晶闸管的触发电路
- 格式:doc
- 大小:306.00 KB
- 文档页数:8
第六章晶闸管触发电路6.1 晶闸管对触发电路的基本要求6.1.1 触发信号的种类晶闸管由关断到开通,必须具备两个外部条件:第一是承受足够的正向电压;第二是门极及阴极之间加一适当反向电压、电流信号(触发信号)。
门极触发信号有直流信号、交流信号和脉冲信号三种基本形式。
(1)直流信号在晶闸管加适当的阳极正向电压的情况下,在晶闸管门极及阴极间加适当的直流电压,则晶闸管将被触发导通,如图6.1(a)、(b)所示。
这种触发方式在实际中应用极少。
因为晶闸管在其导通后就不需要门极信号继续存在。
若采用直流触发信号将使晶闸管门极损耗增加,有可能超过门极功耗;在晶闸管反向电压时,门极直流电压将使反向漏电流增加,也有可能造成晶闸管的损坏。
(2)交流信号如图6.1(c)所示,在晶闸管门极及阴极间加入交流电压,当交流电压Dc,uc,时,晶闸管导通。
uc,是保证晶闸管可靠触发所需的最小门极电压值,改变u。
值,可改变触发延迟角o。
这种触发形式也存在许多缺点,如:在温度变化和交流电压幅值波动时,触发延迟角(不稳定;改变交流电压u。
值来调节。
的变化范围较小(0’《。
《90‘),精度低徊l/dc不能太大等。
(3)脉冲信号脉冲信号如图6.1(d)·(h)所示,其中(d)为尖脉冲;(e)为宽脉冲;(f)为脉冲列;(s)为双脉冲;(h)为强触发脉冲。
在晶闸管门极触发电路中使用脉冲信号,不仅便于控制脉冲出现时刻,降低晶闸管门极功耗,还可以通过变压器的双绕组或多绕组输出,实现信号的隔离输出。
因此,触发信号多采用脉冲形式。
第118页6.1.2 晶闸管对门极触发电路的要求晶闸管门极触发信号由触发电路提供,由于晶闸管电路种类很多,如整流、逆变、交流调压、变频等;所带负载的性质也不相同,如电阻性负载、电阻—电感性负载、反电势负载等。
仅管不同的情况对触发电路的要求也不同,但其基本要求却是相同的,具体如下:(1)触发信号应有足够的功率(电压、电流)这些指标在产品样本中均已标明,由于晶闸管元件门极参数分散性大,且触发电压、电流值受温度影响会发生变化。
晶闸管触发电路原理
晶闸管触发电路是一种用来控制晶闸管导通或关断的电路。
晶闸管是一种双电极四层结构的半导体器件,当控制电压达到一定值时,晶闸管将导通,形成低电压通道,允许大电流通过。
而当控制电压低于一定值时,晶闸管会关断,形成高电压阻断状态。
晶闸管的触发电路一般由两部分组成:触发脉冲发生器和触发脉冲放大器。
触发脉冲发生器负责产生控制信号,而触发脉冲放大器则负责放大触发信号,使之能够控制晶闸管的导通或关断。
触发脉冲发生器通常是利用电容和电感等元件来形成一个振荡电路,产生临时性的高幅度脉冲信号。
这个脉冲信号可以通过电压调节器进行调节,以确保触发脉冲的幅度和宽度符合晶闸管的要求。
触发脉冲放大器接收触发脉冲发生器产生的脉冲信号,并将其放大到足以触发晶闸管的电压级别。
这个放大过程中通常会使用放大电路,如放大器或变压器等。
当触发脉冲传递到晶闸管上时,它会改变晶闸管的电特性,从而实现导通或关断。
触发脉冲的幅度、宽度和频率等参数决定了晶闸管的导通和关断速度以及电流大小。
总而言之,晶闸管触发电路是利用触发脉冲发生器和触发脉冲
放大器,通过产生和放大脉冲信号来控制晶闸管的导通或关断,实现对电流的控制。
晶闸管触发电路1. 简介晶闸管触发电路是一种用于控制晶闸管导通的电路,它能够将小信号或控制信号转换成足够大的信号来触发晶闸管的导通。
晶闸管是一种双向可导电的电子开关,广泛应用于电力电子系统和工业自动化控制中。
晶闸管触发电路主要包括触发电路的设计和控制电路的设计两个部分。
触发电路的设计用于产生适当的触发信号,而控制电路的设计用于控制触发电路的工作。
本文将详细介绍晶闸管触发电路的原理、分类、设计和应用。
2. 触发电路原理晶闸管触发电路的工作原理是通过控制晶闸管的控制端来实现晶闸管的导通或关断。
当控制端施加一个正脉冲信号时,晶闸管会导通;当施加一个负脉冲信号或没有信号时,晶闸管会关断。
触发电路的基本原理是利用电容、电感、二极管等元件将控制信号转换为适当的触发信号。
常用的触发电路包括:•RC触发电路:使用电阻和电容的组合,将控制信号转换成具有一定斜率的触发脉冲。
•LC触发电路:使用电感和电容的组合,将控制信号转换成具有较高振幅的触发脉冲。
•金属氧化物半导体场效应晶体管(MOSFET)触发电路:利用MOSFET的特性,将控制信号转换成足够大的触发信号。
3. 触发电路分类晶闸管触发电路可以根据不同的分类方式进行分类。
3.1 按控制信号类型分类根据控制信号的类型,触发电路可以分为单脉冲触发电路和双脉冲触发电路。
•单脉冲触发电路:只需一个触发脉冲即可实现晶闸管导通。
常用的单脉冲触发电路包括RC触发电路和LC触发电路。
•双脉冲触发电路:需要两个触发脉冲来实现晶闸管导通。
常用的双脉冲触发电路包括寄生电容型触发电路和极性反转型触发电路。
3.2 按控制信号波形分类根据控制信号的波形,触发电路可以分为单脉冲、方波和脉冲串触发电路。
•单脉冲触发电路:控制信号为单一脉冲信号。
•方波触发电路:控制信号为方波信号,周期内可能包含多个脉冲。
•脉冲串触发电路:控制信号为多个周期形成的脉冲串信号。
3.3 按触发电路特点分类根据触发电路的特点,触发电路可以分为恒流触发电路、恒压触发电路和自供电触发电路。
晶闸管的门极触发电路在由晶闸管构成的整流电路中,晶闸管门极触发电路的作用通常是根据直流控制电压的大小决定触发角a的大小,从而起到调节整流输出电压的作用。
因为不同的触发角对应于不同的电源电压的相位,改变触发角即是移动触发脉冲所对应的相位,因此晶闸管的门极触发电路通常都是通过移相的方法来实现的。
<?XML:NAMESPACE PREFIX = O />垂直移相原理在晶闸管移相触发电路中,一般都把同步电压与直流控制电压叠加起来,用改变直流控制电压的大小来改变触发电路翻转的时刻,即触发脉冲的输出时刻,以达到移相的目的,这种移相方法称为垂直移相。
采用垂直移相时,其信号叠加的方法可以分为串联与并联两种,如图1(a)(b)所示。
图1串联垂直移相方法是将各信号的电压通过串联方式综合,从而作为晶体管的基极控制信号。
当串联信号电压过零时,晶体管状态翻转,这一瞬间就是产生触发,产的时刻。
因此触发时刻由同步信号与控制电压的交点决定,当控制电压垂直移动时,交点所对应的相位在水平变化,达到移相的目的。
如图1(c)所示。
在串联移相方法中,各输入信号相互影响较小,但要求各信号源的内阻要小,且各信号源必须是独立的,不能有公共接地点,因此实现起来比较麻烦。
并联垂直移相方法是对各信号的电流进行综合,实现比较方便。
但为了在调整时互不影响,信号源必须具有较大的内阻,因此要求输入信号有一定功率,以保证综合后的精度。
目前应用较普遍的是并联移相方式。
正弦波同步触发电路图2是常用的同步电压为正弦波的移相触发电路,一个周期能发出一个脉冲,适用于三相全控桥式电路,或用于大电感负载时的可控整流电路。
图2上图所示的同步电压为正弦波的触发移相电路共由四个环节组成:同步移相环节、脉冲形成环节、功率放大环节、脉冲输出环节。
同步移相环节的作用是使触发脉冲与主电路中各晶闸管的阳极电压建立一定的相位关系。
通过同步电压与直流控制电压的交点的改变决定不同的触发脉冲起始时刻。
晶闸管TSC的触发电路1. 介绍晶闸管投切电容器的原理和快速过零触发要求晶闸管投切电容器组的关键技术是必须做到电流无冲击。
晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网当电路的谐振次数n为2、3时,其值很大。
式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。
若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。
触发电路的功能是:电流无冲击触发;快速投切,20ms的动作。
这个20ms不是得到投切命令到产生动作的时间,而是从停止到再投入动作的时间为20ms。
快速反应时,在平衡补偿电路,不能出现不平衡动作,即有的相有电流,有的没有。
1. 两类晶闸管的触发电路的特点和存在的问题从同步信号的采集上,有两类晶闸管触发电路。
一类为从电网电压取得同步信号,一类为从晶闸管两端取得同步信号。
从电网电压取得同步信号的电路框图如图二:电路中包括同步变压器、同步信号处理电路和功率驱动电路、脉冲变压器隔离电路等。
当得到触发命令后,在投切点产生触发脉冲列,经过脉冲变压器的隔离,推动晶闸管。
同步信号处理电路有滤波处理功能,可以是CMOS等的电子电路组成,也可以是单片机、GAL电路等。
电路中包括相序错判断功能。
信息来自:输配电设备网从电网电压取得同步信号的优点为在主回路没有送电时,给触发命令,可以测量晶闸管的触发脉冲幅度和相位,在主回路得电后,给触发命令,可以放心, TSC为正确的投入工作。
对于TSC电路中的两只晶闸管+一只二极管的“2+1”电路、两只晶闸管+两只二极管的“2+2”电路、三只晶闸管+三只二极管的“3+3”电路,电容器有二极管预充电, 电容器上一直存在直流电压,晶闸管的交直流电压不变,电网电压取得同步信号触发适合。
缺点为电路复杂,对于400V小容量的TSC电路造价高。
晶闸管触发电路1. 引言晶闸管(Thyristor)是一种重要的电子元件,在电力控制和功率电子领域具有广泛的应用。
晶闸管的触发电路是控制晶闸管导通或截止的关键部分。
本文将介绍晶闸管触发电路的工作原理、分类以及常见的电路设计。
2. 工作原理晶闸管触发电路的核心原理是通过控制一定的触发电压或电流,使晶闸管从关断状态转变为导通状态。
在正常工作状态下,晶闸管是一个双向控制的开关,其阻断能力较强。
晶闸管触发电路一般由触发电源、触发信号处理电路和触发脉冲发生电路组成。
触发电源提供所需的触发信号电压或电流;触发信号处理电路对来自触发电源的信号进行滤波、放大等处理;触发脉冲发生电路根据控制要求产生一定的触发脉冲。
3. 分类根据晶闸管触发电路的工作原理和触发方式的不同,晶闸管触发电路可以分为以下几类:3.1 瞬态触发电路瞬态触发电路是指在很短的时间内产生一个高幅值的触发脉冲,以确保晶闸管能够迅速地达到导通状态。
常见的瞬态触发电路包括单脉冲触发电路和多脉冲触发电路。
3.2 交流触发电路交流触发电路主要用于控制交流电源下的晶闸管。
交流触发电路可以根据触发方式的不同分为电流触发电路和电压触发电路。
3.3 直流触发电路直流触发电路主要用于控制直流电源下的晶闸管。
直流触发电路可以根据触发方式的不同分为电流触发电路和电压触发电路。
4. 常见电路设计4.1 单脉冲触发电路设计单脉冲触发电路设计是一种常见的瞬态触发电路设计。
下面是一个基于电流触发方式的单脉冲触发电路设计示意图:![单脉冲触发电路](单脉冲触发电路.png)4.2 电流触发电路设计电流触发电路设计主要用于控制直流电源下的晶闸管。
下面是一个基于电流触发方式的电流触发电路设计示意图:![电流触发电路](电流触发电路.png)4.3 电压触发电路设计电压触发电路设计主要用于控制交流电源下的晶闸管。
下面是一个基于电压触发方式的电压触发电路设计示意图:![电压触发电路](电压触发电路.png)5. 总结晶闸管触发电路是控制晶闸管导通或截止的关键部分。
晶闸管TSC的触发电路
1. 介绍晶闸管投切电容器的原理和快速过零触发要求
晶闸管投切电容器组的关键技术是必须做到电流无冲击。
晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网
当电路的谐振次数n为2、3时,其值很大。
式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。
若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。
触发电路的功能是:电流无冲击触发;快速投切,20ms的动作。
这个20ms不是得到投切命令到产生动作的时间,而是从停止到再投入动作的时间为20ms。
快速反应时,在平衡补偿电路,不能出现不平衡动作,即有的相有电流,有的没有。
1. 两类晶闸管的触发电路的特点和存在的问题
从同步信号的采集上,有两类晶闸管触发电路。
一类为从电网电压取得同步信号,一类为从晶闸管两端取得同步信号。
从电网电压取得同步信号的电路框图如图二:信息来源:
电路中包括同步变压器、同步信号处理电路和功率驱动电路、脉冲变压器隔离电路等。
当得到触发命令后,在投切点产生触发脉冲列,经过脉冲变压器的隔离,推动晶闸管。
同步信号处理电路有滤波处理功能,可以是CMOS等的电子电路组成,也可以是单片机、GAL电路等。
电路中包括相序错判断功能。
信息来自:输配电设备网
从电网电压取得同步信号的优点为在主回路没有送电时,给触发命令,可以测量晶闸管的触发脉冲幅度和相位,在主回路得电后,给触发命令,可以放心, TSC为正确的投入工作。
对于TSC电路中的两只晶闸管+一只二极管的“2+1”电路、两只晶闸管+两只二极管的“2+2”电路、三只晶闸管+三只二极管的“3+3”电路,电容器有二极管预充电, 电容器上一直存在直流电压,晶闸管的交直流电压不变,电网电压取得同步信号触发适合。
缺点为电路复杂,对于400V小容量的TSC电路造价高。
如果TSC全部采用晶闸管不用二极管,由于晶闸管两端的电压随着电容器放电电压的减少逐渐小,意味着触发点在变动,上述电路不能跟随变化触发点,所以不适应了。
信
图二: 电网电压取得同步信号的触发电路
从晶闸管两端取得过零信号比较困难,过零触发要求电压高时截止,电压最低低时导通触发。
几乎找不出什么元件是这种特性.如稳压管,电压低截止,电压高维持电压不变.不满足要求。
目前,从晶闸管两端取得过零信号的典型触发电路是MOC3083,它的框图如图三:信
图三:MOC3083电路图
MOC3083芯片内部有过零触发判断电路,它是为220V电网电压设计的,芯片的双向可控硅耐压800V,在4、6两端电压低于12V时如果有输入触发电流,内部的双向可控硅就导通。
用在380V电网的TSC电路上要串联几只3083。
在2控3的TSC电路应用如图四:
图四 2控3的TSC电路信息来自:
用2对晶闸管开关控制3相电路,电路简单了,控制机理复杂了。
这种触发电路随机给触发命令要出现下面的许多麻烦问题。
信息来自:
快速动作时,有触发命令,一对晶闸管导通另一对晶闸管不通电压反而升高了,限于篇幅和重点,本文不分析为什么电压反而高了,只是从测量的2控3电路中看到了确实存在电压升高的现象和危险,这种现象如同倍压整流电路直流电压升高了一样。
图五测量不正常工作的两对晶闸管的电压波形。
此试验晶闸管存在高压击穿的可能,所以用调压器将电网电压调低。
晶闸管导通时两端电压为零,不导通,晶闸管有电容器的直流电压和电网的交流电压。
测量C相停止时峰峰值电压为540V,其有效值= ,图中C相升高的电压峰值为810V,升高电压约为电网电压有效值的倍数:。
推算,400V 电压下工作,晶闸管有可能承受的电压,400V电网的TSC电路多数是采用模块式的晶闸管,模块的耐压不高,常规为1800V,升高的管压降很容易击穿晶闸管元件。
信息请登陆:输配电设备网
图五不正常的两对晶闸管的电压波形信息来自:输配电设备网*在晶闸管电压波形过零点,串联的MOC3083由于分压不均匀,使得3083有的导通有的停止。
电网电压升高时,原先导通的依然导通,不同的要承受更高的电压,3083有可能击穿。
信息请登陆:输配电设备网
* 在初次投切时有一定的冲击。
下面是国外著名产品的首次投切的电流波形。
图六:国外公司产品的第一次触发冲击波形信息来自:
记录C相晶闸管两端电压,A相电流。
电流投切冲击很大,使得电网电压都产生了变形。
信息来自:输配电设备网
*不能用于快速的冲击负载。
最快几百ms,原因是晶闸管在刚刚停止时两端电压不为零,要等待电容器对电阻放电晶闸管两端电压才能衰减为零。
需要快速就要减小电阻,增加电阻功率,结果耗能大,不符合节能的要求。
*合闸瞬间存在MOC3083误导通现象,误导通可能损害晶闸管。
* 滤波装置中谐波电流大时,晶闸管工作不正常,存在停止工作的情况。
*电网电压高于400V电路设计困难。
3.新型的晶闸管两端采集过零信号的电路,由此产生一系列触发电路.
在主回路中设计过零触发电路实属不易,查阅文献有采用基于霍尔原理工作的LEM模块采集过零信号的,其过零触发的原理框图见图七,晶闸管过零电压检测电路原理图见图八。
本文作者经过努力,依照图七、图八原理框图和电路原理图的思路,摈弃了MOC3083在主回路取过零信号和触发晶闸管的方法,开发一种新型的电路,特点是采集晶闸管的过零信号将它反馈到输入的低压端再做信号逻辑处理来触发晶闸管。
其电路框图如图九。
这样就完全克服了MOC3083的弱点。
信息来源:
图七 TSC过零触发的原理框图信息请登陆:输配电设备网
图八晶闸管过零电压检测电路原理图信息请登陆:输配电设备网
图九:过零采集控制逻辑光电驱动电路框图
400V电网电压多数采用模块晶闸管,可以采用光电驱动晶闸管如图九。
660V电网电压,电网电压高,需要采用脉冲变压器驱动。
如图十。
图十:过零采集控制逻辑脉冲变压器驱动电路框图
中压TSC,根据绝缘要求需要采用脉冲磁环触发。
图十一。
信息来
源:
图十一中压TSC采用脉冲磁环触发信息来源: 采用新触发电路,应用单片机做逻辑时间控制触发2控3电路。
信息来源: 投切电流相对没有冲击,由于第一次投切电容器没有直流电压,是不理想的状态,必然有一定的冲击,当冲击电流与正常稳定电流之比≤1.7倍时,可以认为不影响晶闸管和电容器的使用。
投切停止后,电容器上有电网峰值电压,晶闸管在电网电压和电容器直流电压的合成下,存在着过零电压,在过零点触发晶闸管是理想状态,应该没有冲击电流。
新触发电路达到了快速20ms动作,两路晶闸管都动作,无电流冲击,晶闸管在停止时的承受电压低,最大为3倍的有效值电压。
用双踪示波器测试波形.一只表笔测量晶闸管两端的电压和另一只测量晶闸管的电流波形,这样,可以看出晶闸管是否在过零点投入,又可以看出投入时的电流冲击。
由于使用两个开关控制三相电路,用双踪示波器分别测量两路的电压电流,就可以完整的观察到触发器运行的效果。
A探头为电压,B探头为电流。
图十二为:连续投切的A相晶闸管电压和C相电流的动作波形。
横轴为时间200ms/格,纵轴电压500V/格,电流20A/格。
可控硅工作时两端的电压零,线路中有电流,停止时可控硅两端有电压,电流为零。
在连续动作中,电流没有冲击。
图十三:又一幅A相晶闸管电压 C相电流。
横坐标50ms/格快速动作
图十四:从长期停止态开始工作的A相晶闸管电压 C相电流.
第一周波有点冲击。
冲击电流的峰值32A,正常稳定电流峰值为24A,冲击电流/稳定电流=1.33。
h
t晶闸管开关放在三角形内的效果更好,同时可以分相控制补偿不平衡负载。
信息请登陆:输配电设备网
图十五晶闸管开关放在三角形内的效果
图十六晶闸管开关放在三角形内首次动作无冲击
信息来源:晶闸管的触发电路是保证触发无冲击快速动作的重要部件。
新型的晶闸管两端采集过零信号的电路,满足快速无冲击投切电容器的要求,在谐波电流严重的状态下依然可以正常动作,适合TSC的不同主回路、不同电压等级和不同的晶闸管形式,效果不错,对应不同需求产生了一系列触发电路。
晶闸管的触发电路是保证触发无冲击快速动作的重要部件。
新型的晶闸管两端采集过零信号的电路,满足快速无冲击投切电容器的要求,在谐波电流严重的状态下依然可以正常动作,适合TSC的不同主回路、不同电压等级和不同的晶闸管形式,效果不错,对应不同需求产生了一系列触发电路。