大学物理习题册统稿
- 格式:doc
- 大小:1.54 MB
- 文档页数:33
ob ac d第7-1 洛伦兹力,安培力 一.选择题1. 一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则( )(A )两粒子的电荷必然同号;(B )粒子的电荷可以同号也可以异号;B(C )粒子的动量必然不同;(D )粒子的运动周期必然不同。
2. 图为四个带电粒子在0点沿相同的方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是( )(A )oa(B )obB(C )oc (D )od 3.一段长为L 的导线被弯成一个单匝圆形线圈,通过此线圈的电流为I ,线圈放在磁感应线与线圈平面平行的均匀磁场B 中,则作用在线圈上的力矩( )(A)2/4BIL 2/8 (C)2/8BIL (D)2/(4)BIL π二.计算题4. 如图一无限长直导线通以电流1I ,与一个电流2I 的矩形刚性载流线圈共面,设长直导线固定不动,求矩形线圈受到的磁力大小。
5. 一质子以速度710 1.010m s υ-=⨯⋅射入 1.5B T =的匀强磁场中,其速度方向与磁场方向1I 2I h成30角,计算:(1)质子螺旋运动的半径;(2)螺距;(3)旋转频率。
(质子质量27191.6710, 1.610e m kg e C --=⨯=⨯)6. 如图在载流为1I 的长直导线旁,共面放置一载流为2I 的等腰直角三角形,线圈abc ,腰长ab=ac=L ,边长ab 平行于长直导线,相距L ,求线圈各边受的磁力。
7. 如图,半径为R 的半圆形线圈,通有电流I ,放在磁感强度为B 的匀强磁场中,B 的方向平行于线圈所在的平面,求此线圈在磁场中受到的磁力矩大小和方向。
第7-2毕—萨定律,磁场高斯定理1I Ic一. 选择题1. 一根载有电流I 的无限长直导线,在A 处弯成半径为R 的圆形,由于导线外层有绝缘层,在A 处两导线靠得很近但不短路,则在圆心处磁感应强度B 的大小是( ) (A )0(1)/(2)I R μπ+ (B)0/(2)I R μπ(C) 0(1)/(2)I R μππ- (D)0(1)/(2)I R μππ+2. 两根长直导线互相平行地放置在真空中,如图所示,其中电流1210I I A ==,已知120.5PI PI m ==,1PI 垂直于PI 则P 点的磁感应强度大小和方向是( )(A )65.6710T -⨯ 水平向右(B )65.6710T -⨯ 水平向左 (C )6410T -⨯ 水平向右 (D )6410T -⨯ 水平向左 3. 一载有电流I 的无限长直导线,弯成如图所示形状,则0点 的磁感应强度为( )(A )00/(4)/8I R I R μπμ+ (B )00/(2)/8I R I R μπμ+ (C )0/8I R μ (D )0/4I R μ二. 计算题4. 载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为R 的半圆,则圆心处的磁感应强度B 的大小为多少?5. 如图所示,两根导线沿半径方向流到铁环上的A 、B 两点,并在很远处与电源相连,求环中心O 处的磁感应强度。
大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
大学物理习题册(A )集美大学物理教研室 编 2009.1班级__物理教研室_ 姓名__何 红 生_ 学号_0000000001_第1-1 运动学(一) 一.填空题:1.已知质点的运动方程:22,2t y t x -== (SI 制),则 ⑴ t = 1 s 时质点的位置矢量j i +2,速度j i 22-,加速度j 2-;⑵ 第1 s 末到第2 s 秒末质点的位移j i 32-。
2.一质点具有恒定加速度j i a 46+=,在0=t 时。
其速度为零,位置矢量i r100=。
则:⑴任意时刻的速度矢量j t i t46+;⑵ 质点的轨迹方程2023-=x y 。
二.选择题:3.以下说法错误的是:( A D )(A)质点运动的速率drv dt=(B)质点运动的速率drv dt=(C)质点运动的速率dt ds v =(D)质点运动的加速度大小dv a dt=三.计算题:4.一人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向西北走18 m ,求:⑴ 合位移的大小和方向;⑵ 求每一段位移中的平均速度。
解:每份位移叠加!(1)由图:j i r)1029()2930(-+-=∆m r 5.17)1029()2930(22=-+-=∆976.81580.029301029==--=ϕϕtg(2) i i v2.125301==m/s j j v-=-=10102m/s j i j i v26.026.01522181522183+-=+-=m/s)s 105.一质点沿OY 轴直线运动,它在t 时刻的坐标是:3225.4t t y -=(SI 制),求: ⑴ t =1~2秒内质点的位移和平均速度;⑵ t =1秒末和2秒末的瞬时速度;⑶ 第2秒内质点所通过的路程;⑷ 第2秒内质点的平均加速度以及t =1秒和2秒的瞬时加速度。
5. 解 (1) y=4.5t 2 -3t 3当t =1s 时 y 1=2.5 (m) 当t=2s 时 y 2=2 (m)∴△y=y 2-y 1=-0.5 (m) )/(5.0s m tyv -=∆∆= (2) 296dyv t t dt==- ∴v 1=3 (m/s) v 2=-6 (m/s) (3) 先判断296=0v t t =-,得 1.5t s =S = S 1-1.5 +S 1.5-2=0.875+1.375=2.25 (m) (4) )/(9212s m t v v a -=∆-=912dva t dt==- 213/a m s =- 2215/a m s =-6.如图河中有一小船,人在离河面一定高度h 的岸上通过绳子以匀速度0v 拉船靠岸,求当船头与岸的水平距离为x 时,船的速度和加速度.解: 假设船头到滑轮的绳长为r ,则v 0=d r /d t , 由图几何关系:22h r x -=船的速度大小为θcos 002222vv xx h dt dr hr rdtdxv =+=⋅-== 方向:向岸靠近。
⼤学物理习题集⼤学物理(1)习题集(适⽤对象:14级⼟⽊⼯程专业)【说明】题号前标有(〇)的,表⽰该题考查点为1-2个,较易;题号后标有(*)的,表⽰该题考查点3个或3个以上,较难,其余考查点为2-3个,难度⼀般。
练习⼀质点运动的描述 (2)练习⼆圆周运动 (3)练习三⽜顿运动定律 (4)练习四冲量和动量 (6)练习五功和能 (7)练习六刚体定轴转动 (9)练习七绕定轴转动的刚体的转动定律 (11)练习⼋⾓动量和⾓动量守恒定律 (13)练习九分⼦运动论 (15)练习⼗热⼒学基础 (16)练习⼀质点运动的描述⼀.选择题1、(〇)质点是⼀个:【】(A )质量很⼩的物体.(B )根据其运动情况,被看作具有质量⽽没有⼤⼩和形状的理想物体.(C )只能作平动的物体.(D )体积很⼩的物体.2、(〇)某质点的运动⽅程为x=3t-5t 3+6(SI),则该质点作【】(A )匀加速直线运动,加速度沿X 轴正⽅向; (B) 匀加速直线运动,加速度沿X 轴负⽅向; (C) 变加速直线运动,加速度沿X 轴正⽅向; (D)变加速直线运动,加速度沿X 轴负⽅向3、⼀质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则⼀秒钟后质点的速度:【】(A) 等于零(B) 等于-2m/s (C) 等于2m/s(D) 不能确定。
4、如图所⽰,湖中有⼀⼩船,有⼈⽤绳绕过岸上⼀定⾼度处的定滑轮拉湖中的船向边运动。
设该⼈以匀速度V 0收绳,绳不伸长、湖⽔静⽌,则⼩船的运动是【】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
5、(*)某物体的运动规律为t kv dtdv2-=,式中的k 为⼤于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是【】(A) 02v kt 21v += (B) 02v kt 21v +-= (C) 02v 1kt 21v 1+= (D)2v 1kt 21v 1+-=⼆.填空题6、⼀质点沿x 轴作直线运动,其运动⽅程为x=3+5t+6t 2-t 3(SI),则质点在t=0时刻的速度;加速度为零时,该质点的速度。
大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。
大学物理习题集下册物理教研室2003年8月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习二电场强度(续) 电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习五电势梯度静电能静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9练习六静电场中的导体(续) 静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄┄10练习七静电场中的电介质(续) 电容静电场的能量┄┄┄┄┄┄┄┄┄┄┄┄12练习八静电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习九恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15练习十磁感应强度毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17练习十一毕奥—萨伐尔定律(续) 磁场的高斯定理┄┄┄┄┄┄┄┄┄┄┄┄18练习十二安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十三洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22练习十四安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十五静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25练习十六静磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27练习十七电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习十八感生电动势自感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习十九自感(续) 互感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十位移电流麦克斯韦方程组电磁波┄┄┄┄┄┄┄┄┄┄┄┄┄┄34练习二十一电磁感应习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄35练习二十二狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄37练习二十三相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39练习二十四热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄40练习二十五光电效应康普顿效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄41练习二十六德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43练习二十七薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄44练习二十八近代物理习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4612部 分 物 理 常 量引力常量 G=6.67×10-11N 2·m 2·kg -2重力加速度 g=9.8m/s -2阿伏伽德罗常量 N A =6.02×1023mol -1 摩尔气体常量 R =8.31J·mol -1·K -1 标准大气压 1atm=1.013×105Pa 玻耳兹曼常量 k=1.38×10-23J·K -1 真空中光速 c=3.00×108m/s 电子质量 m e =9.11×10-31kg中子质量 m n =1.67×10-27kg质子质量 m p =1.67×10-27kg 元电荷 e=1.60×10-19C 真空中电容率 ε0= 8.85×10-12 C 2⋅N -1m-2真空中磁导率 μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量 h = 6.63×10-34 J ⋅ s 维恩常量 b =2.897×10-3mK 斯特藩-玻尔兹常量 σ = 5.67×10-8W/m 2⋅K 4练习一 库仑定律 电场强度一、选择题1.一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 的一个电量为σd S 的电荷元在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零.(D) 无法判定.2.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? (A) 场强E 的大小与试探电荷q 0的大小成反比;(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0.3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为:(A )i a02πελ. (B) 0.(C)i a04πελ. (D))(40j +i aπελ.4.下列说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.+λ-λ∙ (0, a ) xy O图1.13(B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C) 场强方向可由E = F /q 定出,其中q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确.5.如图1.2所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强的大小为:(A) x q 04πε. (B) 204x q πε. (C) 302x qa πε(D)30xqaπε.二、填空题1.如图1.3所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离a= . 2.如图1.4所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E = ,场强最大值的位置在y = .3.一电偶极子放在场强为E 的匀强电场中,电矩的方向与电场强度方向成角θ.已知作用在电偶极子上的力矩大小为M ,则此电偶极子的电矩大小为 .三、计算题1.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ.求球心处的电场强度. 2.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正点荷Q , 试求圆心O 处的电场强度.练习二 电场强度(续) 电通量一、选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;图1.2d 图1.3图1.44(B) 电荷电量小,受的电场力可能大;(C) 电场为零的点,任何点电荷在此受的电场力为零; (D) 电荷在某点受的电场力与该点电场方向一致.2. 边长为a 的正方形的四个顶点上放置如图2.1所示的点电荷,则中心O 处场强 (A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向. (D) 大小为()2022a q πε, 方向沿y 轴负向.3. 试验电荷q 0在电场中受力为f ,得电场强度的大小为E=f/q 0,则以下说法正确的是(A) E 正比于f ;(B) E 反比于q 0;(C) E 正比于f 反比于q 0;(D) 电场强度E 是由产生电场的电荷所决定,与试验电荷q 0的大小及其受力f 无关.4. 在电场强度为E 的匀强电场中,有一如图2.2所示的三棱柱,取表面的法线向外,设过面AA 'CO ,面B 'BOC ,面ABB 'A '的电通量为Φ1,Φ2,Φ3,则(A) Φ1=0, Φ2=Ebc , Φ3=-Ebc . (B) Φ1=-Eac , Φ2=0, Φ3=Eac .(C) Φ1=-Eac , Φ2=-Ec 22b a +, Φ3=-Ebc .(D) Φ1=Eac , Φ2=Ec 22b a +, Φ3=Ebc .5. 两个带电体Q 1,Q 2,其几何中心相距R , Q 1受Q 2的电场力F 应如下计算(A) 把Q 1分成无数个微小电荷元d q ,先用积分法得出Q 2在d q 处产生的电场强度E 的表达式,求出d q 受的电场力d F =E d q ,再把这无数个d q 受的电场力d F 进行矢量叠加从而得出Q 1受Q 2的电场力F =⎰1d Q q E(B) F =Q 1Q 2R /(4πε0R 3).(C) 先采用积分法算出Q 2在Q 1的几何中心处产生的电场强度E 0,则F =Q 1E 0.(D) 把Q 1分成无数微小电荷元d q ,电荷元d q 对Q 2几何中心引的矢径为r , 则Q 1受Q 2的电场力为F =()[]⎰1324d Q rqQπεr二、填空题1. 电矩为P e 的电偶极子沿x 轴放置, 中心为坐标原点,如图2.3.则点A (x ,0), 点B (0,y )电场强度的矢量表达式为:E A = , E B =.图2.1图2.2图2.3图2.452. 如图2.4所示真空中有两根无限长带电直线, 每根无限长带电直线左半线密度为λ,右半线密度为-λ,λ为常数.在正负电荷交界处距两直线均为a 的O 点.的电场强度为E x = ;E y = .3. 设想将1克单原子氢中的所有电子放在地球的南极,所有质子放在地球的北极,则它们之间的库仑吸引力为 N .三、计算题1. 宽为a 的无限长带电薄平板,电荷线密度为λ,取中心线为z 轴, x 轴与带电薄平板在同一平面内, y 轴垂直带电薄平板. 如图2.5. 求y 轴上距带电薄平板为b 的一点P 的电场强度的大小和方向.2. 一无限长带电直线,电荷线密度为λ,傍边有长为a , 宽为b 的一矩形平面, 矩形平面中心线与带电直线组成的平面垂直于矩形平面,带电直线与矩形平面的距离为c ,如图2.6. 求通过矩形平面电通量的大小.练习三 高斯定理一、选择题1. 如图3.1所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E .(D) 0 .2. 关于高斯定理,以下说法正确的是:(A) 高斯定理是普遍适用的,但用它计算电场强度时要求电荷分布具有某种对称性; (B) 高斯定理对非对称性的电场是不正确的;(C) 高斯定理一定可以用于计算电荷分布具有对称性的电场的电场强度; (D) 高斯定理一定不可以用于计算非对称性电荷分布的电场的电场强度. 3.有两个点电荷电量都是+q ,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面. 在球面上取两块相等的小面积S 1和S 2,其位置如图3.2所示. 设通过S 1和S 2的电场强度通量分别为Φ1和Φ2,通过整个球面的电场强度通量为Φ,则(A) Φ1 >Φ2 , Φ = q /ε0.λ图2.6图2.5图3.1图 3.26(B) Φ1 <Φ2 , Φ = 2q /ε0 . (C) Φ1 = Φ2 , Φ = q /ε0 .(D) Φ1 <Φ2 , Φ = q /ε0 .4.图3.3所示为一球对称性静电场的E ~ r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小,r 表示离对称中心的距离) .(A) 点电荷.(B) 半径为R 的均匀带电球体. (C) 半径为R 的均匀带电球面.(D) 内外半径分别为r 和R 的同心均匀带球壳.5. 如图3.4所示,一个带电量为q 的点电荷位于一边长为l 的正方形abcd 的中心线上,q 距正方形l/2,则通过该正方形的电场强度通量大小等于:(A) 02εq . (B) 06εq . (C) 012εq . (D)24εq .二、填空题1.如图3.5, 两块“无限大”的带电平行平板,其电荷面密度分别为-σ (σ > 0 )及2σ.试写出各区域的电场强度.Ⅰ区E 的大小 ,方向 . Ⅱ区E 的大小 ,方向 . Ⅲ区E 的大小 ,方向 . 2.如图3.6所示, 真空中有两个点电荷, 带电量分别为Q 和-Q , 相距2R ..若以负电荷所在处O 点为中心, 以R 为半径作高斯球面S , 则通过该球面的电场强度通量Φ = ;若以r 0表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为 .3.电荷q 1、q 2、q 3和q 4在真空中的分布如图3.7所示, 其中q 2 是半径为R 的均匀带电球体, S 为闭合曲面,则通过闭 合曲面S 的电通量⎰⋅SS E d = ,式中电场强度E 是哪些电荷产生的?答:是 产生的.是它们ⅠⅡ Ⅲ-σ 2σ 图3.5图3.3图3.4图3.6∙ q 1∙ q 3∙ q 4S图3.7q 27产生电场强度的矢量和还是标量和?答:是 .三、计算题1.真空中有一厚为2a 的无限大带电平板,取垂直平板为x 轴,x 轴与中心平面的交点为坐标原点,带电平板的体电荷分布为ρ=ρ0cos[πx /(2a )],求带电平板内外电场强度的大小和方向.2.半径为R 的无限长圆柱体内有一个半径为a(a<R)的球形空腔,球心到圆柱轴的距离为d (d >a ),该球形空腔无限长圆柱体内均匀分布着电荷体密度为ρ的正电荷,如图3.8所示. 求:(1) 在球形空腔内,球心O 处的电场强度E O .(2) 在柱体内与O 点对称的P 点处的电场强度E P .练习四 静电场的环路定理 电势一、选择题1. 如图4.1所示,半径为R 的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E = 0 , U = Q /4πε0R . (B) E = 0 , U = Q /4πε0r .(C) E = Q /4πε0r 2 , U = Q /4πε0r .(D) E = Q /4πε0r 2 , U = Q /4πε0R .2. 如图4.2所示,两个同心的均匀带电球面,内球面半径为R 1,带电量Q 1,外球面半径为R 2,带电量为Q 2.设无穷远处为电势零点,则在两个球面之间,距中心为r 处的P 点的电势为:(A) rQ Q 0214πε+. (B) 20210144R Q R Q πεπε+.(C) 2020144R Q r Q πεπε+. (D)rQ R Q 0210144πεπε+.3. 如图4.3所示,在点电荷+q 的电场中,若取图中M 点为电势零点,则P 点的电势为(A) q / 4πε0a . (B) q / 8πε0a .(C) -q / 4πε0a .图4.1图4.2M图4.3图3.88 (D) -q /8πε0a .4. 一电量为q 的点电荷位于圆心O 处 ,A 是圆内一点,B 、C 、D 为同一圆周上的三点,如图4.4所示. 现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大. (D) 从A 到各点,电场力作功相等.5. 如图4.5所示,CDEF 为一矩形,边长分别为l 和2l ,在DC 延长线上CA =l 处的A 点有点电荷+q ,在CF 的中点B 点有点电荷-q ,若使单位正电荷从C 点沿CDEF 路径运动到F 点,则电场力所作的功等于:(A)515420-⋅lq πε.(B) 55140-⋅l q πε. (C) 31340-⋅l q πε. (D)51540-⋅lq πε.二、填空题1.电量分别为q 1, q 2, q 3的三个点电荷位于一圆的直径上, 两个在圆周上,一个在圆心.如图4.6所示. 设无穷远处为电势零点,圆半径为R ,则b 点处的电势U = .2.如图4.7所示,在场强为E 的均匀电场中,A 、B 两点间距离为d ,AB 连线方向与E 的夹角为α. 从A 点经任意路径 到B 点的场强线积分l E d ⎰⋅AB= .3.如图4.8所示, BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为-q 的点电荷,O 点有一电量为+q 的点 电荷. 线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道 BCD 移到D 点,则电场力所作的功为 .三、计算题1.如图4.9所示,一个均匀带电的球层,其电量为Q ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点(r <R 1)的电势.2.已知电荷线密度为λ的无限长均匀带电直线附近的电场强度为E=λ/(2πε0r ).(1)求在r 1、r 2两点间的电势差21r r U U -;-q ll ll +qA BC D E F∙ ∙ 图4.5∙ ∙∙ q 1 q 2q 3ROb图4.6R -q +q ABC DO∙ ∙ 图4.8图4.9B 图4.4B图4.79(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电直线附近的电势能否这样取?试说明之.练习五 电势梯度 静电场中的导体一、选择题1.在均匀电场中各点,下列诸物理量中:(1)电场强度;(2)电势;(3)电势梯度.相等的物理量是?(A) (1) (3); (B) (1) (2); (C) (2) (3); (D) (1) (2) (3).2. 一“无限大”带负电荷的平面,若设平面所在处为电势零点, 取x 轴垂直带电平面,原点在带电平面处,则其周围空间各点电势U 随坐标x 的关系曲线为3.在如图5.2所示的圆周上,有N 个电量均为q 的点电荷,以两种方式分布,一种是无规则地分布,另一种是均匀分布,比较这两种情况下过圆心O 并垂直于圆平面的z 轴上一点的场强与电势,则有:(A) 场强相等,电势相等; (B) 场强不等,电势不等;(C) 场强分量E z 相等,电势相等;(D) 场强分量E z 相等,电势不等.4.一个带正电荷的质点,在电场力作用下从A 点出发,经C 点运动到B 点,其运动轨迹如图5.3所示,已知质点运动的速率是递减的,下面关于C 点场强方向的四个图示中正确的是:图5.2B(A)(B)(C)(D)图5.3(A)(B)(C)(D)图5.15.一个带有负电荷的均匀带电球体外,放置一电偶极子,其电矩的方向如图5.4所示.当电偶极子被释放后,该电偶极子将(A) 沿逆时针方向旋转至电矩p指向球面而停止.(B) 沿逆时针方向旋转至p指向球面,同时沿电力线方向向着球面移动.(C) 沿逆时针方向旋转至p指向球面,同时逆电力线方向远离球面移动.(D) 沿顺时针方向旋转至p沿径向朝外,同时沿电力线方向向着球面移动.二、填空题1. 一平行板电容器,极板面积为S,相距为d. 若B板接地,且保持A板的电势U A = U0不变,如图5.5所示. 把一块面积相同的带电量为Q的导体薄板C平行地插入两板之间,则导体薄板C的电势U C= .2. 任意带电体在导体体内(不是空腔导体的腔内)(填会或不会)产生电场,处于静电平衡下的导体,空间所有电荷(含感应电荷)在导体体内产生电场的(填矢量和标量)叠加为零.3. 处于静电平衡下的导体(填是或不是)等势体,导体表面(填是或不是)等势面, 导体表面附近的电场线与导体表面相互,导体体内的电势(填大于,等于或小于) 导体表面的电势.三、计算题1. 已知某静电场在xy平面内的电势函数为U=Cx/(x2+y2)3/2,其中C为常数.求(1)x轴上任意一点,(2)y轴上任意一点电场强度的大小和方向.2.如图5.6,一导体球壳A(内外半径分别为R2,R3),同心地罩在一接地导体球B(半径为R1)上,今给A球带负电-Q, 求B球所带电荷Q B及的A球的电势U A.练习六静电场中的导体(续)静电场中的电介质一、选择题1. A、B是两块不带电的导体,放在一带正电导体的电场中,如图6.1所示.设无限远处为电势零点,A的电势为U A,B的电势为U B,则:(A) U B > U A≠ 0 .(B) U B < U A= 0 .p图5.4UU ABC-Q图5.310(C) U B= U A .(D) U B < U A .2. 半径分别为R和r的两个金属球,相距很远.用一根长导线将两球连接,并使它们带电.在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr为:(A) R/r .(B) R2/r2.(C) r2/R2.(D) r/R .3. 一“无限大”均匀带电平面A,其附近放一与它平行的有一定厚度的“无限大”平面导体板B,如图6.2所示.已知A上的电荷面密度为σ,则在导体板B的两个表面1和2上的感应电荷面密度为:(A) σ1 =-σ , σ2 =+σ.(B) σ1 =-σ/2 , σ2 =+σ/2.(C) σ1 =-σ , σ2 = 0.(D) σ1 =-σ/2 , σ2 =-σ /2.4. 欲测带正电荷大导体附近P点处的电场强度,将一带电量为q0 (q0 >0)的点电荷放在P点,如图6.3所示. 测得它所受的电场力为F .若电量不是足够小.则(A) F/q0比P点处场强的数值小.(B) F/q0比P点处场强的数值大.(C) F/q0与P点处场强的数值相等.(D) F/q0与P点处场强的数值关系无法确定.5. 三块互相平行的导体板,相互之间的距离d1和d2比板面积线度小得多,外面两板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图6.4所示.则比值σ1/σ2为(A) d1/d2 .(B) 1.(C) d2/d1.(D) d22/d12.二、填空题1. 分子中正负电荷的中心重合的分子称分子,正负电荷的中心不重合的分子称分子.2. 在静电场中极性分子的极化是分子固有电矩受外电场力矩作用而沿外场方向而产生的,称极化.非极性分子的极化是分子中电荷受外电场力使正负电荷中心发生从而产生附加磁矩(感应磁矩),称极化.A+σ 2图6.2∙Pq0图6.4B(1) (2)图6.51112 3. 如图6.5,面积均为S 的两金属平板A ,B 平行对称放置,间距远小于金属平板的长和宽,今给A 板带电Q , (1)B 板不接地时,B 板内侧的感应电荷的面密度为 ; (2)B 板接地时,B 板内侧的感应电荷的面密度为 .三、计算题1. 如图6.6所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A ,B 两板分别带电 Q 1=3.54×10-9C, Q 2=1.77×10-9C.忽略边缘效应,求 (1)两板共四个表面的面电荷密度 σ1, σ2, σ3, σ4;(2)两板间的电势差V =U A -U B .四、证明题 1. 如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.练习七 静电场中的电介质(续) 电容 静电场的能量一、选择题1. 一孤立金属球,带有电量1.2⨯10-8C ,当电场强度的大小为3⨯106V/m 时,空气将被击穿. 若要空气不被击穿,则金属球的半径至少大于(A) 3.6⨯10-2m . (B) 6.0⨯10-6m . (C) 3.6⨯10-5m .(D) 6.0⨯10-3m .2. 关于静电场中的电位移线,下列说法中,哪一种是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断; (B) 任何两条电位移线互相平行;(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交; (D) 电位移线只出现在有电介质的空间.3. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为:(A) ε0E . (B) ε0εr E . (C) εr E . (D) (ε0εr -ε0)E.B Q 图6.62 σ 2 σ 44. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则:(A) 空心球电容值大.(B) 实心球电容值大.(C) 两球电容值相等.(D) 大小关系无法确定.5. C1和C2两个电容器,其上分别标明200pF(电容量)、500V(耐压值)和300pF、900V . 把它们串联起来在两端加上1000V电压,则(A) 两者都被击穿.(B) 两者都不被击穿.(C) C2被击穿,C1不被击穿.(D) C1被击穿,C2不被击穿.二、填空题1. 一平行板电容器,充电后切断电源,然后使两极板间充满相对电容率为εr的各向同性均匀电介质,此时两极板间的电场强度是原来的倍;电场能量是原来的倍.2. 在相对电容率为εr= 4的各向同性均匀电介质中,与电能密度w e = 2⨯10-6J/cm3相应的电场强度的大小E = .3.一平行板电容器两极板间电压为U,其间充满相对电容率为εr的各向同性均匀电介质,电介质厚度为d . 则电介质中的电场能量密度w = .三、计算题1. 半径为R1的导体球带电Q,球外一层半径为R2相对电容率为εr的同心均匀介质球壳,其余全部空间为空气.如图7.1所示.求:(1)离球心距离为r1(r1<R1), r2(R1<r1<R2), r3(r1>R2)处的D和E;(2)离球心r1, r2, r3,处的U;(3)介质球壳内外表面的极化电荷.2. 两个相距很远可看作孤立的导体球,半径均为10cm,分别充电至200V和400V,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功.练习八静电场习题课一、选择题1. 如图8.1, 两个完全相同的电容器C1和C2,串联后与电源连接. 现将一各向同性均匀电介质板插入C1中,则:(A) 电容器组总电容减小.(B) C1上的电量大于C2上的电量.(C) C1上的电压高于C2上的电压.图8.1图7.11314 (D) 电容器组贮存的总能量增大.2.一空气平行板电容器,接电源充电后电容器中储存的能量为W 0,在保持电源接通的条件下,在两极间充满相对电容率为εr 的各向同性均匀电介质,则该电容器中储存的能量W 为(A) W = W 0/εr . (B) W = εr W 0.(C) W = (1+εr )W 0. (D) W = W 0.3. 如图8.2所示,两个“无限长”的半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的带电量分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212πελλ+.(B) )(2)(2202101R r R r -+-πελπελ.(C) )(22021R r -+πελλ.(D)20210122R R πελπελ+.4. 如图8.3,有一带电量为+q ,质量为m 的粒子,自极远处以初速度v 0射入点电荷+Q 的电场中, 点电荷+Q 固定在O 点不动.当带电粒子运动到与O 点相距R 的P 点时,则粒子速度和加速度的大小分别是(A) [v 02+Qq /(2πε0Rm )]1/2, Qq /(4πε0Rm ).(B) [v 02+Qq /(4πε0Rm )]1/2, Qq /(4πε0Rm ).(C) [v 02-Qq /(2πε0Rm )]1/2, Qq /(4πε0R 2m ). (D) [v 02-Qq /(4πε0Rm )]1/2, Qq /(4πε0R 2m ).5 空间有一非均匀电场,其电场线如图8.4所示.若在电场中取一半径为R 的球面,已知通过球面上∆S 面的电通量为∆Φe ,则通过其余部分球面的电通量为(A) -∆Φe(B) 4πR 2∆Φe /∆S , (C) (4πR 2-∆S ) ∆Φe /∆S , (D) 0二、填空题1. 一个平行板电容器的电容值C = 100pF, 面积S = 100cm 2, 两板间充以相对电容率为εr = 6的云母片. 当把它接到50V 的电源上时,云母片中电场强度的大小E = ,金属板上的自由电荷电量q = .2. 半径为R 的细圆环带电线(圆心是O ),其轴线上有两点A 和B ,且OA=AB=R ,如图8.5.若取无限远处为电势零点,设A 、B 两点的电势分别为P图8.2图8.3图8.5图8.415U 1和U 2,则U 1/U 2为 .3. 真空中半径为R 1和R 2的两个导体球相距很远,则两球的电容之比C 1/C 2 = . 当用细长导线将两球相连后,电容C = . 今给其带电,平衡后球表面附近场强之比E 1 / E 2 = .三、计算题1. 一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极间距拉开到2d ,求:(1)电容器能量的改变;(2)在此过程中外力所作的功,并讨论此过程中的功能转换关系.2. 在带电量为+Q 半径为R 的均匀带电球体中沿半径开一细洞并嵌一绝缘细管,一质量为m 带电量为-q 的点电荷在管中运动(设带电球体固定不动,且忽略点电荷所受重力)如图8.6所示.t =0时,点电荷距球心O 为a (a <R ),运动速度v 0=0,试写出该点电荷的运动方程(即点电荷到球心的距离r 随时间的变化关系式).练习九 恒定电流一、选择题1.室温下,铜导线内自由电子数密度n = 8.85⨯1028m -3,导线中电流密度j = 2⨯106A/m 2,则电子定向漂移速率为:(A) 1.4⨯10-4m/s. (B) 1.4⨯10-2m/s. (C) 5.4⨯102m/s.(D) 1.1⨯105m/s.2.在一个半径为R 1的导体球外面套一个与它共心的内半径为R 2的导体球壳,两导体的电导可以认为是无限大.在导体球与导体球壳之间充满电导率为γ的均匀导电物质,如图9.1所示.当在两导体间加一定电压时,测得两导体间电流为I , 则在两导体间距球心的距离为r 的P 点处的电场强度大小E 为:(A) I γ/(4πr 2) . (B) I /(4πγr 2) . (C) I /(4πγR 12) .(D) IR 22/(4πγR 12r 2) .3. 一平行板电容器极板间介质的介电常数为ε,电导率为γ,当极板上充电Q 时,则极板间的漏电流为(A) Q/(γε). (B) γε/Q .(C) εQ/γ. (D) γQ/ε .图8.6图9.116 4.有一根电阻率为ρ、截面直径为d 、长度为L 的导线,若将电压U 加在该导线的两端,则单位时间内流过导线横截面的自由电子数为N ;若导线中自由电子数密度为n ,则电子平均漂移速度为v d . 下列哪个结论正确:(A) Lne U v Le Ud N d ρρπ==,42. (B) L ne U v ed LUN d ρπρ==,42.(C) LUnev Le Ud N d ρρπ==,82. (D) LUnev ed LUN d ρπρ==,42.5. 在氢放电管中充有气体,当放电管两极间加上足够高的电压时,气体电离. 如果氢放电管中每秒有4⨯1018个电子和1.5⨯1018个质子穿过放电管的某一截面向相反方向运动,则此氢放电管中的电流为(A) 0.40A .(B) 0.64A . (C) 0.88A . (D) 0.24A .二、 填空题1. 如图9.2所示为某复杂电路中的某节点,所设电流方向如图.则利用电流连续性列方程为 .2. 如图9.3所示为某复杂电路中的某回路,所设电流方向及回路中的电阻,电源如图.则利用基尔霍夫定律列方程为 .3. 有两个相同的电源和两个相同的电阻,按图9.4和图9.5所示两种方式连接. 在图9.3中I = ,U AB = ; 在图9.3中I = ,U AB = .三、计算题1. 把大地看作电阻率为ρ的均匀电介质,如图9.6.所示. 用一个半径为a 的球形电极与大地表面相接,半个球体埋在地面下,电极本身的电阻可忽略.求(1)电极的接地电阻;(2)当有电流流入大地时,距电极中心分别为r 1和r 2的两点A 、B 的电流密度j 1与j 2的比值.图9.2图9.3图9.4图9.5图9.6172. 一同轴电缆,长L = 1500m ,内导体外半径a = 1.0 mm ,外导体内半径b = 5.0 mm ,中间填充绝缘介质,由于电缆受潮,测得绝缘介质的电阻率降低到6.4⨯105Ω·m. 若信号源是电动势ε= 24V ,内阻r = 3.0 Ω的直流电源. 求在电缆末端负载电阻R 0=1.0 k Ω上的信号电压为多大.练习十 磁感应强度 毕奥—萨伐尔定律一、选择题1. 如图10.1所示,边长为l 的正方形线圈中通有电流I ,则此线圈在A 点(如图)产生的磁感强度为:(A) l I πμ420. (B) l I πμ220.(C)lIπμ02.(D) 以上均不对.2. 电流I 由长直导线1沿对角线AC 方向经A 点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图10.2所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O 点磁感强度的大小为:(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 .(B) B = 0. 因为虽然B 1 ≠ 0, B 2 ≠ 0, B 1+B 2 = 0, B 3=0(C) B ≠ 0. 因为虽然B 3 = 0, 但 B 1+B 2 ≠ 0(D) B ≠ 0. 因为虽然B 1+B 2 = 0, 但 B 3 ≠ 0 3. 如图10.3所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I ,这三条导线在正三角形中心O 点产生的磁感强度为:(A) B = 0 .(B) B =3μ0I /(πa ) . (C) B =3μ0I /(2πa ) .(D) B =3μ0I /(3πa ) . . 4. 如图10.4所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:(A) RIπμ20. (B)RI40μ.图10.1图10.2图10.3图10.418 (C) )11(20πμ-R I. (D))11(40πμ+RI .5. 一匝数为N 的正三角形线圈边长为a ,通有电流为I , 则中心处的磁感应强度为 (A) B = 33μ0N I /(πa ) . (B) B =3μ0NI /(πa ) . (C) B = 0 .(D) B = 9μ0NI /(πa ) .二、填空题1. 平面线圈的磁矩为p m =IS n ,其中S 是电流为I 的平面线圈 , n 是平面线圈的法向单位矢量,按右手螺旋法则,当四指的方向代表 方向时,大拇指的 方向代表 方向.2 两个半径分别为R 1、R 2的同心半圆形导线,与沿直径的直导线连接同一回路,回路中电流为I .(1) 如果两个半圆共面,如图10.5.a 所示,圆心O 点的磁感强度B 0的大小为 ,方向为 .(2) 如果两个半圆面正交,如图10.5b 所示,则圆心O 点的磁感强度B 0的大小为 ,B 0的方向与y 轴的夹角为 .3. 如图10.6所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,∠aob =180︒.则圆心O 点处的磁感强度的大小B = .三、计算题1. 如图10.7所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO '上方距导体薄片为a 的磁感强度.2. 如图10.7所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.图10.5图10.6b图10.8图10.7。
大学物理习题集一、选择题1.一运动质点在时刻t 位于矢径r (x ,y ) 的末端处,其速度大小为 (A )trd d (B)td d r (C)td d r(D)22)()(ty t x d d d d + 2.质点作半径为R 的匀速率圆周运动,每T 秒转一圈. 在3T 时间间隔内其平均速度与平均速率分别为(A )T R T R ππ2 , 2 (B) TRπ2 , 0 (C) 0 ,0 (D)0 , 2TRπ 3.下列运动中,a 保持不变的是(A )单摆的摆动 (B) 匀速率圆周运动 (C )行星的椭圆轨道运动 (D) 抛体运动4.质点作曲线运动,位置矢量r ,路程s ,a τ 为切向加速度,a 为加速度大小,v 为速率,则有 (A )tva d d =(B) trv d d =(C) tsv d d =(D) ta d d v=τ 5. 如图所示,两个质量相同的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,并处于静止状态. 在剪断绳子的瞬间,球1和球2的加速度分别为(A )g ,g (B )0 ,g (C )g ,0 (D )2g ,06. 如图所示,物体A 置于水平面上,滑动摩擦因数为 μ. 现有一恒力F 作用于物体A 上,欲使物体A 获得最大加速度,则力F 与水平方向的夹角θ应满足(A )μθ=sin (B )μθ=tan (C )μθ=cos (D )μθ=cot 7. 如图所示,两物体A 和B 的质量分别为m 1和m 2,相互接触放在光滑水平面上,物体受到水平推力F 的作用,则物体A 对物体B 的作用力等于(A )F m m m 211+ (B ) F (C )F m m m 212+ (D )F m m125图题6图 7图8. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处时,其增加的动能为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 9. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处引力做功为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 10. 如图所示,倔强系数为k 的轻质弹簧竖直放置,下端系一质量为m 的小球,开始时弹簧处于原长状态而小球恰与地接触. 今将弹簧上端缓慢拉起,直到小球刚好脱离地面为止,在此过程中外力作功为(A )kg m 22(B )kg m 222(C )k g m 322(D )kg m 42210图11图11. 如图所示,A 、B 两弹簧的倔强系数分别为k A 和k B ,其质量均不计. 当系统静止时,两弹簧的弹性势能之比E pA / E pB 为(A )BA k k(B )AB k k(C )22BA k k (D )22AB k k12. 一质点在外力作用下运动时,下列说法哪个正确?(A )质点的动量改变时,质点的动能也一定改变. (B )质点的动能不变时,质点的动量也一定不变. (C )外力的功是零,外力的冲量一定是零. (D )外力的冲量是零,外力的功也一定是零. 13. 设速度为v 的子弹打穿一木板后速度降为v 21,子弹在运动中受到木板的阻力可看成是恒定的. 那么当子弹进入木块的深度是木块厚度的一半时,此时子弹的速度是(A )v 41 (B )v 43 (C )v 83(D )v 85 14. 一轻质弹簧竖直悬挂,下端系一小球,平衡时弹簧伸长量为d . 今托住小球,使弹簧处于自然长度状态,然后将其释放,不计一切阻力,则弹簧的最大伸长量为(A )d (B )2d (C )3d (D )d 2115. 下列关于功的说法中哪一种是正确的.(A )保守力作正功时,系统内相应的势能增加.(B )质点运动经一闭合路径,保守力对质点所作的功为零.(C )作用力与反作用力大小相等,方向相反,所以两者所作功的代数和必定为零. (D )质点系所受外力的矢量和为零,则外力作功的代数和也必定为零. 16. 质量为m 的小球,速度大小为v ,其方向与光滑壁面的夹角为30°. 小球与壁面发生完全弹性碰撞,则碰撞后小球的动量增量为(A )– mv i (B )mv i (C )– mv j (D )mv jm题16图 题17图 题18图17. 如图所示,质量为m 的小球用细绳系住,以速率v 在水平面上作半径为R 的圆周运动,当小球运动半周时,重力冲量的大小为(A )mv 2 (B )vm gRπ (C )0 (D )22)π()2(vmgR mv18. 如图所示,A 、B 两木块质量分别为m A 和m B =21m A ,两者用轻质弹簧相连接后置于光滑水平面上. 先用外力将两木块缓慢压近使弹簧压缩一段距离后再撤去外力,则以后两木块运动的动能之比kAkB E E 为(A )2 (B )21 (C )2 (D )119. 如图所示,光滑平面上放置质量相同的运动物体P 和静止物体Q ,Q 与弹簧和挡板M 相连,弹簧和挡板的质量忽略不计. P 与Q 碰撞后P 停止,而Q 以碰撞前P 的速度运动.则在碰撞过程中弹簧压缩量达到最大时,此时有(A )P 的速度正好变为零 (B )P 与Q 的速度相等(C )Q 正好开始运动 (D )Q 正好达到原来P 的速度题19图 题20图20. 如图所示,质量分别为m 1和m 2的小球用一轻质弹簧相连,置于光滑水平面上. 今以等值反向的力分别作用于两小球上,则由两小球与弹簧组成的系统(A )动量守恒,机械能守恒 (B )动量守恒,机械能不守恒 (C )动量不守恒,机械能守恒 (D )动量不守恒,机械能不守恒 20.当一质点作匀速率圆周运动时,以下说法正确的是 (A )它的动量不变,对圆心的角动量也不变(B )它的动量不变,但对圆心的角动量却不断变化 (C )它的动量不断改变,但对圆心的角动量却不变(D )它的动量不断改变,对圆心的角动量也不断改变21.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的二分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )02ω (D )02ω22.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的三分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )03ω (D )03ω23.如图所示,有一个小块物体置于光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔. 该物体以角速度ω 作匀速圆周运动,运动半径为R . 今将绳从小孔缓慢往下拉,则物体 ( )(A ) 动能不变,动量、角动量改变 (B )动量、角动量不变,动能改变 (C )角动量不变,动能、动量改变 (D )动能、动量、角动量都不变24.有一均匀直棒一端固定,另一端可绕通过其固定端的光滑水平轴在竖直平面内自由摆动. 开始时棒处于水平位置,今使棒由静止状态开始自由下落. 则在棒从水平位置摆到竖直位置的过程中,角速度ω和角加速度β 将会如何变化(A )ω和β 都将逐渐增大 (B )ω和β 都将逐渐减小 (C )ω逐渐增大、β 逐渐减小 (D )ω逐渐减小、β 逐渐增大 25.如果要将一带电体看作点电荷,则该带电体的 (A )线度很小 (B )电荷呈球形分布 (C )线度远小于其它有关长度 (D )电量很小.26.以下说法中哪一种是正确的?(A )电场中某点电场强度的方向,就是试验电荷在该点所受电场力的方向(B )电场中某点电场强度的方向可由E =F /q 0确定,其中q 0为试验电荷的电量,q 0可正、可负,F 为试验电荷所受的电场力(C )在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D )以上说法都不正确.27.一边长为b 的正方体,在其中心处放置一电量为q 的点电荷,则正方体顶点处电场强度的大小为(A )20π8b q ε (B )20π6b q ε (C )20π3b q ε (D )202πb q ε28. 某种球对称性静电场的场强大小E 随径向距离r 变化的关系如图所示,请指出该电场是由下列哪一种带电体产生的(A )点电荷 (B )半径为R 的均匀带电球面(C )半径为R 的均匀带电球体 (D )无限长均匀带电直线.29.由高斯定理的数学表达式⎰⋅SS E d =∑0/εi q 可知,下述各种说法中正确的是(A )高斯面内电荷的代数和为零时,高斯面上各点场强一定处处为零 (B )高斯面内的电荷代数和为零时,高斯面上各点场强不一定处处为零 (C )高斯面内的电荷代数和不为零时,高斯面上各点场强一定处处不为零 (D )高斯面内无电荷时,高斯面上各点场强一定为零.30. 如图所示,一均匀电场的电场强度为E . 另有一半径为R 的半球面,其底面与场强E 平行,则通过该半球面的电场强度通量为(A )0(B )E R 2π21(C ) E R 2π(D ) E R 2π223图题30图E题28图31.静电场中某点P 处电势的数值等于(A )试验电荷q 0置于P 点时具有的电势能 (B )单位试验电荷置于P 点时具有的电势能 (C )单位正电荷置于P 点时具有的电势能(D )把单位正电荷从P 点移到电势零点时外力所作的功. 32.在某一静电场中,任意两点P 1和P 2之间的电势差决定于 (A )P 1点的位置 (B )P 2点的位置(C )P 1和P 2两点的位置(D )P 1和P 2两点处的电场强度的大小和方向.33.半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则该带电体电场的电势U 随距球心的距离r 变化的曲线为(A ) (B ) (C ) (D ) 题33图34.一半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则球内(外)距离球心为r 的P 点处的电场强度的大小和电势为(A )0=E ,rq U 0π4ε= (B ) 20π4r q E ε=,rq U 0π4ε= (C )0=E ,Rq U 0π4ε=(D ) 20π4r q E ε=,Rq U 0π4ε=35. 如图所示,边长为a 的正方形线圈中通有电流I ,此线圈在A 点产生的磁感应强度B 的大小为 (A )aIπ420μ (B )aIπ320μ (C )aIπ220μ (D )aIπ20μ 36. 如图所示,四条皆垂直于纸面的无限长载流细导线,每条中的电流强度都为I . 这四条导线被纸面截得的断面及电流流向如图所示,它们组成了边长为a 的正方形的四个顶角,则在图中正方形中点O 的磁感应强度的大小B 为(A )aIπ20μ (B )aIπ220μ (C )aIπ230μ (D )II题35图 题36图 题37图 题38图37、 如图所示,一载流导线在同一平面内弯曲成图示状,O 点是半径为R 1和R 2的两个半圆弧的共同圆心,导线在无穷远处连接到电源上. 设导线中的电流强度为I ,则O 点磁感应强度的大小是______.(A )102010π444R I R I R I μμμ-+ (B )102010π444R IR I R I μμμ--(C )102010π444R IR I R I μμμ++(D )102010π444R IR I R I μμμ+-38. 如图所示,在一圆电流所在的平面内,选取一个与圆电流相套嵌的闭合回路,则由安培环路定理可知 (A )⎰=⋅Ldl B 0,且环路上任意一点0=B (B )⎰=⋅Ldl B 0,但环路上任意一点0≠B(C )0⎰≠⋅Ldl B ,且环路上任意一点0≠B (D )⎰≠⋅Ldl B 0, 但环路上任意一点=B 常量36 一通有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个单位长度匝数相等的螺线管(R=2r ),两螺线管中的磁感应强度大小B R 和B r 应满足:(A )B R =B r (B )2B R =B r (C )B R =2B r (D )B R =4B r39.如图:金属棒ab 在均匀磁场B 中绕过c 点的轴OO ’转动,ac 的长度小于bc ,则:(A )a 点与b 点等电位 (B )a 点比b 点电位高(C )a 点比b 点电位低 (D )无法确定40.将导线折成半径为R 的43圆弧,然后放在垂直纸面向里的均匀磁场里,导线沿aoe 的角平分线方向以速度v 向右运动. 导线中产生的感应电动势为:(A )0(B )BRv 23(C )BRv (D )BRv 241.金属杆aoc 以速度v 在均匀磁场B 中作切割磁力线运动. 如果oa=oc=L ,如图放置,那么杆中动生电动势为:(A )BLv =ε (B )θεsin BLv = (C )θεcos BLv = (D ))cos 1(θε+=BLva题39图 题40图 题41图二、填空题1.一物体沿直线运动,运动方程为t A y ωsin =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .2.一物体沿直线运动,运动方程为t A x ωcos =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .3.一质点的直线运动方程为x = 8t – t 2(SI ),则在t=0秒到t=5秒的时间间隔内,质点的位移为 ,在这段时间间隔内质点走过的路程为 .4.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点运动轨道最高处的曲率半径为5 m ,则抛出时质点初速度的大小v 0 = . (g=10 m·s -2)5.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点抛出时质点初速度的大小v 0 = sm 10 .(g=10 m·s -2) 则质点运动轨道最高处的曲率半径为 m ,则抛出时质点初速度的大小v 0= . (g=10 m·s -2)6.在oxy 平面内运动的一质点,其运动方程为 r =5cos5t i + 5sin5t j ,则t 时刻其速度v = ,其切向加速度τa = ,法向加速度a n = .7. 如图,质量为m 的小球用轻绳AB 、AC 连接. 在剪断AB 前后的瞬间,绳AC 中的张力比值 T / T ′=.m题7图 题8图 题9图 题10图8. 如图,一圆锥摆摆长为l ,摆锤质量为m ,在水平面上作匀速圆周运动,摆线与竖直方向的夹角为θ. 则:(1)摆线中张力T = ;(2)摆锤的速率v = .9. 一小球套在半径R 的光滑圆环上,该圆环可绕通过其中心且与圆环共面的铅直轴转动. 若在旋转中小环能离开圆环的底部而停在环上某一点,则圆环的旋转角速度ω 值应大于 .10. 如图,质量为m 的木块用平行于斜面的细线拉着放置在光滑斜面上. 若斜面向右方作减速运动,当绳中张力为零时,木块的加速度大小为 ;若斜面向右方作加速运动,当木块刚脱离斜面时,木块的加速度大小为 .11. 已知两物体的质量分别为m 1、m 2,当它们的间距由a 变为b 时,万有引力所作的功为 .12. 如图所示,一质点沿半径为R 的圆周运动. 质点所受外力中有一个是恒力F =F 1 i +F 2 j ,当质点从A 点沿逆时针方向走过43圆周到达B 点时,F 所作的功A= . 13. 如图所示,质量为m 的小球系在倔强系数为k 的轻弹簧一端,弹簧的另一端固定在O 点. 开始时小球位于水平位置A 点,此时弹簧处于自然长度l 0 状态. 当小球由位置A 自由释放,下落到O 点正下方位置B 时,弹簧的伸长量为nl 0,则小球到达B 点时的速度大小为v B = . 14. 一颗速率为800 m·s -1的子弹打穿一块木板后,速度降为600 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .15. 一颗速率为600 m·s -1的子弹打穿一块木板后,速度降为500 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .B题12图A题13图16. 某人拉住河中的船,使船相对于岸不动. 以地面为参照系,人对船所作的功 ;以流水为参照系,人对船所作的功 .(填 >0 ,=0,或 <0)17. 地球半径为R ,质量为M . 现有一质量为m 的物体,位于离地面高度为2R 处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无限远处为势能零点,则系统的引力势能为 . (万有引力常数为G )18. 质量为m 的小球自高度为h 处沿水平方向以速率u 抛出,与地面碰撞后跳起的最大高度为h 21,水平方向速度为u 21. 不计空气阻力,则碰撞过程中,(1)地面对小球的垂直冲量为 ; (2)地面对小球的水平冲量为 .题18图m题20图19. 一物体质量为20 kg ,受到外力F = 20 i +10t j (SI) 的作用,则在开始的两秒内物体受到的冲量为 ;若物体的初速度为v 0 =10i (单位为m ⋅s -1),则在2 s 末物体的速度为 .20. 如图所示,质量为m 的小球在水平面内以角速度ω 匀速转动. 在转动一周的过程中, (1)小球动量增量的大小是 ; (2)小球所受重力冲量的大小是 ; (3)小球所受绳中张力冲量的大小是 . 21. 质量为m 的质点,以不变速率v 越过一水平光滑轨道的120° 弯角时,轨道作用于质点的冲量大小I = .22.在光滑的水平面上有一质量为M =200 g 的静止木块,一质量为m =10.0 g 的子弹以速度v 0 = 400 m ⋅s -1沿水平方向射穿木块后,其动能减小为原来的1/16. 则(1)子弹射穿木块后,木块的动能为 ;(2)阻力对子弹所做的功为 ;(3)系统损失的机械能为 .23.如图所示有一匀质大圆盘,质量为M ,半径为R ,其绕过圆心O 点且垂直于盘面的转轴的转动惯量为221MR . 然后在大圆盘中挖去如图所示的一个小圆盘,小圆盘的质量为m ,半径为r ,该挖去的小圆盘对上述转轴的转动惯量为223mr ,则挖去小圆盘后大圆盘的剩余部分对原来转轴的转动惯量为 . 24、已知有一飞轮以角速度ω0绕某固定轴旋转,飞轮对该轴的转动惯量为J 1;现将另一个静止飞轮突然啮合到同一个转轴上,该飞轮对轴的转动惯量为J 2,且J 2=2 J 1. 则啮合后整个系统的转动角速度为 .25.如图所示,木块A 、B 和滑轮C 的质量分别为 m 1、m 2和m 3,滑轮C 的半径为R ,对轴的转动惯量为2321R m J =. 若桌面光滑,滑轮与轴承之间无摩擦,绳的质量不计且不易伸长,绳与滑轮之间无相对滑动,则木块B 的加速度大小为 .23图25图26.有一半径为R 的匀质圆形水平转台,可绕过中心O 且垂直于盘面的竖直固定轴旋转,转台对轴的转动惯量为J . 有一质量为m 的人站于台上,当他站在离转轴距离为r 处时(r <R ),转台和人一起以角速度ω0绕轴旋转. 若轴承处摩擦可以忽略,则当人走到转台边缘时,转台和人一起转动的角速度为 .27.如图所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其单位长度的带电量分别为1λ和2λ,则场强等于零的P 点与直线1的距离为______.28.方向如图,A 、B 为真空中两块“无限大”的均匀带电平行平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/2. 则A 、B 两平面上电荷面密度分别为=A σ________,=B σ________. 29.如图所示,两块“无限大”的带电平行平面,其电荷面密度分别为σ-(σ>0)及σ3.试写出各区域的电场强度E :Ⅰ区E 的大小______,方向______;Ⅱ区E 的大小______,方向______;Ⅲ区E 的大小______,方向______.30.真空中一半径为R 的均匀带电球面,总电量为Q (Q<0) . 今在球面上挖去一块非常小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小E=______,其方向为______.1λ2λ12A BⅡⅢ-σ3σⅠOR△S题27图 题28图 题29图 题30图31.在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量⎰⋅SS E d 的值仅取决于______,而与______无关.32.在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合曲面S 1、S 2、S 3,则通过这些闭合曲面的电场强度通量分别为=1Φ______,=2Φ______,=3Φ______.题32图 题33图33.如图所示,半径为R 的半球面置于场强为E 的均匀电场中,若其对称轴与场强方向一致,则通过该半球面的电场强度通量为______,若其对称轴与场强方向垂直,则通过该半球面的电场强度通量为______.34.在电量为q 的点电荷的静电场中,与点电荷相距分别为r 1和r 2的A 、B 两点之间的电势差U A -U B =______.35.一个球形的橡皮膜气球,电荷q 均匀分布在其表面,在吹大此气球的过程中,半径由r 1变到r 2. 若选取无穷远处为电势零点,则半径为R (r 1<R <r 2)的高斯球面上任一点的场强大小E 由______变为______;电势U 由______变为______.36.如图所示,在电量为+Q 的点电荷产生的电场中,电量为q 的试验电荷沿半径为R 的圆弧由A 点移动3/4圆弧轨道到D 点,在此过程中,电场力作功为______;若从D 点移到无穷远处,此过程中电场力作功为______.题36图 题37图 题38图 题39图37. 如图所示,无限长直导线在P 处弯成半径为R 的圆,导线在P 点绝缘. 当通以电流I 时,则在圆心O 点的磁感应强度大小=B ________.38. 如图所示,用均匀细金属丝构成一半径为R 的圆环,电流I 由导线CA 流入圆环A 点,而后由圆环B 点流出,进入导线BD . 设导线CA 和导线BD 与圆环共面,则环心O 处的磁感应强度大小为________,方向________.39. 一同轴电缆由内圆柱体和外圆筒导体组成,其尺寸如图所示. 它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向相反,则(1)在r <R 1处磁感应强度大小为________;(2)在r >R 3处磁感应强度大小为________.40.如图所示,在一根通有电流I 的长直导线旁,与之共面地放着一个长宽各为a 和b 的矩形线框ABCD .线框AD 边与载流长直导线平行,且二者相距为2b . 在此情形中,线框内的磁通量=Φ________.41. 如图所示,两根长直导线通有电流I ,对图示环路1L 、2L 、3L 上B 的环流有:=⋅⎰1L dl B ________;=⋅⎰2L dl B ________;=⋅⎰L dl B ________.III题40图 题41图 题44图42. 一带电粒子平行磁感应线射入匀强磁场,则它作________运动;一带电粒子垂直磁感应线射入匀强磁场,则它作________运动;一带电粒子与磁感应线成任意角度射入匀强磁场,则它作_________运动.43. 在电场强度E 和磁场强度B 方向一致的匀强电场和匀强磁场中,有一运动着的电子质量为m 、电量为e ,某一时刻其速度v 的方向如图(a )和图(b )所示,则该时刻运动电子的法向和切向加速度的大小分别为:在图(a )所示情况下,=n a ______,=t a ______;在图(b )所示情况下,=n a ______,=t a ______. 44.两无限长直导线通相同的电流I ,且方向相同,平行地放在水平面上,相距为2l . 如果使长为l 的直导线AB 以匀速率v 从图中的位置向左移动t 秒时,(导线AB 仍在两电流之间),AB 两端的动生电动势大小为______. A 、B 两端,电势高的一端是______. 45.四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行. 轮子和辐条都是导体. 辐条长为R ,轮子转速为n ,则轮子中心a 与轮边缘b 之间的感应电动势为______,电势最高点是在______处.BE BE题45图 题43图三、计算、问答1.有一质量为m 的物体悬挂在一根轻绳的一端,绳的另一端绕在一轮轴的轴上,如图所示. 轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的水平固定轴承之上,绳子不易伸长且与轴之间无相对滑动. 当物体由静止释放后,在时间t 内下降了一段距离s ,试求整个轮轴的转动惯量J (用m 、r 、t 和s 表示).mλxO2. 如图所示,质量M=2.0 kg 的沙箱,用一根长l=2.0 m 的细绳悬挂着. 今有一质量为m=20 g 的子弹以速度v 0 = 500 m ⋅s -1水平射入并穿出沙箱,射出沙箱时子弹的速度为v= 100 m ⋅s -1,设穿透时间极短. 求:(1)子弹刚穿出沙箱时绳中张力的大小;(2)子弹在穿透过程中受到的冲量大小.3. 有一均匀带电的半径为R 的球体,体密度为ρ,试用高斯定理求解其内外电场及电势分布。
练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。
5.解:(1) 位矢 j t b i t a rωωsin cos += (SI)可写为 t a x ωc o s = , t b y ωs i n= t a t x x ωωsin d d -==v , t b ty ωωc o s d dy-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t c o sa m x F A d d ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。
班级 姓名 学号 批阅日期 月 日第一章 质点运动学一、选择题 1、分别以r 、s 、v 和a 表示质点运动的位矢、路程、速度和加速度,下列表述正确的是A 、r r ∆=∆B 、v dtds dt r d == C 、dt dv a = D 、v dt dr = [ ] 2、一质点沿Y 轴运动,其运动学方程为324t t y -=, 0=t 时质点位于坐标原点,当质点返回原点时,其速度和加速度分别为 [ ]A 、116-⋅s m ,216-⋅sm B 、116-⋅-s m ,216-⋅s m C 、 116-⋅-s m ,216-⋅-s m D 、116-⋅s m ,216-⋅-s m3、质点在平面内运动,位矢为)(t r ,若保持0=dt dr ,则质点的运动是 [ ]A 、 匀速直线运动B 、 变速直线运动C 、圆周运动D 、匀速曲线运动4、一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 [ ](A)位移和路程都是3m ;(B)位移和路程都是-3m ;(C)位移是-3m ,路程是3m ;(D)位移是-3m ,路程是5m 。
5、以下五种运动形式中,a 保持不变的运动是 [ ](A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动.6、下列说法正确的是 [ ]A 、质点作圆周运动时的加速度指向圆心;B 、匀速圆周运动的加速度为恒量;C 、只有法向加速度的运动一定是圆周运动;D 、只有切向加速度的运动一定是直线运动。
二、填空题1、一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为 ___________,在t 由0到4s 的时间间隔内质点走过的路程为_________________.2、质点的运动方程为j t t i t t r )3121()21(32+++-=,(SI )当t =2s 时,其加速度=a ____________________。
大学物理习题集(农科类)大学物理课部2009年9月1目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习一质点力学中的基本概念和基本定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习二流体静力学与流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习三液体的表面性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习四伯努力方程及应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习五黏滞流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习六流体力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习七简谐振动的特征及描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习八简谐振动的合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习九平面简谐波┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习十波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 练习十一振动和波动习题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习十二几何光学基本定律球面反射和折射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习十三薄透镜显微镜望远镜┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十四光的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十五光的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十六光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17 练习十七光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十八理想气体动理论的基本公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19 练习十九能量均分定理气体分子按速率分布律和按能量分布律┄┄┄┄┄┄┄20 练习二十热力学第一定律对理想气体的应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习二十一循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22 练习二十二热力学第二定律熵及熵增加原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习二十三热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习二十四电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25 练习二十五高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习二十六电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十七电场中的导体和电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十八电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十九电流及运动电荷的磁场┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习三十磁场中的高斯定理和安培环路定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习三十一电流与磁场的相互作用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习三十二磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习三十三光的二象性粒子的波动性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习三十四量子力学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄372部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量3练习一质点力学的基本概念和基本定律一.选择题1. 以下四种运动,加速度保持不变的运动是(A) 单摆的运动;(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动.2. 质点在y轴上运动,运动方程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s2.(B)-8m/s, -16m/s2.(C)-8m/s, 16m/s2.(D)8m/s, -16m/s2.3. 物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s.(B)11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.二.填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).三、计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二流体静力学与流体的流动一.选择题1.比重计分别浸在油、水、水银中,露在液体外的长度分别为l1,l2,l3,则三者关系是()。
大学物理习题集(农科类)大学物理课部2005年1月1目录部分物理常量练习一质点力学中的基本概念和基本定律练习二流体静力学与流体的流动练习三液体的表面性质练习四伯努力方程及应用练习五黏滞流体的流动练习六流体力学习题课练习七简谐振动的特征及描述练习八简谐振动的合成练习九平面简谐波练习十波的干涉练习十一振动和波动习题练习十二光的干涉练习十三光的衍射练习十四光的偏振练习十五光学习题课练习十六理想气体动理论的基本公式2练习十七能量均分定理练习十八气体分子按速率分布律和按能量分布律练习十九热力学第一定律对理想气体的应用练习二十循环过程练习二十一热力学第二定律熵及熵增加原理练习二十二热学习题课练习二十三电场强度练习二十四高斯定理练习二十五电势练习二十六电场中的导体和电介质练习二十七电场习题课练习二十八电流及运动电荷的磁场练习二十九磁场中的高斯定理和安培环路定理练习三十电流与磁场的相互作用练习三十一磁场习题课练习三十二光的二象性粒子的波动性练习三十三量子力学3部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量41练习一 质点力学的基本概念和基本定律一.选择题1.一质点沿x 轴作直线运动,其v —t 曲线如图1.1所示,如t=0时,质点位于坐标原点,则t=4.5s 时,质点在x 轴上的位置为(A) 0.(B) 5m .(C) 2m . (D) -2m .(E) -5m .2.一质点在平面上运动,已知质点位置矢量的表达式为 r = a t 2 i + b t 2 j (其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D) 一般曲线运动.3.一质点作直线运动,某时刻的瞬时速度为v =2m/s, 瞬时加速度为a =-2m/s 2, 则一秒钟后质点的速度(A) 于零.(B) 等于 -2m/s . (C) 等于2m/s . (D) 不能确定.4.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平 均速度为v ,平均速率为v ,它们之间的关系必定有 (A) v = v ,v ≠v . (B) v ≠v , v =v . (C) v ≠v , v ≠v . (D) v = v , v =v .5.质点作半径为R 的变速圆周运动时,加速度大小为(v 表示任一时刻质点的速率)(A) d v/d t . (B) v 2/R .(C) d v/d t + v 2/R .(D) [(d v/d t )2+(v 4/R 2)]1/2.二.填空题1.悬挂在弹簧上的物体在竖直方向上振动,振动方程为y=A sin ω t ,其中A 、ω均为常量,则 (1)物体的速度与时间的函数关系为 ; (2)物体的速度与坐标的函数关系为 .-图1.122.在x 轴上作变加速直线运动的质点,已知其初速度 为v 0,初始位置为x 0加速度为a=Ct 2 (其中C 为常 量),则其速度与时间的关系v= ,运动方程为 x= .3.灯距地面高度为h 1,一个人身高为h 2, 在灯下以匀 速率v 沿水平直线行走, 如图1.2所示.则他的头 顶在地上的影子M 点沿地面移动的速度 v M = .三、计算题1.有一质点沿x 轴做直线运动,t 时刻的坐标为x=4.5 t 2-2 t 3. (m)试求:(1)第二秒内的平均速度;(2)第二秒末的瞬时速度;(3)第二秒内的路程。
ob ac d第7-1 洛伦兹力,安培力 一.选择题1. 一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则( )(A )两粒子的电荷必然同号;(B )粒子的电荷可以同号也可以异号;B(C )粒子的动量必然不同;(D )粒子的运动周期必然不同。
2. 图为四个带电粒子在0点沿相同的方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是( )(A )oa(B )obB(C )oc (D )od 3.一段长为L 的导线被弯成一个单匝圆形线圈,通过此线圈的电流为I ,线圈放在磁感应线与线圈平面平行的均匀磁场B 中,则作用在线圈上的力矩( )(A)2/4BIL 2/8 (C)2/8BIL (D)2/(4)BIL π二.计算题4. 如图一无限长直导线通以电流1I ,与一个电流2I 的矩形刚性载流线圈共面,设长直导线固定不动,求矩形线圈受到的磁力大小。
5. 一质子以速度710 1.010m s υ-=⨯⋅射入 1.5B T =的匀强磁场中,其速度方向与磁场方向1I 2I h成30角,计算:(1)质子螺旋运动的半径;(2)螺距;(3)旋转频率。
(质子质量27191.6710, 1.610e m kg e C --=⨯=⨯)6. 如图在载流为1I 的长直导线旁,共面放置一载流为2I 的等腰直角三角形,线圈abc ,腰长ab=ac=L ,边长ab 平行于长直导线,相距L ,求线圈各边受的磁力。
7. 如图,半径为R 的半圆形线圈,通有电流I ,放在磁感强度为B 的匀强磁场中,B 的方向平行于线圈所在的平面,求此线圈在磁场中受到的磁力矩大小和方向。
第7-2毕—萨定律,磁场高斯定理1I Ic一. 选择题1. 一根载有电流I 的无限长直导线,在A 处弯成半径为R 的圆形,由于导线外层有绝缘层,在A 处两导线靠得很近但不短路,则在圆心处磁感应强度B 的大小是( ) (A )0(1)/(2)I R μπ+ (B)0/(2)I R μπ(C) 0(1)/(2)I R μππ- (D)0(1)/(2)I R μππ+2. 两根长直导线互相平行地放置在真空中,如图所示,其中电流1210I I A ==,已知120.5PI PI m ==,1PI 垂直于PI 则P 点的磁感应强度大小和方向是( )(A )65.6710T -⨯ 水平向右(B )65.6710T -⨯ 水平向左 (C )6410T -⨯ 水平向右 (D )6410T -⨯ 水平向左 3. 一载有电流I 的无限长直导线,弯成如图所示形状,则0点 的磁感应强度为( )(A )00/(4)/8I R I R μπμ+ (B )00/(2)/8I R I R μπμ+ (C )0/8I R μ (D )0/4I R μ二. 计算题4. 载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为R 的半圆,则圆心处的磁感应强度B 的大小为多少?5. 如图所示,两根导线沿半径方向流到铁环上的A 、B 两点,并在很远处与电源相连,求环中心O 处的磁感应强度。
A ROIII1I2IR OI6. 在半径为1R 和2R 的两同心圆之间,均匀密绕N 匝平面线圈,通以电流I ,求圆心处的磁感应强度。
第7-3 安培环路定理 一.填空题1. 在安培环路定理iiI LB dl μ⋅=∑⎰中,iiI∑是指 ,B 是指它是由 共同决定的。
2. 如图,在无限长直载流导线的右侧有面积为1S 和2S 两个矩形回路与长直载流导线在同一平面内,且矩形回路的一边与长直载流导线平行,则通过面积1S 的矩形回路的磁通量与通过面积为2S 的矩形回路的磁通量之比为 。
3. 两条相距为L 的平行无限长导线,电流强度均为I , 今以左边电流所在位置为圆心,L/2为半径,作一圆形1R2Raa2a回路,则该回路上的L B dl ⋅⎰= ;P点的磁感应强度为。
二.计算题4. 圆柱形长直导线中通有10A电流,在导线内部,通过圆柱中心轴作一平面S,如图所示,求单位长度导线通过S平面的磁通量。
5. 如图,电流I均匀地自下而上通过宽度为a求薄板所在平面上距板的一边为d的P点的磁感应强度。
6. 如图,有一内半径为1R,外半径为2R的无限长导体直圆管,电流I沿管流动,如图,且电流均匀流过管的截面。
求导体管内外的磁感强度。
(1122,,r R R r R r R<<<>)aP第7-4 磁介质 一.填空题1. 如图所示为三种不同铁磁质的磁滞回线,若要制造电磁铁,应选用图 所示材料最为合适,若要制造永磁体,应选用图 所示材料最为合适。
2. 一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r 的磁介质,则管内中部附近磁感强度B = ,磁场强度H = 。
3. 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I通(C ) H B H B (B )过,其间充满磁导率为μ的均匀磁介质,介质中离中心轴距离为r 的某点处的磁场强度的大小H = ,磁感应强度的大小B = 。
二.计算题4. 在实验室,为了测试某种磁性材料的相对磁导率r μ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一个环形螺线管。
设圆环的平均周长为0.10m ,横截面积为420.5010m -⨯,线圈匝数为200匝,当线圈通以0.10A 的电流时,测得穿过圆环截面积的磁通量为56.010wb -⨯,求此时该材料的相对磁导率r μ。
5. 一个横截面为正方形的环形铁心,其磁导率为μ,若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,环的平均半径为r ,求此铁心的磁场强度和磁感应强度。
第7-5习题课1. 如图单层线圈均匀密绕在截面为长方形的整个木环上,共有N 匝,求流入电流I 后,环内的磁感强度分布和截面上的磁通量。
I2. 如图一根无限长直导线和长度为L 的线段彼此绝缘,以θ角交叉放置,分别通以电流1I 和2I ,线段中点在交叉位置。
求线段受到磁力矩大小是多少?方向如何?3. 如图相距2a 的两条竖直放置的载流长直导线,电流强度均为I ,方向相反。
长为2b ,质量为m 的金属棒MN 位于两直导线正中间,且在同一平面内,欲使MN 处于平衡状态,求MN 中的电流强度以及电流流向。
4. 如图半径为R 的带电圆盘,电荷面密度为σ,圆盘以角速度ω,绕过盘心并垂直盘面的轴旋转,求中心O 处的磁感应强度和旋转圆盘的磁矩。
5. 无限长直导线与一个无限长薄电流板构成闭合回路,电流板宽为a ,线与板在同一平面内),求导线与电流板间单位长度内作用力。
II第8-1 电磁感应定律 一.选择题1. 如图两个导体回路平行,共轴相对放置,相距为D ,若沿图中箭头所示的方向观察到大回路中突然建立一个顺时针方向的电流时,小回路的感应电流方向和所受到的力的性质是:( )( A) 顺时针方向,斥力 ( B) 顺时针方向,吸力 ( C) 逆时针方向,斥力 ( D) 逆时针方向,吸力2. 如图一载流螺线管竖直放置,另一金属环从螺线管端上方沿管轴自由落下,设下落过程中圆面始终保持水平,则圆环在图中A ,B ,C 三处的加速度大小关系为:( )( A) A B C a a a >> ( B) B A C a a a >> ( C) C A B a a a >> ( D) C B A a a a >>3. 如图一矩形导体线圈放在均匀磁场中,磁场方向垂直于线圈平面向里,a ,b 分别为线圈上下短边上的两个点,当线圈以速度v 垂直于磁场方向向右运动时,则:( )( A) ab 两点无电势差,线圈内无电流;( B) ab 两点有电势差,且V a >V b ,线圈内无电流;( C) ab 两点有电势差,且V b >V a ,线圈内有电流; ( D) ab 两点有电势差,且V b >V a ,线圈内无电流。
4. 一面积为S 的平面导线闭和回路,置于载流长螺线管中,回路的法向与螺线管轴线平行,设长螺线管单位长度上的匝数为n ,通过的电流为 I sin m I t ω= (电流的正向与回路的正法向成右手关系),其中I m 和ω为常数,t 为时间,则该导线回路中的感生电动势为 。
二. 计算题5. 如图所示,通过回路的磁感应线与线圈平面垂直指向纸面,磁通量依下列关系式变化23(671)10t t -Φ=++⨯ Wb ,式中t 以秒计,求t=2s 时回路中感应电动势的大小和方向?6. 两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率0dIdtα=>。
一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示。
求线圈中的感应电动势,并说明线圈中的感应电流的方向。
第8-2 动生电动势,感生电动势 一.选择题1. 在下列描述中正确的是:( )(A) 感生电场和静电场一样,属于无势场;(B) 感生电场和静电场的共同点,就是对场中的电荷具有作用力;(C) 因为感生电场对电荷具有类似于静电场对电荷的作用力,所以在感生电场中也可类似于静电场一样引入电势;(D) 感生电场和静电场一样,能脱离电荷而单独存在。
2. 用导线围成的回路(两个以O 点为圆心半径不同的同心圆,在一处用导线半径方向相连),放在轴线通过O 点的圆柱形(虚线)均匀磁场中,回路平面垂直于柱轴,如图所示,如磁场方向垂直图面向里,其大小随时间而减小,则(A)→(D)各图中哪个图正确表示了感应电流的流向? ( )二. 计算题3. 一长直导线载有电流I ,在其旁放置一金属棒AB 如图,当AB 以匀速v 向上运动时,求AB 中的感应电动势,哪端电势高?4. ab 、bc 两段导线,长度均为0.10m ,在b 处相接而成30℃,如图所示,若使导线在均匀磁场中以速率v =1.51m s -⋅向右运动,磁场B 的方向垂直纸面向里,B 的大小为22.510-⨯T ,问a 、c 之间的电势差为多少?哪一端电势高?若导线向上运动,则又如何?(A )(B )(D )(C )5. 长为l 的金属棒ab ,水平放置在均匀磁场B 中,如图,金属棒可围绕OO’在水平面内以角速度ω旋转,O 点离a 端的距离为l/k (k>2),试求两端的电势差,并指出哪端电势高。
6. 如图,在半径为R 的圆筒内,有方向与轴线平行的均匀磁场B ,0d dt<B, 求筒内外的感生电场分布。
第8-3 自感、互感、磁场能量 一. 选择与填空题1. 一自感线圈中,电流强度在0.002 s 内均匀的由10 A 增加到12 A ,此过程中线圈内自感电动势为400 V ,则线圈的自感系数L= 。