2018年人教版初中数学教材重难点总结
- 格式:doc
- 大小:327.50 KB
- 文档页数:12
2018年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如60o等第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、方程含有未知数的等式叫做方程。
2018人教版初中数学教材重难点分析(名师总结教材重点,绝对精品,建议大家下载学习)一、构建完整的知识框架——夯实基础1、构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。
但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。
2、正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。
由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。
只有基础扎实,解决问题才能得心应手,成绩才会提高。
二、初中数学中考知识重难点分析1、函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。
函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。
特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。
有一定难度。
如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2、整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
2018新人教版八年级数学下册知识点总结归纳(全面-实用)4八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a)2=a(a≥0);(2)==aa25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0);=b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1其中是二次根式的是_________(填序号).a(a>a-(a<当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
例2、比较32与23的大小。
(3)、分母有理化法通过分母有理化,利用分子的大小来比较。
例3、比较31-与21-的大小。
(4)、分子有理化法通过分子有理化,利用分母的大小来比较。
例4、比较1514-与1413-的大小。
(5)、倒数法例5、比较76-与65-的大小。
(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。
2018中考数学:必须掌握的28个数学重点以及60个易错点(5)02方程(组)与不等式(组)(8个)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带X公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
03函数(8个)易错点1:各个待定系数表示的的意义。
易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点6:与坐标轴交点坐标一定要会求。
面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。
函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
04三角形(11个)易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。
2018年初中数学知识点中考总复习总结归纳第一章有理数1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等第二章 整式的加减考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。
2 0 1 8 人教版初中数学教材重难点分析(名师总结教材重点,绝对精品,建议大家下载学习)一、构建完整的知识框架——夯实基础1、构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。
但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。
2、正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。
由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。
只有基础扎实,解决问题才能得心应手,成绩才会提高。
二、初中数学中考知识重难点分析1、函数(一次函数、反比例函数、二次函数)中考占总分的15% 左右。
函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。
特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。
有一定难度。
如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2、整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数人教版七年级上第一章有理数1.1正数和负数(一)正数:大于0的数叫正数,为了明确表达意义,正数前面加上符号“+”,这里的“+”通常省略;负数:小于0的数叫负数,在正数的前面加上符号“-”。
(二)0既不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数。
1.2.1有理数(一)有理数:整数和分数统称有理数。
(二)有理数的分类:①②1.2.2数轴(了解)(一)数轴:数轴是规定了原点、正方向、单位长度的一条直线。
(二)画数轴的步骤:(1)画直线;(2)在直线上取一点作为原点;(3)确定正方向,并用箭头表示(4)根据需要选取适当单位长度。
(三)一般的,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。
1.2.3相反数(一)相反数:只有符号不同的两个数。
一般地a 和-a 互为相反数,0的相反数还是0。
(二)相反数的和为0⇔a+b=0⇔a、b 互为相反数。
1.2.4绝对值(了解)(一)绝对值:一般地,数轴上表示数a 的点与远点的距离叫做数a 的绝对值,记做。
(二)⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即,那么;那么;那么4.有理数大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。
(3)异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值1.3有理数的加减法(一)有理数的加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加和为0;3.一个数同0相加,仍得这个数。
2018年七年级上册数学总结复习提纲第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
有理数分类:两种分类方法:正整数正整数整数零正有理数a、有理数负整数b、有理数正分数(按定义分类)(按符号分类)零正分数负整数分数负有理数负分数负分数2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
初中数学知识点总结七年级数学(上)知识点 (2)第一章有理数 (2)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第一章相交线与平行线 (6)第二章平面直角坐标系 (7)第三章三角形 (7)第四章二元一次方程组 (8)第五章不等式与不等式组 (9)第六章数据的收集、整理与描述 (10)八年级数学(上)知识点 (11)第一章全等三角形 (11)第二章轴对称 (11)第三章实数 (12)第四章一次函数 (13)第五章整式的乘除与分解因式 (13)八年级数学(下)知识点 (15)第一章分式 (15)第二章反比例函数 (16)第三章勾股定理 (16)第四章四边形 (17)第五章数据的分析 (18)九年级数学(上)知识点 (19)第一章二次根式 (19)第二章一元二次根式 (19)第三章旋转 (20)第四章圆 (21)第五章概率 (22)九年级数学(下)知识点 (23)第一章二次函数 (23)第二章相似 (24)第三章锐角三角函数 (25)第四章投影与视图 (26)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类:①负分数负整数负有理数零正分数正整数正有理数有理数②负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:)0a (a )0a (0)0a (a a或)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a ≠0,那么a 的倒数是a1;若ab=1a 、b 互为倒数;若ab=-1a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n, 当n 为正偶数时: (-a)n=an或(a-b)n =(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a310n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
2018年初中数学知识点总结2018年初中数学知识点总结大全一、基本知识1.数与代数A。
数与式1.有理数有理数包括整数和分数。
整数可以是正整数、0或负整数,而分数可以是正分数或负分数。
我们可以用数轴上的点来表示任何一个有理数。
如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
正数大于负数。
绝对值是一个数所对应的点与原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.两个负数比较大小,绝对值大的反而小。
有理数的加、减、乘、除运算规则与我们平常所用的一样。
2.实数实数包括有理数和无理数。
无理数是指无限不循环小数,如圆周率π。
平方根和立方根是两种常见的无理数。
实数可以在数轴上的一个点来表示。
3.代数式代数式可以是单独一个数或一个字母,也可以是由数和字母组成的式子。
㈡、函数函数是一种特殊的关系,它把自变量的值映射到因变量的值。
函数可以用函数图像、函数表、函数式等形式表示。
二、初中数学重点1.数学语言和符号数学语言和符号是数学中非常重要的一部分,它们可以帮助我们更准确地表达数学概念和思想。
2.代数代数是数学中的一个重要分支,它研究的是数和字母之间的关系。
代数中常见的概念包括代数式、方程、不等式等。
3.几何几何是数学中的另一个重要分支,它研究的是空间和形状。
几何中常见的概念包括点、线、面、角、三角形、四边形等。
4.数据分析数据分析是数学中的一个实际应用分支,它研究的是如何收集、处理和分析数据。
数据分析中常见的概念包括平均数、中位数、众数、方差、标准差等。
5.概率论概率论是数学中的一个分支,它研究的是随机事件的概率。
概率论中常见的概念包括事件、样本空间、概率、条件概率、独立事件等。
三、数学研究方法1.掌握基本概念和基本方法数学研究的第一步是掌握基本概念和基本方法。
只有掌握了这些基础知识,才能更好地理解和应用更高级的数学知识。
2018人教版初中数学教材重难点分析(名师总结教材重点,绝对精品,建议大家下载学习) 一、构建完整的知识框架——夯实基础1、构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。
但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。
2、正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。
由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。
只有基础扎实,解决问题才能得心应手,成绩才会提高。
二、初中数学中考知识重难点分析1、函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。
函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。
特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。
有一定难度。
如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2、整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
2018年初中数学知识点总结大全一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
***2018年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,等;3232(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001⋯等;(4)某些三角函数,如sin60o 等o等π3+8等;第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
12注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如a b4,这种3132表示就是错误的,应写成a b3。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如325a b c是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则第2页整式的加减法:(1)去括号;(2)合并同类项。
第三章一元一次方程考点一、一元一次方程的概念(6分)1、方程含有未知数的等式叫做方程。
初一数学重难点总结第一章 有理数考点归纳考试内容考点要求数轴用数轴上的点表示有理数☆ 知道实数与数轴上的点一一对应相反数具有相反意义的量,会求实数的相反数☆ 相反数的性质倒数倒数的意义和性质☆ 绝对值绝对值的意义,求实数的绝对值☆☆利用绝对值的知识解决简单的化简问题和计算问题近似数、有效数字和科学记数法近似数和有效数字的概念☆☆用科学记数法表示数;在解决实际问题中,能按问题的要求对结果取近似值注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第2章 整式的加减考点归纳考试内容考点要求整式整式的有关概念:代数式,单项式☆ 多项式多项式,同类项有关概念,整式的运算法则☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第3章 一元一次方程考点归纳 考试内容考点要求方程 方程是刻画现实世界数量关系的一个数学模型☆根据具体问题中的数量关系列出方程方程的解方程的解的概念☆有方程的解求方程中待定系数的值一元一次方程一元一次方程的概念☆☆一元一次方程的解法运用一元一次方程解决简单的实际问题注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第4章 几何图形初步注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第5章 相交线与平行线考点归纳考试内容考点要求相交线对顶角、互补、互余☆垂线、点到直线的距离做已知直线的垂线平行线平行线的性质☆☆平行线间的距离平行线的判定图形的平移平移的概念及性质☆ 简单图形的平移及平移的应用☆ 注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第6章 实数考点归纳考试内容考点要求实数根据要求用有理数估计一个无理数的大致范围☆平方根、算术平方根、立方根平方根、算术平方根及立方根的概念☆☆ 求某些非负数的平方根、立方根用科学记数法表示数;在解决实际问题中,能按问题的要求对结果取近似值注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握考点归纳考试内容考点要求直线,射线和线段几何图形☆ 点线面体☆ 直线,射线,线段的概念与性质☆角角的相关概念☆角的表示角的性质☆角的平分线及其性质☆☆第7章平面直角坐标系考点归纳考试内容考点要求平面直角坐标系的有关概念坐标平面内点的坐标特征的运用☆关于坐标轴、原点对称的点的坐标的特征☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第8章二元一次方程组考点归纳考试内容考点要求二元一次方程组二元一次方程组的有关概念☆☆代入消元法、加减消元法的意义选择适当的方法解二元一次方程组运用二元一次方程组解决简单的实际问题☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第9章不等式与不等式(组)考点归纳考试内容考点要求不等式(组)不等式的意义☆根据具体问题中的数量关系列出不等式(组)不等式的性质不等式的基本性质☆利用不等式的基本性质比较两个实数的大小解一元一次不等式(组)一元一次不等式(组)的解的意义,在数轴上表示或判定其解集☆☆解一元一次不等式和由两个一元一次不等式组成的不等式组☆☆根据具体问题中的数量关系,用一元一次不等式解决简单问题☆☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第10章数据的收集、整理和描述考点归纳考试内容考点要求数据的收集、整理和描述总体、个体、样本、样本容量的概念☆全面调查、抽样调查的概念频数、频率、组距的概念☆☆☆频率分布直方图,圆状图,折线图,条形图注:☆表示了解,☆☆表示理解,☆☆☆表示掌握初二数学重难点总结第11章三角形考点归纳考试内容目标要求三角形的相关概念和性质三角形的稳定性、角平分线、中线、高、中位线的定义及性质☆☆与三角形相关的角☆☆多边形及其内角和☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第12章全等三角形考点归纳考试内容考点要求全等三角形的性质全等三角形对应边相等、对应角相等☆☆全等三角形的判定一般三角形:SAS,ASA,AAS,SSS ☆☆☆直角三角形:SAS,ASA,AAS,SSS,HL ☆☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第13章 轴对称考点归纳考试内容目标要求图形的轴对称轴对称的概念及性质☆☆☆ 基本图形的对成性及轴对称的应用中心对称、中心对称图形中心对称、中心对称图形☆☆ 等腰三角形等腰三角形有关概念、性质和判定☆☆☆ 等边三角形有关概念、性质和判定☆☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第14章 整式的乘法与因式分解考点归纳考试内容考点要求整式整式的有关概念☆整数指数幂整数指数幂的意义和基本性质整式加、减、乘法运算整式加、减、乘法运算的法则☆☆会进行简单的整式加、减、乘法运算乘法公式平方差公式、完全平方公式的几何背景☆☆平方差公式、完全平方公式用平方差公式、完全平方公式进行简单计算因式分解因式分解的意义及其与整式乘法之间的关系☆☆用提公因式法、公式法进行因式分解注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第15章 分式注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握考点归纳考试内容考点要求分式的概念分式的概念☆确定分式有意义的条件☆ 确定分式的值为零的条件☆ 分式的性质分式的基本性质☆☆约分和通分分式的运算分式的加、减、乘、除运算法则☆☆ 简单的分式加、减、乘、除运算,用恰当方法解决与分式有关的问题第16章 二次根式考点归纳考试内容考点要求二次根式二次根式的概念与性质☆☆ 二次根式运算法则☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第17章 勾股定理考点归纳考试内容考点要求勾股定理直角三角形的概念、性质和判定☆ 勾股定理和其逆定理☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第18章 平行四边形矩形矩形的概念,性质☆☆ 矩形的判定☆☆ 菱形菱形的概念、性质☆☆ 菱形的判定☆☆ 正方形正方形具有矩形和菱形的性质☆☆☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握考点归纳考试内容考点要求平行四边形平行四边形的概念、性质和判定☆☆☆第19章一次函数考点归纳考试内容考点要求一次函数(正比例函数)的概念对一次函数(正比例函数)概念的理解☆根据已知条件用待定系数法确定函数解析式☆☆一次函数(正比例函数)的图象与性质画一次函数图象并能根据图像解决相关的问题☆根据自变量的变化判断函数值的增减情况☆☆一次函数(正比例函数)与一元一次方程、一元一次不等式之间的关系由函数值的取值范围判断自变量的取值范围,求一次函数图象的交点坐标☆☆☆一次函数(正比例函数)的应用问题与一次函数有关的应用问题☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第20章数据的分析考点归纳考试内容考点要求数据的处理求一组数据的平均数(包括加权平均数)、众数、中位数、极差与方差☆☆用样本的平均数、方差来估计总体的平均数与方差根据具体问题,选择合适的统计量表示数据的集中程度或离散程度根据统计做出合理的判断和预测利用频数解决简单的实际问题注:☆表示了解,☆☆表示理解,☆☆☆表示掌握初三数学重难点总结第21章一元二次方程考点归纳考试内容考点要求一元二次方程一元二次方程的概念☆一元二次方程的解法☆☆用一元二次方程根的判别式判断根的情况☆用一元二次方程解决简单的实际问题☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第22章二次函数的图象及性质考点归纳考试内容目标要求二次函数的概念用配方法把抛物线的解析式化为顶点式的形式☆确定二次函数函数解析式☆☆☆二次函数的图象与性质据抛物线确定的a、b、c、的符号;根据公式确定抛物线的顶点,开口方向和对称轴☆☆根据自变量的变化判断二次函数值的增减情况☆二次函数图象的平移☆☆二次函数与一元二次方程、一元二次不等式的联系根据函数图象求一元二次方程的根,由一元二次方程根的情况判断抛物线与x轴的交点;根据图象判断一元二次不等式的解集☆☆二次函数的应用利用二次函数解决简单的实际问题☆☆☆与二次函数有关的综合运用注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第23章旋转考点归纳考试内容考点要求图形的旋转旋转的概念及性质☆☆基本图形的旋转及旋转的应用注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第24章 圆考点归纳考试内容考点要求圆的有关概念和性质圆、弦、弧、圆心角、圆周角、同心圆、等圆的概念☆ 垂径定理及其推论的应用☆☆ 弧、弦、弦心距之间的关系圆心角、圆周角之间的关系☆☆ 圆周角定理☆ 与圆有关的位置关系点与圆的位置关系☆ 直线与圆的位置关系;切线的性质和判定☆☆☆ 弧长、扇形面积的计算求圆的周长、弧长及简单组合图形的周长☆ 求圆的面积、扇形的面积及简单组合图形的面积☆ 圆柱、圆锥的侧面展开图圆柱的侧面积和全面积的计算☆ 圆锥的侧面积和全面积的计算☆注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握第25章 概率注: ☆ 表示了解,☆☆ 表示理解,☆☆☆ 表示掌握考点归纳考试内容考点要求事件不可能事件、必然事件和随机事件的定义☆概率概率的意义☆☆大量重复试验时,可以用频率估计概率运用列举法(包括列表、画树状图)计算简单事件发生的概率解决一些实际问题第26章反比例函数考点归纳考试内容考点要求反比例函数的概念对反比例函数概念的理解☆☆根据已知条件用待定系数法确定反比例函数解析式反比例函数的图象与性质会画反比例函数图象并能根据图象解决相关的问题☆☆根据自变量的变化判断反比例函数值的增减情况反比例函数遇一次函数的综合运用一次函数与反比例函数图象与性质的综合运用☆☆☆反比例函数的应用解决与反比例函数有关的应用型问题☆☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第27章相似三角形考点归纳考试内容考点要求成比例线段比例的基本性质,黄金分割☆图形的相似相似的概念及相似的判定☆☆相似的性质、多边形的相似比与周长比和面积比☆☆三角形的相似☆☆☆图形的位似位似的概念和性质☆利用位似放大或缩小图形☆注:☆表示了解,☆☆表示理解,☆☆☆表示掌握第28章锐角三角函数和解直角三角形考点归纳考试内容考点要求锐角三角函数锐角三角函数的定义及其性质☆☆特殊锐角的三角函数值解直角三角形解直角三角形的概念☆☆直角三角形的边角关系解直角三角形的应用仰角、俯角、坡度☆☆☆用三角函数解决与直角三角形有关的实际问题注:☆表示了解,☆☆表示理解,☆☆☆表示掌握初中数学重难点总结(人教版)第29章视图与投影考点归纳考试内容考点要求视图画基本几何的三视图、根据三视图描述实物☆基本几何的展开图☆投影中心投影和平行投影☆影子、视点、视角及盲区的概念注:☆表示了解,☆☆表示理解,☆☆☆表示掌握。
2018人教版初中数学教材重难点分析(名师总结教材重点,绝对精品,建议大家下载学习) 一、构建完整的知识框架——夯实基础1、构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。
但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。
2、正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。
由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。
只有基础扎实,解决问题才能得心应手,成绩才会提高。
二、初中数学中考知识重难点分析1、函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。
函数对于学生来说是一个新的知识点,不同于以往的知识,它比较抽象,刚接受起来会有一定的困惑,很多学生学过之后也没理解函数到底是什么。
特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。
有一定难度。
如果学生在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2、整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
中考一般以选择、填空形式出现,但却是解答题完整解答的基础。
运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。
3、应用题,中考中占总分的30%左右包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。
一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。
现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,因为这样更能让学生感受学习数学在自己生活中的运用,以激发其学习兴趣。
应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。
方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。
4、三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。
因为几何思维更灵活,定理、定义及辅助线的添加往往都是解决问题的关键,这就要求学生的思维更灵活,能多维度的思考问题,形成自己的解题思路和方法。
也只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。
其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。
因此在初中数学学习中也是一个重点,而且在以后的高中数学学习中会将此知识点挖深,拓宽。
成为高考的一个重点,因此,初中的同学们应将此知识点熟练掌握。
四边形在初二进行学习的,其中特殊四边形的性质及判定定理很多,容易混淆,深刻理解这些性质和判定、理清它们之间的联系是解决证明和计算的基础,四边形中题型多变,计算、证明都有一定难度。
经常在中考选择题、填空题及解答题的压轴题(最后一题)中出现,对学生综合运用知识的能力要求较高。
5、圆,中考中占总分的10%左右包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。
其中切线的性质和判定、圆中的基本性质的理解和运用、直线与圆的位置关系、圆中的一些线段长度及角度的计算是重点也是难点。
三、各年级教材知识重难点分析七年级教材重难点分析八年级教材重难点分析九年级教材重难点分析备注:黑体加粗标题为各年级重难点章节四、初中学不好数学的常见现象(一)、初一学不好数学许多小学数学学科成绩很好的学生到了初中数学成绩会出现下滑,成绩不稳定等现象。
初中数学与小学数学相比,知识的深度、广度、能力要求都有不小的提高。
许多学生还是带着小学学习的心态,学习主动性不足,课前没有预习,坐等上课,上课也不专心听讲,不重视书本上基础知识,自认为书本上很简单,知道怎么做就行了,不去认真的演算书写。
其实对概念、法则、公式、定理知识一知半解,没有吃透课本内容。
课后又不能及时巩固、总结、寻找知识间的联系,只是赶作业、套题型,遇到难题缺乏思考,学习方法的缺乏或不得当严重制约学生的有效思维,久而久之容易形成思维惰性,学不好数学。
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。
相反,如果能够打好初一数学基础,初二的学习只会是策略:1、狠抓基础,循序渐进。
立足课本,把课本知识点吃透,辅以基础知识、基本方法的训练,先以基础题为主,培养运算能力,提升学生自信心。
等基础知识熟悉了,再逐渐加深难度,能举一反三,形成自己的思维。
能灵活运用知识点。
2、培养良好的学习习惯。
及时预习书本知识,然后带着问题去听课,提高课堂效率。
总结相似的题型,收集自己的典型错题和不会做的题目。
就不懂得问题,积极讨论、请教老师。
自己制定每日学习计划,形成习惯。
3、激发学习兴趣。
做好学生的思想工作,调动其学习数学的兴趣和积极性,增强自信心。
4、提高作业质量和效率。
学生每天作业是对当天所学内容的巩固,如果能高质量的完成当天的作业,就能把当天所学的知识点消化吸收,遗留的问题就少,进而学习效率就高。
(二)初二数学成绩下滑初中数学是一个整体。
初二的难点多,初三的考点多。
相对而言,初一数学知识点虽然很多,但都比较基础,中考多以基础题为主,要求不高。
很多同学对初一数学不够重视,在学校里的学习中感受不到压力,基础没有打牢,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。
初二是初中数学学习的一个拐点,坡度突然增加,知识点上的增多和难度的增加,在学习方法上学生是很容易适应的。
特别是几何内容的增加,它的研究对象从“数”到“形”发生变化,方法也从“运算”到“推理”发生变化,学生的分析能力和表达能力跟不上就很难从图形中找到关系,推理论证困难学科(物理)也相应增加,学业加重,精力分散,有些学生有些力不从心,缺乏毅力的,就会慢慢掉队。
策略:1、引导学生树立自己明确的目标,以增强学习的目的性、主动性。
2、从基础知识入手,增强学生学习的自信心,辅以学习方法上的指导,用简单、中等的题来训练自己的解题思路,思考“凭什么”从第一步走到第二步,它们之间的关联性、逻辑性是怎样的?从而真正形成自己的做题思维。
3、坚持养成总结题型、错题、典型题的习惯,常坚持3—4周后,就能养成习惯。
4、过好几何入门关——识图、书写、推理。
书写是几何入门的难点,有条理的书写时培养逻辑推理能力的保证。
应根据题目的要求,步步有据,句句有理,由条件推理得到结论。
对已知条件的整合剖析能力对很多学生也是很高的要求。
对书本上的定义、性质定理、判定定理要非常熟悉。
5、引导学生进行知识归类,如将判定方法、定理归类整合,使所学知识系统化。
(三)初三基础不扎实,力不从心进入初三以后,学生的学习到了一个新的阶段,为了总复习能有更多的时间,各科上课节奏开始加快,学业任务相应加重,基础不扎实的学生就会跟不上,严重时自信心会严重受挫,感觉力不从心。
平时做试卷审题不严,看题不清,能做对的题目也没拿到分。
小错不断,没有养成积累错题的习惯。
遇到综合性问题时,缺乏解题思路和方法。
遇到难题,就自动放弃了。
长时间持续下去,丧失自信心,成绩也会下降。
策略:1、第一步要做好学生的思想工作,增强学生的自信心。
帮助学生从时间、中考试卷难度、现阶段的情况、预期目标、成功提高成绩学生案例等方面分析,增强其学习的动力。
2、狠抓基础,循序渐进。
利用上初三前的暑假把初一、初二年级的知识漏洞通过查、学、练、测的循环模式补起来,形成完整的知识框架,在继续学习新知识时能跟上老师节奏,自然会轻松很多。
3、在学习的过程中,培养学生预习、带着问题上课、复习、积累、总结的习惯,让学生从“要学”变成“会学”,最后会“自学”。
不仅对现在很重要,对学生以后高中的学习有很大帮助。
4、基础扎实之后,可以逐渐增加难度,做一些中等难度的题目,也不能盲目的只顾做题,要注重学生的思维、思考问题的能力,解题的方法、技巧的训练。
5、突出重点,突破难点。
认真分析按照中考考纲及近几年中考数学试卷命题的变化规律,对重点考查内容进行分类训练,对难点进行个个击破。
6、熟悉并运用常用的数学思想,如方程思想、整体思想、化归思想、函数思想、数形结合思想、分类讨论思想等。
7、中考基础题真题演练。
要求达到自己理想的正确率,也可以全面考察知识漏洞情况,可以再做复习。
8、中考压轴题突破。
纵观安徽数学中考命题规律,压轴题主要出现在函数和四边形部分的内容。
对压轴题进行分类剖析讲解,老师引导学生,让学生形成解题思路和技巧。