最值问题(4年级培优)教师版
- 格式:doc
- 大小:496.25 KB
- 文档页数:9
北师大版四年级数学下册解决问题培优解答应用题练习题50(精编版)带答案解析一、北师大小学数学解决问题四年级下册应用题1.在三角形ABC中,∠B比∠A大20°,∠C比∠B大20°,你能求出这个三角形的三个内角分别是多少度吗?2.地球表面积是5.1亿平方千米,其中海洋面积是3.61亿平方千米,其余是陆地面积。
海洋面积比陆地面积多多少亿平方千米?3.小明买了两本书,一本故事书的单价是9.45元,另一本科技书的单价是10.29元.小明交给售货员20元,应找回多少元?4.某修路队要修一条长4千米的路,要在4个月内完工,前三个月的工作情况如下表:(1)根据上表中的数据,提出一道用两步计算解答的问题,并解答出来.问题:解答:(2)第4个月再修多少千米就能完成任务?5.小亮、小敏、东东、小华都称了体重,而记录单上只记录了29.38千克,31.26千克,30.56千克,28.34千克,但从表面上估计小亮比东东轻,又比小敏重,并且小华比小敏轻。
(1)按体重从重到轻排列:________千克>________千克>________千克>________千克(2)按体重从轻到重排列(填名字):________<________<________<________ (3)你知道他们四个人的体重各是多少吗?(4)如果31.26千克改为29.78千克,你知道他们四个人的体重各是多少吗?6.画一画,算一算,你发现了什么?7.学校“数学兴趣活动组”第一小组10位同学的身高如下表:8.a+b=35.2,a-b=25.8。
求a和b的值各是多少。
9.《水浒传》一本29.5元,《三国演义》一本34.4元,《西游记》一本30.5元。
(1)一本《水浒传》比一本《三国演义》便宜________元。
(2)小军带了100元,够买这三本书吗?10.一个三位数,个位上是a,十位上是b,百位上是c,这个三位数是多少?(用含有a、b、c的式子表示)11.下表是小明和小亮的身高、体重和视力情况记录.(1)谁的身材高一些?(2)从表中你还知道些什么?12.利用“三角形内角和等于180°,试着计算出下面两个图形的内角和各是多少度.13.学校有327人,每人每天大约吃5克盐,一个月大约需要食盐多少千克?(一月按30天计算)14.一个整数与一个小数的和正好等于它们的积,这个整数与小数的积是多少?15.量一量、画一画、分一分。
四秋第16讲最值问题(一)一、教学目标1、我们在解最大与最小问题时,常常会从极端情形出发来考虑问题,并且还要举例说明最大值或最小值是能取到的.2、最大与最小的若干性质:①如果两个正整数的和一定,那么这两个正整数的差越小,它们的乘积越大;两个正整数的差越大,它们的乘积越小.②如果两个正整数的乘积一定,那么这两个正整数的差越小,那么它们的和也越小;两个正整数的差越大,那么它们的和越大.二、例题精选【例1】两个自然数的和为11,当这两个自然数分别是多少时,它们的积最大?最大的积是多少?【巩固1】两个自然数的乘积为36,当这两个自然数分别是多少时,它们的和最小?最小的和是多少?【例2】把14分成几个自然数的和,再求出这些自然数的乘积,要使得乘积尽可能大,问这个乘积是几?【巩固2】把16分成三个自然数的和,再求出这些自然数的乘积,要使得乘积尽可能大,问这个乘积是几?【例3】八个互不相等的正整数之和是88,将这八个数从小到大排列,第5个数最大是几?【巩固3】十个互不相等的非零自然数之和是60,其中最大的那个数记为a ,那么a 最大是多少?【例4】 用6~1这6个数字组成两个三位数,使这两个三位数的乘积最大,这两个三位数分别是多少?(要求每个数字都用到)【巩固4】用8~1这8个数字,组成2个四位数,把它们相减所得的差是一个自然数,问这个自然数最大是多少,最小是多少?(要求每个数字都用到)【例5】 某路公共汽车,包括起点和终点共有15个车站,有一辆公共汽车除终点外,每一站上车的乘客中,到以后的每一站都恰好有一位乘客下车,为了使每位乘客都有座位,这辆公共汽车最少要有多少个座位?【例6】 宴会邀请来了44位嘉宾。
会场里15张相同的正方形桌子,每张每边能坐1人。
经适当“拼桌”(将几张正方形桌子拼成一张长方形或正方形桌子)后,恰好让所有嘉宾全部入座而且没有空位。
那么最后会场里桌子是如何排布的?三、回家作业【作业1】一个自然数它各个数位上的数字的和等于25,这个数最小是多少?【作业2】两个非零自然数的积是45,这两个自然数的和最大是多少?最小是多少?【作业3】把13分成几个自然数的和,再求出这些自然数的乘积,要使得乘积尽可能大,问这个乘积是几?【作业4】用5、6、7、8这四个数字组成两个两位数,使这两个两位数的乘积最大.(每个数字都要用到)2013122108,一共12个数字。
单循环赛:每两个队之间都要比赛一场,无主客场之分。
有n个队参加的单循环赛中,每个队要参加的比赛场数为(n-1)场。
比赛的总场次为n×(n-1)÷2场。
双循环赛:每两个队之间都要比赛两场,有主客场之分。
有n个队参加的双循环赛中,每个队要参加的比赛场数为2(n-1)场。
比赛的总场次为n×(n-1)场。
循环赛:胜的场次等于负的场次;平局的总场次为偶数。
对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
模板一:体育比赛中的数学之计算场次四年级六个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一共要进行多少场比赛?(如果参赛队每两队之间都要赛一场,这种比赛称为单循环赛)解析:每两个班赛一场,每个班要和其他5个班级各赛一场,所以每个班要赛5场。
共进行6×5÷2=15(场)答案:赛5场,共赛6×5÷2=15(场)难度系数:A 出处:网络修改20名羽毛球运动员参加单打比赛,两两配对进行单循环赛,那么一共要比赛多少场?答案:20×19÷2=190(场)难度系数:A 出处:网络A、B、C、D、E五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,A 已经赛4盘,B赛3盘,C赛2盘,D赛1盘.问:此时E同学赛了几盘?解析:利用点线图所以E 赛2盘难度系数:B 出处:网络八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了4场,北京队赛了3场,江苏队赛了2场,山东队赛了1场.那么广东队赛了几场?2场1场2场3场4场广东队山东队江苏队北京队八一队所以广东队赛2场难度系数:B 出处:网络规定投中一球得5分,投不进得2分,涛涛共投进6个球,得了16分,涛涛投中几个球?解析:方法一:(鸡兔同笼)6个球全投进得5×6=30分少得了30-16=14分有1个不进的球就少得5+2=7分,不但没得5分,反而倒扣2分所以没进的个数14÷7=2个进的个数6-2=4个方法二:5×( ) -2 ×( ) = 16根据个位数字特点猜数,5×( 4 ) -2 ×( 2 ) = 16进了4个难度系数:B 出处:网络规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没进,他共进几个球?解析:方法一:(鸡兔同笼)假设6个没进的球也进,30+6×(3+1)=54分共投54÷3=18个方法二:3×( ) -1 ×( 6 ) = 30(30+6)÷3=12个12+6=18个难度系数:B模板二:体育比赛中的数学之分数计算A 、B 、C 、D 、E 五位同学一起参加乒乓球,单循环比赛,胜者得2分,负者不得分,比赛结果如下:(1)A与E并列第一(2)B是第三名(3)C和D并列第四名根据个人比赛场数猜测每位同学分别得多少分?解析:每人比赛4场,全胜得8分,有并列第一,就没有全胜,所以不可能得8分;有并列倒数第一,所以没有全败,没有0分;而每个人得分是个偶数,在0和8之间的偶数只有2,4,6,三个分数,三个名次,所以A、E得6分;B得4分,C、D得2分难度系数:B 出处:网络四名同学单循环比赛,胜者得2分,负者得0分,平者各得1分。
本讲解说:内容为基础的工程问题和利用“综合—分析法”分析应用题的数量关系解决实际问题。
重点在工程问题,清楚三个基本量。
难点在于分析题目数量关系解决实际问题。
注:“让数学变得好玩”,在玩的之余,让学生去列综合算式试试看吧!你用一只骰子随意掷出3个点数,然后再按下面的要求作计算:(1)给第一个数的2倍加上5,把得数乘5再加10;(2)给这个得数加上第二个数,再乘10;(3)给新的得数加上第三个数。
只要你把最后的得数说出来,我就能说出掷出的三个数依次是多少。
不信的话,我们一起试试吧!①知道工作效率的含义,初步掌握:工作效率=工作量÷工作时间,能够运用“工作效率、工作时间与工作量”这三者之间的数量关系来解决实际问题。
②解决应用题时,首先用“综合—分析法”弄清题中的数量关系,明确先算什么,再算什么,然后再列式进行解答。
能够结合树状算图表达和理解思考的过程,培养有条理地思考问题的习惯。
重点:结合树状算图,运用“综合—分析法”分析应用题的数量关系,能正确运用“综合—分析法”解决一些实际问题。
难点:能正确运用“综合—分析法”解决一些实际问题。
1、想一想,填一填。
李师傅王师傅赵师傅做玩具(只)252 215 360时间(天) 6 5 8请大家仔细观察,从这个记录表里,你能知道谁做玩具做得快?他们做玩具的数量、时间都不一样,可以用什么来比?解:赵师傅做得快些,可以用工作效率来比较。
(2)填空①上题中李师傅、王师傅、赵师傅每天做玩具的数量都可称为。
②工作量=()○()③工作效率=()○()④工作时间=()○()【知识点】工程基础知识;【难度】☆;【出处】完全解读【解】工作效率;工作效率×工作时间;工作量÷工作时间;工作量÷工作效率2、根据题意画树状算图,写出数量关系并列式。
(1)工程队修一段长度为480米的破损路面,每天维修30米,这条路几天可以修好?数量关系:列式:(2)小胖参加打字比赛,10分钟打了990个字,他一分钟可以打多少个字?数量关系:列式:(3)小巧每秒钟可以做3道口算题,她10秒钟可以做多少道口算题?数量关系:列式:【知识点】工程基础知识;【难度】☆;【出处】底稿【解】:树状算图略(1)工作时间=工作总量÷工作效率480÷30=16(天)(2)工作效率=工作总量÷工作时间990÷10=99(个)(3)工作总量=工作效率⨯工作时间10⨯3=30 (道)2、应用题(列综合算式)(1)市政工程队修一段高速公路,原计划每天修91米,10天修完,实际7天就完成任务。
小学四年级数学培优 Part 1“数与运算”之整数计算综合熟练运用已学的各种方法解决复杂的整数四则运算问题;学会利用加减抵消、分组计算等方法处理各种数列的计算问题;学会处理“定义新运算”的问题,初步体会用字母表示数.1、计算:(1)72×27×88÷(9×11×12) (2)31×121-88×125÷(1000÷121)(3)37×47+36×53 (4)123×76-124×75 (5)1+2-3+4+5-6+7+8-9+...+97+98-992、已知平方差公式:a 2-b 2=(a +b )×(a -b ).计算(1)202-192+182-172+162-152+...+22-12 (2)951×949-52×483、规定运算“★”为:a ★b =a ×b -(a +b ).请计算:(1)5★8; (2)8★5; (3)(6★5)★4; (4)6★(5★4).Part 1“数与运算”之数列与数表通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题.注意数表形式的多样性,计算时常常考虑周期性,或进行合理估算.1、一个数列的第一项是1,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:(1)第100项是多少?(2)前100项的和是多少?2、如图,从1开始的连续奇数按某种方式排列起来. 请问:(1)99在第几行起第几个数? (2)第10行左起第3个数是多少? Part 1“数与运算”之多位数与小数求解含有小数的四则运算问题,除了运用已学的各种整数计算方法外,还可以移动小数点来简化计算.求解带有省略号的多位数的四则运算问题,一般采用从简单情况 出发找规律、通过算式的变形进行凑整、直接列竖式等方法.1、计算:(1)5795.5795÷5.795×579.5 (2)24×(0.123+0.127)×0.125×(2.52+1.48)(3)(3.74+3.76+3.78+3.8+3.82)×0.04÷24×60(4)1.25×3.14+125×0.0257+1250×0.00229(5)121212×4-242424×2 (7)99...9×12345 (8)333...33×333 (34)2、求和式计算结果的万位数字.Part2“应用题”之行程问题掌握速度、路程、时间的概念,以及它们之间的数量关系.掌握基本相遇问题和基本追及问题的解法;学会用比较的方法分析同一段路程上不同的运动过程.重点掌握画线段图的分析方法.1、小东跑100米用20秒,旗鱼每小时能游90千米.请问:谁的速度更快?2、A 、B 两城相距240千米,一辆汽车原计划用6小时从A 城到B 城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生了故障,在途中停留了1小时,如果要按照原定的时间到达B 城,汽车在后一半路程上每小时应该行驶多少千米?13 5 79 11 13 15 1719 21 23 25 27 29 31 ... ... ...10个9 10个3 9个3 10个3参与运动的某些对象自身具有长度的行程问题.涉及多个对象的行程问题,一般需要从其中两个对象入手进行分析,并把所得的结论与其他对象联系起来.1、(1)一列火车长180米,每秒行20米,这列火车通过320米的大桥,需要多长时间?(2)一列火车以每秒20米的速度通过一座长200米的大桥,共用21秒,这列火车长多少米?2、甲火车长370米,每秒行15米;乙火车长350米,每秒行21米.两车同向行驶,乙车从追上甲车到完全超过甲车需要经过多长时间?Part2“应用题”之和差倍问题三数量关系复杂,需要深入分析的和差倍问题;由于数量大小改变,而产生倍数关系变化的问题;需要利用比较或分组的方法进行分析的问题.1、有长短两根竹竿,长竹竿的长度是短竹竿长度的3倍,将它们插入水塘中,插入水中的长度都是40厘米,而露出水面部分的总长为160厘米.请问:短竹竿露在外面的长度是多少厘米?2、小文一天折了一些纸鹤,她把它们分成了甲、乙两堆.如果从甲堆中拿出15个放到乙堆中,则两堆纸鹤的个数相等;如果从乙堆中拿出15个放到甲堆中,则甲堆纸鹤的个数是乙堆的3倍.问:(1)甲堆原来有零件多少个?(2)小文这一天共折了多少个纸鹤?Part2“应用题”之还原问题与年龄问题学会用逆推法求解还原问题,处理多个对象时可采用列表的形式.在年龄问题中,通常采用和差倍问题的分析方法,有时需注意任意两人的年龄差保持不变.1、某数加上6,再乘以6,再减去6,再除以6,其结果等于6.则这个数是多少?2、果园里有一棵桃树,有一天,3只猴子来摘桃子吃,第一只猴子吃了一个桃子并摘下了剩下桃子的一半,然后第二只猴子吃了2个桃子并摘下了剩下桃子的一半,最后第三只猴子吃了3个桃子并摘下了剩下桃子的一半,这时树上刚好还有4个桃子,问原来树上一共有多少个桃子?Part2“应用题”之平均数问题掌握平均数的基本概念.学会利用基准数法计算平均数,通过总量的变化计算平均数的变化,分析多组数的平均数与总平均数之间的关系.1、甲、乙、丙、丁四个小队拾松果,甲、乙、丙三队平均每队拾了24千克,乙、丙、丁三队平均每队拾了26千克.已知丁队拾了28千克,那么甲队拾了多少千克?2、某人问园丁,花园里有多少株开花的植物,园丁说:“春、夏、秋三个季节,平均每个季节有56株;春、夏、冬三个季节,平均每个季节有54株;春、秋、冬三个季节,平均每个季节有43株;夏、秋、冬三个季节,每个季节有24株.”如果每株花只在其中一个季节开放,那么花园里共有多少株开花的植物?Part2“应用题”之行程问题三运动过程较为复杂的行程问题,一般通过分段、比较等方法进行考虑.在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律.1、小刚和哥哥一起从家去学校,哥哥步行,小刚骑车.小刚到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果他和哥哥一起到校.如果哥哥每分钟走53米,那么小刚骑车每分钟行进多少米?2、甲、乙两车分别从相距300千米的A 、B 两地同时出发,在A 、B 两地之间不断往返行驶.已知甲车的速度是每小时30千米,乙车的速度是每小时20千米.请问:(1)出发后经过多长时间甲、乙两车第一次迎面相遇?(2)第一次迎面相遇后又经过多长时间甲、乙两车第二次迎面相遇?(3)第二次迎面相遇后又经过多长时间甲、乙两车第三次迎面相遇?Part3“几何问题”之几何图形剪拼与图形的剪切、拼接有关的问题.学会利用对称性和面积计算对剪拼问题进行分析;了解某些特殊的剪拼方法.1、如图1,在一块正方形纸片中有一个小正方形的空洞.现在要求用一条经过大正方形中心点的线段,把纸片分成面积相等的两部分,应该怎么分?2、请把图2、3中的两个图形分别沿格线剪成4个大小、形状都相同的图形.Part3“几何问题”之直线形计算一掌握正方形、长方形、平行四边形、三角形以及梯形的面积计算公式,并能够熟练应用;计算平行四边形和三角形的面积时,学会选择适当的底和高.1、如图1,小、中、大三个正方形从左到右依次紧挨着摆放,边长分别是3、7、9.那么图中两个阴影平行四边形的面积分别是多少?2、如图2,大正方形的边长是8厘米,小正方形的边长是6厘米.请问:图中阴影部分的面积是多少平方厘米?3、如图3,从梯形ABCD 中分出两个平行四边形ABEF 和CDFG ,其中ABEF 的面积是60平方米,且AF 的长度为10米,FD 的长度为4米.那么平行四边形CDFG 的面积等于多少平方米?Part3“几何问题”之格点与割补明确格点多边形的概念,学会通过分割和添补的方法计算其面积;学会利用割补法计算不规则图形的面积;掌握格点多边形的面积计算公式.1、图中的每个小正方形的面积均为2平方厘米,阴影多边形的面积是多少平方厘米?2、上图2中是一个三角形点阵,其中能连出的最小的等边三角形的面积为1平方厘米,三个多边形的面积分别是多少平方厘米?Part4“组合问题”之抽屉原理一理解抽屉原理的基本含义,并能利用抽屉原理对一些简单问题进行说明.在考虑某些问题时,需要利用最不利原则进行分析.1、(1)一次聚会上,大家发现,有40人都是同一年的10月出生的.试说明:他们中一定有2个人是在同一天出生的,但不一定有3个人在同一天出生.(2)任意1830人中,至少有多少人的生日在同一天?2、有红黄蓝绿四种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多.一次至少要取几颗珠子,才能保证其中一定有2颗珠子颜色相同?Part4“组合问题”之统筹与对策生活中的统筹规划问题,包括合理安排顺序、选择最短或最长路线、人员分配、货物调度等,一般采用枚举、比较和逐步调整的方法.各种游戏对策问题,在必胜方案中通常要占据关键位置或选取特殊数值,分析时一般从简单情形出发进行逆推.1、一个水房有两个水龙头,一天早晨6:00,有五个人同时需要用水龙头:甲刷牙,用5分钟;乙洗脸,用2分钟;丙洗头,用10分钟;丁浇花,用1分钟;戊洗衣服,用15分钟.请问:如何合理安排,最快在早晨几点几分,这五个人都能用完水?2、西点店里卖的面包都是5个一袋或3个一袋的,不拆开零售.已知5个一袋的售价是8元,3个一袋的售价是5元.要给47位同学每人发1个面包最少要花多少钱?Part4“组合问题”之最值问题一求最大值与最小值的问题,解题时宜首先考虑起主要作用的量,有时还需要局部调整或者枚举各种可能情形.和为定值的两数的乘积随着两数之差的增大而减小.1、一个自然数是由数字8、9组成的,它的任意相邻两位都可以看成一个两位数,并且这些相邻数字组成的两位数都不相等.请问:满足条件的自然数最大是多少?2、如果3个互不相同的自然数之和为20,那么其中最小的数最大可能是多少?最大的数最小可能是多少?Part4“组合问题”之逻辑推理一简单的逻辑推理问题,学会假设法和列表法1、有3只盒子,第1只盒子里装有2个黑球,第2只盒子里装有2个白球,第3只盒子里装有黑球和白球各1个.现在3只盒子上的标签全贴错了,你能否仅从其中1只盒子里拿出1个球来,就能确定这3只盒子里各装的是什么球?2、甲、乙、丙、丁四人对A先生的藏书数目作了一个估计.甲说:“A先生有500本书.”乙说:“A先生至少有1000本书.”丙说:“A先生的书不到2000本.”丁说:“A 先生最少有1本书.”实际上这4个人的估计中只有一句是对的.问:A先生究竟有多少本书?Part6“计数问题”之加法原理与乘法原理理解加法原理和乘法原理,体会分类计数与分步计数的区别;能够根据题目条件,对问题进行合理的分类与分步;学习用标数法解决各类路径问题.1、地球上有7颗不同的龙珠,如果找齐传说中7颗龙珠,并且按照特定的顺序排成一行,就会有神龙出现.勇敢的小强找到了这7颗龙珠,但是她不知道排列的特定顺序.请问:运气不好的小强最多要试几次才能遇见神龙?2、电影院里有10个空座位,小米和哥哥去看电影,每个人坐一个座位,共有多少种不同的坐法?Part6“计数问题”之排列组合了解排列、组合公式的由来及含义,掌握具体的计算方法;辨析排列、组合之间的区别与联系,并能够合理应用.1、小又、小文、小义和小刀4个人一起乘公交车去公园,上车后发现有8个空座位,他们一共有多少种不同的坐法?2、9支球队进行足球比赛,实行单循环制,即每两队之间只比赛一场,每场比赛后,胜方得3分,平局双方各得1分,负方不得分.请问:(1)一共要举行多少场比赛?(2)9支队伍的得分总和最多为多少?Part6“计数问题”之计数综合一巩固以前学过的各种方法,综合运用分类与分步思想,排列与组合公式及枚举法来解决较复杂的计数问题;学会使用排除法、捆绑法、插空法解决排队问题.1、一本书从第1页开始编排页码,到最后一页结束时共用了1983个数码.这本书一共有多少页?2、有13个球队参加篮球赛,比赛分两个组,第一组7个队,第二组6个队,各组先进行单循环赛(即每队都要与本组中其他各队比赛一场),然后由两组的第1名再比赛一场决定冠亚军.请问:一共需要比赛多少场?Part7“数字谜问题”之数阵图初步各种较为基本的数阵图问题.了解重数的概念,并以此进行分析;学会分析特殊位置上的数值;某些情况下还需要考虑对称性1、把1至7如果中心圆圈内填的数相等,那么就视为同一种填法,写出所有可能的填法.3、将1至9这九个数分别填入上图2中的圆圈内,使得图中所有三角形的三个顶点上的数之和都等于15.现在已经填好了其中三个,请你在图中填出剩下的数.Part7“数字谜问题”之竖式问题以字母或汉字表示数字的竖式问题,学会选择适当的突破口,并逐步解决问题;能够将文字叙述的题目转化为数字谜形式,便于直观地解决问题.1、有一个四位数,它乘以9后所得的乘积恰好是将原来的四位数各位数字顺序颠倒而得的新四位数,求原来的四位数.2、小莉写了一个四位数,哥哥把这个四位数的个位抹掉,变成了一个三位数.弟弟又把这个三位数的个位抹掉,变成了一个两位数.最后把这三个数加起来,结果刚好是7826.那么小莉原来写的四位数是多少?Part7“数字谜问题”之复杂竖式需要较强推理能力的竖式问题.学会运用奇偶分析、整体分析、分类讨论等技巧性较高的方法.1、请把下图1中的除法竖式补充完整,这个算式的被除数、除数以及商的总和是多少?2、在下图2中的字母竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字.已知个位向十位的进位为2,且E 是奇数,则A 、B 、C 、D 分别代表什么数字?3、在下图3中所示的乘法竖式中,每个方框和字母都代表一个数字,相同的字母代表相同的数字,不同的字母代表不同的数字.请问:A 、B 、C 、D 分别代表什么数字?4、在下图4中,相同的字母代表相同的数字,不同的字母代表不同的数字,请给出两种使竖式成立的填法.Part7“数字谜问题”之横式问题横式中的填空格和字母破译问题.熟练应用尾数分析、首位估算、分情况试算等方法;对于较复杂的题目,一般从约束条件较多、可能性较少的算式入手;某些横式可以转化为竖式问题求解.1、在请在下面两个算式的方框中填入适当的数字,使得等式成立,并且算式中的数字关于等号左右对称.(1)12×32×21;8×891=198×2、在算式3的5个方框中,分别填入0到4这5个数字,使等式成立.请问:得到的乘积是多少?Part7“数字谜问题”之幻方与数阵图扩展掌握幻方的概念,了解三、四阶幻方的构造方法;解决具有与幻方类似性质的数阵图问题;进一步学习重数分析的方法;通过计算重数来处理数阵图中的最大最小问题.1、把1至9这九个数分别填入下图1中的9个圆圈内,使得三个圆周及2、(1)如上图2,在3×3的方格表中的每个空格中填入恰当的数, 使得每行、每列、每条对角线上的各数之和都相等.(2)如上图3,在4×4的方格表中的每个空格中填入恰当的数, 使得每行、每列、每条对角线上的各数之和都相等. 3、如右图,在空格中填入适当的数,组成一个三阶幻方. 16 11 15 12 7 12 4 9 5 16 3 8 11 1215 16 11 A D B A D C A + E B A C E C E F O R T Y F I F T E E N + F I F T E E N S E V E N T Y A B× C D 1 D 8。
【精品】讲义说明:1、本讲义课内部分为小数加减法的应用,介绍了小数加减运算的巧算方法及小数加减应用 题的解题方法;课外部分为最值问题,介绍了几种解决最值问题的方法(从极端情形考虑,构造分析,最不利情况及“动脑筋”中的枚举法)。
2、教学重点:小数加减巧算及小数加减应用题,最值问题的解题方法。
难点:最值问题的解题思路。
加法运算定律:a b b a +=+(交换律) ()c b a c b a ++=++(结合律) 减法运算性质:()c b a c b a --=+- ()c b a c b a +-=--※ 以上运算定律与运算性质在小数运算中同样适用。
※小数加减应用题的解题策略:审题→找关键句→确立数量关系→列式计算。
1、比 96.3多4.0的数是 ;比92.4少5.2的数是 ;解:4.36;2.42。
2、小于1的最大的三位小数减去最小的四位小数差是 。
解:0.99893、甲数是1.46,比乙数少0.44,乙数是 。
解:1.94、在横线里填上合适的数:14元4角6分= 元 4角6分+7元4分= 元57厘米= 米 7米80厘米+1米48厘米= 米954克= 千克 8吨80千克-3吨800千克= 吨 解:14.46、7.5;0.57;9.28;0.954;4.28。
5、在○里填上运算符号,里填上适当的数。
()+=++58.1579.1264.358.1579.12+(86.1214.223.677.486.12=+++)(+)23.6 ()=+-17.175.2317.975.23 (-=--91.1837.163.591.18)解:()79.1264.358.1579.1264.358.15++=++ 加法运算性质()()23.677.414.286.1214.223.677.486.12+++=+++ 加法交换律、结合律 ()5.2317.1717.9717.175.2317.97--=+- 减法运算性质()37.163.591.1837.163.591.18+-=-- 减法运算性质(1)52.467.648.3++ (2)()()45.1728.355.472.6+++ ()67.1467.6867.652.448.3=+=++= ()()32221045.1755.428.372.645.1728.355.472.6=+=+++=+++= (3)()85.126.579.385.24+-+ (4)09.591.36.20--19.106.579.3126.579.385.1285.2485.126.579.385.24=-+=-+-=--+= ()6.1196.2009.591.36.20=-=+-=小美参加学校的舞蹈大赛,6位评委给小美打出的得分分别为:9.7分,9.2分,8.9分,8.8分,9.3分,9.1分,小美得到的总分是多少分?解:1.93.98.89.82.97.9+++++()()()()分551818199.81.98.82.93.97.9=++=+++++=答:小美得到的总分是55分。
精品资料之奥数培优讲义适用:华杯、希望、年级:四年级科目:小学奥数内容:奥数培优教程(资料来源于学校内部,供各位老师学习交流使用,欢迎大家下载参考)在日常生活、工作中,经常会遇到有关最短路线、最短时间、最大面积、最大乘积等问题,这就是在一定条件下的最大值或最小值方面的数学问题。
这类问题涉及的知识面广,在生产和生活中有很大的实用价值。
这一讲就来讲解这个问题。
【例1】★1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。
那么这两个四位数各是多少?【解析】8531和7642。
高位数字越大,乘积越大,所以它们的千位分别是8,7,百位分别是6,5。
两数和一定时,这两数越接近乘积越大,所以一个数的前两位是85,另一个数的前两位是76。
同理可确定十位和个位数.【小试牛刀】当A+B+C =10时(A 、B 、C 是非零自然数)。
A ×B ×C 的最大值是____,最小值是____。
【解析】当为3+3+4时有A ×B ×C 的最大值,即为3×3×4=36;当为1+1+8时有A ×B ×C 的最小值,即为1×1×8=8。
【例2】★两个自然数的积是48,这两个自然数是什么值时,它们的和最小?【解析】48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。
所以,两个自然数的乘积是48,共有以下5种情况:典型例题知识梳理48=1×48,1+48=49;48=2×24,2+24=26;48=3×16,3+16=19;48=4×12,4+12=16;48=6×8,6+8=14。
两个因数之和最小的是6+8=14。
结论:两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。
【小试牛刀】要砌一个面积为72米2的长方形猪圈,长方形的边长以米为单位都是自然数,这个猪圈的围墙最少长多少米?【解析】将72分解成两个自然数的乘积,这两个自然数的差最小的是9-8=1。
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.教学目标知识要点7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】“走美”主试委员会为三~八年级准备决赛试题。
寻找最短路线,关键在于不能走“回头路”(冤枉路),要按照一定的逻辑次序来排列可能路线,做到不重复不遗漏。
在日常生活和实际生产中,我们经常会遇到选择最短路线的问题,这种问题的类型较多。
这里我们将通过几个实例,着重介绍用对角相加法、取短舍长法,如何在不同的线路中选择最短的路线。
每一个小格右上角标的数正好是这个小格左上角与右下角的数的和,这个和就是从出发处A到这点处的所有最短路线的条数。
这样我们就可以由近及远,通过计算再逐次标数,来确定A处到B处的最短路线的条数。
我们把这种方法称为对角相加法。
要求从A地出发到D地的最短时间,我们可以把从A地到附近地点的最短时间一一算出,标在各点的旁边,再算出到后面的点的最短时间,标在各点旁边。
这样由近及远,顺着推算下去,最后就能求出从A地到D地的最短时间。
我们把这种方法称为取短舍长法。
下图的线段表示纵横的道路,如要从A处走到B处,问共有多少条最短路线?答案:6【知识点:规则图形简单标数法】【难度:A】【出处:底稿修改】分析:先给所有点标上字母,首先我们应该明确从A到B的最短路线到底有多长?从A点走到B点,最短要走长方形AHBD的一个长与一个宽,即AD+DB。
因此,水平方向只能走一个长AD的长度,竖直方向只能走一个宽DB的长度,我们要做到不走“回头路”,则在水平方向上不能向左走,在竖直方向上不能向上走,因此只能向右和向下走。
怎样做到不重复不遗漏呢?现在让同学们观察这种题是否有规律可循。
①看C点:由A、由F和由D都可以到达C,而由F→C是由下向上走,由D→C是由右向左走,这两条路线不管以后怎样走都不可能是最短路线。
因此,从A到C只有一条路线。
同样道理:从A到D、从A到E、从A到H也都只有一条路线。
我们把数字“1”分别标在C、D、E、H这四个点上,如右上图。
②看F点:从上向下走是C→F,从左向右走是E→F,那么从A点出发到F,可以是A→C→F,也可以是A→E→F,共有两种走法。
培优专题01二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示).【答案】(1)()22f x x x =-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c =,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a ab =⎧⎨+=-⎩,得12a b =⎧⎨=-⎩.所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩.【例2】已知定义在R 上的函数)f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程).f x 在区间[],2t t +上的最小值为6,求实数t 的值.【例3】对于函数()f x ,若存在0R x ∈,使得()00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;[,1]t t +【例4】已知函数为二次函数,不等式的解集是,且在区间上的最小值为12-.(1)求()f x 的解析式;上的最大值为【例1】已知函数2()f x x mx m =-+-.(1)若函数()f x 在[]1,0-上单调递减,求实数m 的取值范围;(2)若当1x >时,()4f x <恒成立,求实数m 的取值范围;(3)是否存在实数m ,使得()f x 在[]2,3上的值域恰好是[]2,3?若存在,求出实数m 的值;若不存在,说明上单调递减,应满足【例2】已知二次函数的图象过点,且不等式20ax bx c ++≤1(1)求()f x 的解析式:24g x f x t x =--在区间[]1,2-上有最小值2,求实数t 的值.(1)若函数()f x 在(1,)+∞上是增函数,求实数a 的取值范围;(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,求,a b 的值;时,函数【例4】已知函数,R b ∈.(1)若函数()f x 的图象经过点()4,3,求实数b 的值;(2)在(1)条件下,求不等式()0f x <的解集;1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.【例5】在①2,2x ∀∈-,②1,3x ∃∈这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数()24f x x ax =++.(1)当2a =-时,求函数()f x 在区间]22-,上的值域;【例1】已知二次函数()()20,,,f x ax bx c a a b c =++>∈R ,()11f -=,对任意x ∈R ,()()2f x f x +=-,且()0f x x +≥恒成立.(1)求二次函数()f x 的解析式;(1)若x f 为偶函数,求a 的值;(1)当2a =时,试写出函数()()g x f x x =-的单调递增区间;)x(1)当2a =时,求f x 的单调增区间;,所以(1)若函数f x 在[]1,2上单调递增,求实数m 的取值范围;2g x xf x m =+在[]1,2的最小值为7,求实数m 的值.【例1】已知a ,b 是常数,0a ≠,()2f x ax bx =+,()20f =,且方程()f x x =有两个相等的实数根.(1)求a ,b 的值;(2)是否存在实数m ,n ()m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出实数m ,=【例2】已知函数()1,111,01x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩.(1)当0a b <<,且()()f a f b =时,求11a b+的值;(2)若存在实数,(1)a b a b <<,使得函数()y f x =的定义域为[],a b 时,其值域为[],ma mb ,求实数m 的取值【例3】已知函数()22f x a a x=+-,实数a R ∈且0a ≠.(1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;f x 的定义域和值域都是[],m n ,求n m -的最大值.【例4】已知二次函数,满足对任意实数(3)(1)f x f x -=-,且关于x 的方程()2f x x =有两个相等的实数根.(1)求函数()f x 的解析式:(2)是否存在实数m 、()n m n <,使得()f x 的定义域为[,]m n ,值域为22,m n ⎡⎤⎣⎦?若存在,求出m ,n 的值;【例5】已知函数-2x +b 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为的保值区间.(1)若b =0,求函数f (x )形如[,)()t t R ∞+∈的保值区间;m n <【例6】已知函数()2f x x-=.(1)求函数()y f x =的值域;(2)若不等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,求实数k 的最大值;(3)设()()1g x t f x =⋅+(11,x m n ⎡⎤∈⎢⎥⎣⎦,0m n >>,0t >),若函数()y g x =的值域为[]23,23m n --,求实数【例7】已知是定义在R 上的函数,且0f x f x +-=,当0x >时,(1)求函数()f x 的解析式;(2)当[)1,x ∞∈+时,()()g x f x =,当(),1x ∞∈-时()223g x x mx m =-+-,()g x 在R 上单调递减,求m 的取值范围;(3)是否存在正实数a b ,,当[],x a b ∈时,()()h x f x =且()h x 的值域为11,b a ⎡⎤⎢⎥⎣⎦,若存在,求出a b ,,若不【例1】已知函数()1f x x x=+,()21g x x ax a =-+-.(1)若()g x 的值域为[)0,∞+,求a 的值.证明:对任意1,2x ∈,总存在1,3x ∈-,使得f x g x =成立.【例2】函数y f x =的图象关于坐标原点成中心对称图形的充要条件是函数y f x =为奇函数,可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,给定函数()261+-=+x x f x x .(1)求()f x 的对称中心;(2)已知函数()g x 同时满足:①()11+-g x 是奇函数;②当[]0,1x ∈时,()2g x x mx m =-+.若对任意的0,2x ∈1,5x ∈,使得()()g x f x =所以【例3】已知函数(1)若函数()g x 的值域为[0,)+∞,求a 的取值集合;[2,2]x ∈-[2,2]x ∈-f x g x =。
A D
E
B C
练习 1
在六位数129854的某一位数字前面再插入一个同样的数字(例如:可以在2的前面插入2得到
1229854),那么能得到的最小七位数是多少?
两个自然数之和等于10,那么它们的乘积最大是多少?
请将3,4,5,6,7,8这六个数分别填入算式□□□×□□□的方格中,使这个乘法算
式的结果最大.
用20根长1厘米的火柴棒围成一个长方形,那么这个长方形的面积最大是多少平方厘米?如果是22根呢?各位数字互不相同的多位数中.请问:
1、数字之和为32的最小数是多少?
2、数字之和为32的最大数是多少?练习 5
练习 3练习 4
练习 2
练习 6
请将6-9这4个数分别填入算式“□×□+□□”的□中,要使得算式结果最大应该怎么填?
自我
挑战
3个互不相同的自然数之和是17,它们的乘积最大可能是多少?
把1-6这6个数分别填入算式“□□□-□□□”的□中,要求前一个三位数比一个三位数大.
(1)这个减法算式的结果最大可能是多少?
(2)最小可能是多少?如果7个互不相同的自然数之和为100,那么:(1)其中最小的数最大可能是多少?
(2)最大的数最小可能是多少?
挑战 1
挑战 2
练习 7
挑战 3
用1,2,3,4,5,7,8,9这8个数字分别组成2个四位数,使这2个数的差最小大减小),这个差最小是多少?。
第23讲最值问题一内容概述求最大值与最小值的问题,解题时宜首先考虑起主要作用的量,有时还需要局部调整或者枚举各种可能情形.和为定值的两数的乘积随着两数之差的增大而减小.典型问题兴趣篇1.3个连续奇数相乘,所得乘积的个位数字最小可能是多少? 答案:3分析:乘积的个位数字是由这三个奇数的个位数字决定的。
个位数字可能是:1、3、5、7、9。
通过试验个位是7、9、1的三个连续奇数相乘满足条件,7×9×1=63个位最小是3.2. 用1、2、4可以组成6个没有重复数字的三位数,这些三位数中相差最小的两个数之差是多少?答案:9分析:要使两个数差最小百位数字相同十位与个位数字相近。
满足条件的是412和421.差是421-412=9.3. 用24根长l厘米的火柴棒围成一个矩形,这个矩形的面积最大是多少?如果用22根火柴棒呢?答案:36平方厘米;30平方厘米。
分析:(1)矩形的周长是24厘米。
长和宽的和:24÷2=12(厘米)和为定值的两数的乘积随两数之差的增大而减少。
和是12的两数差为0是积最大。
这两个数相等都是6.即长和宽相等面积是6×6=36(平方厘米)。
(2)周长是22厘米。
长和宽的和是22÷2=11(厘米)和是11差是0时,这样的两个数不是整数。
差是1时两数分别为6和5.积是30.4.三个自然数的和是19,它们的乘积最大可能是多少?答案:252分析:和一定差越小积越大。
19÷3=6……1,6+6+6=18再加1得19,三个数分别是6、6、7时积最大。
最大是6×6×7=252. 5.(1)请将l、2、3、4填人算式“口口×口口”的方格中.要使得算式结果最大,应该怎么填?(2)请将1、2、3、4、5、6填人算式“口口口×口口口”的方格中.要求5、6分别填在百位,4、3分别填在十位,1、2分别填在个位,并使得算式结果最大.应该怎么填?答案:(1)41×32 (2)542×631分析:(1)要使积最大,两个数应尽量大所以4、3分别在十位,1、2在个位。
四年级数学下册解决问题培优解答应用题专项专题训练真题带答案解析一、人教四年级下册数学应用题1.21名老师带着645名同学去春游,每辆大车可坐45人,租金900元,每辆小车可坐18人,租金500元,怎样租车最省钱?(先计算再回答)2.在□里填上适当的分数或小数。
3.笑笑的爸爸将一根电线用去52.67米,比剩下的多8.99米,这根电线长多少米?4.小燕用计算器计算1258×24时,发现数字键“4”坏了。
如果还用这个计算器,可以怎样计算?请写出算式。
5.小丽身高1.35米,她站在0.5米高的凳子上时,比妈妈高0.26米。
妈妈身高多少米?6.给图形涂色表示下面的小数。
7.两根绳子分别长1.38米和2.15米,爸爸把两根绳子接在一起,接头处用去0.25米,接好后的绳子实际有多长?8.四(1)班要组织师生到动物园游玩,共有2位教师和30名学生。
购买个人票和团体票,哪种合算?你还有更优惠的购票方法吗?门票价格:成人每人16元。
儿童每人8元。
团体10以上(含10人)每人9元。
9.在里填小数。
10.一种牛奶有三种售法:一箱(24瓶)70元,一组(3瓶)10元,1瓶4元。
四(1)班开展联欢会要买56瓶这样的牛奶,怎样买最省钱?最少要多少钱?11.探索园。
(1)上面是同一种盒装面巾纸的价钱。
一家宾馆要买45盒这种面巾纸,怎样买最省钱?列式解答。
(2)810÷45=(810÷9)÷(45÷9)=90÷5=18你能用这种方法计算下面两道题吗?试一试!①2800÷56=②360÷24=12.遗爱湖公园有大小两种游船,每条大船能坐8人,每条小船能坐6人。
实验小学136名师生去划船。
租了大船和小船共18条,正好全部坐满。
他们租了多少条大船?13.爸爸带着小军去超市购物,爸爸带的钱数的小数点向左移动一位就是小军带的钱数,两人一共带了148.5元钱。
请你算一算,爸爸和小军各带了多少元钱?14.小颖有一个等腰三角形的风筝,她量出一个底角是35°,它的顶角是多少度?15.五一放假期间,某游乐园推出两种优惠方案。
四年级下册数学教学设计 - 问题解决(最值问题)西师大版教学目标1.能够理解最值问题的概念,知道最大值和最小值的意义。
2.能够正确运用找最大值和最小值的方法解决实际问题。
3.能够运用检验答案的方法验证自己的答案是否正确。
教学内容小学数学四年级下册第一单元3.最值问题1.知识点:•最大值和最小值的概念。
•找最大值和最小值的方法。
2.技能目标:•掌握找最大值和最小值的方法。
•能够应用这一技能解决实际问题。
教学重点•最大值和最小值的概念。
•找最大值和最小值的方法。
•运用这一技能解决实际问题。
教学难点•如何运用这一技能解决实际问题。
教学步骤第一步:引入1.首先,教师可以用一些课前活动来引导学生进入本课程的学习,比如说展示一些图片或实物,让学生预测这些物品的最大和最小值等。
2.介绍本节课的主要内容——最值问题。
告诉学生最值问题的概念、最大值和最小值的意义。
第二步:示范1.请一名学生上来,让他/她站在教室中央,询问全班同学他/她的身高。
然后将这个最大/小值解释给学生,让他们理解最值概念的基本含义。
2.在上一步的基础上,教师可以通过举一些例子来演示如何找到最值。
第三步:锻炼1.让学生组成小组,寻找一些物品(比如说教室里的椅子),并分别测量它们的高度和尺寸。
2.要求学生在小组内讨论,找出这些物品的最大和最小值,然后告诉全班。
第四步:练习1.分发练习题,让学生运用所学知识找出题目中的最大和最小值。
2.让学生交换答案并进行讨论。
3.教师提出一些问题,要求学生运用所学知识进行解答。
第五步:检验1.让学生检验自己的答案是否正确。
2.教师随机抽样几个学生,询问他们所得到的答案,并让他们互相核对。
3.在回答正确的情况下,老师可以给学生一些奖励或表扬。
教学评估教师可以根据以下几点来评估学生的学习成果:•是否能够正确分类和解释最大值和最小值的概念。
•是否能够运用所学方法找出实际问题中的最大和最小值。
•是否能够运用检验答案的方法验证自己的答案是否正确。
(1)如果两个正整数的和一定,那么这两个正整数的差越小,它们的乘积越大;两个正整数的差越大,它们的乘积越小。
(2)如果两个正整数的乘积一定,那么这两个正整数的差越小,那么它们的和也越小;两个正整数的差越大,那么它们的和也越大。
(3)把一个正整数分拆成若干个正整数之和,如果要使这若干个正整数的乘积最大,这些正整数应该都是2或3,且2最多不要超过两个。
(4)遇到一些其他类似的问题,求最大或最小还要根据实际的条件解决问题。
a 、b 是1,2,3,…,99,100中两个不同的数,求)-()(b a b a ÷+的最大值。
(四年级培优底稿) 分析:要使ba b a -+的值最大,必须让分母最小,分子最大。
可以判断出b a -的最小值应是1,即a 、b 是两个连续自然数;b a +的最大值是199,即100=a ,99=b 。
解:当100=a ,99=b 时,b a b a -+有最大值1999910099100=-+。
(题中a 、b 是两个变量,通过对它们的控制,使得分数的分子最大,分母最小,从而确保分数的值最大。
考察了极端情形的方法)难度系数:Aa 、b 是5,7,9,…,195,197,199中两个不同的数,求(b a +)-(b a -)的最大值。
(底稿) 分析:要使(b a +)-(b a -)的值最大,必须让被减数最大,减数最小。
可以知道b a +的最大值是197+199=396,b a -的最小值是2。
即199=a ,197=b 。
解:当199=a ,197=b 时,(b a +)-(b a -)有最大值 ()()394197199197199=--+ 难度系数:A“12345678910111213……484950”是一个位数很多的多位数,从中划去80个数字,使剩下的数字(先后顺序不变)组成一个多位数,问这个多位数最大是多少?(三年级竞赛底稿)解析:首先注意观察这个多位数,它是由1至50的连续自然数排列而成的,共有数字1×9+2×41=91(个),划去80个数字,剩下的将是一个11位数。
要使剩下的多位数最大,应该保证较大的数字在较高的数位上。
题中的多位数中一共含有5个“9”。
显然前4个9应当保留下来,但当第五个9出现在第五位上时,就不能构成11位数。
同样4个9后,如果是8,也不能组成11位数。
划过去的过程如下图。
748495046414049383130392821202918111019876543211519191984434421ΛΛ4434421ΛΛ4434421ΛΛ43421ΛΛ43421个划去个划去个划去个划去个划去//////////////////////////////////// 综上,剩下的数字组成的最大多位数是99997484950。
难度系数:B从12位数376 247 859 165中划去6个数字,使剩下的6个数字(先后顺序不改变)组成的六位数最小。
这个最小的六位数是多少?解析:要使删去6个数字后,所得的六位数是最小的,那么所得的数的最高位越小越好,不难想象最高位若是1,那么需要删除前面的7个数字,不合题意,因此最高位只能为2,从而2前面的三个数字都要删除,接下来同理考虑从最高位到最低位要依次尽可能的小,所以,最后我们可确定最小的6位数为245165。
难度系数:A把50拆分成若干个自然数的和,要求自然数的乘积尽量大,应如何拆?(秋季四年级竞赛15次底稿)解:把一个自然数拆成若干个自然数的和,要使它们的乘积最大,应尽量拆成若干个3,如果剩余1,则将一个3与1改成2个2,这时乘积最大,50=16×3+2,所以,应把50拆成16个3与1个2相加,此时乘积最大。
难度系数:B把40拆分成若干个自然数的和,要求自然数的乘积尽量大,应如何拆?解:把一个自然数拆成若干个自然数的和,要使它们的乘积最大,应尽量拆成若干个3,如果剩余1,则将一个3与1改成2个2,这时乘积最大,40=13×3+1,所以,应把40拆成12个3与2个2相加,此时乘积最大。
难度系数:B某小学师生共100人去体育馆看篮球比赛,体育馆每排有30个座位,为了使得每一排上坐的学生人数不一样,问:至少要安排多少排座位?至多要安排多少排座位?(秋季三年级竞赛底稿)解析:如果安排3排座位的话,那么至多能坐30+29+28=87(人),不到100人,不可能。
下面我们举例说明,可以把这些学生安排到4排座位上。
如每排上的人数依次为:30,29,28,13。
所以至少要安排4排座位。
如果安排14排座位,那么至少能坐1+2+3+…+14=(1+14)×14÷2=105(人)超过了100人,不可能。
下面我们举例说明,可以把这些学生安排到13排座位上,如每排上的人数依次为:1,2,3,4,5,6,7,8,9,10,11,12,22。
难度系数:B一排有20个座位,其中有些座位已经有人,若新来一个人,他无论坐在何处,都有一个人与他相邻,那么原来至少有多少人就座?(奥林匹克训练指导)解析:○●○○●○○●○○●○○●○○●○○●某农户要在鸡舍一面的墙外,用长为40米的竹篱笆围成一个长方形的场地放养鸡群,这个场地的一面就利用墙。
问怎么选择这个场地的长和宽才能使它的面积最大?最大的面积是多少?(底稿)分析:场地的竹篱笆不是四周,而只有三面,应该设法使它成为四周是竹篱笆的长方形场地。
可以假设在原有墙的另一侧,也围成一个完全相同的长方形场地,并把中间的墙除去(如下图所示)形成一个大长方形,(所求长方形场地就是所假设的大长方形面积的一半)。
这个长方形的周长是80240=⨯(米),如果这个大的长方形面积最大,那么所求长方形场地的面积也就最大。
为了使长方形的面积最大,它的长与宽应该尽可能接近或者相等,所以它的边长必须是20480=÷(米)的正方形。
所以所求面积应该是这个正方形面积的一半。
20 20解:当长方形场地的长为20240=÷(米),宽为()1022040=÷-(米)时,它的面积最大。
最大面积为:2001020=⨯(平方米)答:这个场地的长和宽分别是20米、10米时,它的面积最大,最大面积为200平方米。
难度系数:B把一根28厘米的铁丝折成一个直角,将它的两端靠着直尺,得到一个直角三角形(如下图所示)。
怎样折铁丝,得到的直角三角形面积最大?最大面积是多少?解析:两条直角边都是14228=÷(厘米),得到的直角三角形面积最大。
最大面积是:9821414=÷⨯(平方厘米)答:直角三角形的两条直角边都是14厘米时,面积最大,且为98平方厘米。
一次数学考试的满分是100分,9位同学在这次考试中平均得分是90分,这9位同学的得分互不相同,其中最后两名同学分别得64分、67分。
那么,得分排在第五名的同学至少得了多少分?(底稿)分析:除了最后两名同学外,其它7名同学的总成绩可以计算得到。
要第五名同学的得分尽可能少,则前面四位同学的得分应该尽可能高,后三位同学的得分应尽可能接近。
解:6796764990=--⨯(分)()285979899100679=+++-(分)953285=÷(分)96195=+(分)答:得分排在第五名的同学至少得了96分。
难度系数:C一次数学考试的满分是100分,6位同学在这次考试中平均得分是91分,这6位同学的得分互不相同,其中最后一名同学仅得65分。
那么,得分排在第三名的同学至少得了多少分?分析:除了最后一名同学外,其它5名同学的总成绩可以计算得到。
要第三名同学的得分尽可能少,则前面两位同学的得分应该尽可能高,后三位同学的得分应尽可能接近。
解:48165691=-⨯(分)28299100481=--(分)943282=÷(分)95194=+(分)答:得分排在第三名的同学至少得了95分。
把2~11这十个数分别填入下图中的十个方格里,使图中三个2×2的正方形中四个数的和都相等。
求这个和的最小值。
(奥林匹克训练指导)解析:图中十个方格所填的10个数中,a 和b 是重叠数,我们可以设每一个2×2的正方形中四个数的和为m ,那么3m=2+3+4+5+6+7+8+9+11+a+b=65+a+b,如果要使这个和m 最小,那么a+b 应尽量的小,但又必须考虑到65+a+b 是3的倍数,这a+b 只能取7,即a 、b 只能是2、5或3、4,如果上述分析可行,那么就可以求出这个和的最小值。
答案:设每一个2×2的正方形中四个数的和为m则3m=2+3+4+5+6+7+8+9+10+11+a+b=65+a+b要求m 的最小值,a+b 尽量小,且65+a+b 一定是3的倍数,这样a+b 只能取7,即a 、b 只能是2、5或3、4所以可求出和m 的最小值是(65+7)÷3=24相应的填法如下:b a 111098765423111098765423难度系数:C为什么0.1和0.10有时相等有时又不等当0.1和0.10是准确数时,在小数末尾添上或去掉0,小数的大小不变。
如铅笔单价0.1元,0.1元表示1角;铅笔单价0.10元,0.10元也表示1角,所以0.1和0.10相等。
当0.1和0.10是近似数时,它们就不相等了。
因为近似数0.1取值范围是0.05到0.14之间(也就是从0.05到0.14,保留一位小数,约等于0.1),近似数0.10的取值范围是0.095到0.104之间(也就是从0.095到0.101保留两位小数,约等于0.10),两者的精确度(近似数接近准确数的程度)不一样,保留一位小数,表示精确到十分之一,保留两位小数,表示精确到百分之一。
例如,0.116÷1.2=0.966……如果保留一位小数,0.116÷1.2≈0.1;如果保留两位小数,0.116÷1.2≈0.10,显然0.10比0.1更接近准确数。
所以,近似数小数末尾不能随意添上0或去掉0,近似数0.1和0.10是不相等的。
【教师备用题】用递等式计算:(能简便的要简便)(1)5×78×4×2×125×2 (2)199×57 (3)125×(8+4)×25解析:(1)780000(2)11343(3)37500++++)(++4384397435÷434433437436解析:原式=436×7÷7=436应用题王师傅要加工4800只零件,原计划16天完成。
由于改进技术,实际提前4天完成任务。
实际每天比原来多加工多少个零件?解析:4800÷(16-4)-4800÷16=100(个)10把钥匙开10把锁,但钥匙放乱了,则最少要试多少次才可以保证把所有的锁配上钥匙?解析:10把钥匙开10把锁,在开第一把锁时,最多只要试9次,如果试了9把钥匙都不行,那么最后一把钥匙肯定能打开,所以开第一把锁最多试9次,依次类推,开第二把锁最多试8次,……,开第9把锁最多试1次。