当前位置:文档之家› 卡尔曼分解、互质分解下讨论最小实现以及零极点相消

卡尔曼分解、互质分解下讨论最小实现以及零极点相消

卡尔曼分解、互质分解下讨论最小实现以及零极点相消
卡尔曼分解、互质分解下讨论最小实现以及零极点相消

控制器极点配置方法

控制器极点配置方法 如果已知系统的模型或传递函数,通过引入某种控制器,使得闭环系统的极点可以移动到指定的位置,从而使系统的动态性能得到改善。这种方法称为极点配置法。 例6-12 有一控制系统如图6-38,其中,要求设计一个控制器,使系统稳定。 图6-38 解:(1)校正前,闭环系统的极点: > 0 因而控制系统不稳定。 (2)在控制对象前串联一个一阶惯性环节,c>0,则闭环系统极点: 显然,当,时,系统可以稳定。但此对参数c 的选择依赖于 a 、b 。因而,可 选择控制器,c 、d ,则有特征方程: 当,时,系统稳定。 本例由于原开环系统不稳定,因而不能通过简单的零极点相消方式进行控制器的设计,其原因在于控制器的参数在具体实现中无法那么准确,从而可能导致校正后的系统仍不稳定。 例6-13 已知一单位反馈控制系统的开环传递函数:

要求设计一串联校正装置Gc(s) ,使校正后系统的静态速度误差系统,闭环主导极点在 处。 解:首先,通过校正前系统的根轨迹可以发现,如图6-39所示,其主导极点为: 。 图6-39 为使主导极点向左偏移,宜采用超前校正装置。 (2)令超前校正装置,可采用待定系数法确定相关参数: 又

其中、、、为待定系数。 进一步可得: 即 将代入式子可以得到:,,,。进一步可得超前校正装置的传递函数: 校正后系统的根轨迹如图6-39所示。 该校正装置与例6-7中由超前装置获取的校正装置结果基本相同,说明结果是正确的。 在matlab中,亦有相应的命令可进行极点配置,主要有三个算法可实现极点配置算法:Bass-Gura算法、Ackermann 算法和鲁棒极点配置算法。这些算法均以状态空间进行表征,通过设定期望极点位置,获取状态反馈矩阵K。下面通过示例介绍其中的一种算法。 例6-14 考虑给定的系统,其状态方程模型如下:

零极点对系统的性能影响分析

零极点对系统性能的影响分析 1任务步骤 1.分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系 统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 2.在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹, 分析系统的稳定性; 3.取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 4.综合数据,分析零点对系统性能的影响 5.在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹, 分析系统的稳定性; 6.取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 7.综合数据,分析极点对系统性能的影响。 8.增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子 对消的规律。

2原开环传递函数G0(s)的性能分析 2.1 G0(s)的根轨迹 取原开环传递函数为: Matlab指令: num=[1]; den=[1,0.8,0.15]; rlocus(num,den); 得到图形: 图1 原函数G0(s)的根轨迹 根据原函数的根轨迹可得:系统的两个极点分别是-0.5和-0.3,分离点为-0.4,零点在无限远处,系统是稳定的。 2.2 G0(s)的阶跃响应 Matlab指令: G=zpk([],[-0.3,-0.5],[1]) sys=feedback(G,1) step(sys) 得到图形:

图2 原函数的阶跃响应曲线 由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.12,稳态值为0.87, 上升时间tr=1.97s 超调时间tp=3.15s 调节时间ts=9.95s ,2=? 超调量% p σ=28.3%

零极点对系统的影响

MATLAB各种图形 结论 1对稳定性影响 ○1增加零点不改变系统的稳定性; ○2增加极点改变系统的稳定性,不同的阻尼比下即使增加的是平面左侧的零点系统也有可能不稳定。 2对暂态性能的影响 ○A增加的零点离虚轴越近,对系统暂态性影响越大,零点离虚轴越远,对系统的影响越小。 分析表1可以发现,增加零点会对系统的超调量、调节时间、谐振峰值和带宽产生影响,且增加的零点越大,对系统的暂态性能影响越小。当a增加到100时,系统的各项暂态参数均接近于原系统的参数。增加的极点越靠近虚轴,其对应系统的带宽越小。同时还可以发现,时域中的超调量和频域中的谐振峰值在数值上亦存在一定的关系。具体表现为超调量减小时,谐振峰值也随之减小。 ○B增加的极点离虚轴越近,对系统暂态性影响越大,极点离虚轴越远,对系统的影响越小。 ①增加零点,会使系统的超调量增大,谐振峰值增大,带宽增加。 ②增加极点,会使系统的超调量减小,谐振峰值减小,带宽减小。 ③增加的零极点离虚轴越近,对系统暂态性影响越大;零极点离虚 轴越远,对系统的暂态性影响越小。 3 对稳态性能的影响 ①当增加的零极点在s的左半平面时,不改变系统的类型,使系统 能跟踪的信号类别不变,但跟踪精度会有差别。 ②当增加的零点在s的虚轴上时,系统的型别降低,跟踪不同输入 信号的能力下降。 ③当增加的极点在s的虚轴上时,系统的型别升高,跟踪不同输入 信号的能力增强。

1、绘制G1(s)的根轨迹曲线(M2_1.m) %画G1(s)的根轨迹曲线 n=[1,0]; %分子 d=[1,1,2]; %分母 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色rlocus(n,d); %画G1(s)根轨迹曲线title('G1(s)的根轨迹'); %标题说明 2、绘制G1(s)的奈奎斯特曲线(M2_2.m) %画G1(s)的奈奎斯特曲线 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色for a=1:10 %a取1,2,3……10,时,画出对应的奈奎斯特曲线G=tf([1/a,1],[1,1,1]); nyquist(G); hold on end title('G1(s)的奈奎斯特曲线'); %标题说明

系统函数的零极点分布决定时域特性

摘要 本文详细分析了系统函数零极点的分布与冲击响应时域特性之间的关系。首先论述了如何通过MATLAB软件绘制出系统函数的零极点分布图。然后根据系统函数极点的不同分布情况,通过MATLAB软件绘制出冲击响应的时域函数,通过对图像的观察和比较,得出了极点的类型决定时间函数的时间连续形式,极点在S平面的位置决定时间函数的波形特点。最后,在极点相同,但零点不同的情况下,通过比较时域函数的波形,得出零点分布与时域函数的对应关系,即零点分布的情况只影响到时域函数的幅度和相位。 关键词:系统函数的零极点;时域特性;MATLAB软件

目录 1课程设计目的 (1) 2实验原理 (1) 3实现过程 (1) 3.1MATLAB简介 (1) 3.2系统函数极点分布情况 (2) 3.2.1极点为单实根 (2) 3.2.2极点为共轭复根 (2) 3.2.3极点为重根 (2) 3.2.4用MATLAB绘制系统函数的零极点分布图 (2) 3.3系统函数的零极点分布与冲击响应时域特性的关系 (6) 3.3.1用MATLAB绘制冲击响应的时域函数 (6) 3.3.2极点的类型决定时间函数的时间连续形式 (19) 3.3.3极点在S平面的位置决定时间函数的波形特点 (19) 3.3.4零点分布与时域函数的对应关系 (19) 4设计体会 (23) 5参考文献 (24)

1 课程设计目的 1.掌握系统函数的零极点分布与系统冲激响应时域特性之间的关系。 2.学习MATLAB 软件知识及应用。 3.利用MATLAB 编程,完成相应的信号分析和处理。 2 实验原理 拉普拉斯变换将时域函数f(t)变换为s 域函数F(s);反之,拉普拉斯逆变换将F(s)变换为相应的f(t)。由于f(t)与F(s)之间存在一定的对应关系,故可以从函数F(s)的典型形式透视出f(t)的内在性质。当F(s)为有理函数时,其分子多项式和分母多项式皆可分解为因子形式,各项因子指明了F(s)零点和极点的位置,显然,从这些零点和极点的分布情况,便可确定原函数的性质。 设连续系统的系统函数为)(s H ,冲激响应为)(t h ,则 ?+∞ -=0)()(dt e t h s H st 显然,)(s H 必然包含了)(t h 的本质特性。 对于集中参数的LTI 连续系统,其系统函数可表示为关于s 的两个多项式之比,即 其中),,2,1(M j q j =为)(s H 的M 个零点,),,2,1(N i p i =为)(s H 的N 个极点。 3 实现过程 3.1 MATLAB 简介 MALAB 译于矩阵实验室(MATrix LABoratory ),是用来提供通往 LINPACK 和EISPACK 矩阵软件包接口的。后来,它渐渐发展成了通用科技计算、图视交互系统和程序语言。 MATLAB 的基本数据单位是矩阵。它的指令表达与数学、工程中常用的习惯形式十分相似。比如,矩阵方程Ax=b ,在MATLAB 中被写成A*x=b 。而若要通过A ,b 求x ,那么只要写x =A \b 即可,完全不需要对矩阵的乘法和求逆进行编程。因此,用MATLAB 解算问题要比用C 、Fortran 等语言简捷得多。 MATLAB 发展到现在,已经成为一个系列产品:MATLAB “主包”和各种可选的toolbox “工具包”。主包中有数百个核心内部函数。迄今所有的三十几个工具包又可分为两类:功能性工具包和学科性工具包。功能性工具包主要用来扩充MATLAB 的符号计 ∏∏1 1) -()-() () ()(N i i M j j p s q s C s A s B s H ====

基于极点配置的控制器设计与仿真

计算机控制理论与设计作业 题目:基于极点配置方法的直流调速系统的控制器设计

摘要 本文目的是用极点配置方法对连续的被控对象设计控制器。基本思路是对连续系统进行数学建模,将连续模型进行离散化,针对离散的被控对象,用极点配置的方法分别在用状态方程和传递函数两种描述方法下设计前馈和反馈控制器,并用MATLAB仿真。文中具体以直流调速系统作为研究对象,对直流调速系统的组成和结构进行了分析,把各个部分进行数学建模,求出其传递函数,组成系统结构框图,利用自控原理的知识对结构图化简,求出被控对象的传递函数和状态方程,进一步得将其离散化。第一种是通过极点配置设计方法的原理,用状态方程设计被控对象的控制律,因为直流调速系统存在噪声,实际状态不可测,故选择了全阶的观测器,又因为采样时间小于计算延时,所以选择了预报观测器。利用所学知识对此闭环系统设计前馈和反馈控制器[1]。第二种利用传统的离散传递函数,从代数多项式的角度进行复合控制器的设计,在保证系统稳定的情况下,分析系统的可实现性,稳定性,静态指标,动态指标,抗干扰等方面性能研究前馈反馈相结合控制器设计。重点是保证被控对象的不稳定的零极点不能被抵消。最后利用MATLAB的Simulink进行仿真,观察系统的输出的y和u和收敛性,并加入扰动看其抗干扰性能,得出结论。 经研究分析,对于直流调速系统,基于极点配置设计的前馈反馈相结合的控制器,具有良好的稳定性能和抗干扰性能。运行结果符合实际情况。 关键词:极点配置;状态方程;直流调速系统;代数多项式;Matlab;

1绪论 1.1论文的背景及意义 在工业生产和日常生活中,自动控制系统分为确定性系统和不确定性系统两类,确定性系统是指系统的结构和参数是确定的,确定的输入下,输出也确定的一类系统。确定性系统相对于不确定性系统而言的。在确定的系统中所用的变量都可用确切的函数关系来描述,系统的运动特性可以完全确定。以确定性系统为研究对象的控制理论称为确定性控制理论。本文以直流调速系统为研究对象,利用极点配置的设计方法,包括利用状态空间模型和传递函数模型分别描述线性系统,采用闭环极点为指标的控制器设计的理论和方法,设计出前馈和反馈控制器,组建闭环控制系统,用Matlab进行仿真可以逼真地还原出实际系统。 1.2 论文的主要内容 本文直流电机的调速系统的模型作为研究对象,利用线性系统极点配置的设计方法,设计前馈反馈控制器。论文研究的主要内容: (1)阅读学习国内外期刊文献,研究了极点配置的基本原理和Matlab的实现方法。 (2)系统的说明直流电机的系统结构和工作原理并分析,建立直流调速系统的数学模型,将其进行离散化,并讨论其传递函数与状态方程之间的关系。 (3)分析极点配置控制器的设计原理,利用状态方程设计控制器。 (4)将被控对象的传递函数离散化,利用传递函数模型设计控制器。 (4)在MATLAB中建立闭环直流调速系统的模型,根据闭环极点配置的设计步骤编写程序,用Simulink搭建仿真系统,对闭环直流调速系统的输出进行仿真分析。 (5)对仿真结果分析。将仿真结果与实际直流调速系统的阶跃响应的各项参数相比较,得出结论。

绘制离散系统零极点图.

绘制离散系统零极点图:zplane() 滤波器 绘制离散系统零极点图:zplane() zplane(Z,P) 以单位圆为基准绘制零极点图,在图中以'o'表示零点,以'x'表示极点,如果存在重零极点,则在它们的右上方显示其数目。如果零极点是用矩阵来表示,在不同行内的零极点用不同的颜 色来表示。 zplane(B, A) 输入的是传递函数模型,则函数将首先调用root 函数以求出它们的零极点。 [H1, H2, H3]=zplane(Z,P) 函数返回图形对象的句柄。其中,H1返回的是零点线的句柄;H2返回的是极点线的句柄;H3返回的是轴和单位圆线条句柄。如果有重零极点,它还包括显示在其右上方 的文本句柄。 例:设计一个数字椭圆带阻滤波器,具体要求是:通带截止频率是 wp1=1500Hz,wp2=2500Hz,阻带截止频率是ws1=1000Hz,ws2=3000Hz,在通带内的最大衰减为0.5dB,在阻带内的最小衰减 为60dB 程序设计如下: wp1=1500; wp2=2500; ws1=1000; ws2=3000; Fs=100 00Hz; rp=0.5; rs=60; wp=[wp1,wp2]; ws=[ws1,ws2]; [n,wn]=ellipord(wp/(Fs/2), ws/(Fs/2), rp, rs); [num,den]=ellip(n, rp, rs, wn, 'stop'); [H, W]=freqz(num, den); figure; plot(W*Fs/(2*pi), abs(H)); grid; xlabel('频率/Hz'); ylabel('幅值'); figure; impz(num, den); figure; grpdelay(num, den); figure; zplane(num, den); FREQZ 是计算数字滤波器的频率响应的函数

实验六开环增益与零极点对系统性能的影响

实验六 开环增益与零极点对系统性能的影响 一.实验目的 1.研究闭环、开环零极点对系统性能的影响; 2.研究开环增益对系统性能的影响。 二.实验内容 1.搭建原始系统模拟电路,观测系统响应波形,记录超调量σ%、峰值时间tp 和调节时间ts ; 2.分别给原始系统在闭环和开环两种情况下加入不同零极点,观测加入后的系统响应波形,记录超调量σ%和调节时间ts ; 3.改变开环增益K ,取值1,2,4,5,10,20等,观测系统在不同开环增益下的响应波形,记录超调量σ%和调节时间ts 。 三.实验步骤 在实验中观测实验结果时,可选用普通示波器,也可选用本实验台上的虚拟示波器。 如果选用虚拟示波器,只要运行ACES 程序,选择菜单列表中的相应实验项目,再选择开始实验,就会打开虚拟示波器的界面,点击开始即可使用本实验台上的虚拟示波器CH1、CH2两通道观察被测波形。具体用法参见用户手册中的示波器部分。 1.原始二阶系统 实验中所用到的功能区域: 阶跃信号、虚拟示波器、实验电路A1、实验电路A2、实验电路A3。 原始二阶系统模拟电路如图1-6-1所示,系统开环传递函数为: 0.1(0.21) K s s , 图1-6-1原始二阶系统模拟电路 (1) 设置阶跃信号源: A .将阶跃信号区的选择开关拨至“0~5V ”; B .将阶跃信号区的“0~5V ”端子与实验电路A3的“IN32”端子相连接; C .按压阶跃信号区的红色开关按钮就可以在“0~5V ”端子产生阶跃信号。 (2) 搭建原始二阶系统模拟电路: A .将A3的“OUT3”与A1的“IN11”、“IN13”同时连接,将A1的“OUT1”与A2的“IN21”相连接,将A2的“OUT2”与A3的“IN33”相连接;

极点配置直接自校正控制最小相位确定性系统Word文档

%极点配置直接自校正控制(最小相位确定性系统) 设被控对象为开环不稳定最小相位系统: ()2(1) 1.1(2)(3)0.5(4)y k y k y k u k u k --+-=-+- 期望传递函数分母多项式为: 112()1 1.32050.4966m A z z z ---=-+ 取遗忘因子=1,期望输出y r (k )为幅值为10的方波信号。 clear all;close all; a=[1 -2 1.1];b=[1 0.5];d=3; %对象参数 Am=[1 -1.3 0.5]; %期望闭环特征多项式 na=length(a)-1;nb=length(b)-1; nam=length(Am)-1; nf=nb+d-1;ng=na-1; %确定多项式A0 na0=2*na-nam-nb-1; %观测器最低阶次 A0=1; for i=1:na0 A0=conv(A0,[1 0.3-i*0.1]); %生成观测器 end AA=conv(A0,Am);naa=na0+nam;

nfg=max(naa,max(nf,ng)); %用于ufk, yuf更新 nr=na0; %R的阶次 L=400; uk=zeros(d+nb,1); ufk=zeros(d+nfg,1); %滤波输入的初值 yk=zeros(max(na,d),1); yfk=zeros(d+nfg,1); yrk=zeros(max(na,d),1); yr=10*[ones(L/4,1);-ones(L/4,1);ones(L/4,1);-ones(L/4+d,1)] ; %RELS初值设定 thetae_1=0.001*ones(nf+ng+2,1); P=10^6*eye(nf+ng+2); lambda=1; %遗忘因子 for k=1:L time(k)=k; y(k)=-a(2:na+1)*yk(1:na)+b*uk(d:d+nb); ufk(d)=-AA(2:naa+1)*ufk(d+1:d+naa)+uk(d); %滤波输入输出

控制系统的极点配置设计法

控制系统的极点配置设计法 一、极点配置原理 1.性能指标要求 2.极点选择区域 主导极点: 2 11 1 cos tan ξ βξ ξ -- - == 图3.22 系统在S平面上满足 时域性能指标的范围 n s t ζω 4 = ;当Δ=0.02时,。 n s t ζω 3 = 当Δ=0.05时,

3.其它极点配置原则 系统传递函数极点在s 平面上的分布如图(a )所示。极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2) ;同时,极点s 1、s 2的附近不存在系统的零点。由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为 135 1 451s n s t t =?≤ ξω 式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。 图(b )表示图(a )所示的单位阶跃响应函数的分量。由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。因为它衰减得最慢。其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。因此,对系统过渡过程进行近似分析时。可以忽略这些分量对系统过渡过程的影响。 n x o (t) (a ) (b ) 系统极点的位置与阶跃响应的关系

二、极点配置实例 磁悬浮轴承控制系统设计 1.1磁悬浮轴承系统工作原理 图1是一个主动控制的磁悬浮轴承系统原理图。主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。 (a)(b) 图1 磁悬浮轴承系统的工作原理 Fig.1 The magnetic suspension bearing system principle drawing 假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由I0,减小到I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。因此,不论转子受到向上或向下的扰动,都能回到平衡状态。这就是主动磁轴承系统的工作原理。即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。悬浮系统的刚

自校正控制系统分析

自校正控制系统分析 摘要:本文介绍了自校正控制系统的基本结构,主要介绍了基于PID 结构的间接自校正控制系统的控制算法,并通过实例仿真结果,表明了自校正PID 控制不仅需要调整的参数少,而且还能够根据对象特性的变化在线修改这些参数,增强了控制器的自适应能力。 关键字:自校正控制系统;PID 控制;自适应能力 1 引言 自校正控制系统主要由参数估计器、控制器设计、控制器和被控对象4部分组成,如图1所示。该系统内环由被控对象和可调控制器组成,外环则由过程模型参数估计器和控制器参数计算器所组成,其任务是辨识过程参数再按选定的设计方法综合出控制器参数,用以修改内环的控制器。这类系统的特点是必须对过程或者被控对象进行在线辨识估计器,然后用对象参数估计值和事先规定的性能指标在线综合出调节器的控制参数,并根据此控制参数产生的控制作用对被控对象进行控制经过多次地辨识和综合调节参数可以使系统的性能指标趋于最优。 图1 自适应控制系统结构图 自适应控制算法对于复杂系统能够达到较好的控制精度跟踪速度以及稳定性,其实时性好,算法简单,易于实现。然而,在PID 控制中,一个至关重要的问题就是PID 参数的整定。典型的PID 参数整定方法是在获取被控对象数学模型的基础上,根据某一整定规则来确定参数。PID 参数整定的优劣,不但会影响到控制质量,而且会影响到控制系统的稳定性和鲁棒性。本文介绍了基于PID 结构的间接自校正控制。 2 基于PID 结构的间接自校正控制 自校正PID 控制算法的设计思想是: 以极点配置控制律为控制器基本形式,引入递推算法估计对象参数,并将估计结果按极点配置法进行控制器参数的设计。下面介绍自校正PID 控制器。 被控对象为 )()()()()(11k e k u z B z k y z A d +=--- (1) 式中,u(k),y(k)表示系统的输入和输出,e(k)为外部扰动,d ≥为纯延迟,且221111)(---++=z a z a z A ,21101)(---+???++=z b z b b z B b n 。 对系统(1)采用PID 控制,此时,对应的PID 控制器可表示为 )()()()()()(1111k y z R k y z R t u z F r ----= (2) ?=--)()(1 11z F z F (3) 过 程过程模型参数估计器 可调控制器 输出控制量输入 过程参数 控制器 参 数 控制器参数 计算器

零极点对系统的影响

增加零极点以及零极点分布对系统的影响一般说来,系统的极点决定系统的固有特性,而零点对于系统的暂态响应 和频率响应会造成很大影响。以下对于零极点的分布研究均是对于开环传递函 数。 零点一般是使得稳定性增加,但是会使调节时间变长,极点会使调节时间变短,是系统反应更快,但是也会使系统的稳定性变差。在波特图上反应为,增加一个零点会在幅频特性曲线上增加一个+20db/10倍频的曲线,幅频曲线上移,增加一个极点,会在幅频特性曲线上增加一个-20db/10倍频的曲线,幅频曲线下移。 在s左半平面增加零点时,会增加系统响应的超调量,带宽增大,能够减小系统的调节时间,增快反应速度,当零点离虚轴越近,对系统影响越大,当零点实部远大于原二阶系统阻尼系数ξ时,附加零点对系统的影响减小,所以当零点远离虚轴时,可以忽略零点对系统的影响。从波特图上来看,增加一个零点相当于增加一个+20db/10倍频的斜率,可以使的系统的相角裕度变大,增强系统的稳定性。 在s右半平面增加零点,也就是非最小相位系统,非最小相位系统的相位变化范围较大,其过大的相位滞后使得输出响应变得缓慢。因此,若控制对象是非最小相位系统,其控制效果特别是快速性一般比较差,而且校正也困难。对于非最小相位系统而言,当频率从零变化到无穷大时,相位角的便变化范围总是大于最小相位系统的相角范围,当ω等于无穷大时,其相位角不等于-(n-m)×90o。非最小相位系统存在着过大的相位滞后,影响系统的稳定性和响应的快速性。 在s左半平面增加极点时,系统超调量%pσ减小,调整时间st(s)增大,从波特图上看,s左半平面增加一个极点时,会在幅频特性曲线上增加一个-20db/10倍频的曲线,也就意味着幅频特性曲线会整体下移,导致相角域度减小,从而使得稳定性下降。当极点离原点越近,就会增大系统的过渡时间,使得调节时间增加,稳定性下降,当系统影响越大当极点实部远大于原二阶系统阻尼系数ξ时,附加极点对系统的影响减小,所以当极点远离虚轴时可以忽略极点对系统的影响。 在s右半平面增加极点会导致系统不稳定。 最小相位系统 从传递函数角度看,如果说一个环节的传递函数的极点和零点的实部全都小于或等于零,则称这个环节是最小相位环节.如果传递函数中具有正实部的零点或极点,或有延迟环节,这个环节就是非最小相位环节. 对于闭环系统,如果它的开环传递函数极点或零点的实部小于或等于零,则称它是最小相位系统.如果开环传递函中有正实部的零点或极点,或有延迟环节,则称系统是非最小相位系统.因为若把延迟环节用零点和极点的形式近似表达时(泰勒级数展开),会发现它具有正实部零点. 最小相位系统具有如下性质: 1,最小相位系统传递函数可由其对应的开环对数频率特性唯一确定;反之亦然. 2,最小相位系统的相频特性可由其对应的开环频率特性唯返航一确定;反之亦然. 3,在具有相同幅频特性的系统中,最小相位系统的相角范围最小.

闭环零点对二阶系统的影响

完全书本上的理论:闭环零点是系统闭环传递函数中分子多项式方程的根。闭环零点由前向通道的零点和反馈通道的极点构成。对于单位反馈系统,闭环零点就是开环零点。 这个从系统结构上是可以推导出来的结论。 一想到零点,我们会想到比例微分环节,那么这个比例微分环节,放在前向通道和反馈通道,作用上会有什么不同吗? 谈到零点,我们最先想到的是微分环节,事实上,单纯的微分环节是不存在的。对一个信号取微分,也就是相当取这个信号的变化率。一个脉冲信号,上升沿变化率近似于无穷大,而运放的输出能量是有限的。 能产生零点的基本环节有比例微分环节PD,比例积分环节PI。 先来看,在一个传递函数的分子中,加入一个零点,而分母不变,会有什么影响呢? 以欠阻尼二阶系统G=4/(s^2+2*s+4)(阻尼比=0.5)为例,与另一个系统 G=4(s+1)/(s^2+2*s+4)的单位阶跃响应比较。 绿色是加入零点的,蓝色是没有零点的。 从这个例子,我们可以得到一个很简单的结论:传递函数分母不变,分子中串入零点,瞬态响应变快,超调量增加。 举个例子,还是以传递函数G=4/(s^2+2*s+4)(阻尼比=0.5)作为控制对象,采用比例微分环节(1+0.5*s)去控制它。 而根据比例微分环节加入整个系统的位置不同,可以分为两种:一种是放在前向通道,一种是放在反馈通道。 下面以采用这两种校正方式后的单位阶跃响应,来看看它们有什么不同~ (1)、将校正环节串入系统的前向传递通道(绿色):sys=tf([4],[1,2,0]);sys2=tf([0.5, 1],[1]);sys3=series(sys2,sys),sys4=feedback(sys3,1);step(sys4);hold on; (2)、将校正环节作为系统的反馈通道(蓝色):sys=tf([4],[1,2,0]);sys2=tf([0.5,1],[1]);sys3=feedback(sys,sys2);step(sys3);(3)、原系统的单位反馈(红色):sys0=tf([4],[1,2,4]);step(sys0);

零点与极点计算和分析

关于放大器极、零点与频率响应的初步实验 1.极零点的复杂性与必要性 一个简单单级共源差分对就包含四个极点和四个零点,如下图所示: 图1 简单单级共源全差分运放极零点及频率、相位响应示意图 上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。后面将要详细讨论各个极零点对运放的频率响应的影响。 正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:

图2 folded-cascode with gain-boosting and bandgap all-poles details

图3 folded-cascode with gain-boosting and bandgap all-zeros details 从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。可以看到46个极点中基本都为左半平面极点(负极

点)而仿真器特别标出有一个正极点(RHP )。由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。(具体原因现在还不明,可能存在问题的方面:1。推测是主放大器的CMFB 的补偿或者频率响应不合适。 2。推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。 以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要 进行一系列实验。 1. 单极点传输函数——RC 低通电路 首先看一个最简单的单极点系统——RC 低通电 路,其中阻值为1k ,电容为1p ,传输函数为: sRC s H +=11)( 则预计极点p0=1/(2πRC )=1.592e8 Hz ,仿真得 到结果与此相同。 而从输出点的频率响应图中可以得到以下几个结 论: 图4 一阶RC 积分电路 1)-3dB 带宽点(截止频率)就是传输函数极点,此极点对应相位约为-45°。 2)相位响应从0°移向高频时的90°,即单极点产生+90°相移。 3)在高于极点频率时,幅度响应呈现-20dB/十倍频程的特性。 图5 一阶RC 电路极点与频率响应(R=1k C=1p )

闭环零点对二阶系统单位阶跃响应的影响

闭环零点对二阶系统单位阶跃响应的影响 张国超 10电本2班 摘要:由于实际工作中对高阶系统的研究常常是将其降为二阶系统,因此分析二阶系统的单位阶跃响应,对于研究自动控制系统的暂态特性具有重要意义。大多数高阶系统中含有一对闭环主导极点,则该系统的动态响应就可以近似的用这对主导极点所描述的二阶系统来表达。本文将从根轨迹和频率特性两方面,对增加一闭环零点对二阶系统单位阶跃响应的影响。并探究了不同位置下闭环零点对系统的不同影响。 关键词:闭环零点 二阶系统 根轨迹 频率特性 0章 引言 二阶系统是工程中常用到的系统,不仅仅是研究二阶系统本身,而且研究高阶系统也是将其化为二阶系统,因此二阶系统是个非常重要的系统。实际工程中欠阻尼二阶系统是最常用的,可以看成是稳定的系统,因此分析欠阻尼系统具有实际意义。二阶系统的单位阶跃响应最能反映二阶系统的本质特性。在实际生产中,二阶系统要满足工程最佳参数,而通过改变开环放大系数的方法会增大系统的稳态误差,为了满足这一要求的同时还能保证系统稳态的精度,常用设置零点的方法来做到。本文就是对闭环零点对二阶系统影响做了描述。 1章 二阶系统简单描述 一个系统的阶次是由其最简闭环传递函数分母S 的最高次项决定的。二阶系统就是S 的最高次项为2的闭环传递函数所对应的系统典型。简单来说就是由二阶微分方程描述的系统就叫做二阶系统。 二阶系统结构图见图1 图1 由图可知二阶系统开环传递函数为: ()() n n K s s s W ξωω 22+= 二阶系统闭环传递函数为: ()2 222n n n B s s s W ωξωω++=

在没有零点时,二阶系统的根轨迹()() n n K s s s W ξωω 22+= ,ζ 及ωn 为定值(ζ=0.7ωn=1) 为例为例。 随着K 值的增大,θ角也不断增大,由于ξ ξθ2 1arctan -= , n d r t ωξθ πωθπ21--=-= , ()n s t ξω3 %5= 8.00<<ξ,()n s t ξω4 %2= 8.00<<ξ,%100%2 1?=-- ξξπ δe (注公式) 所以ζ一直在减小,导致上升时间增长,但调节时间增长,超调量增大,系统的平稳性降低。 2章具有零点的二阶系统的根轨迹分析 2.1增加零点对二阶系统的影响 零点的二阶系统结构图见图2: 具有零点的二阶系统的传递函数为: 2 2 22)()()()(n n n B w s w s z s w s Xr s Xc S W +++= =ξ θ ) 2() (2 22 n n n w s w s z z s w +++ξ )(s X r )(s X c 图2

基于极点配置方法的直流电机转速控制系统设计

摘要 建模、控制与优化是控制理论要解决的主要问题。在这些问题中,广泛采用了现代数学方法,使得控制理论的研究不断深入,取得了丰硕的成果。建模是控制理论中所要解决的第一个问题。控制理论中的建模方法主要有两种,一是经验建模,二是根据物理规律建模。所研究的对象主要是动态模型,一般用微分方程或差分方程来描述。设计控制系统是控制理论的核心内容。在线性系统中,我们所用到的数学工具是拓扑、线性群。在非线性系统中,我们用到了微分几何。可以说微分几何是非线性控制理论的数学基础。优化是控制的一个基本目的,而最优控制则是现代控制理论的一个重要组成部分。例如庞特里亚金的极大值原理、贝尔曼的动态规划,都是关于优化和最优控制问题的。 本报告首先介绍了直流电动机的物理模型, 并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。通过对抽象出来的模型进行性能分析,确定需要使用状态观测器来修正系统。继而借助MATLAB软件对转速环进行了状态反馈控制器的设计,使系统的阶跃响应达到了设计指标。 关键词:建模控制理论设计控制系统直流电动机转速状态反馈控制器

1 系统的物理模型、参数及设计要求 -------------------- 4 1.1 系统模型 ------------------------------------- 4 1.2 系统参数 ------------------------------------- 5 1.3 设计要求 ------------------------------------- 5 2 系统模型的建立------------------------------------ 6 2.1 模型抽象 ------------------------------------- 6 2.2 所建模型的性能分析 --------------------------- 7 3 系统状态观测器的设计----------------------------- 11 3.1 期望配置的极点的确定以及状态观测器的设计----- 11 3.1.1 第一组极点配置-------------------------- 11 3.1.2 第二组极点配置-------------------------- 11 3.2 状态观测器的设计 ---------------------------- 12 3.2.1 第一组极点------------------------------ 12 3.2.2 第二组极点------------------------------ 14 3.3 状态观测器的仿真图 -------------------------- 16 3.4 原系统加了状态观测器后的仿真结果图及分析----- 17 3.4.1 第一组极点------------------------------ 17 3.4.2 第二组极点------------------------------ 18 4 状态观测器极点配置与PID方法的比较 --------------- 20 4.1 直流电机转速、电流PID控制的设计------------- 20 4.2 两种方法的比较 ------------------------------ 21

零极点对系统性能的影响分析

摘要 本次课程设计主要是分析零极点对系统性能的影响。首先从根轨迹、奈奎斯特 曲线、伯德图和阶跃响应四方面分析原开环传递函数时的系统性能,然后在原开环 传递函数基础上增加一个零点,并且让零点的位置不断变化,分析增加零点之后系 统的性能,同时与原系统进行分析比较,发现增加的零点与虚轴的距离决定了对系 统影响的大小;再在原开环传递函数基础上增加一个极点,并且令极点位置不断变 化,分析增加极点后系统的性能,同时与原系统进行分析比较,同样发现增加的极 点与虚轴的距离决定了对系统的影响大小。 关键词:零极点开环传递函数系统性能 MATLAB 谐振带宽 The curriculum design is mainly the analysis of effect of zero pole on the performance of the system. First from the root locus, Nyquist curve, Bode diagram and step response analysis of four aspects of the original open-loop transfer function of the system performance, and then in the original open-loop transfer function is added on the basis of a zero, and let the zero point position changes continuously, increase system performance analysis of zero, at the same time and the original system analysis that increase, the zeros and the imaginary axis distance determines the impact on the system size; adding a pole in the original open-loop transfer function based on pole position, and make the changes, analysis of increasing performance point system, at the same time and the analysis of the original system, also found that increasing pole and the imaginary axis distance determines the impact on the size of the system. Keywords: zero pole open loop transfer function of system performance of MATLAB resonant bandwidth

(完整版)现代控制理论试卷和答案解析总结

2012年现代控制理论考试试卷 一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的, ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( √ )2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对线性定常系统x Ax =&,其Lyapunov 意义下的渐近稳定性 和矩阵A 的特征值都具有负实部是一致的。 ( √ )5.一个不稳定的系统,若其状态完全能控,则一定可以通过状态反馈使其稳定。 ( × )6. 对一个系统,只能选取一组状态变量; ( √ )7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关; ( × )8. 若传递函数1()()G s C sI A B -=-存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的; ( × )9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的; ( × )10. 状态反馈不改变系统的能控性和能观性。

二、已知下图电路,以电源电压u(t)为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻R2上的电压为输出量的输出方程。(10分) 解:(1)由电路原理得: 1 1 2 2 12 1 111 2 22 11 1 11 L L c L L c c L L di R i u u dt L L L di R i u dt L L du i i dt c c =--+ =-+ =- 22 2 R L u R i = 11 22 1 11 1 2 22 1 01 1 00 11 L L L L c c R i i L L L R i i u L L u u c c ?? --?? ???? ?? ?? ???? ?? ?? ???? ?? =-+?? ???? ?? ?? ???? ?? ?? ???? ?? ?? - ???? ?????? ?? ?? g g g

相关主题
文本预览
相关文档 最新文档