[名校版]福建省2018届高三上学期期末考试数学(理)有答案
- 格式:doc
- 大小:642.60 KB
- 文档页数:12
⊂ ≠福州市2018—2018学年度高三第一学期期末质量检查数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两分部.共150分,考试时间120分钟. 参考公式: 如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么在n 次独立重复试验中恰好发生k 次的概率k n k k n n P P C k P --=)1()(第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A {2,3,7},且A 中元素至少有一个为奇数,则这样的集合共有 ( )A .2个B .4个C .5个D .6个 2.复数Z 1=-3+i ,Z 2=1+ i ,则Z =Z 1·Z 2在复平面内对应点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.“a =1”是“函数y =cos ax ·sin ax 的最小正周期为π”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件4.曲线23-+=x x y 在点P 0处的切线平行于直线14-=x y ,则点P 0的坐标为 ( )A .(1,0)或(0,-2)B .(0,-2)或(2,8)C .(2,8)或(-1,-4)D .(1,0)或(-1,-4)5.若函数b a x f x+=)(的图象过点(1,7),且0)4(1=-f ,则)(x f 的表达式是( )A .43)(+=xx f B .34)(+=xx f C .52)(+=xx f D .25)(+=xx f6.椭圆短轴长为52,离心率32=e ,两焦点为F 1、F 2,过F 1作直线交椭圆于A 、B 两点, 则△ABF 2的周长为( )A .6B .12C .24D .487.若1830,0=+>>yx y x 且,则xy 有 ( )A .最大值96B .最小值961 C .最小值48 D .最小值968.从0、3、4、5、7中任取三个不同的数,分别作一元二次方程的二次项系数,一次项系 数及常数项,则可以作出的不同方程的个数是 ( ) A .10 B .24 C .48 D .60 9.将一个函数的图象按)2,4(π=a 平移后得到的图象的函数解析式2)4sin(++=πx y ,那么原来的函数解析式是( )A .x y sin =B .x y cos =C .x y sin =+2D .x y cos =+410.有20个零件,其中16个一等品,4个二等品,若从这20个零件中任取3个,那么其中至少有1个一等品的概率是 ( )A .32024116C C C B .320219116C C C C .32031624116C C C C + D .320341C C - 11.若9)222(-x的展开式的第7项为421,则)(lim 32n n x x x x ++++∞→ 等于 ( )A .43B .41 C .-41 D .-43 12.国际上通常用恩格尔系数来衡量一个国家和地区人民的生活水平,它的计算公式:(x yxn =人均食品支出总额,y :人均个人消费支出总额),且.4502+=x y王先生居住地2018年食品价格比2000年下降了7.5%,该家庭在2018年购买食品和2000年完全相同的情况下人均少支出75元,则该家庭2018年属于 ( ) A .富裕 B .小康 C .温饱 D .贫困第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.设随机变量ξ分布列为P (===k k k ,10)ξ1、2、3、4,则=≤≤)2521(ξP . 14.数列}{n a 是等比数列,若)0(1752≠=⋅⋅m m a a a ,则=⋅97a a . 15.圆1)1(22=++y x 在不等式组⎩⎨⎧≤+≤-00y x y x 所表示的平面区域中所围成的图形的面积为.16.在△ABC 中,有命题:(1)BC AC AB =- (2)0=++CA BC AB (3)若0)()(=-⋅+,则△ABC 为等腰三角形, (4)若0>⋅,则△ABC 为锐角三角形.其中真命题的编号为 (写出所有真命题的编号)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某种圆形射击靶由三个同心圆构成(如图),从里到外的三个区域分别记为A 、B 、C ,(B 、C 为圆环),某射手一次射击中,击中A 、B 、C 区域的概率分别为P (A )=0.4, P (B )=0.25,P (C )=0.2,没有中靶的概率为P (D ).(1)求P (D );(2)该射手一次射击中,求击中A 区或B 区的概率; (3)该射手共射击三次,求恰有两次击中A 区的概率.18.(本小题满分12分) 解关于x 的不等式1|232|≥---ax ax .已知△ABC 三个内角A 、B 、C 的对边分别为a 、b 、c ,向量)2sin ,2(cosCC =, )2sin ,2(cosC C n -=,且与的夹角为.3π(1)求角C 的值; (2)已知27=c ,△ABC 的面积233=S ,求b a +的值.各项均为正数的数列{}n a ,对于任意正整数n ,都有.22n n n a a S +=(1)求证数列{}n a 是等差数列;(2)若数列{}n b 满足n n n a b 2⋅=,求数列{}n b 的前n 项和.n T已知函数t R x x x t x g ,,)2(4)2(2)(3∈---=为常数,函数)(x f y =的图象与)(x g y =的图象关于直线1=x 对称.(1)求)(x f 的解析式;(2)是否存在常数),4[+∞∈t ,使得)(x f 在区间(0,1]上有最大值8?若存在,求出t 值;若不存在,说明理由.在△ABC 中,0,3||,4||=⋅==BC AB BC AB ,若双曲线经过点C ,且以A 、B 为焦点.(1)求双曲线的方程; (2)若点G 满足21=,问是否存在不平行于AB 的直线l 与双曲线交于不同两点 M 、N ,是||||=,若存在,求出直线l 的斜率的取值范围;若不存在,说明理由.福州市2018—2018学年度高三第一学期期末质量检查数学试卷(理科)参考答案一、选择题1.C 2.C 3.A 4.D 5.B 6.B 7.D 8.C 9.B 10.D 11.C 12.B 二、填空题13.103;14.32m ;15.12+π;16.(2)(3)三、解答题 17.解:(1)415.02.025.04.01)()()(1)('=---=---=C P B P A P D P(2)P=P (A )+P (B )=0.4+0.25=0.65 答:击中A 区或B 区的概率为0.65…………………………8′(3)288.0)4.01()4.0(223=-=C P答:恰有两次击中A 区的概率为0.288…………………………12′ 18.解法1: 由原不等式得1232≥---a x a x ……(1)或1232-≤---a x ax ……(2)……2′由(1)得:0)3(≥-+-a x a x 解得a x <或3+≥a x ………………6′ 由(2)得0333≤---a x a x ,即0)1(≤-+-ax a x解得1+≤<a x a …………………………………………10′∴ 原不等式的解为a x <或1+≤<a x a 或3+≥a x …………………………12′解法2:由原不等式得⎩⎨⎧-≥--≠|||232|a x a x ax ……………………………………2′⇒⎩⎨⎧-≥--≠22)()232(a x a x ax ⇒0)()232(22≥⎩⎨⎧----≠a x a x ax⇒⎩⎨⎧≥-+--+---≠0)232)(232(a x a x a x a x ax …………………………6′ ⇒⎩⎨⎧≥+-+-≠0)]1()][3([3a x a x ax ⇒⎩⎨⎧+≥+≤≠31a x a x ax 或……………………………………10′∴原不等式的解为a x <或1+≤<a x a 或3+≥a x …………………………12′19.解:(1)1||||,3cos ||||==⋅⋅=⋅n m n m n m 且π…………………………2′3cos )2sin (2sin 2cos 2cos π=-+∴C C C C 即3cos cos π=C ………………4′又3),0(ππ=∴∈∴C C ………………………………6′ (2)由C ab b a c cos 2222-+= 得ab b a -+=22449………………① 由6sin 21=⋅=∆ab c ab S 得………………②………………………………10′由(1)(2)得4121)(2=+b a a 、+∈R b211=+∴b a ………………………………………………………………12′20.解:(1)当1=n 时,12112a a a += 1011=∴>a a ……………………1′当2≥n 时,)(2212121---+-+=-n n n n n n a a a a S S12122---+-=⇒n n n n n a a a a a ………………………………………………3′)())((111---+=+-⇒n n n n n n a a a a a a由已知得01≠+-n n a a 11=-∴-n n a a (常数)∴数列}{n a 是首项为1,公差为1的等差数列…………………………6′(2)由(1)得n n n n b na 2⋅=∴=n n n T 22322232⋅++⋅+⋅+= ……………………………………8′2143222)1(23222+⋅+-++⋅+⋅+=n n n n n T两式相减得-13222222+⋅-++++=n n n n T …………………………10′112)21(2221)21(2++⋅---=⋅---=n n n n n n 22)1(1+⋅-=∴+n n n T ……………………………………………………12′21.解:(1)设),(y x P 是)(x f y =图象上任一点,点P 关于直线1=x 的对称点为),2(y x P -',由已知点P '在)(x g y =的图象上……………………2′3342)]2(2[4)]2(2[2)2(x tx x x t x g y -=-----=-=∴ 即342)(x tx x f -=………………………………………………4′(2)当),4[],1,0(+∞∈∈t x 时2122)(x t x f -=',由0)(='x f 得60t x ±=……………………6′ 当60t x <<时)(,0)(x f x f >'在(0,6t )内单调递增; 当6t x >时)(,0)(x f x f <'在(6t ,+∞)内单调递减; 6t x =∴是)(x f 的极大点.…………………………8′ 若16<t ,即64<≤t 时,)(x f 在(0,1]上只有一个极值,即为最大值.8)6()(max ==∴t f x f 解得6=t此时不存在满足要求的t 值.………………………………10′ 若16≥t ,即6≥t 时,)(x f 在(0,1]上单调递增.842)1()(max =-==∴t f x f ∴6=t 综上,存在常数6=t ,使得)(x f 在区间(0,1]上有最大值8………………12′22.解:(1)由已知得△ABC 为直角三角形,以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,(如图),设双曲线方程为: )0,0(12222>>=-b a by a x ……………………2′双曲线过点c ,2||||2=-=∴a ,1=∴a 又3,2222=-=∴=a c b c∴双曲线方程为1322=-y x ………………6′ (2)依题意,可设直线l 方程为)0(≠+=k m kx y由⎪⎩⎪⎨⎧=-+=1322y x m kx y 得0)3(2)3(222=+---m kmx x k ……………………8′∵直线l 与双曲线交于不同两点M 、N ,设M (),(),,2211y x N y x0)3)(3(44,0322222>+-+=∆≠-∴m k m k k 且 解得:3,322->±≠k m k 且……………………① 2213k km x x -=+…………………………9′又设MN 中点为F (),00y x ,则⎪⎪⎩⎪⎪⎨⎧-=+=-=+=2002210333)(21k m m kx y k km x x x ……………………10′ 由已知得G (0,3),又kx y l GF 13,||||00-=-⊥∴=即 消去0x 、0y 得4392k m -=……………………② 把②代入①得(3)439222->-k k ………………………………12′ 解得034333343≠><<--<k k k k 但或或综上:存在直线l ,它的斜率取值范围为),343()0,3()343,(+∞⋃-⋃--∞∈k …………………………………………14′。
数学(理科)参考答案一、选择题:(本大题共12小题,每小题5分,共60分)二、填空题:(本大题共4小题,每小题5分,共20分)13 14.311715.250x y +-= 16.2 三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)解:(Ⅰ)法一:2cos 2b C a c =-222222a b c b a c ab+-∴=- ………………2分222a c b ac ∴+-= 1cos 2B ∴=………………4分又 在ABC ∆中,3B π∴= ………………6分法二:2cos 2b C a c =-2sin cos sin 2sin 2sin()B C C A B C ∴+==+ ………………2分sin 2cos sin C B C ∴= ………………3分又 在ABC ∆中sin 0C ≠ 1cos 2B ∴=3B π∴=……………6分(Ⅱ)b = 3B π=∴由正弦定理知2sin c C =,2sin a A =22sin 4sin a c C A ∴+=+ ………………8分2sin 4sin()3C C π=++4sin C C =+cos cos sin )C C ϕϕ=+)C ϕ=+ (其中cos ϕ=) ………………10分 ∴在ABC ∆中,当sin()1C ϕ+=时,2a c +的最大值为……………12分18.(本小题满分12分)解:(Ⅰ)证明: 1143(2)n n n a a a n +-=-≥113()n n n n a a a a +-∴-=- ………………1分113(2)n nn n a a n a a +--∴=≥-∴{}1n n a a +-是首项为21413a a -=-=,公比为3的等比数列 ……………3分∴11333n n n n a a -+-=⨯=213a a -= 2323a a -= 3433a a -= 113n n n a a ---=相加得12313(33313n nn n a a -----=++++==-………………5分312n n a -∴= ………………6分(Ⅱ)∴31()(1)(1)22n n nn n b a n n =-⋅-⋅=⋅- ………………7分∴1[123(1)]2n n S n =-+-++-当n 为偶数时,11224n n nS =⨯⨯= ………………9分当n为奇数时,1n -为偶数1112424n n n n n n S S --+=-=-=- …………11分 综上可知 414n nn S n n ⎧⎪⎪=⎨+⎪-⎪⎩为偶数为奇数 ………………12分19.(本小题满分12分)解:(Ⅰ)解:连接VD ………………1分,VA VB AD BD ==VD AB ∴⊥① ………………2分VO ABC ⊥ 平面又 AB ABC ⊂平面VO AB ∴⊥② ………………3分由①②及,,VO VD V VD VO VCD ⋂=⊂平面AB VDC ∴⊥平面CD VDC ⊂ 平面AB CD ∴⊥ ………………5分又D AB 为的中点∴AC BC = ………………6分(Ⅱ)法一:连接OB ,由(Ⅰ)知CD AB ⊥9CD ∴=又,VA VB VC VO ABC ==⊥ 平面∴易得OB OC =设=OB OC r =则222(9)3r r -+= 5r ∴=VC = 5VO ∴= ……………8分过D 作DE ABC ⊥平面结合(Ⅰ)知,,DE DB DC 两两垂直∴可如图建立空间直角坐标系D xyz -易得(3,0,0)A -,(3,0,0)B ,(0,9,0)C ,(0,4,5)V∴(3,4,5)AV = ,(3,9,0)AC =………9分设平面VAC 的法向量为1111(,,)n x y z =∴111113450390x y z x y ++=⎧⎨+=⎩ ∴可取1(3,1,1)n =………………10分设平面VBC 的法向量为2222(,,)n x y z =同理可得2(3,1,1)n =-………………11分127cos ,11n n ∴<>==由图可知二面角A VC B --为锐角∴二面角A VC B --的余弦值为711……12分 法二:过B 作BF VC ⊥交VC 于F ,连接AF易得AFC BFC ∆≅∆∴AF BF =,AF VC ⊥∴结合图形知AFB ∠就是二面角A VC B --的平面角θ ……………8分在VBC ∆中,由等面积法可得FB =………………10分 又AF BF ==6AB =222637cos 29911FB FA AB FB FA θ+-∴===⋅∴二面角A VC B --的余弦值为711 ………………12分20.(本小题满分12分) 解:(Ⅰ)设()()y x N y M ,,,x 00,因为OMON 2=,所以⎩⎨⎧==0022y y x x ,………………2分把⎪⎪⎩⎪⎪⎨⎧==yy x x 212100代入12x 2020=+y ,得2C 的方程为148x 22=+y ……………4分 (Ⅱ)因为ON OT ,OM ON ==2,所以OM3TM =,TPQ ∆的面积是OPQ ∆面积的3倍. ………………5分设直线PQ 方程为4+=kx y ,由⎪⎩⎪⎨⎧=++=12422y x kx y , 得()030162122=+++kx xk ,由()222116430(12)8(215)0k k k ∆=-⋅⋅+=-≥,得2152k ≥① …………6分由⎪⎩⎪⎨⎧=++=148422y x kx y ,得()024162122=+++kx x k , 由()0)32(32)21(244162222>-=+⋅⋅-=∆k k k ,得232>k ② ………7分 由①②得2152k ≥. ()()2222222113224211k k kk k PQ ++⋅-⋅=+∆⋅+=,O 到直线PQ 的距离214k d +=………………8分所以TPQ ∆的面积132S PQ d =⋅⋅⋅==………………9分==………………11分又2152k ≥,所以T P ∆面积的取值范围为. ………………12分21.(本小题满分12分)解:(Ⅰ))2)(1()1(2)1(22)()(33x xe x x ex x x f x g ----=-+-=-+'='.令0)(='x g 得1=x 或2ln 3-=x , ………………2分当1<x 或2ln 3->x 时,0)(>'x g ,当2ln 31-<<x 时,0)(<'x g , 所以函数)(x g 单调递增区间为)1,(-∞,),2ln 3(+∞-;单调递减区间为)2ln 3,1(-. ………………4分(Ⅱ)xea x x h -+=32)()(,则xea x x x h ---='32)2()(.根据题意,方程022=--a x x ,即022=+-a x x 有两个不同的实根1212()x x x x <,,∴440a ∆=->,即1a <,且,221=+x x 又,21x x <11<∴x .…………6分因022222121=+-=+-a x x a x x ,由22231224)(1x x aex h mx x -+≤-, 得2113211321124)2())(2(11x x e x x ea x x m x x -+-≤+---,)2(2)2()2)(2(1131131111x x e x x e x x m x x -+-≤---,即不等式131312)2(11x e x e x m x x +≤--对任意的11()x ∈-∞,恒成立,………8分(i )当10x = 时,不等式131312)2(11x e x e x m xx +≤-- 恒成立,R m ∈;……9分(ii )当1)1(0x ∈,时,221133+≤--x x e me 恒成立,即113322x x ee m --+≤, 令函数xe x k -+=321)(,显然()k x 是R 上的增函数,∴当)1(0x ∈, 时,332)0()(e e k x k +=>,∴3322ee m +≤, ………………10分 (iii )当10()x ∈-∞, 时,221133+≥--x x e me 恒成立,即113322x x ee m --+≥, 由(ii ),当)0(x ∈-∞, 时,332)0()(ee k x k +=< ,∴3322e e m +≥,……11分 综上,3322ee m +=. ………………12分 22.选修4-4:坐标系与参数方程解:(Ⅰ)24sin ρρθ=,圆C 的普通方程为:2240x y y +-= ………2分 直线l 的直角坐标方程20x y +-= ………………………4分230t -=, ……………………………………6分因此12,t t 异号,……………………………………………8分所以,12||||||3PA PB t t ⋅==…………………………………10分23.选修4-5:不等式选讲解:(Ⅰ) 关于x 的不等式22x x m --+≥有解 ∴max (22)m x x ≤--+………2分 而222(2)4x x x x --+≤--+= ∴4m ≤ ………4分4M ∴= ………5分(Ⅱ)证明: 22a b a b +≥ ,22b c b c +≥,22c a c a +≥ ………7分 2222()a b c a b c a b c b c a ∴+++++≥++ ………9分 2224a b c a b c M b c a∴++≥++== 2224a b c b c a∴++≥得证 ………10分。
厦门市2018届高三年级第一学期期末质检理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{(1)0}A x x x =+>,{B x y ==,则A B =( )A. {0}x x >B. {}1x x ≥C. {01}x x <≤D. ∅【答案】B 【解析】∵集合(){10}A x x x =+> ∴集合{1A x x =<-或}0x >∵集合{B x y ==∴集合{}1B x x =≥ ∴{}1A B x x ⋂=≥ 故选B.2. 命题“32000R,10x x x ∃∈-+≤”的否定是( ) A. 32000R,10x x x ∃∈-+<B. 32000R,10x x x ∃∈-+≥C. 32R,10x x x ∀∈-+> D. 32R,10x x x ∀∈-+≤【答案】C 【解析】由特称命题的否定可得,所给命题的否定为“32R,10x x x ∀∈-+>”.选C .3. 实数,x y 满足0x y >>,则( )A. 11x y>B.C. 1122x y⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D. 2x xy <【答案】B 【解析】选项A 中,由0x y >>得,110y x x y xy --=<,所以11x y<,故A 不正确. 选项B 中,将不等式两边平方得x y x y +-<-,整理得y ,<由于0x y >>,所以上式成立.故B 正确.选项C 中,由0x y >>得,11()()22x y<,故C 不正确.选项D 中,由0x y >>得,2()0x xy x x y -=->,所以2x xy >,故D 不正确. 综上选B .4. 设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A. 若αβ⊥,m β⊥,则//m α B. 若//m α,n m ⊥,则n α⊥C. 若//m α,//n α,m β⊂,n β⊂,则//αβD. 若//m β,m α⊂,n αβ=,则//m n【答案】D 【解析】 【分析】对于A ,B 选项均有可能为线在面内,故错误;对于C 选项,根据面面平行判定定理可知其错误;直接由线面平行性质定理可得D 正确.【详解】若αβ⊥,m β⊥,则有可能m 在面α内,故A 错误; 若//m α,n m ⊥,n 有可能在面α内,故B 错误;若一平面内两相交直线分别与另一平面平行,则两平面平行,故C 错误. 若//m β,m α⊂,n αβ=,则由直线与平面平行的性质知//m n ,故D 正确.故选D.【点睛】本题考查的知识点是,判断命题真假,比较综合的考查了空间中直线与平面的位置关系,属于中档题.5. 已知实数,x y 满足1,20,21,x y x x y -≤⎧⎪+≥⎨⎪+≤⎩则目标函数2z x y =+的最大值等于( )A. -7B. 52-C. 2D. 3【答案】C 【解析】画出不等式组表示的可行域(如图阴影部分所示),由2z x y =+可得2y x z =-+,平移直线2y x z =-+,由图形得,当直线2y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最大值. 由题意得点A 的坐标为(1,0), ∴max 2102z =⨯+=.选C . 6. 如图所示,函数3tan 26y x π⎛⎫=+ ⎪⎝⎭的部分图象与坐标轴分别交于点,,D E F ,则DEF ∆的面积等于( )A.4π B.2π C. πD. 2π【答案】A 【解析】 在3tan 26y x π⎛⎫=+ ⎪⎝⎭中,令0x =,得3tan 16y π==,故1OD =;又函数3tan 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期为2T π=,所以2EF π=.∴1112224DEF S EF OD ππ∆=⋅⋅=⨯⨯=.选A . 7. 已知正方形ABCD 的边长为2,对角线相交于点O ,P 是线段BC 上一点,则OP CP ⋅的最小值为( ) A. -2 B. 12-C. 14-D. 2【答案】C 【解析】根据题意建立如图所示的平面直角坐标系,则(1,1),(2,2)O C ,设(2,)(02)P t t ≤≤,则(1,1),(0,2)OP t CP t =-=-,∴2231(1)(2)32()24OP CP t t t t t ⋅=--=-+=--, ∴当32t =时,OP CP ⋅有最小值14-.选C . 8. 函数()2xcosxf x x 1=+ []()x 2,2∈-的大致图象是( ) A.B.C. D.【答案】C 【解析】由于()()f x f x -=-,故函数为奇函数,排除D选项,06f π⎛⎫>⎪⎝⎭,故排除B 选项,()22cos 205f =<排除A 选项,故选C . 9. ABC ∆中,2π3B ∠=,,A B 是双曲线E 的左、右焦点,点C 在E 上,若()0BA BC AC +⋅=,则E 的离心率为( )A.51-B.31+C.312- D.312+ 【答案】D 【解析】由题意得,点C 在双曲线的右支上.设AC 的中点为D ,由()0BA BC AC +⋅=得BD AC ⊥,所以2BA BC c ==,由双曲线的定义得222CA CB a c a =+=+. 在ABD ∆中,,3BD AD ABD π⊥∠=,∴sin32AD a c ABc π+==,即32a cc+=, 整理得31c e a +==.选D . 10. 习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12…来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n 项和的程序框图.执行该程序框图,输入10m =,则输出的S =( )A. 100B. 140C. 190D. 250【答案】C 【解析】由题意得,当输入10m =时,程序的功能是计算并输出2222221123149110222222S ---=++++++. 计算可得11(8244880)(4163664100)19022S =++++++++=.选C .11. 若锐角ϕ满足sin cos 2ϕϕ-=,则函数()()2sin f x x ϕ=+的单调增区间为( ) A .()52,2Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦B. ()5,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦C. ()72,2Z 1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦D. ()7,Z 1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦【答案】B 【解析】∵sin cos )4πϕϕϕ-=-=, ∴1sin()42πϕ-=. 又444πππϕ-<-<,∴46ππϕ-=,512πϕ=. ∴2515151()sin ()[1cos(2)]cos(2)1226262f x x x x πππ=+=-+=-++, 由5222,6k x k k Z ππππ≤+≤+∈, 得5,1212k x k k Z ππππ-+≤≤+∈, ∴函数的单调增区间为5[,],1212k k k Z ππππ-++∈.选B . 点睛:求正(余)弦型函数单调区间的注意点(1)将所给的函数化为形如()sin()f x A x ωϕ=+或()cos()f x A x ωϕ=+的形式,然后把x ωϕ+看作一个整体,并结合正(余)弦函数的单调区间求解.(2)解题时注意,A ω的符号对所求的单调区间的影响,特别是当A 或ω为负数时,要把x ωϕ+代入正(余)弦函数相对的单调区间内求解.12. 已知函数()()22log ,02,log 4,24,x x f x x x ⎧<≤⎪=⎨-<<⎪⎩若()12f a f a ⎛⎫≥+ ⎪⎝⎭,则a 的取值范围是( )A. 170,2,22⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭B. 1770,,242⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭C.1717 0,2,42⎛⎤-⎡⎫⋃⎥⎪⎢⎣⎭⎝⎦D.171770,,442⎛⎤-⎡⎫⋃⎥⎪⎢⎣⎭⎝⎦【答案】D【解析】画出函数()y f x=的图象(图中黑色部分),则函数()y f x=的图象向左平移12个长度单位,得到函数1()2y f x=+的图象(图中红色部分),设两图象交于点,A B,且横坐标分别为12,a a.由图象可得满足()12f a f a⎛⎫≥+⎪⎝⎭的实数a的取值范围为127(0,][,)2a a⋃.对于1a,由21211log log()2a a-=+,解得11112aa=+,所以211220a a--=,解得1117a-+=或11174a--=(舍去).对于2a,由22221log log[4()]2a a=-+,解得274a=.综上可得实数a的取值范围为11777(0,][,)442-+⋃.选D.点睛:解答本题的技巧在于借助于数形结合增强了解题的直观性,利用图象的平移,将解不等式的问题转化为两函数图象的相对位置关系来处理,然后根据函数图象的交点情况,通过解方程的方法求得所求范围的端点值,最后根据图象写出不等式成立时参数的范围.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 复数z满足()1i2iz-=,则z=__________.2【解析】由题意得2i 2i(1i)i(1i)1i 1i (1i)(1i)z +===+=-+--+,∴|1i|z =-+=14. 设等比数列{}n a 满足11a =,356a a +=,则579a a a ++=__________. 【答案】28 【解析】设等比数列{}n a 的公比为q ,由题意得1243511()6a a a a q q =⎧⎨+=+=⎩, ∴4260q q --=,解得23q =或22q =-(舍去).∴4682345791()22228a a a a q q q ++=++=++=.答案:2815. 直线()1y k x =-与抛物线24y x =交于,A B 两点,若163AB =,则k =__________.【答案】【解析】 由()214y k x y x⎧=-⎨=⎩消去y 整理得2222(24)0k x k x k -++=,∵直线与抛物线交于,A B 两点,∴()22402440k k k ≠⎧⎪⎨=+->⎪⎩,解得0k ≠. 设1122(,),(,)A x y B x y ,则212224k x x k++=. ∵121623AB x x =++=, ∴212224103k x x k ++==,∴23k =,k =.检验知3k =±满足条件. 答案:3±16. 某三棱锥的三视图如图所示,则它的外接球表面积为__________.【答案】1003π【解析】由三视图可得三棱锥为如图所示的三棱锥P ABC -,其中底面ABC ∆为直角三角形.将三棱锥还原为长方体,则长方体的长宽高分别为4,3,23则三棱锥外接球的球心在上下底面中心的连线12O O 上,设球半径为R ,球心为O ,且球心到上底面的距离为d ,则球心到下底面的距离为23d .在如图所示的2Rt OO P ∆和1Rt OO C ∆中,由勾股定理可得2223)R d =+及222(23)(7)R d =+,解得2253R =. 所以三棱锥的外接球的表面积为210043S R ππ==.答案:1003π点睛:已知球与柱体(或锥体)外接求球的半径时,关键是确定球心的位置,解题时要根据组合体的特点,并根据球心在过小圆的圆心且与小圆垂直的直线上这一结论来判断出球心的位置,并构造出以球半径为斜边,小圆半径为一条直角边的直角三角形,然后根据勾股定理求出球的半径,进而可解决球的体积或表面积的问题.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,单位圆O 与,x y 轴正半轴的交点分别为,A D ,圆O 上的点C 在第一象限.(1)若点C 的坐标为31,22⎛⎫ ⎪ ⎪⎝⎭,延长CD 至点B ,使得2DB =,求OB 的长;(2)圆O 上的点E 在第二象限,若23EOC π∠=,求四边形OCDE 面积的最大值.【答案】(1) 7OB =(2)3【解析】 【分析】试题分析:⑴由点312C ⎫⎪⎪⎝⎭,可得30AOC ∠=︒,故60COD ∠=︒,所以120CDB ∠=︒,由余弦定理求出OB 的长; ⑵设62COD ππθθ⎛⎫∠=<<⎪⎝⎭,则23DOE πθ∠=-,从而可得四边形OCDE 的面积()S θ,由θ的取值范围得当3πθ=时,四边形OCDE 3解析:(1)由点3122C ⎛⎫ ⎪ ⎪⎝⎭在单位圆上,可知30AOC ︒∠=,由图像可得60COD ︒∠=;在CDB ∆中,1OD =,120CDB ︒∠=,2DB =; 由余弦定理得222OB OD DB =+ 2cos120OD OB ︒-⋅⋅; 解得7OB =;(2)设62COD ππθθ⎛⎫∠=<<⎪⎝⎭,23DOE πθ∠=- 1sin 2COD S θ∆=,12sin 23EOD S πθ∆⎛⎫=-⎪⎝⎭四边形OCDE 的面积()EOD COD S S S θ∆∆=+ 112sin sin 223πθθ⎛⎫=+- ⎪⎝⎭ 62ππθ⎛⎫<< ⎪⎝⎭131sin sin 22θθθ⎡⎤=+⎢⎥⎣⎦33sin 44θθ=+36πθ⎛⎫=+ ⎪⎝⎭ 62ππθ<<,2363πππθ∴<+<当62ππθ+=,即3πθ=时,四边形OCDE 的面积S 3. 【详解】18. 如图,直角梯形BDFE 中,//,,22EF BD BE BD EF ⊥=,等腰梯形ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.【答案】(1)见解析(2)23【解析】【详解】试题分析:(1)直接利用面面垂直的性质定理可证; (2)设ACBD O =,计算后可证OF//BE ,从而由已知可证OF ⊥平面ABCD ,因此可以OA ,OB ,OF为坐标轴建立空要间直角坐标系,利用向量法求二面角. 试题解析:(1)∵平面BDFE ⊥平面ABCD ,C A BD ⊥,平面BDFE 平面ABCD BD =,又AC ⊂平面ABCD ,∴AC ⊥平面BDFE ; (2)设ACBD O =,∵四边形ABCD 为等腰梯形,,242DOC AB CD π∠===,∴2,22OD OC OB OA ====,∵//FE OB ,∴四边形BOFE 为平行四边形,∴//OF BE , 又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD , ∴FBO ∠为BF 与平面ABCD 所成的角,∴4FBO π∠=,又∵2FOB π∠=,∴22OF OB ==以O 为原点,OA 为x 轴,OB 为y 轴,OF 为z 轴,建立空间直角坐标系, 则()()()()()0,22,0,0,2,0,0,0,22,2,0,0,22,0,0B D F C A --,()()0,2,22,2,2,0DF CD ==-,∵AC ⊥平面BDFE ,∴平面BDF 的法向量为()1,0,0, 设平面DFC的一个法向量为(),,n x y z =,由·0·0DF n CD n ⎧=⎨=⎩得2220220y z x y ⎧+=⎪⎨-=⎪⎩,令2x =得,()2,2,1n =-,2222cos ,31?221n AC ==++,∴二面角B DF C --的余弦值为23.点睛:立体几何中求“空间角”,一种方法是根据“空间角”的定义作出它的“平面角”,再通过解三角形求得,其方法是一作二证三计算;第二种方法是在图形中有相互垂直的三条直线(或两条)时,可建立空间直角坐标系,利用空间向量法求角,这种方法主要的就是计算,减少了作辅助线,证明的过程,只要计算过关,一般都能求得正确结论.19. 数列{}n a 满足122311111n n na a a a a a n ++++=+(1)若数列{}n a 为公差大于0的等差数列,求{}n a 的通项公式;(2)若1(1)nn n n b a a +=-,求数列{}n b 的前2n 项和2n S .【答案】(1)n a n =;(2)()221n S n n =+. 【解析】 试题分析:(1)由题意得12112a a =,12231123a a a a +=,从而得到122326a a a a ,==,设出等差数列{}n a 的公差d ,解方程组可得111a d ==,,从而得到n a n =.(2)由条件122311111n n na a a a a a n ++++=+,可得()1223111112n nn n a a a a a a n--+++=≥,,两式相减得()11(2n n a a n n n +=⋅+≥),又122a a =,故()()*11N n n a a n n n +=⋅+∈,所以()()11nn b n n =-+,然后根据2124n n b b n -+=可求得2n S .试题解析:(1)由已知得122311111n n na a a a a a n ++++=+ 当1n =时,12112a a =①,即122a a = 当2n =时,12231123a a a a +=② ②-①,得23116a a =;即236a a = 设等差数列{}n a 的公差为d ,则()()()12112311226a a a a d a a a d a d ⎧=+=⎪⎨=++=⎪⎩解得111a d =⎧⎨=⎩或111a d =-⎧⎨=-⎩.∵0d >, ∴111a d ==,. ∴()11n a n n =+-=. (2)∵122311111n n na a a a a a n ++++=+③∴122311111(2n nn n a a a a a a n--+++=≥,)④③-④得11(21n n nn a a n +=≥+), 即()11(2n n a a n n n +=⋅+≥), 又122a a =,∴()()*11N n n a a n n n +=⋅+∈,∴ ()()()1111n nn n n b a a n n +=-⋅=-+,∴()()212212221n n b b n n n n -+=--⋅+⋅+ 4n =. ∴()()()21234212n n n S b b b b b b -=++++++484n =+++()442n n +=()21n n =+.点睛:解答本题时注意以下几点(1)由递推关系解决数列的有关问题时,要注意数列中项的下标的限制.(2)求数列的前n 项和时,要根据数列通项的特点选择合适的方法.常用的求和方法有列项相消法、错位相减法、公式法、分组求和法等,对于通项中含有()1n-或()11n --等形式的数列的求和问题常选择分组求和法求解.20.已知点()1F,圆(222:16F x y -+=,点M 是圆上一动点, 1MF 的垂直平分线与2MF 交于点N .(1)求点N 的轨迹方程;(2)设点N 的轨迹为曲线E ,过点()0,1P 且斜率不为0的直线l 与E 交于,A B 两点,点B 关于y 轴的对称点为B ',证明直线AB '过定点,并求PAB '∆面积的最大值.【答案】(1) 22142x y +=.(2)2. 【解析】【试题分析】(1)由于24MN NF +=,所以N 的轨迹为椭圆,利用椭圆的概念可求得椭圆方程.(2)当直线l 的斜率存在时,设出直线方程和点,,A B B '的坐标,联立直线方程和椭圆方程,写出韦达定理,求得直线'AB 的方程,求得其纵截距为2,即过()0,2.验证当斜率不存在是也过()0,2.求出三角形面积的表达式并利用基本不等式求得最大值. 【试题解析】解:(1)由已知得:1NF NM =,所以1224NF NF MN NF +=+=又12F F =所以点N 的轨迹是以12,F F 为焦点,长轴长等于4的椭圆, 所以点N 轨迹方程是22142x y +=.(2)当k 存在时,设直线():10AB y kx k =+≠,()()1122,,,A x y B x y ,则()22,B x y '-,联立直线AB 与椭圆得22241x y y kx ⎧+=⎨=+⎩,得()2212420kxkx ++-=,∴()21221228140412212k k x x k x x k ⎧∆=+>⎪⎪-⎪+=⎨+⎪-⎪=⎪+⎩,∴1212AB y y k x x '-=+,所以直线()121112:y y AB y y x x x x --=-+', 所以令0x =,得122112x y x y y x x +=+,()()122112121211212x kx x kx kx x x x x x +++==+=++,所以直线AB '过定点()0,2Q ,(当k 不存在时仍适合)所以PAB ∆'的面积12221212PQB PQA k S S S x x k∆∆'=-=+=+2122k k=≤+,当且仅当2k =±时,等号成立.所以PAB ∆'面积的最大值是2.【点睛】本小题主要考查动点轨迹方程的求法,考查直线和圆锥曲线的位置关系,考查与圆锥曲线有关的三角形面积的最值.由于给定点()12,0F -,而圆心恰好是()2,0,由此考虑动点是否满足椭圆或者双曲线的的定义,结合垂直平分线的性质可知动点的轨迹为椭圆. 21. 已知函数2()()x f x ax x a e -=++()a R ∈. (1)若0a ≥,函数()f x 的极大值为5e,求实数a 的值; (2)若对任意的0a ≤,()ln(1)f x b x ≤+,在[0,)x ∈+∞上恒成立,求实数b 的取值范围. 【答案】(1)2a =;(2)1b ≥ 【解析】试题分析:(1)先求导数,再根据导函数零点分类讨论,根据导函数符号变化规律确定函数极大值,最后根据绝对值求实数a 的值;(2)先求0a ≤,()f x 最大值,再变量分离得ln(1)xxe b x -≥+ ,最后根据导数研究函数ln(1)xxe y x -=+最大值,即得实数b 的取值范围.试题解析:(1)由题意,.①当时,, 令,得;,得,所以()f x 在(),1-∞单调递增()1,+∞单调递减. 所以()f x 的极大值为()151f e e=≠,不合题意. ②当时,,令,得;,得或,所以()f x 在11,1a ⎛⎫-⎪⎝⎭单调递增,1,1a ⎛⎫-∞- ⎪⎝⎭,()1,+∞单调递减. 所以()f x 的极大值为()2151a f e e+==,得2a =. 综上所述2a =.(2)令,当时,,故()(]-0g a ∞于,上递增, ()()()0,0xg a g xe x -∴≤=≥ ∴原问题()[)ln 10,x xe b x x -⇔≤+∈+∞于上恒成立①当时,,,,此时,不合题意.②当时,令,,则,其中,,令,则()p x 在区间[)0,+∞上单调递增(ⅰ)时,,所以对,,从而在上单调递增,所以对任意,,即不等式在上恒成立. (ⅱ)时,由,及在区间上单调递增,所以存在唯一的使得,且时,.从而时,,所以在区间上单调递减, 则时,,即,不符合题意.综上所述,. 点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在直角坐标系xOy 中,曲线C的参数方程为,sin ,x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,,A B 为C 上两点,且OA OB ⊥,设射线:OA θα=,其中02πα<<.(1)求曲线C 的极坐标方程; (2)求OA OB ⋅的最小值. 【答案】(1)2221sin ρθ=+;(2)43.【解析】试题分析:(1)利用已知条件把参数方程和极坐标方程与直角坐标方程进行转化. (2)利用三角函数关系式的恒等变换,基本不等式求出结果. 试题解析:(1)将1C的方程化为直角坐标方程为221y +=,即2212x y +=. 将cos x ρθ=,sin y ρθ=代入可得()()22cos sin 12ρθρθ+=化简得2221sin ρθ=+ (2)根据题意:射线OB 的极坐标方程为2πθα=+或2πθα=-.1OA ρ==2OB ρ===则12OA OB ρρ⋅=⋅==22241sin 1cos 32αα≥=+++,当且仅当22sin cos αα=,即4πα=时,取得最小值43. 故OA OB ⋅的最小值为43. 23. 函数()12f x x x a =-++.(1)当1a =时,求证:()13f x x +-≥;(2)若()f x 的最小值为2,求实数a 的值. 【答案】(1)证明见解析;(2)2a =或6a =-.【解析】试题分析:(1)当1a =时,利用绝对值三角不等式可证:()13f x x +-≥; (2)分①当12a >-,②当12a <-,③当12a=-时,三种情况分类讨论,去掉绝对值符号,即可得到实数a 的值.试题解析:(1)依题意:()1121f x x x x +-=-++ 12221x x x +-=-++()()22213x x ≥--+=,当且仅当()2221x x -=-+,即14x =时,等号成立. (2)①当12a >-,即2a >-时,()31,,21,1,231,1,a x a x a f x x a x x a x ⎧-+-≤-⎪⎪⎪=++-<<⎨⎪+->⎪⎪⎩则当2a x =-时,()min 112222a a a f x f ⎛⎫=-=--=+= ⎪⎝⎭,故2a =.②当12a<-,即2a <-时,()31,1,1,1,231,,2x a x a f x x a x a x a x ⎧⎪-+-≤⎪⎪=---<<-⎨⎪⎪+-≥-⎪⎩则当2a x =-时,()min 112222a a a f x f ⎛⎫=-=--=--= ⎪⎝⎭,故6a =-.③当12a=-时,即2a =-时,()31f x x =-有最小值0,不符合题意,舍去.21。
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
福州市2018届高三上学期期末考试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A)2.A.1 B3.下列函数为偶函数的是()A4.)A5.已知圆锥的高为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A6.)A .0B .1C .2 D.37.如图的程序框图的算法思路源于我国古代著名的“孙子剩余定理”,执行该程序框图,等于( )A .23B .38C .44D .588.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为( )A.14 B9.)A10.有下列四个命题:其中真命题的是()A)A12.为()A.51 B.52 C.53 D.54第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.的夹角为.14.5项的二项式系数最大,则展开式中的常数项为.15.的值为.16.如图,已知一块半径为1现要在这块材料上裁出一个直角三角形.为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1(218.2(1(2=,中,C E 19.如图,在四棱锥D(1(2.20..(1(2点的横坐标之和为常数.21.(1(2请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程.(1(2.23.选修4-5:不等式选讲(1(2取值范围.参考答案一、选择题1-5: BCBCB 6-10: CADCA 11、12:BA 二、填空题三、解答题17.解:(11为首项,以2为公比的等比数列. (2)由(143352121n n=-+-++-⎪-+⎝⎭18.解:解法一:(1(2解法二:(1)同解法一.(219.解:(1(2)由(11,33,2m=20.解:解法一:(1(2. 解法二:(1(2. 根据椭圆的对称性,.21.解:解法一:(1.(2...解法二:(1)同解法一.(2.即原不等式成立.解法三:(1)同解法一.(2即原不等式成立.22.解:(1(2)由(123.解:(1(2。
厦门市2018届高三年级第一学期期末质检理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}10A x x x =+>,{B x y ==,则A B =I ( )A .{}0x x > B .{}1x x ≥ C .{}01x x <≤ D .R2.命题“32000,10x x x ∃∈-+≤R ”的否定是( )A .32000,10x x x ∃∈-+<RB .32000,10x x x ∃∈-+≥RC .32,10x x x ∀∈-+>RD .32,10x x x ∀∈-+≤R 3.实数,x y 满足0x y >>,则( )A .11x y > BC .1122x y⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .2x xy <4.若,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若,m αββ⊥⊥,则m α∥ B .若,m n m α⊥∥,则n α⊥C .若,,,m n m n ααββ⊂⊂∥∥,则αβ∥D .若,,m m n βααβ⊂=∥I ,则m n ∥5.已知实数,x y 满足1,20,21,x y x x y -≤⎧⎪+≥⎨⎪+≤⎩则目标函数2z x y =+的最大值等于( )A .-7B .52-C .2D .3 6.如图所示,函数26y x π⎛⎫=+ ⎪⎝⎭的部分图象与坐标轴分别交于点,,D E F ,则DEF ∆的面积等于( )A .4π B .2πC .πD .2π 7.已知正方形ABCD 的边长为2,对角线相交于点O ,P 是线段BC 上一点,则OP CP ⋅uu u r uu r 的最小值为( )A .-2B .12-C .14- D .2 8.函数()[]()2cos 2,21x xf x x x =∈-+的大致图象是( )A .B .C .D .9.ABC ∆中,23B π∠=,,A B 是双曲线E 的左、右焦点,点C 在E 上,若()0BA BC AC +⋅=uu r uu u r uuu r,则E 的离心率为( )A 1B 1CD 10.习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12…来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n 项和的程序框图.执行该程序框图,输入10m =,则输出的S =( ) A .100 B .140 C .190 D .25011.若锐角ϕ满足sin cos ϕϕ-=,则函数()()2sin f x x ϕ=+的单调增区间为( ) A .()52,21212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z B .()5,1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()72,21212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z D .()7,1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z 12.已知函数()()22log ,02,log 4,24,x x f x x x ⎧<≤⎪=⎨-<<⎪⎩若()12f a f a ⎛⎫≥+ ⎪⎝⎭,则a 的取值范围是( )A .170,2,22⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭U B .1770,,242⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭UC.72,2⎛⎡⎫ ⎪⎢ ⎣⎭⎝⎦U D.77,42⎛⎡⎫ ⎪⎢ ⎣⎭⎝⎦U 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.复数z 满足()1i 2i z -=,则z = .14.设等比数列{}n a 满足11a =,356a a +=,则579a a a ++= . 15.直线()1y k x =-与抛物线24y x =交于,A B 两点,若163AB =,则k = . 16.某三棱锥的三视图如图所示,则它的外接球表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,单位圆O 与,x y 轴正半轴的交点分别为,A D ,圆O 上的点C 在第一象限.(1)若点C 的坐标为12⎫⎪⎪⎝⎭,延长CD 至点B ,使得2DB =,求OB 的长; (2)圆O 上的点E 在第二象限,若23EOC π∠=,求四边形OCDE 面积的最大值.18.如图,直角梯形BDFE 中,EF BD ∥,BE BD ⊥,EF =ABCD 中,AB CD ∥,AC BD ⊥,24AB CD ==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.19.数列{}n a 满足122311111n n na a a a a a n ++++=+L . (1)若数列{}n a 为公差大于0的等差数列,求{}n a 的通项公式; (2)若()11nn n n b a a +=-,求数列{}n b 的前2n 项和2n S . 20.已知点()1F,圆(222:16F x y +=,点M 是圆上一动点,1MF 的垂直平分线与2MF 交于点N . (1)求点N 的轨迹方程;(2)设点N 的轨迹为曲线E ,过点()0,1P 且斜率不为0的直线l 与E 交于,A B 两点,点B 关于y 轴的对称点为B ',证明直线AB '过定点,并求PAB '∆面积的最大值.21.已知函数()()()2xf x ax x a e a -=++∈R .(1)若0a ≥,函数()f x 的极大值为3e,求实数a 的值; (2)若对任意的0a ≤,()()ln 1f x b x ≤+在[)0,x ∈+∞上恒成立,求实数b 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C的参数方程为,sin ,x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,,A B 为C 上两点,且OA OB ⊥,设射线:OA θα=,其中02πα<<.(1)求曲线C 的极坐标方程; (2)求OA OB ⋅的最小值. 23.选修4-5:不等式选讲函数()12f x x x a =-++.(1)当1a =时,求证:()13f x x +-≥; (2)若()f x 的最小值为2,求实数a 的值.厦门市2018届高三年级第一学期期末质检理科数学试题参考答案及评分标准 一、选择题1-5:BCBDC 6-10:ACADC 11、12:BD二、填空题13.28 15..1003π三、解答题17.解:(1)由点1,22C ⎛⎫⎪ ⎪⎝⎭在单位圆上,可知30AOC ∠=︒,由图象可得60COD ∠=︒;在CDB ∆中,1OD =,120CDB ∠=︒,2DB =; 由余弦定理得2222cos120OB OD DB OD DB =+-⋅⋅︒;解得OB ; (2)设62COD ππθθ⎛⎫∠=<<⎪⎝⎭,23DOE πθ∠=-1sin 2COD S θ∆=,12sin 23EOD S πθ∆⎛⎫=- ⎪⎝⎭四边形OCDE 的面积()112sin sin 22362EOD COD S S S πππθθθθ∆∆⎛⎫⎛⎫=+=+-<< ⎪⎪⎝⎭⎝⎭113sin sin sin 22244θθθθθ⎡⎤=++=+⎢⎥⎣⎦6πθ⎛⎫=+ ⎪⎝⎭ ∵62ππθ<<,∴2363πππθ<+<;当62ππθ+=,即3πθ=时,四边形OCDE 的面积S 18.证明:(1)∵平面BDFE ⊥平面ABCD ,BE BD ⊥,平面BDFE I 平面ABCD BD = ∴BE ⊥平面ABCD ,又AC ⊂平面ABCD ,∴AC BE ⊥, 又∵AC BD ⊥,且BE BD B =I , ∴AC ⊥平面BDFE .解:(2)设AC BD O =I ,∵四边形ABCD 为等腰梯形,2DOC π∠=,24AB CD ==,∴OD OC ==OB OA ==∵FE OB ∥,∴四边形BOFE 为平行四边形, ∴OF BE ∥,又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD , ∴FBO ∠为BF 与平面ABCD 所成的角, ∴4FBO π∠=,又∵2FOB π∠=,∴OF OB ==以O 为原点,OA 为x 轴,OB 为y 轴,OF 为z 轴,建立空间直角坐标系,则()B,()0,D,(0,0,F,()C,()A(DF =uuu r,)CD =uu u r ,∵AC ⊥平面BDFE ,∴平面BDF 的法向量为()1,0,0,设平面DFC 的一个法向量为(),,n x y z =r,由0,0,DF n CD n ⎧⋅=⎪⎨⋅=⎪⎩uuu r r uu u r r得0,0,+== 令2x =得,()2,2,1n =-r,2cos ,3n AC ==r uuu r . ∴二面角B DF C --的余弦值为23. 19.解:(1)由已知:122311111n n na a a a a a n ++++=+L 当1n =时,12112a a =①,即122a a = 当2n =时,12231123a a a a +=② ②-①,得23116a a =;即236a a = 设等差数列{}n a 公差为d ,由122326a a a a =⎧⎨=⎩,有()()222226a d a a d a -=⎧⎪⎨+=⎪⎩因为0d >,解得221a d =⎧⎨=⎩,则()22n a a n d n =+-= (2)由已知:122311111n n na a a a a a n ++++=+L ③ 当2n ≥时,122311111n n n a a a a a a n--+++=L ④ ③-④得:当2n ≥时,111n n na a n +=+,即()11n n a a n n +=⋅+, 结合122a a =,得:()()11n n a a n n n +=⋅+∈*N()()()1111n nn n n b a a n n +=-⋅=-+()()()2121212221n n b b n n n n -+=-⋅-⋅+⋅+()221214n n n n =+-+= ()()()21234212n n n S b b b b b b -=++++++L 484n =+++L()()44212n n n n +==+20.解:(1)由已知得:1NF NM =,所以1224NF NF MN NF +=+=又12F F =N 的轨迹是以12,F F 为焦点,长轴长等于4的椭圆,所以点N 的轨迹方程是22142x y +=. (2)设直线():10AB y kx k =+≠,()11,A x y ,()22,B x y ,则()22,B x y '-,联立直线AB 与椭圆得22241x y y kx ⎧+=⎨=+⎩,得()2212420k x kx ++-=,∴()21221228140,4,12212k k x x k x x k ⎧∆=+>⎪⎪-⎪+=⎨+⎪-⎪=⎪+⎩∴1212AB y y k x x '-=+,所以直线()121112:y y AB y y x x x x -'-=-+,所以令0x =,得122112x y x y y x x +=+,()()122112121211212x kx x kx kx x x x x x +++==+=++,所以直线AB '过定点()0,2Q , 所以PAB '∆的面积12221212PQB PQA k S S S x x k'∆∆=-=+=+2122k k=≤+,当且仅当2k =±时,等号成立.所以PAB '∆面积的最大值是2. 21.解:(1)由题意,()()()221x xf x ax e ax x a e --'=+-++ ()2121x e ax a x a -⎡⎤=-+-+-⎣⎦()()11xe x ax a -=--+-. (ⅰ)当0a =时,()()1xf x e x -'=--,令()0f x '>,得1x <;()0f x '<,得1x >, 所以()f x 在(),1-∞单调递增,()1,+∞单调递减. 所以()f x 的极大值为()131f e e=≠,不合题意. (ⅱ)当0a >时,111a-<, 令()0f x '>,得111x a -<<;()0f x '<,得11x a<-或1x >,所以()f x 在11,1a ⎛⎫-⎪⎝⎭单调递增,1,1a ⎛⎫-∞- ⎪⎝⎭,()1,+∞单调递减. 所以()f x 的极大值为()2131a f e e+==,得1a =. 综上所述1a =. (2)令()()2xx g a exx a xe --=++,(],0a ∈-∞,当[)0,x ∈+∞时,()20xex x -+≥,则()()ln 1g a b x ≤+对(],0a ∀∈-∞恒成立等价于()()()0ln 1g a g b x ≤≤+, 即()ln 1xxeb x -≤+,对[)0,x ∈+∞恒成立.(ⅰ)当0b ≤时,()0,x ∀∈+∞,()ln 10b x +<,0xxe ->,此时()ln 1xxeb x ->+,不合题意.(ⅱ)当0b >时,令()()ln 1xh x b x xe -=+-,[)0,x ∈+∞,则()()()2111x x xxb be x h x e xe x x e--+-'=--=++,其中()10x x e +>,[)0,x ∀∈+∞, 令()[)21,0,xp x be x x =+-∈+∞,则()h x 在区间[)0,+∞上单调递增,①1b ≥时,()()010p x p b ≥=-≥,所以对[)0,x ∀∈+∞,()0h x '≥,从而()h x 在[)0,+∞上单调递增, 所以对任意[)0,x ∈+∞,()()00h x h ≥=, 即不等式()ln 1xb x xe -+≥在[)0,+∞上恒成立.②01b <<时,由()010p b =-<,()10p be =>及()p x 在区间[)0,+∞上单调递增, 所以存在唯一的()00,1x ∈使得()00p x =,且()00,x x ∈时,()00p x <. 从而()00,x x ∈时,()0h x '<,所以()h x 在区间()00,x 上单调递减, 则()00,x x ∈时,()()00h x h <=,即()ln 1xb x xe -+<,不符合题意.综上所述,1b ≥.22.解:(1)将1C的方程化为直角坐标方程为221y +=,即2212x y +=.将cos x ρθ=,sin y ρθ=代入可得()()22cos sin 12ρθρθ+=化简得2221sin ρθ=+(2)根据题意:射线OB 的极坐标方程为2πθα=+或2πθα=-.1OA ρ==2OB ρ===则12OA OB ρρ⋅=⋅==22241sin 1cos 32αα≥=+++,当且仅当22sin cos αα=,即4πα=时,取得最小值43. 故OA OB ⋅的最小值为43. 23.解:(1)依题意:()1121f x x x x +-=-++12221x x x +-=-++()()22213x x ≥--+=,当且仅当()2221x x -=-+,即14x =时,等号成立. (2)①当12a >-,即2a >-时,()31,,21,1,231,1,a x a x a f x x a x x a x ⎧-+-≤-⎪⎪⎪=++-<<⎨⎪+->⎪⎪⎩则当2a x =-时,()min 112222a a a f x f ⎛⎫=-=--=+= ⎪⎝⎭,故2a =.②当12a <-,即2a <-时,()31,1,1,1,231,,2x a x a f x x a x a x a x ⎧⎪-+-≤⎪⎪=---<<-⎨⎪⎪+-≥-⎪⎩则当2a x =-时,()min 112222a a a f x f ⎛⎫=-=--=--= ⎪⎝⎭,故6a =-. ③当12a=-时,即2a =-时,()31f x x =-有最小值0,不符合题意,舍去.。
厦门市2018届高三年级第一学期期末质检理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1)A2)AC3)A4)ABCD5)A.-7 B.2 D.36)A7.2,的最小值为()A.-2 B.28)A. B. C. D.9)A10.习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12…来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前.)A.100 B.140 C.190 D.25011.()AC12()AC第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)131415.16.某三棱锥的三视图如图所示,则它的外接球表面积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1(2.18(1(2.19(10(220(1(2.21(1(2围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程.以坐标原点为(1(2.23.选修4-5:不等式选讲(1(22.厦门市2018届高三年级第一学期期末质检理科数学试题参考答案及评分标准一、选择题1-5:BCBDC 6-10:ACADC 11、12:BD二、填空题13.28 15三、解答题17.解:(1(218.证明:(1)解:(2)19.解:(1②-(2③-20.解:(14的椭圆,(2.21.解:(1...(2....22.解:(1(223.解:(1.(20,不符合题意,舍去.。
漳州市2018届高中毕业班调研测试数学(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合304x A xx ⎧+⎫=≥⎨⎬-⎩⎭,{}24x B x =>,则A B =I ( )A .(2,)+∞B .(4,)+∞C .[4,)+∞D .[3,2)- 2.若复数z 满足(2)17z i i -=+,则z =( ) A .5 B .10 C .22 D .2 3.函数cos ()2xf x x =⋅在[,]ππ-上的图象大致为( )A .B .C .D .4.已知1a =r ,2b =r ,且()a a b ⊥-r r r ,则向量a r 在b r方向上的投影为( )A .1B .2 C.12 D .2 5.等差数列{}n a 和等比数列{}n b 的首项均为1,公差与公比均为3,则123b b b a a a ++=( ) A .64 B .32 C.38 D .336.执行如图所示的程序框图,若输入的p 为16,则输出的n ,S 的值分别为( )A .4,18B .4,30 C.5,30 D .5,45 7.某几何体的三视图如图所示,则这个几何体的体积为( )A .193 B .203 C.163D .6 8.已知函数()sin()f x A x ωϕ=+0,0,2A πωϕ⎛⎫>><⎪⎝⎭在一个周期内的图象如图所示,则4f π⎛⎫= ⎪⎝⎭( )A .22-B .222 D .2- 9.已知函数()f x 是定义在R 上的偶函数,当0x ≤时,()f x 为减函数,则不等式133(log (25))(log 8)f x f ->的解集为( )A .541216Ax ⎧⎫<<⎨⎬⎩⎭ B .132x x ⎧⎫>⎨⎬⎩⎭ C.541132162xx x ⎧⎫<<>⎨⎬⎩⎭或 D .541132162x x x ⎧⎫<<<⎨⎬⎩⎭或10.在区间[0,1]上随机取三个数a ,b ,c ,则事件“2221a b c ++≤”发生的概率为( ) A .8π B .6π C.4π D .2π 11.已知直线l 过抛物线C :24y x =的焦点,l 与C 交于A ,B 两点,过点A ,B 分别作C 的切线,交于点P ,则点P 的轨迹方程为( )A .1x =-B .2x =- C.24(1)y x =+ D .24(2)y x =+ 12.已知不等式(3)0xax e x +->有且只有一个正整数解,则实数a 的取值范围是( )A .21133,2e e ⎛⎤-- ⎥⎝⎦ B .21133,2e 2e ⎛⎤-- ⎥⎝⎦C. 21133,2e e ⎛⎤-- ⎥⎝⎦ D .21133.22e e ⎛⎤-- ⎥⎝⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知82a x x ⎛⎫- ⎪⎝⎭展开式中常数项为1120,则正数a = .14.已知实数x ,y 满足20,0,0,x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩若z x y =+的最大值为4,则z 的最小值为 .15.设F 为双曲线C : 22221x y a b-=(0,0)a b >>的右焦点,过F 且斜率为a b 的直线l 与双曲线C 的两条渐近线分别交于A ,B 两点,且2AF BF =u u u r u u u r,则双曲线C 的离心率为 .16.数列{}n a 为单调递增数列,且(23)814,4,log ,4n t t n t n a n n --+<⎧=⎨≥⎩*t N ∈,则t 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知223()2b c a bc -=-. (1)求sin A ;(2)若2a =,且sin B ,sin A ,sin C 成等差数列,求ABC ∆的面积.18.随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了30名男生、20名女生进行为期一周的跟踪调查,调查结果如表所示:(2)在这20名女生中,调查小组发现共有15人使用国产手机,在这15人中,平均每天使用手机不超过3小时的共有9人.从平均每天使用手机超过3小时的女生中任意选取3人,求这3人中使用非国产手机的人数X 的分布列和数学期望.参考公式:22()()()()()n ad bc K a c b d a b c d -=++++()n a b c d =+++19.如图,在多面体ABCDNPM ,底面ABCD 是菱形,60ABC ︒∠=,PA ⊥平面ABCD ,2AB AP ==,//PM AB ,//PN AD ,1PM PN ==.(1)求证:MN PC ⊥;(2)求平面MNC 与平面APMB 所成锐角二面角的余弦值.20.已知椭圆C :22221x y a b+=(0)a b >>的一个焦点与抛物线243y x =的焦点重合,且过点13,2Q ⎛⎫ ⎪⎝⎭.过点(1,0)P 的直线l 交椭圆C 于M ,N 两点,A 为椭圆的左顶点. (1)求椭圆C 的标准方程;(2)求AMN ∆面积的最大值,并求此时直线l 的方程.21.已知函数2()2321xf x e x x b =+-++,x R ∈的图象在0x =处的切线方程为2y ax =+. (1)求函数()f x 的单调区间与极值;(2)若存在实数x ,使得2()23220f x x x k =----≤成立,求整数k 的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程是12cos 2sin x y αα=+⎧⎨=⎩(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为cos 24πρθ⎛⎫+= ⎪⎝⎭. (1)求曲线C 的普通方程与直线l 的直角坐标方程;(2)已知直线l 与曲线C 交于A ,B 两点,与x 轴交于点P ,求PA PB ⋅. 23.选修4-5:不等式选讲已知函数()2122f x x x =-++. (1)求函数()f x 的最小值; (2)解不等式()8f x <.试卷答案一、选择题1-5:BBDDD 6-10:ABCCB 11、12:AA 二、填空题13.1 14.2- 15.2 16.3,2⎛⎫+∞ ⎪⎝⎭三、解答题17.解:(Ⅰ)由(b -c )2=a 2-32bc ,得b 2+c 2-a 2=12bc ,即b 2+c 2-a 22bc =14,由余弦定理得cosA =14,因为0<A<π,所以si n A =154. (Ⅱ)由si n B ,si n A ,si n C 成等差数列,得si n B +si n C =2si n A ,由正弦定理得b +c =2a =4, 所以16=(b +c )2,所以16=b 2+c 2+2bc . 由(Ⅰ)得16=a 2+52bc ,所以16=4+52bc ,解得bc =245,所以S △ABC =12bc si n A =12×245×154=3155.18.解:(Ⅰ)K 2=50×(25×11-5×9)230×20×16×34≈8.104>6.635.所以能在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关. (Ⅱ)X 可取0,1,2,3. P(X =0)=C 36C 39=521,P(X =1)=C 13C 26C 39=1528,P(X =2)=C 23C 16C 39=314,P(X =3)=C 33C 39=184,所以X 的分布列为X 0 1 2 3 P5211528 314 184 E (X)=0×21+1×28+2×14+3×84=1.19.解:(Ⅰ)证明:作M E ∥PA 交AB 于E ,N F ∥PA 交AD 于F ,连接EF ,BD ,AC. 由PM∥AB,PN ∥AD ,易得M E 綊N F , 所以四边形M EF N 是平行四边形, 所以MN∥EF ,因为底面ABCD 是菱形,所以AC⊥BD,又易得EF ∥BD,所以AC⊥EF ,所以AC⊥MN, 因为PA⊥平面ABCD ,EF 平面ABCD , 所以PA⊥EF ,所以PA⊥MN,因为AC∩PA=A , 所以MN⊥平面PAC ,故MN⊥PC.(Ⅱ)建立空间直角坐标系如图所示,则C(0,1,0),M ⎝⎛⎭⎪⎫32,-12,2,N ⎝ ⎛⎭⎪⎫-32,-12,2,A(0,-1,0),P(0,-1,2),B(3,0,0),所以CM →=⎝ ⎛⎭⎪⎫32,-32,2,CN →=⎝ ⎛⎭⎪⎫-32,-32,2,AP →=(0,0,2),AB →=(3,1,0),设平面MNC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧32x -32y +2z =0,-32x -32y +2z =0,令z =1,得x =0,y =43,所以m =⎝ ⎛⎭⎪⎫0,43,1; 设平面APMB 的法向量为n =(x 1,y 1,z 1),则⎩⎨⎧2z 1=0,3x 1+y 1=0,令x 1=1,得y 1=-3,z 1=0, 所以n =(1,-3,0),设平面MNC 与平面APMB 所成锐二面角为α, 则cos α=|m ·n ||m |·|n |=43302+⎝ ⎛⎭⎪⎫432+12×12+(-3)2+02=235,所以平面MNC 与平面APMB 所成锐二面角的余弦值为235.20.解:(Ⅰ)因为抛物线y 2=43x 的焦点为(3,0),所以椭圆C 的半焦距c =3,即a 2-b 2=3. ① 把点Q ⎝ ⎛⎭⎪⎫-3,12代入x 2a 2+y 2b 2=1,得3a 2+14b 2=1. ② 由①②解得a 2=4,b 2=1.所以椭圆C 的标准方程为x 24+y 2=1.(Ⅱ)设直线l 的方程为x =ty +1,代入x 24+y 2=1,得(t 2+4)y 2+2ty -3=0.(5分)设M(x 1,y 1),N(x 2,y 2),则有y 1+y 2=-2t t 2+4,y 1y 2=-3t 2+4.则|y 1-y 2|=(y 1+y 2)2-4y 1y 2=⎝ ⎛⎭⎪⎫-2t t 2+42-4⎝ ⎛⎭⎪⎫-3t 2+4=4t 2+3t 2+4=4t 2+3t 2+3+1=4t 2+3+1t 2+3.令t 2+3=m (m ≥3).易知函数y =m +1m 在[3,+∞)上单调递增,则t 2+3+1t 2+3≥3+13=433, 当且仅当m =3,即t =0时,取等号. 所以|y 1-y 2|≤ 3.所以△AMN 的面积S =12|AP||y 1-y 2|≤12×3×3=332,所以S m a x =332,此时直线l 的方程为x =1.21.解:(Ⅰ)f ′(x )=2e x+6x -2, 因为f ′(0)=a ,所以a =0, 易得切点(0,2),所以b =-1.易知函数f ′(x )在R 上单调递增,且f ′(0)=0. 则当x <0时,f ′(x )<0;当x >0时,f ′(x )>0.所以函数f (x )的单调递减区间为(-∞,0);单调递增区间为(0,+∞). 所以函数f (x )在x =0处取得极小值f (0)=2. (Ⅱ)f (x )-2x 2-3x -2-2k≤0e x+12x 2-52x -1-k ≤0k ≥e x+12x 2-52x -1, (*)令h(x )=e x+12x 2-52x -1,若存在实数x ,使得不等式(*)成立,则k≥h(x )m i n , h ′(x )=e x+x -52,易知h′(x )在R 上单调递增,又h′(0)=-32<0,h ′(1)=e -32>0,h ′⎝ ⎛⎭⎪⎫12=e 12-2<0,h ′⎝ ⎛⎭⎪⎫34=e 34-74>2.5634-74=1.632-74=512125-74>2-74=14>0, ⎝⎛或由e x≥x +1当x =0时取等号,得e 34-74=e 34-⎭⎪⎫⎝ ⎛⎭⎪⎫34+1>0所以存在唯一的x 0∈⎝ ⎛⎭⎪⎫12,34,使得h′(x 0)=0,且当x ∈(-∞,x 0)时,h ′(x )<0;当x ∈(x 0,+∞)时,h ′(x )>0. 所以h(x )在(-∞,x 0)上单调递减,在(x 0,+∞)上单调递增, h(x )m i n =h(x 0)=e x 0+12x 20-52x 0-1,又h′(x 0)=0,即e x 0+x 0-52=0,所以e x 0=52-x 0.所以20000515()1222h x x x x =-+--2001(73)2x x =-+因为x 0∈⎝ ⎛⎭⎪⎫12,34, 所以h(x 0)∈⎝ ⎛⎭⎪⎫-2732,-18,则k≥h(x 0),又k∈Z . 所以k 的最小值为0.22.解:(Ⅰ)由曲线C 的参数方程⎩⎪⎨⎪⎧x =1+2cos α,y =2sin α(α为参数)⎩⎪⎨⎪⎧x -1=2cos α,y =2sin α(α为参数), 两式平方相加,得曲线C 的普通方程为(x -1)2+y 2=4;(3分)由直线l 的极坐标方程可得ρcos θcos π4-ρsi n θsi n π4=2ρcos θ-ρsi n θ=2,即直线l 的直角坐标方程为x -y -2=0.(5分)(Ⅱ)由题意可得P(2,0),则直线l 的参数方程为⎩⎪⎨⎪⎧x =2+22t ,y =22t (t 为参数).)设A ,B 两点对应的参数分别为t 1,t 2,则|PA|·|PB|=|t 1|·|t 2|, 将⎩⎪⎨⎪⎧x =2+22t ,y =22t(t 为参数)代入(x -1)2+y 2=4,得t 2+2t -3=0,则Δ>0,由韦达定理可得t 1·t 2=-3, 所以|PA|·|PB|=|-3|=3.(23.解:(Ⅰ)因为f (x )=|2x -1|+2|x +2|≥|(2x -1)-2(x +2)|=5, 所以函数f (x )的最小值是5.(Ⅱ)解法一:f (x )=⎩⎪⎨⎪⎧-4x -3,x<-2,5, -2≤x≤12,4x +3, x>12, 当x <-2时,由-4x -3<8,解得x >-114,即-114<x <-2;当-2≤x ≤12时,5<8恒成立,即-2≤x ≤12;当x >12时,由4x +3<8,解得x <54,即12<x <54,所以原不等式的解集为⎝ ⎛⎭⎪⎫-114,54.解法二(图象法):f (x )=⎩⎪⎨⎪⎧-4x -3,x<-2,5, -2≤x≤12,4x +3, x>12, 函数f (x )的图象如图所示,令f (x )=8,解得x =-114或x =54,所以不等式f (x )<8的解集为⎝⎛⎭⎫-114,54.答案解析1 2 3 4 5 6 7 8 9 10 11 12 BBDDDABCCBAA∞),B =(2,+∞),所以A ∩B =(4,+∞),故选B.2.B 【解析】本题考查复数的除法运算及复数的模.因为z =1+7i 2-i =(1+7i )(2+i )(2-i )(2+i )=-1+3i ,所以|z |=10,故选B.3.D 【解析】本题考查函数的图象和基本性质.由题易得函数f (x )是奇函数,所以其图象关于原点对称,排除B ,C ,当x ∈(0,π]时,f (x )>0,排除A ,故选D.4.D 【解析】本题考查向量的基本概念和运算.设a 与b 的夹角为θ,则a ⊥(a -b )a ·(a -b )=0a 2-a ·b =0a 2-|a |·|b |cos θ=0,所以cos θ=22,所以向量a 在b 方向上的投影为|a |cos θ=22,故选D.5.D 【解析】本题考查等差数列和等比数列的通项公式.依题意,a n =1+3(n -1)=3n -2,b n =3n -1,则b 1=1,b 2=3,b 3=9,所以a b 1+a b 2+a b 3=a 1+a 3+a 9=1+7+25=33,故选D.6.A 【解析】本题考查含有当型循环结构的程序框图.执行程序框图,依次可得n =1,S =0,S<16,进入循环;S =0+3=3,n =2,S =3<16,进入循环;S =3+6=9,n =3,S =9<16,进入循环;S =9+9=18,n =4,S =18>16,跳出循环,输出n =4,S =18,故选A.7.B 【解析】本题考查空间几何体的三视图、空间几何体的体积.这个几何体是由一个棱长为2的正方体挖去一个三棱锥而成的,其直观图如图所示,则这个几何体的体积V =23-13×12×2×2×2=203,故选B.8.C 【解析】本题考查三角函数的图象与性质.由题图可知,A =2,T =2πω=2×⎝ ⎛⎭⎪⎫5π8-π8=π,所以ω=2,=2,解得2×π8+φ=π2+2k π,k ∈Z ,即φ=π4+2k π,k ∈Z ,因为|φ|<π2,所以φ=π4,所以,故选C.9.C 【解析】本题考查函数的基本性质.由题知10.B 【解析】本题考查几何概型.满足条件的概率是以1为半径的球的体积的18除以以1为棱长的正方体的体积,即43π×18÷1=π6,故选B.11.A 【解析】本题考查直线与抛物线的位置关系与轨迹方程的求法.不妨将抛物线翻转为x 2=4y ,设翻转后的直线l 的方程为y =k x +1,翻转后的A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则联立⎩⎪⎨⎪⎧x 2=4y ,y =kx +1得x 2-4k x -4=0 ①,易得抛物线C 在点A 处的切线方程为y -14x 21=12x 1·(x -x 1),同理可得抛物线C 在点B 处的切线方程为y -14x 22=12x 2(x -x 2).联立⎩⎪⎨⎪⎧y -14x 21=12x 1(x -x 1),y -14x 22=12x 2(x -x 2)得y =14x 1x 2,再由①可得x 1x 2=-4,所以y =-1.故原抛物线C 相应的点P 的轨迹方程为x =-1,故选A.12.A 【解析】本题考查导数的应用.当a≥0时,1,2都是不等式(a x +3)e x-x >0的解,不符合题意;当a<0时,(a x +3)e x-x >0化为a x +3>x e x ,设f (x )=x e x ,则f ′(x )=1-x e x ,所以函数f (x )在(-∞,1)上是增函数,在(1,+∞)上是减函数,所以当x =1时,函数f (x )取得最大值,因为不等式(a x +3)e x-x >0有且只有一个正整数解,则⎩⎪⎨⎪⎧a×1+3>1e1,a ×2+3≤2e2,解得1e -3<a≤1e 2-32,故选A.13.1 【解析】本题考查二项式定理的通项.⎝⎛⎭⎪⎫2x -a x 8展开式的通项为 T k +1=C k8(2x )8-k⎝ ⎛⎭⎪⎫-a x k=C k 828-k (-a)k x 8-2k .令8-2k =0,得k =4.由,得正数a =1.14.-2 【解析】本题考查含有参数的线性规划问题.作出可行域,如图所示,经计算,A(-2k ,k),B(k ,k).由图可知,当直线y =-x +z 过点B 时,z 取最大值,即k +k =4,解得k =2,当直线y =-x +z 过点A(-4,2)时,z 取最小值,即z m i n =-4+2=-2.15.2或233 【解析】本题考查双曲线的几何性质.若AF →=-2BF →,则由图1可知,渐近线OB 的斜率为-b a ,l ⊥OB ,在Rt △OBA 中,由角平分线定理可得|OA||OB|=|FA||FB|=2,所以∠AOB=60°,∠x OA =30°,所以b a =33,e =c a=1+⎝ ⎛⎭⎪⎫b a 2=233.若AF →=2BF →,则由图2可知,渐近线OB 为△AO F 边A F 的垂直平分线,故△AO F 为等腰三角形,故∠AOB=∠BO F =60°,b a =3,e =ca=2.16.⎝ ⎛⎭⎪⎫32,+∞ 【解析】本题考查数列与分段函数的性质.要使数列{a n }为单调递增数列,则a 1<a 2<a 3<a 4<a 5<….当n <4时,a n =(2t -3)n -8t +14必须单调递增,∴2t -3>0,即t>32 ①.当n ≥4时,a n =log t n 也必须单调递增,∴t>1 ②.另外,由于这里类似于分段函数的增减性,因而a 3<a 4,即3(2t -3)-8t +14<log t 4,化简得log t 4+2t>5 ③.方法一:当32<t ≤2时,log t 4+2t>5;当2<t≤52时,log t 4+2t>5;当t>52时,log t 4+2t>5,故③式对任意t>32恒成立,综上,解得t 的取值范围是⎝ ⎛⎭⎪⎫32,+∞.方法二:由①②得t>32,在此前提下,构造f (t)=log t 4+2t -5⎝ ⎛⎭⎪⎫t>32,则f ′(t)=2-ln4tln 2t ,令g(t)=tl n 2t ⎝ ⎛⎭⎪⎫t>32,则g′(t)=l n 2t +2l n t =l n t(l n t +2)>0,∴g(t)=tl n 2t 在⎝ ⎛⎭⎪⎫32,+∞上单调递增,且g(t)>0,从而f ′(t)是⎝ ⎛⎭⎪⎫32,+∞上的增函数,可验证f ′⎝ ⎛⎭⎪⎫32=2-ln432ln 232=2⎝ ⎛⎭⎪⎫1-ln 34ln 232<0⎝ ⎛证明如下:要证f ′⎝ ⎛⎭⎪⎫32<0,即证l n 34>l n 232,即证l n 4>3l n 32×l n 32,即证l n 4>l n 278×l n 32,∵l n 4>l n 278,0<l n 32<1,∴l n 4>l n 278×⎭⎪⎫ln 32,得证,f ′(2)=2-ln42ln 22=2-2ln4>0.∴f ′(t)=2-ln4tln 2t 在⎝ ⎛⎭⎪⎫32,+∞上有唯一零点,设为m ,m ∈⎝ ⎛⎭⎪⎫32,2,易知m 为f (t)的极小值点,也是最小值点.∴f (t)m i n =f (m )=log m 4+2m -5.当m ∈⎝ ⎛⎭⎪⎫32,2时,log m 4>log 24=2,2m >2×32=3.∴f (t)m i n =f (m )>log 24+3-5=0,即当t∈⎝ ⎛⎭⎪⎫32,+∞时,f (t)>0恒成立.综上,t 的取值范围是⎝ ⎛⎭⎪⎫32,+∞.17.【名师指导】本题考查正弦定理、余弦定理、等差数列以及三角形面积的计算. 解:(Ⅰ)由(b -c )2=a 2-32bc ,得b 2+c 2-a 2=12bc ,(2分)即b 2+c 2-a 22bc =14,由余弦定理得cosA =14,(4分)因为0<A<π,所以si n A =154.(6分) (Ⅱ)由si n B ,si n A ,si n C 成等差数列,得si n B +si n C =2si n A ,(7分) 由正弦定理得b +c =2a =4,所以16=(b +c )2,所以16=b 2+c 2+2bc .(8分) 由(Ⅰ)得16=a 2+52bc ,所以16=4+52bc ,解得bc =245,(10分)所以S △ABC =12bc si n A =12×245×154=3155.(12分)18.【名师指导】本题考查独立性检验.解:(Ⅰ)K 2=50×(25×11-5×9)230×20×16×34≈8.104>6.635.(2分)所以能在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关.(4分) (Ⅱ)X 可取0,1,2,3.(5分) P(X =0)=C 36C 39=521,(6分)P(X =1)=C 13C 26C 39=1528,(7分)P(X =2)=C 23C 16C 39=314,(8分)P(X =3)=C 33C 39=184,(9分)所以X 的分布列为X 0 1 2 3 P5211528314184(10分)E (X)=0×521+1×1528+2×314+3×184=1.(12分)19.【名师指导】本题考查直线与平面垂直的判定和二面角的求法.(Ⅰ)证明MN⊥平面PAC ,从而证得MN⊥PC;(Ⅱ)建立空间直角坐标系,分别求出平面MNC 与平面APMB 的法向量,利用空间向量夹角公式求解.解:(Ⅰ)证明:作M E ∥PA 交AB 于E ,N F ∥PA 交AD 于F ,连接EF ,BD ,AC. 由PM∥AB,PN ∥AD ,易得M E 綊N F , 所以四边形M EF N 是平行四边形, 所以MN∥EF ,(2分) 因为底面ABCD 是菱形,所以AC⊥BD,又易得EF ∥BD,所以AC⊥EF ,所以AC⊥MN,(3分) 因为PA⊥平面ABCD ,EF 平面ABCD ,所以PA⊥EF ,所以PA⊥MN,因为AC∩PA=A ,(4分) 所以MN⊥平面PAC ,故MN⊥PC.(5分)(Ⅱ)建立空间直角坐标系如图所示,则C(0,1,0),M ⎝⎛⎭⎪⎫32,-12,2,N ⎝ ⎛⎭⎪⎫-32,-12,2,A(0,-1,0),P(0,-1,2),B(3,0,0),所以CM →=⎝ ⎛⎭⎪⎫32,-32,2,CN →=⎝ ⎛⎭⎪⎫-32,-32,2,AP →=(0,0,2),AB →=(3,1,0),(7分)设平面MNC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧32x -32y +2z =0,-32x -32y +2z =0,令z =1,得x =0,y =43,所以m =⎝ ⎛⎭⎪⎫0,43,1;(9分) 设平面APMB 的法向量为n =(x 1,y 1,z 1),则⎩⎨⎧2z 1=0,3x 1+y 1=0,令x 1=1,得y 1=-3,z 1=0, 所以n =(1,-3,0),(10分)设平面MNC 与平面APMB 所成锐二面角为α, 则cos α=|m ·n ||m |·|n |=43302+⎝ ⎛⎭⎪⎫432+12×12+(-3)2+02=235,(11分)所以平面MNC 与平面APMB 所成锐二面角的余弦值为235.(12分)20.【名师指导】本题考查椭圆的方程、性质、直线与椭圆位置关系的综合问题.解:(Ⅰ)因为抛物线y 2=43x 的焦点为(3,0),所以椭圆C 的半焦距c =3,即a 2-b 2=3. ① 把点Q ⎝⎛⎭⎪⎫-3,12代入x 2a 2+y 2b 2=1,得3a 2+14b 2=1. ② 由①②解得a 2=4,b 2=1.所以椭圆C 的标准方程为x 24+y 2=1.(4分)(Ⅱ)设直线l 的方程为x =ty +1,代入x 24+y 2=1,得(t 2+4)y 2+2ty -3=0.(5分)设M(x 1,y 1),N(x 2,y 2),则有y 1+y 2=-2t t 2+4,y 1y 2=-3t 2+4.(7分)则|y 1-y 2|=(y 1+y 2)2-4y 1y 2=⎝ ⎛⎭⎪⎫-2t t 2+42-4⎝ ⎛⎭⎪⎫-3t 2+4=4t 2+3t 2+4=4t 2+3t 2+3+1=4t 2+3+1t 2+3.(9分)令t 2+3=m (m ≥3).易知函数y =m +1m在[3,+∞)上单调递增,则t 2+3+1t 2+3≥3+13=433, 当且仅当m =3,即t =0时,取等号.(10分) 所以|y 1-y 2|≤ 3.所以△AMN 的面积S =12|AP||y 1-y 2|≤12×3×3=332,(11分)所以S m a x =332,此时直线l 的方程为x =1.(12分)21.【名师指导】本题考查导数的综合应用. 解:(Ⅰ)f ′(x )=2e x+6x -2, 因为f ′(0)=a ,所以a =0, 易得切点(0,2),所以b =-1.(1分)易知函数f ′(x )在R 上单调递增,且f ′(0)=0. 则当x <0时,f ′(x )<0;当x >0时,f ′(x )>0.所以函数f (x )的单调递减区间为(-∞,0);单调递增区间为(0,+∞).(2分) 所以函数f (x )在x =0处取得极小值f (0)=2.(3分) (Ⅱ)f (x )-2x 2-3x -2-2k≤0e x+12x 2-52x -1-k ≤0k ≥e x+12x 2-52x -1, (*)(4分)令h(x )=e x+12x 2-52x -1,若存在实数x ,使得不等式(*)成立,则k≥h(x )m i n , h ′(x )=e x+x -52,易知h′(x )在R 上单调递增,(6分)又h′(0)=-32<0,h ′(1)=e -32>0,h ′⎝ ⎛⎭⎪⎫12=e 12-2<0,h ′⎝ ⎛⎭⎪⎫34=e 34-74>2.5634-74=1.632-74=512125-74>2-74=14>0, ⎝⎛或由e x≥x +1当x =0时取等号,得e 34-74=e 34-⎭⎪⎫⎝ ⎛⎭⎪⎫34+1>0所以存在唯一的x 0∈⎝ ⎛⎭⎪⎫12,34,使得h′(x 0)=0,(8分)且当x ∈(-∞,x 0)时,h ′(x )<0;当x ∈(x 0,+∞)时,h ′(x )>0. 所以h(x )在(-∞,x 0)上单调递减,在(x 0,+∞)上单调递增,(9分) h(x )m i n =h(x 0)=e x 0+12x 20-52x 0-1,又h′(x 0)=0,即e x 0+x 0-52=0,所以e x 0=52-x 0.因为x 0∈⎝ ⎛⎭⎪⎫12,34, 所以h(x 0)∈⎝ ⎛⎭⎪⎫-2732,-18,则k≥h(x 0),又k∈Z . 所以k 的最小值为0.(12分)22.【名师指导】本题考查参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化、直线与圆的位置关系.(Ⅰ)运用同角三角函数的平方关系即可得到C 的普通方程,运用x =ρcos θ,y =ρsi n θ以及两角和的余弦公式,化简可得直线l 的直角坐标方程;(Ⅱ)写出直线l 的参数方程,代入曲线C 的普通方程,利用参数的几何意义即可得出|PA|·|PB|的值.解:(Ⅰ)由曲线C 的参数方程⎩⎪⎨⎪⎧x =1+2cos α,y =2sin α(α为参数)⎩⎪⎨⎪⎧x -1=2cos α,y =2sin α(α为参数), 两式平方相加,得曲线C 的普通方程为(x -1)2+y 2=4;(3分) 由直线l 的极坐标方程可得ρcos θcos π4-ρsi n θsi n π4=2ρcos θ-ρsi n θ=2,(4分)即直线l 的直角坐标方程为x -y -2=0.(5分)(Ⅱ)由题意可得P(2,0),则直线l 的参数方程为⎩⎪⎨⎪⎧x =2+22t ,y =22t (t 为参数).(6分)设A ,B 两点对应的参数分别为t 1,t 2,则|PA|·|PB|=|t 1|·|t 2|, 将⎩⎪⎨⎪⎧x =2+22t ,y =22t(t 为参数)代入(x -1)2+y 2=4,得t 2+2t -3=0,(8分)则Δ>0,由韦达定理可得t 1·t 2=-3,(9分) 所以|PA|·|PB|=|-3|=3.(10分)23.【名师指导】本题考查函数的最值与绝对值不等式的解法.(Ⅰ)利用绝对值三角不等式即可求解;(Ⅱ)分段解不等式或画出函数的图象,找出函数的图象与直线y=8的交点的横坐标即可求解.解:(Ⅰ)因为f (x )=|2x -1|+2|x +2|≥|(2x -1)-2(x +2)|=5,(4分) 所以函数f (x )的最小值是5.(5分)(Ⅱ)解法一:f (x )=⎩⎪⎨⎪⎧-4x -3,x<-2,5, -2≤x≤12,4x +3, x>12,(6分) 当x <-2时,由-4x -3<8,解得x >-114,即-114<x <-2;当-2≤x ≤12时,5<8恒成立,即-2≤x ≤12;当x >12时,由4x +3<8,解得x <54,即12<x <54,(9分)所以原不等式的解集为⎝ ⎛⎭⎪⎫-114,54.(10分)解法二(图象法):f (x )=⎩⎪⎨⎪⎧-4x -3,x<-2,5, -2≤x≤12,4x +3, x>12,(6分) 函数f (x )的图象如图所示,分)令f (x )=8,解得x =-114或x =54,(9分)所以不等式f (x )<8的解集为⎝ ⎛⎭⎪⎫-114,54.(10分)。
2018-2019学年福建省福州市高三(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x||x|>1},B={x|0<x<2},则A∩B=()A.(﹣∞,﹣1)∪(1,2)B.(﹣∞,﹣1)C.(﹣∞,2)D.(1,2)2.(5分)已知复数z满足z(1+i)2=2﹣i(i为虚数单位),则|z|为()A.2B.C.D.13.(5分)曲线f(x)=x+lnx在点(1,1)处的切线与坐标轴围成的三角形的面积为()A.2B.C.D.4.(5分)已知等差数列{a n}的前n项和为S n,且a3=2,a6=8,则S8=()A.20B.40C.60D.805.(5分)给出下列说法:①“”是“tan x=1”的充分不必要条件;②定义在[a,b]上的偶函数f(x)=x2+(a+5)x+b的最大值为30;③命题“∃x0∈R,”的否定形式是“∀x∈R,”.其中正确说法的个数为()A.0B.1C.2D.36.(5分)已知双曲线C:=1(a>0,b>0)的两条渐近线均与圆x2+y2﹣6y+5=0相切,则双曲线C的离心率为()A.B.C.D.7.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.1438.(5分)某个几何体的三视图如图所示,在该几何体的各个侧面中,面积最大的侧面的面积为()A.B.1C.D.9.(5分)已知点O是△ABC内部一点,且满足=又=2,∠BAC =60°,则△OBC的面积为()A.B.3C.1D.210.(5分)已知函数f(x)=x+1,将f(x)的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数y =g(x)的图象,若g(x1)•g(x2)=9,则|x1﹣x2|的值可能为()A.B.C.D.11.(5分)如图,函数f(x)的图象为两条射线CA,CB组成的折线,如果不等式f(x)≥x2﹣x﹣a的解集中有且仅有1个整数,那么实数a的取值范围是()A.{a|﹣2<a<﹣1}B.{a|﹣2≤a<﹣1}C.{a|﹣2≤a<2}D.{a|a≥﹣2} 12.(5分)已知函数f(x)=x3﹣2ex2+mx﹣lnx,若f(x)>x恒成立,则实数m的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知实数x,y满足条件,则x+y的最大值为.14.(5分)已知函数f(x)=ax3+b sin2x+2(a,b∈R,ab≠0),且f(2)=3,则f(﹣2)=.15.(5分)已知抛物线y2=8x的焦点为F,直线l过F且依次交抛物线及圆(x﹣2)2+y2=1于点A,B,C,D四点,则|AB|+4|CD|的最小值为16.(5分)函数f(x)=cos2x+α(sin x﹣cos x)在区间上单调递增,则实数α的取值范围是.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.(12分)如图,在△ABC中,M是边BC的中点,cos∠BAM=,cos∠AMC=﹣.(Ⅰ)求角B的大小;(Ⅱ)若AM=,求△AMC的面积.18.(12分)在数列{a n}中,a1=1,a n+1=,设b n=,n∈N*(Ⅰ)求证数列{b n}是等差数列,并求通项公式b n;(Ⅱ)设c n=b n•2n﹣1,且数列{c n}的前n项和S n,若λ∈R,求使S n﹣1≤λc n恒成立的λ的取值范围.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,AB⊥AC,AC⊥BB1,AB=A1B=AC=2,BB1=2.(Ⅰ)求证:A1B⊥平面ABC;(Ⅱ)若P是棱B1C1的中点,求直线BB1与平面P AB所成角的正弦值.20.(12分)已知点在椭圆C:=1(a>b>0)上,O为坐标原点,直线l:=1的斜率与直线OA的斜率乘积为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)不经过点A的直线l:y=x+t(t≠0且t∈R)与椭圆C交于P,Q两点,P关于原点的对称点为R(与点A不重合),直线AQ,AR与y轴分别交于两点M,N,求证:AM=AN.21.(12分)设函数f(x)=(ax﹣1)e1﹣x.(Ⅰ)当a>0时,求函数f(x)的单调区间;(Ⅱ)当a=1时,若函数f(x)与函数y=x2﹣4x+m(m∈R)的图象总有两个交点,设两个交点的横坐标分别为x1,x2.①求m的取值范围;②求证:x1+x2>4.请考生在(22)、(23)二题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数,α为l的倾斜角),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线E的极坐标方程为ρ=4sinθ,直线θ=β,θ=β+,θ=β﹣(ρ∈R),与曲线E分别交于不同于极点O的三点A,B,C.(Ⅰ)若,求证:|OB|+|OC|=|OA|;(Ⅱ)当β=时,直线l过B、C两点,求γ0与α的值.23.已知函数f(x)=|2x+a|+3a,a∈R.(Ⅰ)若对于任意x∈R,总有f(x)=f(4﹣x)成立,求a的值;(Ⅱ)若存在x∈R,使得f(x)≤﹣|2x﹣1|+a成立,求a的取值范围.2018-2019学年福建省福州市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x||x|>1}={x|x<﹣1或x>1},B={x|0<x<2},则A∩B={x|1<x<2}=(1,2).故选:D.2.【解答】解:由z(1+i)2=2﹣i,得,∴,故选:C.3.【解答】解:由题意得y′=+1,则在点M(1,1)处的切线斜率k=2,故切线方程为:y﹣1=2(x﹣1),即y=2x﹣1,令x=0得,y=﹣1;令y=0得,x=,∴切线与坐标轴围成三角形的面积S=×1×=,故选:D.4.【解答】解:等差数列{a n}中,a3=2,a6=8,∴=2,a1=a3﹣2d=﹣2,则S8=8a1+28d=﹣16+56=40,故选:B.5.【解答】解:根据题意得,①中由x=得tan x=1,而tan x=1时不能得x=∴”是“tan x=1”的充分不必要条件正确;②中由f(x)为偶函数得a=﹣5,b=5∴f(x)=x2+5最大值为30正确;③∵命题“∃x0∈R,”的否定形式是“∀x∈R,x+<2“与题中所给不同∴③不正确,故选:C.6.【解答】解:因为圆C:x2+y2﹣6y+5=0⇔(y﹣3)2+x2=4,由此知道圆心C(0,3),圆的半径为2,又因为双曲线的右焦点为圆C的圆心,又双曲线C:=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,而双曲线的渐近线方程为:y=±x⇔bx±ay=0,∴=2,即9a2=4c2,所以双曲线的离心率为:=.故选:A.7.【解答】解:初始值n=3,x=3,程序运行过程如下表所示:v=1i=2,v=1×3+2=5i=1,v=5×3+1=16i=0,v=16×3+0=48i=﹣1,不满足条件,跳出循环,输出v的值为48.故选:C.8.【解答】解:由三视图可知,该几何体是四棱锥,它的直观图如图所示;且PD⊥平面ABCD,底面ABCD是直角梯形,四棱锥的高PD=1,梯形ABCD的边长AB=1,AD=1,CD=2,则S△P AD=×1×1=,S△PCD=×1×2=1,S△P AB=××1=,△PBC中,PC2=12+22=5,PB2=12+=3,BC2=12+12=2,∴PC2=PB2+BC2,∴S△PBC=××=,∴该几何体的各侧面中,面积最大值为.故选:D.9.【解答】解:由点O是△ABC内部一点,且满足=,得点O是△ABC的重心,所以△OBC的面积:△ABC的面积=1:3,又=2,所以||||cos60°=2,||||=4,即||||sin60°=6,即||||sin60°=3,即:△ABC的面积为3,即为△OBC的面积1,故选:C.10.【解答】解:函数f(x)=x+1=sin2x﹣cos2x=2sin(2x﹣),将f(x)的图象上的所有点的横坐标缩短到原来的倍,得y=2sin(4x﹣)的图象;再把所得图象向上平移1个单位,得函数y=g(x)=2sin(4x﹣)+1的图象,若g(x1)•g(x2)=9,则4x﹣=+2kπ,k∈Z;解得x=+,k∈Z;其中x1、x2是三角函数g(x)最高点的横坐标,∴|x1﹣x2|的值为T的整数倍,且T==.故选:B.11.【解答】解:根据题意可知f(x)=,不等式f(x)≥x2﹣x﹣a等价于a≥x2﹣x﹣f(x),令g(x)=x2﹣x﹣f(x)=,可得g(x)的大致图象,如图所示,又g(0)=﹣2,g(1)=﹣1,g(﹣1)=2,∴要使不等式的解集中有且仅有1个整数,则﹣2≤a<1,即a取值范围是{a|﹣2≤a<1}.故选:B.12.【解答】解:若f(x)>x恒成立,即m>﹣x2+2ex++1,∵m'=﹣2x+2e+=﹣2(x﹣e)+,∴当x∈(0,e)时,m'>0,m为关于x的增函数;当x∈(e,+∞)时,m'<0,m为关于x的减函数.故函数y=﹣x2+2ex+的最大值为:e2+,即m>e2++1,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得A(1,2),代入目标函数z=x+y得z=1+2=3.即目标函数z=x+y的最大值为3.故答案为:3.14.【解答】解:根据题意,函数f(x)=ax3+b sin2x+2,则f(﹣x)=a(﹣x)3+b sin2(﹣x)+2=﹣(ax3+b sin2x)+2,则f(x)+f(﹣x)=4,即有f(2)+f(﹣2)=4,又由f(2)=3,则f(﹣2)=1;故答案为:115.【解答】解:∵y2=8x,焦点F(2,0),准线l0:x=﹣2,由圆:(x﹣2)2+y2=1,圆心(2,0),半径为1.由抛物线的定义得:|AF|=x A+2,又∵|AF|=|AB|+1,∴|AB|=x A+1同理:|CD|=x D+1当AB⊥x轴时,则x D=x A=2,∴|AB|+4|CD|=15.当AB的斜率存在且不为0,设AB:y=k(x﹣2)时,代入抛物线方程,得:k2x2﹣(4k2+8)x+4k2=0,∴x A x D=4,x A+x D=,∴|AB|+4|CD|=(x A+1)+4(x D+1)=5+x A+4x D≥5+2=13.当且仅当x A=4x D,即x A=4,x D=1时取等号,综上所述|AB|+4|CD|的最小值为13.故答案为:13.16.【解答】解:函数cos2x+α(sin x﹣cos x)在区间上单调递增,∴f′(x)=﹣2sin2x+α(cos x+sin x)≥0在区间上恒成立∴在区间上恒成立即,令∈[1,]所以问题转化为,t∈[1,].当t=时,取到最大值,取到最大值.∴t≥故答案为:三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(Ⅰ)由,得,由,得,又∠AMC=∠BAM+∠B,所以,cos B=cos(∠AMC﹣∠BAM)=cos∠AMC cos∠BAM+sin∠AMC sin∠BAM==,又B∈(0,π),所以.(Ⅱ)解法一:由(Ⅰ)知,在△ABM中,由正弦定理,得,所以,=.因为M是边BC的中点,所以,.故=.解法二:由(Ⅰ)知,在△ABM中,由正弦定理,得,所以,=.因为M是边BC的中点,所以,S△AMC=S△ABM,所以,==.18.【解答】(I)证法一:由条件知,,所以,,所以b n+1﹣b n=1,又,所以,数列{b n}是首项为1,公差为1的等差数列,故数列{b n}的通项公式为:b n=n.证法二:由条件,得=,又,所以,数列{b n}是首项为1,公差为1的等差数列,故数列{b n}的通项公式为:b n=n.(Ⅱ)解:由(Ⅰ)知,,则,①②由①﹣②得,==﹣1+(1﹣n)•2n ∴∵c n>0,∴S n﹣1≤λc n恒成立,等价于对任意n∈N*恒成立.∵,∴λ≥2.19.【解答】证明:(Ⅰ)∵在三棱柱ABC﹣A1B1C1中,AB⊥AC,AC⊥BB1,又AB∩BB1=B,∴AC⊥平面ABB1A1,又A1B⊂平面ABB1A1,∴AC⊥A1B,∵,∴,∵AB=A1B=2,∴,∴A1B⊥AB,又AC∩AB=A,∴A1B⊥平面ABC.解:(Ⅱ)解法一:由(Ⅰ)知,直线A1C1,A1B1,BA1两两互相垂直,如图,以A1为原点,分别以A1C1,A1B1,BA1所在直线为x,y,z轴,建立空间直角坐标系A1﹣xyz,则A1(0,0,0),P(1,1,0),B(0,0,﹣2),B1(0,2,0),,,设平面P AB的法向量,则,所以,,取z=1,则,又,设直线BB1与平面P AB所成角为θ,则=.∴直线BB1平面P AB所成角的正弦值.解法二:由(Ⅰ)知,直线A1C1,A1B1,BA1两两互相垂直,以A为原点,分别以AC、AB、Az所在直线为x,y,z轴,建立如图所示空间直角坐标系A﹣xyz,则A(0,0,0),A1(0,2,2),P(1,3,2),B(0,2,0),B1(0,4,2),C1(2,2,2),,,设平面P AB的法向量,则,所以,,取z=1,则,又,设直线BB1与平面P AB所成角为θ,则=.∴直线BB1平面P AB所成角的正弦值.20.【解答】解:(Ⅰ)由题意,,即a2=4b2 ①.又②.联立①①解得,∴椭圆C的方程为:;(Ⅱ)设P(x1,y1),Q(x2,y2),R(﹣x1,﹣y1),由,得,∴△=4﹣t2>0,即﹣2<t<2,又∵t≠0,∴t∈(﹣2,0)∪(0,2),,,要证明AM=AN,可转化为证明直线AQ,AR的斜率互为相反数,只需证明k AM+k AN=0,即证明k AQ+k AR=0.∵====∴k AM+k AN=0,即AM=AN.21.【解答】解:(Ⅰ)由已知得,f′(x)=﹣ae1﹣x(x﹣),由e﹣x>0,a>0,令f′(x)>0得:,令f′(x)<0得,所以,当a>0时,单调递增区间是;单调递减区间是.(Ⅱ)令g(x)=f(x)﹣x2+4x﹣m=(x﹣1)e1﹣x﹣x2+4x﹣m,∴g′(x)=﹣(e1﹣x+2)(x﹣2),①解法一:由g′(x)<0得,x>2;由g′(x)>0得,x<2,易知,x=2为g(x)的极大值点.,当x→﹣∞时,g(x)→﹣∞;当x→+∞时,g(x)→﹣∞.由题意,只需满足,∴m的取值范围是:.解法二:f′(x)=﹣e1﹣x(x﹣2),由f′(x)<0得,x>2;由f′(x)>0得,x<2易知,x=2为极大值点.而y=x2﹣4x+m(m∈R)在x=2时取得极小值,由题意,只需满足,解得.②由题意知,x1,x2为函数g(x)=f(x)﹣x2+4x﹣m=(x﹣1)e1﹣x﹣x2+4x﹣m的两个零点,由①知,不妨设x1<2<x2,则4﹣x2<2,且函数g(x)在(﹣∞,2)上单调递增,欲证x1+x2>4,只需证明g(x1)>g(4﹣x2),而g(x1)=g(x2),所以,只需证明g(x2)>g(4﹣x2).令H(x2)=g(x2)﹣g(4﹣x2)(x2>2),则∴∵x2>2,∴,即所以,H′(x2)>0,即H(x2)在(2,+∞)上为增函数,所以,H(x2)>H(2)=0,∴g(x2)>g(4﹣x2)成立,所以,x1+x2>4.请考生在(22)、(23)二题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.【解答】解:(Ⅰ)证明:依题意,|OA|=|4sinβ|,,,∵,∴.(Ⅱ)当时,直线与圆的交点B的极坐标为,直线与圆的交点C点的极坐标为从而,B、C两点的直角坐标分别为:,C(0,4)∴直线l的方程为:,所以,y0=1,.23.【解答】解:(Ⅰ)因为f(x)=f(4﹣x),x∈R,所以f(x)的图象关于x=2对称,又的图象关于对称,所以,所以,a=﹣4.(Ⅱ)∃x∈R,使得f(x)≤﹣|2x﹣1|+a等价于∃x∈R,使得|2x+a|+|2x﹣1|+2a≤0.等价于(|2x+a|+|2x﹣1|+2a)min≤0,设g(x)=|2x+a|+|2x﹣1|+2a,则g(x)min=|(2x+a)﹣(2x﹣1)|+2a=|a+1|+2a,所以,|a+1|+2a≤0.当a≥﹣1时,a+1+2a≤0,,所以,;当a<﹣1时,﹣a﹣1+2a≤0,a≤1,所以a<﹣1,综上,.解法二:(Ⅰ)∵f(x)=f(4﹣x)∴|2x+a|+3a=|2(4﹣x)+a|+3a,∴|2x+a|=|8﹣2x+a|,即2x+a=﹣(8﹣2x+a),或2x+a=8﹣2x+a(舍)所以,a=﹣4(Ⅱ)由f(x)≤﹣|2x﹣1|+a得,|2x+a|+|2x﹣1|≤﹣2a而|2x+a|+|2x﹣1|≥|a+1|由题意知,只需满足|a+a|≤﹣2a,即2a≤a+1≤﹣2a即,∴.。
福建省福州市2018届高三上学期期末质检数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】则故选2. 若复数的模为,则实数()A. 1B.C.D.【答案】C【解析】,,故选3. 下列函数为偶函数的是()A. B.C. D.【答案】B【解析】对于中,故排除对于中,故排除对于中故排除故选4. 若,则()A. B. C. D.【答案】C【解析】故选5. 已知圆锥的高为3,它的底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A. B. C. D.【答案】B【解析】如图:设球心到底面圆心的距离为,则球的半径为,由勾股定理得解得,故半径,故选6. 已知函数则函数的零点个数是()A. 0B. 1C. 2D. 3【答案】C【解析】根据题意令,解得,,当时符合题意令无解,故只有两个零点,选7. 如图的程序框图的算法思路源于我国古代著名的“孙子剩余定理”,图中的表示正整数除以正整数后的余数为,例如.执行该程序框图,则输出的等于()A. 23B. 38C. 44D. 58【答案】A【解析】本题框图计算过程要求找出一个数除以3余数为2;除以5余数为3;除以7余数为2,那么这个数首先是23,故选8. 如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为()A. 14B.C.D.【答案】D【解析】还原三视图如下:其表面积为故选9. 已知圆,抛物线上两点与,若存在与直线平行的一条直线和与都相切,则的标准方程为()A. B. C. D.【答案】C【解析】将点与代入抛物线得,,不妨设与直线平行的一条直线为,联立解得由解得或(舍) 则的准线方程为故选10. 不等式组的解集记为.有下列四个命题:其中真命题的是()A. B. C. D.【答案】A【解析】对于取点代入得,所以为假命题;为真命题;对于恒成立,所以为假命题故选11. 已知双曲线的左、右焦点分别为,点在上,,线段交于点,且,则的离心率为()A. B. C. D.【答案】B【解析】由得点横坐标为代入求得纵坐标为又因为,所以代入双曲线中得,化简得,所以故选12. 设数列的前项和为,,且.若,则的最大值为()A. 51B. 52C. 53D. 54【答案】A【解析】若为偶数,则,,,所以这样的偶数不存在若为奇数,则若,则当时成立若,则当不成立故选第Ⅱ卷二、填空题13. 已知单位向量满足,则的夹角为__________.【答案】【解析】根据题意,与的夹角为14. 设为正整数,展开式中仅有第5项的二项式系数最大,则展开式中的常数项为__________.【答案】112【解析】由展开式中仅有第5项的二项式系数最大得则,令,则展开式中的常数项为15. 将函数的图象向右平移个单位长度,得到函数的图象,则的值为__________.【答案】【解析】其中,由题意将函数向右平移个单位长度,得到其中,则,16. 如图,已知一块半径为1的残缺的半圆形材料,为半圆的圆心,.现要在这块材料上裁出一个直角三角形.若该三角形一条边在上,则裁出三角形面积的最大值为__________.【答案】【解析】要裁出三角形面积的最大如图:令则三角形面积,令解得当,时取得最值,则三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列中,.设.(1)证明:数列是等比数列;(2)设,求数列的前项的和.(1)证明:因为,,所以,又因为,所以数列是以1为首项,以2为公比的等比数列.(2)解:由(1)知,因为,所以,所以.18. 已知菱形的边长为2,.是边上一点,线段交于点. (1)若的面积为,求的长;(2)若,求.解:解法一:(1)依题意,得,因为的面积,所以,所以,解得,根据余弦定理,得.(2)依题意,得,设,则,在中,由正弦定理得,因为,所以,所以所以.解法二:(1)同解法一.(2)依题意,得,设,则,在中,设,因为,则,由余弦定理,得,得,解得,或.又因为,所以,所以,所以,在中,由正弦定理,得,得.19. 如图,在四棱锥中,,.(1)证明:平面平面(2)若,求二面角的余弦值.(1)证明:因为,所以.因为,所以,所以,因为,所以平面.因为平面,所以平面平面(2)解:由(1)知,平面,故以点为坐标原点,分别以的方向为轴、轴的正方向,建立如图所示的空间直角坐标系.所以,所以,设平面的法向量为,则,所以,取,则,又因为平面的一个法向量为,所以,所以二面角的余弦值为.20. 已知为椭圆的右焦点,为上的任意一点.(1)求的取值范围;(2)是上异于的两点,若直线与直线的斜率之积为,证明:两点的横坐标之和为常数.解:解法一:(1)依题意得,所,所以的右焦点坐标为,设上的任意一点的坐标为,则,所以,又因为,所以,所以,所以的取值范围为.(2)设三点坐标分别为,设直线斜率分别为,则直线方程为,由方程组消去,得,由根与系数关系可得,故,同理可得,又,故,则,从而.即两点的横坐标之和为常数.解法二:(1)依题意得,所,所以的右焦点坐标为,设上的任意一点的坐标为,设上的任意一点的坐标为,则,又因为,所以所以,所以的取值范围为.(2)设两点坐标分别为,线段的中点分别为,点的坐标为,直线的斜率分别为,由方程组得,所以,所以,所以,又因为,所以,所以,所以的中点在上,同理可证:的中点在上,所以点为线段的中点.根据椭圆的对称性,所以两点的横坐标之和为常数.21. 已知函数.(1)讨论函数的单调性;(2)若且,求证:.解:解法一:(1)函数的定义域为,,①若时,则,在上单调递减;②若时,当时,;当时,;当时,.故在上,单调递减;在上,单调递増;③若时,当时,;当时,;当时,.故在上,单调递减;在上,单调递増. (2)若且,欲证,只需证,即证.设函数,则.当时,.故函数在上单调递增.所以.设函数,则. 设函数,则.当时,,故存在,使得,从而函数在上单调递增;在上单调递减. 当时,,当时,故存在,使得,即当时,,当时,从而函数在上单调递增;在上单调递减. 因为,故当时,所以,即.解法二:(1)同解法一.(2)若且,欲证,只需证,即证.设函数,则.当时,.故函数在上单调递增. 所以.设函数,因为,所以,所以,又,所以,所以,即原不等式成立.解法三:(1)同解法一.(2)若且,欲证,只需证,由于,则只需证明,只需证明,令,则,则函数在上单调递减,则,所以成立,即原不等式成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在直角坐标系中,曲线(为参数,).在以为极点,轴正半轴为极轴的极坐标系中,直线.(1)若与曲线没有公共点,求的取值范围;(2)若曲线上存在点到距离的最大值为,求的值.解:(1)因为直线的极坐标方程为,即,所以直线的直角坐标方程为;因为(参数,)所以曲线的普通方程为,由消去得,,所以,解得,故的取值范围为.(2)由(1)知直线的直角坐标方程为,故曲线上的点到的距离,故的最大值为由题设得,解得.又因为,所以.23. 选修4-5:不等式选讲设函数.(1)求不等式的解集;(2)已知关于的不等式的解集为,若,求实数的取值范围.解:(1)因为,所以,,或或解得或或,所以,故不等式的解集为.(2)因为,所以当时,恒成立,而,因为,所以,即,由题意,知对于恒成立,所以,故实数的取值范围.。
福建省漳州市2018届高三数学上学期期末调研测试试题理(含解析)练习数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】则故选2. 若复数满足,则()A. B. C. D.【答案】B【解析】故选3. 函数在上的图象大致为()A. B.C. D.【答案】D【解析】由题意知是奇函数,其图象关于原点对称,故排除当时,,排除故选4. 已知,,且,则向量在方向上的投影为()A. B. C. D.【答案】D【解析】设与的夹角为,向量在方向上的投影为故选5. 等差数列和等比数列的首项均为,公差与公比均为,则()A. B. C. D.【答案】D【解析】依题意:则,,故选6. 执行如图所示的程序框图,若输入的为,则输出的,的值分别为()A. ,B. ,C. ,D. ,【答案】A【解析】执行程序框图,依次可得n=1,S=0,S<16,进入循环;S=0+3=3,n=2,S =3<16,进入循环;S=3+6=9,n=3,S=9<16,进入循环;S=9+9=18,n=4,S=18>16,跳出循环,输出n=4,S=18,故选A.7. 某几何体的三视图如图所示,则这个几何体的体积为()A. B. C. D.【答案】B【解析】这个几何体是由一个棱长为2的正方体挖去一个三棱锥而成的,其直观图如图所示,则这个几何体的体积.故选B.8. 已知函数在一个周期内的图象如图所示,则A. B. C. D.【答案】C【解析】由图象可知,,所以ω=2,由,得,解得,因为,所以,所以.故选C.9. 已知函数是定义在上的偶函数,当时,为减函数,则不等式的解集为()A. B.C. D.【答案】B【解析】由函数是定义在上的偶函数,当时,为减函数,则当时,为增函数,所以不等式解为或即或解得或,故选点睛:本题考查了函数的单调性与奇偶性的综合,求解不等式,这里需要注意偶函数的单调性在轴的左右两边是相反的,所以在解答不等式问题时需要进行分类讨论两种情况,也可以转化为取值的绝对值大小问题来求解。
福州市2018届高三上学期期末考试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A)2.A.1 B3.下列函数为偶函数的是()A4.)A5.已知圆锥的高为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A6.)A .0B .1C .2 D.37.如图的程序框图的算法思路源于我国古代著名的“孙子剩余定理”,执行该程序框图,等于( )A .23B .38C .44D .588.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为( )A.14 B9.)A10.有下列四个命题:其中真命题的是()A)A12.为()A.51 B.52 C.53 D.54第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.的夹角为.14.5项的二项式系数最大,则展开式中的常数项为.15.的值为.16.如图,已知一块半径为1现要在这块材料上裁出一个直角三角形.为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1(218.2(1(2=,中,C E 19.如图,在四棱锥D(1(2.20..(1(2点的横坐标之和为常数.21.(1(2请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程.(1(2.23.选修4-5:不等式选讲(1(2取值范围.全优试卷参考答案一、选择题1-5: BCBCB 6-10: CADCA 11、12:BA二、填空题三、解答题17.解:(11为首项,以2为公比的等比数列.(2)由(143352121n n =-+-++- ⎪-+⎝⎭18.解:解法一:(1(2解法二:(1)同解法一.(219.解:(1(2)由(11,33,2m=20.解:解法一:(1(2. 解法二:(1(2. 根据椭圆的对称性,.21.解:解法一:(1.(2...解法二:(1)同解法一.(2.即原不等式成立.解法三:(1)同解法一.(2即原不等式成立.22.解:(1(2)由(123.解:(1(2。
泉港一中2017-2018学年上学期期末考试高三数学(理科)试题(考试时间:120分钟 总分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知i 为虚数单位,若复数2i z i =-,则( ) A . B .C .D .2. 设常数a ∈R ,集合A ={x|(x -1)(x -2)≥0},B ={x|x ≥a}.若A ∪B =R ,则a 的取值范围为( ).(-∞,1) B .(-∞,1] C .(2,+∞) D .[2,+∞)3. 我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ). 104人 B. 108人 C. 112人 D. 120人 4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若,则ABC ∆为( )A .等腰三角形B .直角三角形 C.等腰直角三角形 D .等腰三角形或直角三角形5. 已知数列{}n a 满足:时,2p p q a a +=,则{}n a 的前12项和( )A . 94B .-94 C. -126 D .126 6.设α、β、γ为平面,为m 、n 、l 直线,则m β⊥的一个充分条件是 A 、,,l m l αβαβ⊥=⊥ B 、,,m αγαγβγ=⊥⊥C 、,,n n m αβα⊥⊥⊥D 、,,m αγβγα⊥⊥⊥7.按下图所示的程序框图运算:若输出2k =,则输入x 的取值范围是( )A. (]20,25 B .(]30,57 C.(]30,32 D .(]28,578.已知变量,x y 满足条件23033010x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩,若目标函数z ax y =+仅在点()3,0处取得最大值,则a 的取值范围是( )A . 10,2⎛⎫ ⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C . 1,2⎛⎫+∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭9. 如图,圆O 与x 轴的正半轴的交点为A ,点B ,C 在圆O 上,点B 的坐标为()1,2-,点C 位于第一象限,AOC α∠=,若BC =,则2sin cos222ααα=( ) A. BD.10. 已知,,A B P 是双曲线22221x y a b-=上的不同三点,且AB 连线经过坐标原点,若直线,PA PB 的斜率乘积23PA PB k k =,则该双曲线的离心率e =( )A11.一个棱锥的三视图如图所示,则该棱锥的全面积为( )ABC D12.已知函数()2x f x e =,()1ln 2g x x =+,对a R ∀∈,()0,b ∃∈+∞,使得()()f a g b =,则b a -的最小值为( ) A .ln 212+B .ln 212-C.1 D1- 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.) 13. 设()()()25501251111x a a x a x a x +=+-+-++-…,则125a a a +++=… .14.如图,平面内有三个向量15. 设{a n }是等比数列,公比q =S n 为{a n }的前n 项和。
漳州市2018届高中毕业班调研测试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】则故选2. 若复数满足,则()A. B. C. D.【答案】B【解析】故选3. 函数在上的图象大致为()A. B.C. D.【答案】D【解析】由题意知是奇函数,其图象关于原点对称,故排除当时,,排除故选4. 已知,,且,则向量在方向上的投影为()A. B. C. D.【答案】D【解析】设与的夹角为,向量在方向上的投影为故选5. 等差数列和等比数列的首项均为,公差与公比均为,则()A. B. C. D.【答案】D【解析】依题意:则,,故选6. 执行如图所示的程序框图,若输入的为,则输出的,的值分别为()A. ,B. ,C. ,D. ,【答案】A【解析】执行程序框图,依次可得n=1,S=0,S<16,进入循环;S=0+3=3,n=2,S=3<16,进入循环;S=3+6=9,n=3,S=9<16,进入循环;S=9+9=18,n=4,S=18>16,跳出循环,输出n=4,S=18,故选A.7. 某几何体的三视图如图所示,则这个几何体的体积为()A. B. C. D.【答案】B【解析】这个几何体是由一个棱长为2的正方体挖去一个三棱锥而成的,其直观图如图所示,则这个几何体的体积.故选B.8. 已知函数在一个周期内的图象如图所示,则()A. B. C. D.【答案】C【解析】由图象可知,,所以ω=2,由,得,解得,因为,所以,所以.故选C.9. 已知函数是定义在上的偶函数,当时,为减函数,则不等式的解集为()A. B.C. D.【答案】B【解析】由函数是定义在上的偶函数,当时,为减函数,则当时,为增函数,所以不等式解为或即或解得或,故选点睛:本题考查了函数的单调性与奇偶性的综合,求解不等式,这里需要注意偶函数的单调性在轴的左右两边是相反的,所以在解答不等式问题时需要进行分类讨论两种情况,也可以转化为取值的绝对值大小问题来求解。
福建省南安第一中学2018届高三数学上学期期末考试试题 理一、选择题:1.已知全集R U =,设集合{|lg(1)}A x y x ==-,集合{}2,1,xB y y x ==≥则()U AC B =( ) A .[]1,2 B .[)1,2 C .()1,2D .(]1,22.如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分),现在往圆内任投一点,此点落在星形区域内的概率为( )A.41π- B.1π C .11π- D.π3.若复数z 满足2(1)1z i i +=-,则复数z 的虚部为( ) A .1- B .0 C . i D .14.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前项和,若844S S =,则10a =( ) A.172 B. 192C.10D.12 5.已知函数1)1ln()(2+-+=x x x f ,则(lg 2)f +1(lg )2f 等于( ) A . 1- B. 0 C . 1 D .26.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.122 B .112 C .102 D .92 7.《九章算数》中,将底面是直角三角形的直三棱柱称 为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图 中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A . 2 B. 4+ C .4+ D .6+ 8.如图,给出的是计算111+24100++……的值的一个程序框图,则图中判断框内①处和执行框中的②处应填的语句是( ) A.100,1i n n >=+ B .100,2i n n >=+ C .50,2i n n >=+ D .50,2i n n ≤=+9.已知双曲线222:14x y C b-= (0)b >的一条渐近线方程为y =,12,F F 分别为双曲线C 的左右焦点,P 为双曲线C 上的一点,12||:||3:1PF PF =,则21||PF PF +的值是( ) A .4 B.. D.510. 已知函数)sin()(ϕω+=x A x f (ϕω,,A 均为正的常数)的最小正周期为π,当π32=x 时,函数)(x f 取得最小值,则下列结论正确的是( ) A .)0()2()2(f f f <-< B .)2()2()0(-<<f f f C .)2()0()2(f f f <<- D .)2()0()2(-<<f f f11. 已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,且·6OAOB=(O 为坐标原点),若ABO ∆与AFO ∆的面积分别为1S 和2S ,则124S S +最小值是( )B. 6C. 132D. 12. 已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数1x , 2x 使得()10f x >,且()20f x >,则a 的取值范围是( )A. ()ln3,2B. [)2ln3,2-C. (]0,2ln3- D. ()0,2ln3- 二、填空题:13.已知向量)1,1(-=a ,)4,6(-=b ,若)(b a t a +⊥,则实数t 的值为 .14. 若实数,x y 满足不等式组221x y y x y +≤⎧⎪-≤⎨⎪≥⎩,则22(+2)+(3)x y -的最大值和最小值之和为 .15. 某运动队对,,,A B C D 四位运动员进行选拔,只选一人参加比赛,在选拔结果公布前,甲、乙、丙、丁四位教练对这四位运动员预测如下:甲说:“是C 或D 参加比赛”;乙说:“是B 参加比赛”;丙说:“,A D 都未参加比赛”;丁说:“是C 参加比赛”.若这四位教练中只有两位说的话是对的,则获得参赛的运动员是 .16.在△ABC 中,若3sin 2sin C B =,点E ,F 分别是AC ,AB 的中点,则BECF的取值范围为 .三、解答题:(解答应写出文字说明,演算步骤或证明过程)17.(12分)已知数列{}n a 的前n 项和24n S n n =-.(1)求数列{}n a 的通项公式; (2)求数列72n na -⎧⎫⎨⎬⎩⎭的前n 项和.n T18.(12分)矩形ABCD 中, 1AB =, 2AD =,点E 为AD 中点,沿BE 将ABE ∆折起至PBE ∆,如下图所示,点P 在面BCDE 的射影O 落在BE 上.(1)求证: BP CE ⊥; (2)求二面角B PC D --的余弦值.19.(12分)2018年某市创建文明城市圆满结束,成绩优异.在创建文明城市过程中,为增强市民的节能环保意识,该市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:[)[)[)[)[]20,25,25,30,30,35,35,40,40,45.(1)求图中x 的值,并根据频率分布直方图估计这500名志愿者中年龄在[)35,40岁的人数; (2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中随机选取3名志愿者担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为X ,求X 的分布列及数学期望.20.(12分)已知椭圆2222:1x y C a b+=过点()()2,0,0,1A B 两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.21.(12分) 已知函数()()2112ln 2f x a x a ax x =--+. (1) 设()()1g x f x x=+,求函数()g x 的单调区间; (2) 若0a >, 设()()11,A x f x , ()()22,B x f x 为函数()f x 图象上不同的两点,且满足()()121f x f x +=,设线段AB 中点的横坐标为0,x 证明: 01ax >.请考生在第22、23两题中任选一题作答.如果多做,则按所做第一个题目计分。
泉港一中2017-2018学年上学期期末考试高三数学(理科)试题(考试时间:120分钟 总分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知i 为虚数单位,若复数2i z i =-,则( ) A . B .C .D .2. 设常数a ∈R ,集合A ={x|(x -1)(x -2)≥0},B ={x|x ≥a}.若A ∪B =R ,则a 的取值范围为( ).(-∞,1) B .(-∞,1] C .(2,+∞) D .[2,+∞)3. 我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ). 104人 B. 108人 C. 112人 D. 120人 4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若,则ABC ∆为( )A .等腰三角形B .直角三角形 C.等腰直角三角形 D .等腰三角形或直角三角形5. 已知数列{}n a 满足:时,2p p q a a +=,则{}n a 的前12项和( )A . 94B .-94 C. -126 D .126 6.设α、β、γ为平面,为m 、n 、l 直线,则m β⊥的一个充分条件是 A 、,,l m l αβαβ⊥=⊥ B 、,,m αγαγβγ=⊥⊥C 、,,n n m αβα⊥⊥⊥D 、,,m αγβγα⊥⊥⊥7.按下图所示的程序框图运算:若输出2k =,则输入x 的取值范围是( )A. (]20,25 B .(]30,57 C.(]30,32 D .(]28,578.已知变量,x y 满足条件23033010x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩,若目标函数z ax y =+仅在点()3,0处取得最大值,则a 的取值范围是( )A . 10,2⎛⎫ ⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C . 1,2⎛⎫+∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭9. 如图,圆O 与x 轴的正半轴的交点为A ,点B ,C 在圆O 上,点B 的坐标为()1,2-,点C 位于第一象限,AOC α∠=,若BC =,则2sin cos222ααα=( ) A. B.10. 已知,,A B P 是双曲线22221x y a b-=上的不同三点,且AB 连线经过坐标原点,若直线,PA PB 的斜率乘积23PA PB k k =,则该双曲线的离心率e =( )A11.一个棱锥的三视图如图所示,则该棱锥的全面积为( )ABC D12.已知函数()2x f x e =,()1ln 2g x x =+,对a R ∀∈,()0,b ∃∈+∞,使得()()f a g b =,则b a -的最小值为( ) A .ln 212+B .ln 212-C.1- D1- 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.) 13. 设()()()25501251111x a a x a x a x +=+-+-++-…,则125a a a +++=… .14.如图,平面内有三个向量15. 设{a n }是等比数列,公比q =S n 为{a n }的前n 项和。
记*2117,.n nn n S S T n N a +-=∈设0n T 为数列{n T }的最大项,则0n =16.方程x 2+2x -1=0的解可视为函数y =x+2的图像与函数y =1x 的图像交点的横坐标,若x 4+ax -6=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点(x i ,)(i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是 .参考答案1-6 DBBDAC 7-12 DCBBCA 13.3114、5 15 4 16三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,23C π=,且()(222a b c bc --=-. (1)求角B 的大小;(2)若等差数列{}n a 的公差不为零,且1cos 21a B =,且248,,a a a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)6B π=(2)1n nS n =+ 试题解析:(1)由()(222a b c bc --=得222a b c --=,所以222cos 2b c a A bc +-==..............................3分 ∴6A π=,由23C π=,得6B π=...................6分(2)设数列{}n a 的公差为d , 由(1)得112cos3a π==,且2425a a a =,∴()()()211137a d a d a d +=++,又0d ≠,∴2d =,∴2n a n =...............................9分∴14111n n a a n n +=-+,∴11111122311n nS n n n =-+-++-=++......................12分18.(本小题满分12分)为普及高中生安全逃生知识与安全防护能力,某学校高三年级举办了高中生安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的,,,,x y z s p 的值;(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高三(2)班有甲、乙两名同学取得决赛资格.①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;②记高三(2)班在决赛中进入前三位的人数为X ,求X 的分布列和数学期望. 【答案】(I )0.18x =,19y =,6z =,0.12s =,50p =;(II )①710;②分布列见解析,1. 90.1850x ==∴,19y =,6z =,0.12s =,50p =..........................5分 (Ⅱ)由(Ⅰ)知,参加决赛的选手共6人, ① “甲不在第一位,乙不在第六位”为事件A ,则()5114544466710A A A A P A A +==,所以甲不在第一位,乙不在第六位的概率为710..................8分 ②随机变量X 的可能值为0,1,2()243466105A A P X A ===,()1114233466315C A A A P X A ===,()243456125A A P X A ===,........................................................... 10分因为1310121555EX =⨯+⨯+⨯=,所以随机变量X 的数字期望为1. ....................12分19. 如图所示,在三棱锥P-ABQ 中,PB ⊥平面ABQ ,BA=BP=BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ=2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH 。
(Ⅰ)求证:AB//GH ;(Ⅱ)求二面角D-GH-E 的余弦值解(Ⅰ)证明因为,,,D C E F 分别是,,,AQ BQ AP BP 的中点, 所以EF ∥AB ,DC ∥AB ,所以EF ∥DC , 又EF ⊂平面PCD ,DC ⊂平面PCD ,所以EF ∥平面PCD , ....................3分 又EF ⊂平面EFQ ,平面EFQ 平面PCD GH =, 所以EF ∥GH , 又EF ∥AB ,所以AB ∥GH . ....................5分 (Ⅱ) 解法二在△ABQ 中,2AQ BD =,AD DQ =,所以90ABQ ∠=,又PB ⊥平面ABQ ,所以,,BA BQ BP 两两垂直, ....................6分 以B 为坐标原点,分别以,,BA BQ BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,设2BA BQ BP ===,则(1,0,1)E ,(0,0,1)F ,(0,2,0)Q ,(1,1,0)D ,(0,1,0)C (0,0,2)P ,,所以(1,2,1)EQ =--,(0,2,1)FQ =-,(1,1,2)DP =--,(0,1,2)CP =-,设平面EFQ 的一个法向量为111(,,)m x y z =, 由0m EQ ⋅=,0m FQ ⋅=,得111112020x y z y z -+-=⎧⎨-=⎩取11y =,得(0,1,2)m =.设平面PDC 的一个法向量为222(,,)n x y z = 由0n DP ⋅=,0n CP ⋅=,得222222020x y z y z --+=⎧⎨-+=⎩取21z =,得(0,2,1)n =........................................................9分所以4cos ,5m n m n m n⋅== ..................................................11分因为二面角D GH E --为钝角,所以二面角D GH E --的余弦值为45-. ...........12分20.(本小题满分12分)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,44【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . 将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,....................3分故12229M x x kbx k +==-+,....................4分.......................................6分.......................................7分2(3)23(9)mk k k -⨯+.解得14k =24k =0,3i i k k >≠,1i =,2,所以当l 的斜率为44OAPB 为平行四边形...................................12分 21.(本小题满分12分)已知函数()ln f x x a x =+,在1x =处的切线与直线20x y +=垂直,函数()()212g x f x x bx =+-. (Ⅰ)求实数a 的值;(Ⅱ)设()1212,x x x x <,是函数()g x 的两个极值点,若72b ≥,求()()12g x g x -的最小值.【答案】(I )1a =;(II )152ln 28-. 【解析】试题分析:(I )切线与直线20x y +=垂直,所以切线斜率为2,利用导数等于2,求得1a =;(II )对()g x 求导后通分,由根与系数关系得到两个极值点的关系12121,1x x b x x +=-=.化简()()12g x g x -的表达式为1122211ln2x x x x x x ⎛⎫-- ⎪⎝⎭,令()1201xt t x =<<,换元后利用导数求得()()12g x g x -的最小值为152ln 28-. ....................4分..........8分()()22211111022t h t t t t-⎛⎫=-+=-< ⎪⎝⎭∴′,所以()h t 在()0,1单调递减,..........................9分又72b ≥,()22514b -≥∴,即()2221212121524x x x x t x x t ⎛⎫++==++≥ ⎪⎝⎭. 01t <<,241740t t -+≥∴,104t <≤∴,()1152ln 248h t h ⎛⎫≥=- ⎪⎝⎭,....................11分故所求的最小值是152ln 28-......................................................12分请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线11,2:.x t l y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线1cos ,:sin .x C y θθ=⎧⎨=⎩(θ为参数).(Ⅰ)设l 与1C 相交于,A B 两点,求AB ;(Ⅱ)若把曲线1C 上各点的横坐标压缩为原的122C ,设点P 是曲线2C 上的一个动点,求它到直线l 的距离的最小值. 【答案】(I )1AB =;(II)1-.........5分..........................................................10分 考点:坐标系与参数方程.23.(本小题满分10分)选修4-5:不等式选讲 设函数()222f x x x =+--. (Ⅰ)求不等式()2f x >的解集;(Ⅱ)若x R ∀∈,()272f x t t ≥-恒成立,求实数t 的取值范围. 【答案】(I )2|63x x x ⎧⎫><-⎨⎬⎩⎭或;(II )322t ≤≤....................5分................10分考点:不等式选讲.。