 本公司还可提供具非调整抽汽的凝汽式汽轮机,以抽出一定量的蒸汽,供工业用汽,扩大凝汽式汽轮机的用途。 本系列机组均由转子和静子两部分组成。转子采用套装式结构,静子则包括汽缸、喷嘴和隔板、迷宫式汽封、轴承等部分。提板式调节汽阀及机械杠杆与调速系统的油动机相联。 本公司自行开发的凝汽式汽轮机均采用全液压式调节系统并配备具有不同功能的保安装置。

二、抽汽凝汽冲动式汽轮机 本厂自行设计的抽汽凝汽式汽轮机功率从1500KW~12000KW,3000KW以下汽轮机带有齿轮减速装置,6000KW 以上汽轮机均与发电机直联。 汽轮机为单缸、单轴冲动式,带有一级调整抽汽。机组的工业抽汽量与电负荷可按用户的需要自动调整,也允许纯冷凝工况运行。 本系列机组均由转子和静子两部分组成。转子采用套装式结构,静子则包括汽缸、喷嘴和隔板、迷宫式汽封、轴承等部分。高中缸提板式调节汽阀借机械杠杆与调速系统的油动机相联。 本系列机组均采用全液压式调速系统,配有抽汽自动高速装置及配备具有不同功能的保安部件与监控仪表。

三、背压冲动式汽轮机 本厂自行设计的背压式汽轮机为单杠冲动式汽轮机,汽轮机带有齿轮减速装置。 汽轮机采用全液压式调节系统并配备具有不同功能的保安装置,还可根据用户需要配置备压电调装置。目录中还列入部分带发展的多级背压式汽轮机。

汽轮机找中心经验

转子中心测量时已经是对汽轮机转子的扬度调整好后进行,通常以汽轮机转子为基准来找发电机转子的中心,这时主要考虑的是圆周值和端面值,圆周值当然是越小越好,我们做的时候一般控制在0.02mm以下,同时还要考虑汽轮机和发电机运行时各转子向上位移的膨胀量,来修正发电机转子是抬高还是要降低,端面值的要求也就可以决定是要求上开口还是要求下开口,我们做一般是保证左右开口为零,上下开口保证在2丝以内,这样在过临界时基本很少有振动增加。同时制造厂的相关资料也可以为我们的测量做出一些参考。 对轮中心做成上张口还是下张口要根据机组的具体形式而定。比如:三支点两转子找中心,一般都做成下张口,具体数值有厂家提供,这是从轴承负荷分配决定的。凝汽机组找中心一般做成上张口,是由于再找中心时凝汽器内有没有充水以及真空形成后后汽缸会下沉等因素决定的。总之,对轮找中心要根据具体情况具体分析,没有固定数值要求,要结合安装使用说明书和机组具体运行状态去做,才能打到满意效果。 在安装中找中心一般是在冷态下,与各机组的情况有关,不能一概而论,小机组转子是双支点轴承支撑,考虑运行中前轴承箱受热膨胀比后轴承箱多一般考虑上开口,此外,冷凝器的连接方式也有关系,有的是弹性连接没有太大的影响,有的是刚性连接,在找中时应灌水。而大机组采用双转子三轴承支撑,为了轴承负荷分配,一般制造厂家均有下开口的要求。关健在于热态运行中轴系要成为一条连续的光滑曲线,不能死搬教条,要根据不同情况进行调整。 我认为联轴器找中心与每台机组的实际情况差别非常大,我简单讲述几点。 1、与联轴器的型式有关,若为半挠性或挠性联轴器,中心无须太过讲究。不过对于汽轮机而言一般没有采用挠性联轴器,而采用半挠性联轴器的都只限于与发电机的联结上。 2、上面有些同志所说的凝汽器的变化之类,也要看凝汽器的支承型式、与后汽缸的联接型式、后汽缸的刚度、后座架的结构型式等。比如有同志说凝汽器灌水后下降之类的,真空之后又如何,这种说法是靠不住脚的。我简单谈一下自己的看法: 1)现在的凝汽器多为弹簧支承,凝汽器与后汽缸为刚性联接。这种型式中需要考虑的是当凝汽器进水后,弹簧支承力变大,从而下沉,但当机组带负荷后凝汽器膨胀,从而基本消除其变形。再加上进水的重量与凝汽器本身的重量轻得不少,而弹簧的刚度很大,所以不至于影响联轴器中心。所以上汽的机组基本上不需要灌水找中心线。 2)真空如何去影响凝汽器的受力呢?当然除了与后汽缸联接采用挠性波纹管联接的结构外,是不会有太大影响的。在这里唯一的影响点就是后汽缸靠台板座落在后座架上的,而汽缸与台板之间要求是接触良好,也就是说之间没有空气存在。而后座架是通过灌浆的方式浇铸在混凝土内的,所以当凝汽器抽真空时,因为这部分面积的影响从而造成了大气自上往下的压力,这种结果当然是产生轴承座可能的向下变形会大点,但此面积很小,不至于影响很大。 3)轴承座受热变形。这样可能会造成轴承位置有所抬高。 4)以上三小点相互作用的结果是相互抵消其对中心线的变化的。也这是设计时认真考虑的。特别对于美国西屋公司的机组及ABB机组这方面的考虑很详细。 3、关于前轴承箱的问题,大家其实知道,现在的支承方式均为中分面支承,比如上汽采用的下猫爪支承是将下猫爪作成下弯至支承位置处于中分面位置,这样的支承情况,对运行中汽轮机联轴器的张口影响基本是不存在的了。而至于轴承箱的温度,一般也就是50度左右,而轴承中分面离地面很很小,而且其它的轴承座也是一样的离地这样高,所以其受热膨胀对中心线的影响不用考虑。 4、轴承的负荷分配。这对于刚性联轴器是非常严肃的话题!这也是采用张口来进行调整的。大家知道三轴承的联轴器都采用下张口的型式,下张口的数值由厂家提供或经由现场负荷抬

华电汽轮机资料

●滞止参数:具有一定流速的蒸汽,如果假想蒸汽等熵地制止到速度为0时的状态,该状态为滞止状态,其参数叫滞止参数 ●气流在斜切部分方向偏转的根本原因:喉部截面之后继续膨胀的气流是超音速气流,它膨胀时,比容的增大比流速的增大要快,必须在渐扩通道内才能膨胀,在喷嘴高度变化不大而另一侧又有壁面阻挡情况下,气流只有偏向另一侧才能扩大通流面积●喷嘴的极限膨胀压力:随着背压降低,参加膨胀的斜切部分扩大,斜切部分达到极限膨胀时喷嘴出口所对应的压力 ●假想速比:圆周速度与假想全级滞止理想比焓降都在喷嘴中等比熵膨胀的假想出口速度的比值 ●余速利用对最佳速比与轮周关系的影响:增大了轮周效率;最佳速比附近轮周效率敏感度下降,提高了适应工况变化的能力;使速比向增大方向移动;使轮周效率失去了对应于最高的基本对称性 ●复速级效率低原因及优点:增加了导叶和第二列动叶中的能量损失,而且使第一列动叶中的损失增大。在圆周速度相同时,能承担比单列级大得多的理想比焓降,故采用复速级能使汽轮机的级数减少,结构紧凑;当它作为多级汽轮机的调节级时,蒸汽压力和温度在这一级下降较多,减少了汽轮机在高温高压蒸汽下工作的区域,不仅能减少高温材料,降低制造成本,而且有利于改善汽轮机的变工况性能 ●叶型损失:附面层中的摩擦损失;附面层脱离引起的涡流损失;尾迹损失;冲波损失。影响因素:进汽角、相对节距(节距增大时,腹面对汽流约束减弱,背面出口段扩压范围和扩压程度增加,是叶型损失增大;节距减小时,单位流量摩擦增厚,出口边相对厚度增加,尾迹损失增大)和汽流马赫数。 ●叶轮摩擦损失:叶轮两侧及围带表面的粗糙度引起的摩擦损失;子午面内的涡流运动引起的损失。 部分进汽损失:由鼓风损失(与部分进气度成反比)和斥汽损失(与喷嘴组数成正比)两部分组成。级的部分进气度:装有喷嘴的弧段长度与整个圆周长度的比值。 ●漏气损失:由隔板漏气损失和动叶顶部漏气损失组成。减小措施:尽量减小径向间隙,但汽轮机在启动等情况下,静止部分和转动部分受热不均,温差较大,为避免两者摩擦,径向间隙不能太小。因此采用径向和轴向气封结构。对于较长的扭叶片级,在无围带的情况下,往往将动叶顶部削薄,缩短动叶与气缸的间隙,从而达到气封的作用。此外还应减小叶顶反动度,使动叶顶部前后压差不至过大。叶轮上开设平衡孔。 ●湿气损失:饱和蒸汽汽轮机的各级和普通凝气式汽轮机的最后几级都工作在湿蒸汽区,从而对干蒸汽的工作造成能量损失。减少湿汽损失措施:1)去湿方法:由捕水口捕水室和输水通道组成的级内捕水装置;采用具有吸水缝的空心喷嘴;采用出汽边喷射蒸汽的空心喷嘴。2)提高动叶本身抗冲蚀能力:采用耐侵蚀性能强的叶片材料;在叶片进汽边背弧上镶焊硬质合金;对叶片表面镀铬、局部高频淬硬、电火花强化和氮化等。 ▲多级汽轮机的优点:1)循环热效率大大提高:蒸汽初参数大大提高,排气压力降得很低,还可采用回热循环和中间再热循环2)相对内效率明显提高:设计工况下每级均在最佳速比附近工作;余速动能可被下级利用;叶高损失减小,喷嘴流动效率高;上面级的损失可被下级部分利用(重热现象)3)单机功率大,故单位功率汽轮机组造价、材料消耗及占地面积减小,故投资小。缺点:1)增加了隔板漏气损失,由于焓降大,最后几级的湿汽损失大2)级数多,增加了机组的长度和质量3)初参数提高,使前几级对金属材料的要求提高了4)级数增加,零部件增多,使全机造价成本提高。 ▲低压段反动度增大原因:低压段叶片高度很大,为保证叶片根部不出现负反动度,平均直径处的反动度较大;级的比焓降大,为避免喷嘴出口流速超过临界速度过多而采用缩放喷嘴,只有增大级的反动度,才能增大动叶比焓降。 ▲进汽阻力损失:由于蒸汽在汽轮机进气机构中节流,造成蒸汽在汽轮机中的理想焓降减少,称为进气机构的阻力损失。措施:控制阀门与管道中蒸汽流速;采用带扩压管的单座阀。 ▲排汽阻力损失:汽轮机的乏汽从最后一级动叶排出后,由于排气要在引至凝汽器的过程中克服摩擦,涡流等阻力造成的压力降低,使其汽轮机的理想焓降减少。措施:通过扩压把排气动能转化为静压,以补偿排气管中的压力损失 汽轮机的极限功率:在一定的初中参数和转速下,单排气口凝气式汽轮机所能发出的最大功率 ▲轴封系统的原理、作用、组成、特点:1)原理:每一道汽封圈上有若干高低相间的汽封片(齿),这些汽封片是环形的。蒸汽从高压端泄入汽封,当经过第一个汽封片的狭缝时,由于汽封片的节流作用,蒸汽膨胀降压加速,进入汽封片后的腔室后形成涡流变成热量,使蒸汽的焓值上升,然后蒸汽又进入下一腔室,这样蒸汽压力便逐齿降低,因此在给定的压差下,如果汽封片片数越多,则每一个汽封片两侧压差就越小,漏汽量也就越小。2)作用:利用轴封漏气加热给水或到低压处作功;防止蒸汽自气封处漏气;冷却轴封,防止高压端轴封处过多传至主轴承而造成轴承温度过高,影响轴承安全;防止空气漏入汽轮机真空部分3)组成:轴封,供气母管急均压箱,轴封加热器和轴封抽气器4)特点:轴封分成多段多室,与大气环境接近的腔室的压力由抽气器或者风机维持低于大气压力,紧邻的腔室压力由压力调节器维持高与大气压力,从而保证蒸汽不外泄,空气不内漏。▲轴向推力组成和平衡:1)(冲动式)蒸汽作用在动叶上的轴向力;蒸汽作用在叶轮轮面上的轴向力;蒸汽作用在转子凸肩上的轴向力;蒸汽作用隔板汽封和轴封套筒上的轴向推力组成。(反动式)作用在叶片上的轴向推力;作用在轮股锥型面上的轴向推力;作用在转子阶梯上的轴向推力。2)平衡活塞法;相反流动布置法;叶轮上开平衡孔;采用推力轴承。 ▲抽气效应:喷嘴中流出的高速气流在叶根处对隔板与叶轮间腔室内的蒸汽产生抽吸作用,其效应相当于增大腔室中的压力。泵浦效应:高速旋转的叶轮带动周围蒸汽旋转运动,离心力使部分蒸汽产生指向叶根的径向运动,叶轮和叶根间隙两侧增加一压差,其效应相当于增大腔室中的压力 ▲提高单机最大功率的途径:提高新汽参数使全机理想比焓降增大,以及降低凝汽器真空使末级排气比容减小;使用高强度、低密度材料;增加汽轮机的排气口,即进行分流;采用低转速 ■弗留格尔公式使用条件:保持设计工况和变工况下通气面积不变,若由于其他原因,使通气面积发生改变时应进行修正,同一工况下,各级的流量相等或成相同的比例关系,流过各级的气流为一股均质流。 ■节流配气和特点:进入汽轮机的所有蒸汽都通过一个调节气门,然后进入汽轮机的配方式。负荷小于额定值时,所有蒸汽节流;同样复合下,背压越高,节流效率越低。优点:结构简单,启动或变负荷时第一级受热均匀,且温度变化小,热应力小。■喷嘴配气和特点:喷嘴配气是依靠几个调节控制相应的调节级喷嘴来调节汽轮机的进气量。部分进气,满负荷时仍存在部分进汽,所以效率比节流配汽低,部分负荷时,只有那个部分开启的调节气门中蒸汽节流较大,而其余全开气门中的蒸汽节流已减少到最小,故定压运行时,喷嘴配气与节流配汽相比,节流损失较少,效率较高。缺点:调节级存在部分进气损失且受热不均,调节级余速不能利用,负荷下降时高压缸各级温度变化大 ■凝汽式汽轮机和背压机的轴向推力随负荷的变化规律:对于凝汽式汽轮机,负荷即流量变化时,各中间级焓降基本不变,因而反动度不变,各级前后压差与流量程正比,即汽轮机轴向推力与流量成正比;同时,末级不遵循此规律,调节级的轴向推力也是随部分进汽度而改变的,且最大负荷时,轴向推力最大,但调节级和末级其轴向推力在总推力中所占比例较小,一般忽略,认为凝汽式汽轮机总轴向推力与流量成正比,且最大负荷时轴向推力最大。背压机非调节级的压力与流量不成正比,且流量减少时各级理想比焓降变小,反动度增大,故轴向推力与流量不成正比,其最大轴向推力在某一中间负荷处。 ■滑压运行:调节气门全开或开度不变,根据负荷大小调节进入锅炉的燃料量,给水量和空气量,使锅炉出口蒸汽压力和流量随负荷而变化,维持出口蒸汽温度不变的运行方式。 ■定滑定运行优点:汽轮机采用喷嘴配汽,高负荷区域内进行定压运行,用启闭调节汽门来调节负荷,汽轮机组初压较高,循环热效率较高,且负荷偏离设计值不远,相对内效率也较高。较低负荷区域内仅全关最后一个,两个或三个调节汽门,进行滑

汽轮机前汽缸通用加工工艺路线

前汽缸通用加工工艺路线 序 工序工序内容车间设备号 1 铸造铸造正火外协 2 检查毛坯入厂检查质检处检查 3 切试料切割试料,做好标示焊接车间 4 检验理化检验(应符合JB/T10087-2001《汽轮机铸钢件技术条件》的质检处检查 规定) 5 清砂清砂去毛刺(去除内外表面的夹砂及浮砂、露出金属光泽)焊接清砂工 6 划线划上下半汽缸线大件划线平台 上半∶ 1:汽缸水平面朝下,按水平面法兰毛坯面找正 (1)检查喷嘴组节圆及汽道,检查水平面法兰厚度、汽缸壁厚、 蒸汽室壁厚及总高 (2)划水平中分面线、蒸汽室上平面线、蒸汽室焊接坡口中心线, 保证各尺寸 (3)划十字中心线、前后两端线、喷嘴组节圆线 2:翻转90°,垂直法兰面朝下,按水平中分面线、垂直法兰毛 坯面找正 (1)检查蒸汽室轴向位置、垂直法兰面厚度、汽封厚度及总厚 (2)划蒸汽室轴向中心线、垂直法兰面线、隔板槽及汽封槽各开 档线 (3)检查其它部位加工余量 下半∶ (1)划出水平面线、中心线、垂直面线,立支划垂直法兰面线、 隔板槽加工线,保证总高总长 检查毛坯各部尺寸,重点需检查喷嘴组节圆及汽道 (2)重点检查并划出喷嘴节圆线、汽封槽线及抽汽口位置线 7 粗铣(1)汽缸上半装夹校正大件卧式镗床 ①:粗铣中分面,留5mm余量 ②:旋转工件,装夹定位后,粗铣汽缸上半的蒸气室平面及腰圆 孔,均留5mm余量 ③:粗铣进汽法兰面,留5mm余量。如果是焊接坡口形式需镗 ④:粗镗各进汽阀孔,直径留余量15mm。 (2)汽缸下半装夹校正 ①:粗铣中分面,留5mm余量

②:旋转工件,粗铣汽缸下半的汽封抽汽法兰联接平面,留5mm 余量 8 镗铣镗铣工艺面大件龙门铣 (1)汽缸上半装夹校正 粗镗铣垂直法兰面(铣少量面积便于定位即可),留4~5mm余 量 (2)汽缸下半装夹校正 粗镗铣垂直法兰面(铣少量面积便于定位即可),留4~5mm余 量 (3)工件掉头,装夹校正 粗镗半圆法兰面,留3~4mm余量 9 组缸汽缸上下半按端面线和圆线对正,上下半工艺面需在一个水平面 上,用固定块焊接牢固。 10 粗车粗车汽缸. 大件立车 1:垂直法兰面向上,半圆法兰面贴紧工作台。按圆周线校正与 工作台同圆,校正汽缸水平中分面与旋转工作台中心重合,防止 出现大小半现象,校正四工艺搭子面垂直于工作台,夹压紧固 (1)车垂直法兰面 (2)车隔板内圆 (3)车喷嘴平面 (4)车隔板槽 (5)车汽封槽 2:翻面,垂直中分面向下,校正已加工内圆和端面 (1)车其余各汽封槽和端面 (2)车总厚 11 检查检查加工尺寸质检处检查 12 拆开拆开上下半 割除清理固定块,修磨毛坯焊接处至光滑无毛刺 13 划线划上半水平中分面孔线总装 14 钻削钻攻上半水平中分面通孔、螺孔等总装钻床 (1)汽缸水平中分面向上,将工件吊放在工作台上,把百分表紧 在主轴上移动钻床摇臂,检查中分面四角位置,平行度<0.3mm 找正后压紧 (2)钻削中分面孔时,各孔(通孔、螺孔和导柱孔等)均需钻 削2-3次,各螺孔、导柱孔均留精加工余量单边4-5mm 钻削中钻头不能产生左右晃动现象 15 划线以上半配划下半水平中分面孔总装

汽轮机各系统资料讲解

4.3 热力系统方案 4.3.1 主蒸汽系统 主蒸汽系统采用切换母管制,主蒸汽从锅炉过热器出口集箱接出,经电动闸阀一路接至主蒸汽母管,另一路接至汽轮机。为确保供热的可靠性,主蒸汽母管的一端接减温减压器,通过其向热网管道供汽。锅炉主蒸汽出口电动闸阀和进入汽轮机自动主汽门前的电动闸阀均设有小旁路,在暖管和暖机时使用。 4.3.2 主给水系统 主给水热母管采用切换制系统。设低压给水母管、高压给水热母管。给水经低压给水母管分别进入四台给水泵,一台定速泵和一台调速泵为一组,每组给水泵加压后,分别送至两台高加去加热,加热后热水采用切换母管制,一路直接送至锅炉,另一路与高压给水热母管相接。系统配置四台电动给水泵,二台运行,一台备用。为防止给水泵在低负荷时产生汽化,另设给水再循环管与再循环母管。高压加热器设有电动旁路,当高压加热器发生故障时,高加旁路自动开启,系统经由高加旁路直接向省煤器供水。为保证给减温减压器提供减温水,系统设置了一根减温水母管,分别接自每台电动给水泵出口管道。 4.3.3 回热抽汽系统 汽机回热系统,设有二级非调整抽汽及一级调整抽汽,非调整抽汽分别向一台高压加热器和一台除氧器供汽。在调整抽汽管道上接一路供低压加热器用汽,另一路接至热网母管送至换热站。

为了防止在机组甩负荷时蒸汽倒入汽缸,而使汽轮机超速,以及防止因加热器水位过高而使汽轮机进水,在各级抽汽管道上分别装有抽汽逆止阀和闸阀,并且在调整抽汽管道上加装了抽汽速关阀,以此保证运行安全。 4.3.4 除氧系统 为保证锅炉给水除氧可靠性,本工程设置二台150t/h的旋膜式热力除氧器,水箱容积40m3。可以保证本期工程锅炉给水的除氧。 进入除氧器的汽水管道均采用母管制,两台除氧器之间设置汽、水平衡母管。进入除氧器前的除盐水管道、加热蒸汽管道、热网疏水管道上均设置自动调节阀。 4.3.5 抽真空系统 为保证汽轮机凝汽器运行时的真空度,本工程设置二台射水抽气器(一运一备)一个射水箱和两台射水泵。射水泵将射水箱内的水加压后,送至射水抽气器形成真空,使得抽汽器抽出凝汽器里未凝结气体,此时各换热器里空气都被汇集到凝汽器,被水一起带至射水箱内,从而保证凝汽器的真空度。同时射水箱上设置溢放水和补充水管道。每台机组设置二台射水泵泵。机组启动时,二台射水泵全部投入运行;机组正常运行时,一台运行一台备用,系统运行可靠、经济实用。4.3.6 凝结水系统 汽轮机排汽经凝汽器冷却成凝结水后,自凝汽器热井排出,由两台凝结水泵升压后(一台运行,一台备用),经汽封加热器和低压加热器加热后进入除氧器。

汽轮机找中心要点

浅谈联轴器找正之我见 摘要:旋转设备在安装或维修后始终存在轴对中的问题,是机组安装检修过程中一个极其重要的环节,对中精度的高低对设备运行周期及运行效率有着直接的影响,找正的目的是保证旋转设备各转子的中心线连成一条连续光滑的曲线,各轴承负荷分配符合设计要求,使旋转设备的静止部件与转子部件基本保持同心,将轴系的扬度调整到设计要求,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。因此在每次检修中必须进行转动机械设备轴中心找正工作,使两轴的中心偏差不超过规定数值。在我厂化工设备(不包括厂家给出冷态与热态的中心数据),其中心标准基本上都在0.05mm(即5丝)以内。现就对联轴器找中心的原理、步骤并对联轴器找中心在实际工作作中常见的一些方法、注意事项以及找正在实践中的应用作简单的介绍。 一、找中心的原理:测量时在一个转子对轮上装上磁性表座,另一个对轮上装上百分表,径向、轴向各一付,(为防止转子窜轴,轴向则需装二个表,相差180度)。连接对轮(一般一到二枚螺丝,拧紧即可),然后一起慢慢地转动转子,每隔90度停下来测量一组数据记下,测出上、下、左、右四处的径向a、轴向s四组数据,将数据记录在下图所示的方格内。 a1 a4 s1 s4 s2 s3 a2 a3

一般圆里面的为轴向数据s,外面的为径向数据a,在测得的数值中,若a1=a2=a3=a4,则表明两对轮同心;若s1=s2=s3=s4,表明两对轮的端面平行。若同时满足上述两个条件,则说明两轴的中心线重合;若所测数据不等,根据计算结果是否在标准范围内,超出标准则需对两轴进行找中心。 二、找中心步骤 1、检查并消除可能影响对轮找中心的各种因素。如清理对轮上油污、锈斑及电机底脚、基础。 2、连接对轮,保证两对轮距离在标准范围内。 3、用塞尺检查电机的底脚是否平整,有无虚脚,如果有用塞尺测出数值,用铜皮垫实。 4、先用直尺初步找正。主要是左右径向,相差太大用百分表测量误差太大,并容易读错数据。 5、安装磁性表座及百分表。装百分表时要固定牢,但要保证测量杆活动自如。测量径向的百分表测量杆要尽量垂直轴线,其中心要通过轴心; 6、测量轴向的二个百分表应在同一直径上,并离中心距离相等。装好后试转一周。并回到原来位置,此时测量径向的百分表应复原。为测记方便,将百分表的小表指针调到量程的中间位置,并最好调到整位数。大针对零。 7、把径向表盘到最上面,百分表对零,慢慢地转动转子,每隔90度测量一组数据记下,测出上、下、左、右四处的径向a、轴向s 四组数据,将数据记录在右图内。径向的记在圆外面,轴向数据记录在圆里面。注意:拿到一组数据你要会判断它的正确性,你从那里开始对零的,盘一周后到原来位置径向表应该为0,径向表读数上下之和与左右之和应相差不多,两只轴向表数据相同。否则的话要检查磁性表座和百分表装得是否牢固。

(完整版)汽轮机专业考试题库

汽轮机试题 一、填空题 1、凝结水温度(低于)汽轮机排汽的(饱和温度)数值称凝结水的过冷却度。 2、凝结器按换热方式可分为(混合式)和(表面式)两大类。 3、抽气器的作用是不断地抽出凝结器内(不凝结)气体和漏入的空气(保持)凝结器的真空。 4、位于(给水泵)和(锅炉省煤器)之间的加热器为高压加热器。 5、蒸汽在汽轮机(动叶片)中的焓降与级的(理想焓降)之比称为级的反动度。 6、汽轮机的损失包括(外部)损失和(内部)损失。 7、高速弹簧片式调速器主要由(重锤)、(调速块)钢带座和枕套等部件组成。 8、采用喷嘴调节的多级汽轮机,其第一级进汽面积随(负荷)的变化而变,因此通常称第一级为(调节级)。 9、中间再热式汽轮机必须采用一机(一炉)或一机(二炉)的单元配汽方式。 10、汽轮机在冷态启动和加负荷过程中,蒸汽温度(高于)汽缸内壁金属温度;在停机和减负荷过程中,蒸汽温度(低于)汽缸内室金属温度。

11、超高压汽轮机的高、中压缸采用双层缸结构,在夹层中通入(蒸汽),以减小每层汽缸的(压差和温差)。 12、汽轮机调速系统由转速感应机构、(传动放大)机构、配汽机构和(反馈)机构等四部分组成。 13、汽轮机危急保安器有(重锤)式和离心(飞环)式之分。 14、蒸汽在汽轮机内膨胀做功,将热能转变为机械能,同时又以(对流)传热方式将热量传给汽缸内壁,汽缸内壁的热量以(传导)方式由内壁传到外壁。 15、蒸汽对汽轮机转子和汽缸等金属部件的放热系数不是一个常数,它随着蒸汽的流动状态,以及蒸汽的(压力)、(温度)和流速的变化而变化。 16、离心泵的基本特性曲线有流量一扬程(Q__H)曲线、(流量一功率(Q__N))曲线和(流量一效率(Q__η))曲线。 17.汽轮机的法兰螺栓加热装置是为了(减少)汽轮机启动停止和(变工况)过程中汽缸、法兰、螺栓之间的温度。 18、汽轮机隔板在汽缸中的支承与定位主要由(销钉)支承定位、(悬挂销和键)支承定位及Z形悬挂销中分面支承定位。 19、若汽轮机的喷嘴只装在圆周中的某一个或几个弧段上,其余弧段不装喷嘴称(部分)进汽。装喷嘴的弧段叫(工作)弧段。 20、要提高蒸汽品质应从提高(补给水)品质和(凝结水)品质着手。 21、冷态压力法滑参数启动过程的主要启动程序为(锅炉点火

汽机技术基础知识问答

汽机技术基础知识问答 1、设置轴封加热器的作用? 汽轮机运行中必然要有一部分蒸汽从轴端漏向大气,造成工质和热量的损失,同时也影响汽轮发电机的工作环境,若调整不当而使漏汽过大,还将使靠近轴封处的轴承温度升高或使轴承油中进水,为此,在各类机组中,都设置了轴封加热器,以回收利用汽轮机的轴封漏气。 2、汽轮机主蒸汽温度不变时主蒸汽压力升高有哪些危害? 主蒸汽温度不变时,汽轮机主蒸汽压力升高主要有下述危害: (1)机组的末几级动叶片的工作条件恶化,水冲刷加重。 (2)使调节级焓降增加,将造成调节级动叶片过负荷。 (3)会引起主蒸汽承压部件的应力增高,缩短部件的使用寿命,并有可能造成这些部件的变形,以至于损坏部件。 3、汽轮机真空下降有哪些危害? (1)排汽压力生升高,可用焓降减小,不经济,同时使机组出力降低;(2)排气缸及轴承座受热膨胀,可能引起中心变化,产生振动;(3)排汽温度过高可能引起凝汽器通关松弛,破坏严密性;

(4)可能使纯冲动式汽轮机轴向推力增大; (5)真空下降使排汽的容积流量减小,对末几级叶片工作不利。4、运行中对锅炉进行近视和调节的主要任务是什么? (1)使锅炉的蒸发量适应外界负荷的需要; (2)均衡给水并维持正常水位; (3)保持正常的汽压和水温; (4)维持经济燃烧。尽量减少热损失。提高机组的效率; (5)随时分析锅炉及辅机运行情况,如有失常及时处理,对突发的事故进行正常处理,防止事故扩大。 5、盘车运行中的注意事项有哪些? (1)盘车运行或停用时,手柄方向应正确; (2)盘车运行时,应经常检查盘车电流及转子弯曲; (3)盘车运行时,应根据运行规程确保顶轴油泵系统运行正常;(4)汽缸温度高于200℃时,因检修需要停盘车,应按照规定时间定期盘动转子180°; (5)定期盘车改为连续盘车时,其投运时间要选择在第二次盘车之间;

《对轮找中心》

找中心 石家庄热电厂八期 (ABB)

找中心目录 1:找中心目的 2:应用范围说明 3:可应用的文件 4:所需的文件5:缺陷种类 6:检查 7:校正 8:允许偏差1:找中心的目的:不同的转子在相连时不允许存在弯曲,避免因弯曲产生的附加应力在运行中产生交变的弯曲应力,那么,联轴器上应没有弯曲和应力作用。 2:应用范围 所有使用PSUT技术和由多个转子组成的汽轮机都使用,不适用于齿轮传动机组高压汽轮机机组。3:能使用的文件 HTGD 630 075 MA-摩擦片联轴器 94 HTGD 630 095 MA-膨胀套筒式联轴器 HTGD 457 964 实验合格证:找中心 4:所需的文件 --装配方案 --转子的偏差曲线 --实验数据HTGD 457 964“找中心” 5:缺陷种类 在组装过程中,轴承在垂直和水平方向的偏差引起轴线不完全重合(角偏差),即:联轴器的两端面不完全平行。见图1: 制造时允许的公差引起不垂直(偏心),因此联轴器端面不完全垂直于轴。见图2: 测量的两个偏差相加(联轴器沿圆周方向间隙差值)。 图1 图2 图3 图4 如果转子装有双轴承,不精确的同轴性是由于轴承在安装中不准确的水平、垂直位置产生的,即:如果在断开情况下,着两个转子有相对的中心偏差,见图3 有双推力盘的转子见图4:6:检查 6.1获得精确测量结果的前提条件需遵守以下几点要求: .检查检测时,转子必须放置于瓦座上,以便弯曲与运行工况相吻合,不能用辅助轴承来校正. 计算基础的弹性变形,对钢制结构尤为重要,在这种基础上产生的变形是10—20um/T .弹力负载基础的弹力应考虑运行工况 .计算凝结器运行状态的重量 .在扣缸前应进行最后一次检查,例如: 安装完了入口及入口闸门连接部件. 6.2检查平行度 有角偏差时,两个联轴器法兰不完全平行,见图5为了确定偏差值,测量联轴器上、下(如有可能)、左、右(00、900、1800、2700)。并记录这些测量值。 图5 图6 图7

汽轮机竣工资料.doc

调试目录一、汽轮机部分 (一)汽轮机调试报告 1、循环水系统调试 2、凝结水系统调试 3、润滑油系统及盘车装置调试 4、调节保安系统调试 5、阀门及连锁保护传动调试 6、真空系统调试 7、轴封系统调试 8、热控控制、监视系统及连锁保护调试 9、整体启动及空负荷试运 10、带负荷调试 11、停机调试 (二)汽轮机分系统试运质量报验单及评定表 1、循环水系统质量评定表 2、润滑油系统质量评定表 3、调节保安系统质量评定表 4、真空系统质量评定表 5、轴封供汽质量评定表 6、热控控制、监视系统及连锁保护质量评定表 7、空负荷质量评定表 8、带负荷质量评定表 9、整体带负荷质量评定表 汽轮机保护系统签证及调试记录 1、主汽门严密性试验记录 2、静态特性试验记录 3、超速试验记录 4、真空严密性试验记录

6、直流油泵、给水泵振动数值记录 7、射水泵、凝结泵、高压油泵、交流油泵振动数值记录 8、给水泵试运记录 9、盘车装置试验记录 10、高压油泵试运记录 11、凝结泵试运记录 12、射水泵试运记录 13、直流油泵试运记录 14、交流油泵试运记录 15、凝结器、发电机空冷、冷油器试运记录 16、调速汽门严密性试验记录 17、危急保安器喷油试验记录 18、连锁保护试验记录 19、电动阀门试验记录 20、汽轮机轴瓦振动及绝对膨胀记录 热控部分 热控调试报告 1、DCS系统调试 2、DAS系统调试 3、FSSS系统调试 4、MCS系统调试 5、SCS系统调试 6、ETS系统调试 调试记录及评定表 1、主机监控仪表调试评定表 2、主机跳闸保护系统调试评定表 3、事件顺序记录系统调试评定表 4、锅炉热控保护、信号系统定值确认表

相关主题
文本预览
相关文档 最新文档