4.3.3余角和补角_李仙群
- 格式:ppt
- 大小:1.11 MB
- 文档页数:14
教师李仙群学校韶关市一中实验学校任教过的年级七、八年级教材新人教版4.3.3 余角和补角(第一课时)授课时间一、学生分析通过前面4.3.1角和4.3.2角的比较与运算的学习,学生对角的图形及角度运算有了较深的印象与理解,对学习余角与补角打下了一定的基础。
二、教材分析1、教材的地位和作用余角和补角是新人教版七年级上册第四章“图形的初步知识”这一章中两个比较重要的基本概念。
前面学生对角的度量和大小的比较的学习,已经为学习余角和补角打下了一定的基础,通过从生活实际物体中抽象出角进而探索余角和补角的性质的学习,为今后证明角的相等提供了一种依据和方法。
2、教材内容通过从实际生活中的物体中所抽象出的几何图形特别是角引入余角和补角的概念,然后通过讨论等活动得到的结论推得出余角和补角的性质,最终使学生能综合运用上述性质来解决问题。
三、教学目标1、教学目标知识目标:(1)了解余角、补角的概念,即两个角的和等于90°(或180°),那么这两个角互余(或互补)。
(2)掌握余角和补角的性质,即等角的余角(或补角)相等能力目标:学生进一步接触和体会用几何语言描述数学问题,会用简单的代数思想来说明几何概念的数量关系(等量减等量,差相等)。
情感目标:通过探索互余、互补角的性质,培养学生积极的情感态度,让学生能用数学语言表达自己的思考过程以及培养学生的识图能力。
2、教学重点、难点教学重点:互余、互补角的概念和性质。
教学难点:会判断两个角互余、互补,用代数方法计算角的度数。
四、教学策略方法及学法1、教法分析本节课主要采用观察法、发现教学法、类比教学法,使学生在解决问题的过程中学数学、用数学,强调动手,动脑,促使他们独立思考能力,动手能力等素质的整体发展。
2、学法指导通过学生观察物体,抽出图形,动手画,动脑想,多训练,勤钻研,主动地学习,增加了学生主动参与的机会,同时也增加了学生的参与意识,教给了学生获取知识的途径,思考问题的方法。
4 .3.3 余角和补角。
教学目标:1、在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质;了解方位角,能确定具体物体的方位。
2、进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重点:认识角的互余、互补关系及其性质,确定方位难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质教学过程一、引入新课1、提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.2.提出问题.(1)观察方格如下图中的两个角,你能猜想∠1+∠2等于多少度?12(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:操作多媒体,移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、讲授新课1、余角与补角.教师活动:指导学生阅读课本有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2、巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本练习.学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价.3、余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1、如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?学生活动:独立完成练习,并进行小组交流和自我评价.教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.2、认识方位角.提出问题:课本例2.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3、知识拓展提出问题:、小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm 表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1、本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2、了解方位角,学会确定物体运动的方向五、作业布置。
《4.3.3余角和补角》学习指南旬阳县小河中学----郭昌富学习目标:1、知识与技能:在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
2、过程与方法:进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观:体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
学习重点:认识角的互余、互补关系及其性质,是本节课的重点。
学习难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是点。
一、我回顾,我检索问题1三角尺的两个锐角和等于多少?问题2: 如图,直角三角形缺少的角你能求出它的度数吗?二、我探究,我交流问题一自学指导:认真看课本137页思考”前的容,注意小贴示”,3分钟后,能正确的说岀两角互余和互补的概念。
练一练:1、如图 / 1 + Z 2=90 °,⑴/ 1与/ 2互为⑵/ 1的余角是;⑶/ 1是的余角。
(3)上2是_____ 的余角匸9上a的余角Z a的补角___32°45°77 A62* 23rX同一个锐角的汞卜角比它的余角大互余和互补是两个角的数量关杀,与它们的位畫无关•在图形变化过程中:⑴猜一猜:你发现的规律是___________________________ ;⑵量一量:用量角器量一下角的度数;⑶折一折:对折一下再次验证猜想得到的结论:_______________⑷议一议:把结论归纳一下:_______________________________⑸试一试:你还能用什么方法来说明这个结论?等角(同角〉的余角相等*对于补角是否也有类似性质?小组交流讨论,派代表汇报结论。
6、想一想三、我变式,我提高1判断:①一个角的余角一定是锐角(②一个角的补角一定是钝角( ③若/ 1 + / 2+Z 3=90°,那么/))1、/2、/ 3互为余角( )2、2、要测量两堵墙所成的角AOB的度数,但人不能进入围墙,如何测量?4、如图,OD平分/ COA , OE平分/ COB, 则①/ EOD= ________②图中互余角有________ 对,互补角有______ 对。
4.3.3余角与补角.主备人:李永军备课时间:授课人:授课时间:教学目标1、在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质.2、进一步提高学生的抽象概括能力,发展空间观念和知识运用能力3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用重、难点与关键1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点.2.难点:通过简单的推理,归纳出余角、补角的性质,•教学过程一、引入新课1、在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?2、已知∠1=36°,∠2=54°,那么∠1+∠2=?3、如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论.二、新授1.余角与补角.教师活动:指导学生阅读课本第142页有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2.巩固反思.(1)、47°18′的余角是______,补角是_______.(2)、∠α的余角是______,∠β的补角是_______.(3)已知一个角是它补角的3倍,求这个角.3.余角与补角的性质.例1.∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1.如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?2.认识方位角.例4、如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.图3.4-10(1)教师活动:讲解方位角和表示方位的射线,•在学生完成题中的问题后操作画图过程.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3.知识拓展提出问题:小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)四、课堂小结1.本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2.了解方位角,学会确定物体运动的方向五、作业布置1.课本第140页习题2、3、4:复习巩固8综合运用12、13.2.选用课时作业设计.六、教学反思。
人教版七年级上册4.3.3余角和补角第27课余角和补角课程设计一、课程目标1.理解余角和补角的概念;2.掌握求余角和补角的方法;3.培养学生的逻辑思维和解决问题的能力;4.增强学生对数学知识的兴趣和求知欲。
二、课程内容1.知识讲解:余角和补角的概念、计算方法;2.例题分析:根据题目求出角度,并求出其余角和补角;3.练习题讲解:结合具体例子讲解如何求余角和补角;4.测试与反馈:对学生进行测试,检验其掌握情况,并针对不足进行及时的纠正和反馈。
三、课时安排本课程设计为1课时,具体安排如下:时间内容0-5 min 引入:引入本课程的主题、目标以及与生活实际的联系5-20 min 知识讲解:介绍余角和补角的概念及求解方法例题分析:通过具体的例子讲解如何求余角和补角20-35min时间内容35-50min练习题讲解:跟随老师一起完成练习题目50-60 min 测试与反馈:进行小测验,检验学生掌握情况并进行针对性的反馈四、教学方法1.讲授法:通过教师的引导和解说,让学生理解余角和补角的概念和计算方法;2.演示法:通过具体的例子,让学生看到问题的解法,并提高其求解复杂问题的能力;3.实践法:通过完成课堂练习,让学生巩固知识点并检验其掌握情况;4.互动讨论法:老师和学生之间展开互动讨论,共同发掘问题的奥妙;5.合作学习法:学生之间分组合作,通过讨论、合作完成课堂练习,提高其分析问题和解决问题的能力。
五、教学资源1.教材:人教版七年级上册数学教材;2.教辅:人教版七年级上册数学教辅、试题集等;3.工具:黑板、白板、讲义、画图仪等教学工具。
六、课后作业1.完成课本上相关练习;2.找出生活中具有余角和补角的实例,并求出其余角和补角;3.定期复习课本知识点。
七、教学反思本堂课以余角和补角的概念和计算方法为主要内容,通过讲解和例题分析,让学生掌握了相应的知识点。
在练习环节中,学生能够通过合作完成问题的求解,确保了课程目标的达成。
数学七年级上册教案4.3.3 余角和补角1比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工.设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜.二、合作探究探究点一:余角和补角及其性质[类型一] 余角和补角的概念如果α与β互为余角,则( )A.α+β=180° B.α-β=180°C.α-β=90° D.α+β=90°解析:如果α与β互为余角,则α+β=90°.故选D.方法总结:正确记忆互为余角的定义是解决问题的关键.[类型二] 利用余角和补角计算求值已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值.解:∵∠A与∠B互余,∴∠A+∠B=90°,又∵∠A的度数比∠B度数的3倍还多30°,∴∠A=3∠B+30°,∴3∠B+30°+∠B=90°,解得∠B=15°.故∠B的度数为15°.方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.[类型三] 余角、补角和角平分线的综合计算如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC 的平分线,∠AOB与∠COM互补,求∠BON的度数.解析:根据补角的性质,可得∠AOB+∠COM=180°,根据角的和差,可得∠AOB +∠BOM=90°,根据角平分线的性质,可得∠BOM=2(1)∠AOB,根据解方程,可得∠AOB的度数,根据角的和差,可得答案.解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.由角的和差,得∠AOB+∠BOM+∠COB=180°,∠AOB+∠BOM=90°.由OM是∠AOB的平分线,得∠BOM=2(1)∠AOB,即∠AOB+2(1)∠AOB=90°.解得∠AOB=60°.由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.由ON平分∠AOC得∠AON=2(1)∠AOC=2(1)×150°=75°.由角的和差,得∠BON=∠AON-∠AOB=75°-60°=15°.方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.探究点二:方位角[类型一] 利用方位角确定方向M地是海上观测站,从M地发现两艘船A、B的方位如图所示,下列说法中正确的是( )A.船A在M的南偏东30°方向B.船A在M的南偏西30°方向C.船B在M的北偏东40°方向D.船B在M的北偏东50°方向解析:船A在M的南偏西90°-30°=60°方向,故A、B选项错误;船B在M 的北偏东90°-50°=40°方向,故C正确,D错误.故选C.方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.[类型二] 方位角的有关计算如图所示,甲、乙、丙三艘轮船从港口O出发,当分别行驶到A、B、C处时,经测量得甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向.(1)求∠BOC的度数;(2)求∠AOB的度数.解析:(1)根据方向角的表示方法,可得∠EOB,∠EOC的度数,根据角的和差,可得答案;(2)根据方向角的表示方法,可得∠EOB,∠EOA的度数,根据角的和差,可得答案.解:如图,(1)由乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向,得∠EOB=76°,∠EOC=45°.由角的和差,得∠BOC=∠EOB+∠EOC=76°+45°=121°;(2)由甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,得∠EOB =76°,∠EOA=44°.由角的和差,得∠AOB=∠EOB-∠EOA=76°-44°=32°.方法总结:解决本题主要是理解方向角的表示方法,结合图形找到相应的角,然后进行计算.三、板书设计1.互余、互补(1)和为90°的两个角互余;(2)和为180°的两个角互补.2.方位角通过比萨斜塔这一学生熟知的著名建筑激发学生的学习兴趣,再运用现代化的教学手段,把图形的“静”变成“动”,在动态课件演示中引出概念,增强了趣味性,并且可以充分调动学生的学习兴趣,一下子把学生吸引到课堂上来.这样也把书本上原本呆板的概念激活了,使数学知识充满新鲜感,实现了书本知识和学生发现的一种沟通,增强学生对几何图形的敏感性.。