2014年全国中考数学试题分类汇编20 三角形的边与角(含解析)
- 格式:doc
- 大小:121.50 KB
- 文档页数:7
三角形的边与角一、选择题1. 2014•广东 第9题3分 一个等腰 角形的两边长分 是3和7 则它的周长 A.17 B.15 C.13 D.13或17考点 等腰 角形的性质 角形 边关系.分析 由于未说明两边哪个是腰哪个是 故需分 1 当等腰 角形的腰 3 2 当等腰 角形的腰 7 两种情况讨论 从而得到其周长.解答 解 当等腰 角形的腰 3 7时 3+3 7 能构 角形当等腰 角形的腰 7 3时 周长 3+7+7=17.故 个等腰 角形的周长是17.故选A.点评 本题考查的是等腰 角形的性质 在解答 题时要注意进行分类讨论.2. 2014•广西玉林市、 城港市 第10题3分 在等腰△ABC中 AB=AC 其周长 20cm 则AB边的取值范围是A.1cm AB 4cm B.5cm AB 10cm C.4cm AB 8cm D.4cm AB 10cm考点 等腰 角形的性质 解一元一次 等式组 角形 边关系.分析 设AB=AC=x 则BC=20﹣2x 根据 角形的 边关系即 得出结论.解答 解 在等腰△ABC中 AB=AC 其周长 20cm设AB=AC=xcm 则BC= 20﹣2x cm解得5cm x 10cm.故选B.点评 本题考查的是等腰 角形的性质 熟知等腰 角形的两腰相等是解答 题的关键.3. 2014•湖南邵 第5题3分 如图 在△ABC中 ∠B=46° ∠C=54° AD平分∠BAC 交BC于D DE∥AB 交AC于E 则∠ADE的大小是A.45°B.54°C.40°D.50°考点 平行线的性质 角形内角和定理分析 根据 角形的内角和定理求出∠BAC 再根据角平分线的定 求出∠BAD 然后根据两直线平行 内错角相等 得∠ADE=∠BA D.解答 解 ∠B=46° ∠C=54°∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°AD平分∠BAC∠BAD=∠BAC=×80°=40°DE∥AB∠ADE=∠BAD=40°.故选C.点评 本题考查了平行线的性质 角形的内角和定理 角平分线的定 熟记性质 概念是解题的关键.4. 2014· 湾 第18题3分 如图 锐角 角形ABC中 直线L BC的中垂线 直线M ∠ABC的角平分线 L M相交于P点.若∠A 60° ∠ACP 24° 则∠ABP的度数 何?()A.24 B.30 C.32 D.36分析 根据角平分线的定 得∠ABP ∠CBP 根据线段垂直平分线 的点到两端点的距离相等 得BP CP 再根据等边对等角 得∠CBP ∠BCP 然后利用 角形的内角和等于180°列出方程求解即 .解 直线M ∠ABC的角平分线∠ABP ∠CBP.直线L BC的中垂线BP CP∠CBP ∠BCP∠ABP ∠CBP ∠BCP在△ABC中 3∠ABP ∠A ∠ACP 180°即3∠ABP 60° 24° 180°解得∠ABP 32°.故选C.点评 本题考查了线段垂直平分线 的点到两端点的距离相等的性质 角平分线的定 角形的内角和定理 熟记各性质并列出关于∠ABP的方程是解题的关键.5. 2014· 湾 第20题3分 如图 有一△ABC 今以B 圆心 AB长 半径画弧 交BC于D点 以C 圆心 AC长 半径画弧 交BC于E点.若∠B 40° ∠C 36° 则关于AD、AE、BE、CD的大小关系 列何者 确?()A.AD AE B.AE AE C.BE CD D.BE CD分析 由∠C ∠B利用大角对大边得到AB AC 进一 得到BE ED ED CD 从而得到BE C D.解 ∠C ∠BAB AC即BE ED ED CDBE C D . 故选D .点评 考查了 角形的 边关系 解题的关键是 确的理解题意 了解大边对大角. 6. 2014· 南昆明 第5题3分 如图 在△ABC 中 ∠A =50° ∠ABC =70° BD 平分∠ABC 则∠BDC 的度数是 A . 85° B . 80° C . 75° D . 70°考点 角平分线的性质 角形外角性质.分析 首先角平分线的性质求得ABD ∠的度数 然后利用 角形外角性质求得∠BDC 的度数即 .解答 解 Θ∠ABC =70° BD 平分∠ABC∴ο35ABD =∠ Θ∠A =50°∴∠BDC οοο853550ABD A =+=∠+∠= 故选A .点评 本题考查了 角形角平分线的性质和 角形外角性质. 属于基础题 比较简单.7. 2014•泰州 第6题 3分 如果 角形满足一个角是另一个角的3倍 那 们称 个 角形 “智慧 角形”. 列各组数据中 能作 一个智慧 角形 边长的一组是 A .1 2 3 B .1 1C .1 1D .1 2考点 解直角 角形 专题 新定 .分析 A 、根据 角形 边关系 知 能构 角形 依 即 作出判定B 、根据勾股定理的逆定理 知是等腰直角 角形 依 即 作出判定C 、解直角 角形 知是顶角120° 角30°的等腰 角形 依 即 作出判定D 、解直角 角形 知是 个角分 是90° 60° 30°的直角 角形 依 即 作出判DCBA定.解答 解 A、 1+2=3 能构 角形 故选项错误B、 12+12= 2 是等腰直角 角形 故选项错误C、 边 的高是= 知是顶角120° 角30°的等腰 角形故选项错误D、解直角 角形 知是 个角分 是90° 60° 30°的直角 角形 其中90°÷30°=3符合“智慧 角形”的定 故选项 确.故选 D.点评 考查了解直角 角形 涉及 角形 边关系 勾股定理的逆定理 等腰直角 角形的判定 “智慧 角形”的概念.二.填空题1. 2014•福建泉州 第15题4分 如图 在△ABC中 ∠C=40° CA=CB 则△ABC的外角∠ABD=110°.考点 等腰 角形的性质.分析 先根据等腰 角形的性质和 角形的内角和定理求出∠A 再根据 角形的外角等于等于 它 相邻的两个内角的和 进行计算即 .解答 解 CA=CB∠A=∠ABC∠C=40°∠A=70°∠ABD=∠A+∠C=110°.故答案 110.点评 题考查了等腰 角形的性质 用到的知识点是等腰 角形的性质、 角形的外角等于等于 它 相邻的两个内角的和.2. 2014•扬州 第10题 3分 若等腰 角形的两条边长分 7cm和14cm 则它的周长 35cm.考点 等腰 角形的性质 角形 边关系.分析 题目给出等腰 角形有两条边长 7cm和14cm 而没有明确腰、 分 是多少 所以要进行讨论 要 用 角形的 边关系验证能否组 角形.解答 解 14cm 腰 7cm 时周长 14+14+7=35cm14cm 7cm 腰 则两边和等于第 边无法构 角形 故舍去.故其周长是35cm.故答案 35.点评 题 要考查学生对等腰 角形的性质及 角形的 边关系的掌握情况.已知没有明确腰和 边的题目一定要想到两种情况 分类进行讨论 验证各种情况是否能构 角形进行解答 点非常重要 也是解题的关键.3. 2014•扬州 第15题 3分 如图 以△ABC的边BC 直径的⊙O分 交AB、AC于点D、E 连结OD、OE 若∠A=65° 则∠DOE=50°.第2题图考点 圆的认识 角形内角和定理 等腰 角形的性质.分析 首先根据 角形内角和求得∠B+∠C的度数 然后求得其二倍 然后利用 角形的内角和求得∠BOD+∠EOC 然后利用平角的性质求得即 .解答 解 ∠A=65°∠B+∠C=180°﹣65°=115°∠BDO=∠DBO ∠OEC=∠OCE∠BDO+∠DBO+∠OEC+∠OCE=2×115°=230°∠BOD+∠EOC=2×180°﹣230°=130°∠DOE=180°﹣130°=50°故答案 50°.点评 本题考查了圆的认识及 角形的内角和定理等知识 难度 大..解答题1. 2014•益 第15题 6分 如图 EF∥BC AC平分∠BAF ∠B=80°.求∠C的度数.第1题图考点 平行线的性质.分析 根据两直线平行 同旁内角 补求出∠BAF 再根据角平分线的定 求出∠CAF 然后根据两直线平行 内错角相等解答.解答 解 EF∥BC∠BAF=180°﹣∠B=100°AC平分∠BAF∠CAF=∠BAF=50°EF∥BC∠C=∠CAF=50°.点评 本题考查了平行线的性质 角平分线的定 熟记性质并准确识图是解题的关键.。
三角形的边与角一、选择题1. (2014•广东,第9题3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点:等腰三角形的性质;三角形三边关系.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.点评:[来源:学,科,网]2. (2014•广西玉林市、防城港市,第10题3分)在等腰△中,,其周长为20,则边的取值范围是()A.1<<4 B.5<<10 C.4<<8 D.4<<10考点:等腰三角形的性质;解一元一次不等式组;三角形三边关系.分析:设,则20﹣2x,根据三角形的三边关系即可得出结论.解答:解:∵在等腰△中,,其周长为20,∴设,则(20﹣2x),∴,解得5<x<10.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两腰相等是解答此题的关键.3. (2014•湖南邵阳,第5题3分)如图,在△中,∠46°,∠54°,平分∠,交于D,∥,交于E,则∠的大小是()A.45°B.54°C.40°D.50°考点:平行线的性质;三角形内角和定理分析:根据三角形的内角和定理求出∠,再根据角平分线的定义求出∠,然后根据两直线平行,内错角相等可得∠∠.解答:解:∵∠46°,∠54°,∴∠180°﹣∠B﹣∠180°﹣46°﹣54°=80°,∵平分∠,∴∠∠×80°=40°,∵∥,∴∠∠40°.故选C.点评:[来源]本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.4.(2014·台湾,第18题3分)如图,锐角三角形中,直线L为的中垂线,直线M为∠的角平分线,L与M相交于P点.若∠A=60°,∠=24°,则∠的度数为何?()A.24 B.30 C.32 D.36分析:根据角平分线的定义可得∠=∠,根据线段垂直平分线上的点到两端点的距离相等可得=,再根据等边对等角可得∠=∠,然后利用三角形的内角和等于180°列出方程求解即可.解:∵直线M为∠的角平分线,∴∠=∠.∵直线L为的中垂线,∴=,∴∠=∠,∴∠=∠=∠,在△中,3∠+∠A+∠=180°,即3∠+60°+24°=180°,解得∠=32°.[来源]故选C.[来源:学#科#网]点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠的方程是解题的关键.5.(2014·台湾,第20题3分)如图,有一△,今以B为圆心,长为半径画弧,交于D 点,以C为圆心,长为半径画弧,交于E点.若∠B=40°,∠C=36°,则关于、、、的大小关系,下列何者正确?()A .=B .<C .=D .<分析:由∠C <∠B 利用大角对大边得到<,进一步得到+<+,从而得到<. 解:∵∠C <∠B ,∴<,即+<+,∴<.故选D .点评:考查了三角形的三边关系,解题的关键是正确的理解题意,了解大边对大角.6.(2014·云南昆明,第5题3分)如图,在△中,∠50°,∠70°,平分∠,则∠的度数是( )A . 85°B . 80°C . 75°D . 70° 考点: 角平分线的性质,三角形外角性质.分析: 首先角平分线的性质求得AB D ∠的度数,然后利用三角形外角性质求得∠的度数即可.解答: 解: ∠70°,平分∠∴35ABD =∠∠50°[来源]∴∠ 853550ABD A =+=∠+∠=故选A .点评: 本题考查了三角形角平分线的性质和三角形外角性质.,属于基础题,比较简单.7. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( ) A . 1,2,3B . 1,1,C . 1,1,D . 1,2,考点: 解直角三角形 DC BA专题:新定义.分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解答:解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.二.填空题1. (2014•福建泉州,第15题4分)如图,在△中,∠40°,,则△的外角∠110°.考点:等腰三角形的性质.分析:先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.解答:解:∵,∴∠∠,∵∠40°,∴∠70°∴∠∠∠110°.故答案为:110.点评: 此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.2. (2014•扬州,第10题,3分)若等腰三角形的两条边长分别为7和14,则它的周长为 35 . 考点: 等腰三角形的性质;三角形三边关系.分析: 题目给出等腰三角形有两条边长为7和14,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:[来源:学_科_网] 解:①14为腰,7为底,此时周长为14+14+7=35;[来源]②14为底,7为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35.故答案为35.点评: 此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3. (2014•扬州,第15题,3分)如图,以△的边为直径的⊙O 分别交、于点D 、E ,连结、,若∠65°,则∠ 50° .(第2题图)考点: 圆的认识;三角形内角和定理;等腰三角形的性质.分析: 首先根据三角形内角和求得∠∠C 的度数,然后求得其二倍,然后利用三角形的内角和求得∠∠,然后利用平角的性质求得即可.[来源:学*科*网Z*X*X*K]解答: 解:∵∠65°,∴∠∠180°﹣65°=115°,∴∠∠,∠∠,∴∠∠∠∠2×115°=230°,∴∠∠2×180°﹣230°=130°,∴∠180°﹣130°=50°,故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.三.解答题1. (2014•益阳,第15题,6分)如图,∥,平分∠,∠80°.求∠C的度数.(第1题图)考点:平行线的性质.分析:根据两直线平行,同旁内角互补求出∠,再根据角平分线的定义求出∠,然后根据两直线平行,内错角相等解答.解答:解:∵∥,∴∠180°﹣∠100°,∵平分∠,∴∠∠50°,∵∥,∴∠∠50°.点评:本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.。
解直角三角形一、选择题1. (2014•某某某某,第3题,3分)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°考点:解直角三角形分析:利用直角三角形两锐角互余求得∠B 的度数,然后根据正切函数的定义即可求解.解答:解:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选D.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.2. (2014•某某某某,第10题,3分)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CF C.∠AEB+22°=∠DEF D.4cos∠AGB=考点:轴对称的性质;解直角三角形.分析:连接CE,设EF与BD相交于点O,根据轴对称性可得AB=AE,并设为1,利用勾股定理列式求出BE,再根据翻折的性质可得DE=BF=BE,再求出BC=1,然后对各选项分析判断利用排除法求解.解答:解:如图,连接CE,设EF与BD相交于点O,由轴对称性得,AB=AE,设为1,则BE==,∵点E与点F 关于BD对称,∴DE=BF=BE=,∴AD=1+,∵AD∥BC,AB⊥AD,AB=AE,∴四边形ABCE 是正方形,∴BC=AB=1,1+tan ∠ADB=1+=1+﹣1=,故A选项结论正确;CF=BF﹣BC=﹣1,∴2BC=2×1=2,5CF=5(﹣1),∴2BC≠5CF,故B选项结论错误;∠AEB+22°=45°+22°=67°,在Rt△ABD中,BD===,sin∠DEF===,∴∠DEF≠67°,故C选项结论错误;由勾股定理得,OE2=()2﹣()2=,∴OE=,∵∠EBG+∠AGB=90°,∠EGB+∠BEF=90°,∴∠AGB=∠BEF,又∵∠BEF=∠DEF,∴4cos∠AGB===,故D选项结论错误.故选A.点评:本题考查了轴对称的性质,解直角三角形,等腰直角三角形的判定与性质,正方形的判定与性质,熟记性质是解题的关键,设出边长为1可使求解过程更容易理解.3. (2014•某某某某,第9题3分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A .4km B.2km C.2km D.(+1)km考点:解直角三角形的应用-方向角问题分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.4. (2014•某某某某,第13题3分)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.20海里B.10海里C.20海里D.30海里考点:解直角三角形的应用-方向角问题分析:如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.解解:如图,∵∠ABE=15°,∠DAB=∠ABE,答:∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC===,∴BC=20海里.故选:C.点评:本题考查了解直角三角形的应用﹣方向角问题.解题的难点是推知△ABC是等腰直角三角形.5.(2014•某某凉山州,第5题,4分)如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是()A.15m B.20m C.20m D.10m考点:解直角三角形的应用-坡度坡角问题分析:在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解答:解:Rt△ABC中,BC=10m,tanA=1:;∴AC=BC÷tanA=10m ,∴AB==20m.故选C.点评:此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.2.3.4.5.6.7.8.二、填空题1. (2014•某某,第12题4分)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26 米.考点:解直角三角形的应用-坡度坡角问题专题:应用题.分析:首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.解答:解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.点评:此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.2. (2014•某某潍坊,第17题3分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A 和标杆顶端E在同一条直线上,则建筑物的高是米.考点:解直角三角形的应用-仰角俯角问题.分析:根据AB∥CD∥FE,可得△ABG∽△CDG,△ABH∽△EFH,可得CD:AB=DG:BG, EF:AB=FH:BH,即可求得AB的值,即可解题.解答:∵△ABG∽△CDG,∴CD:AB=DG:BG∵CD=DG=2,AB=BG∵△ABH∽△EFH,∴EF:AB=FH:BH,∵EF=2,FH=4 ∴BH=2AB∴BH=2BG=2GH∵GH=DH-DG=DF=FH-DG=52-2+4=54,∴AB=BG=GH=54.故答案为:54点评:本题考查了相似三角形对应边比值相等的性质,考查了平行线定理,本题中列出关于GH、BH的关系式并求解是解题的关键.3.(2014•某某某某,第13题,3分)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角∠A=30 °.考点:解直角三角形的应用-坡度坡角问题.分析:直接利用正弦函数的定义求解即可.解答:解:由题意得:AB=4米,BC=2米,在Rt△ABC中,sinA===,故∠A=30°,故答案为:30.点评:本题考查了解直角三角形的应用,牢记正弦函数的定义是解答本题的关键.落千丈4.(2014•某某内江,第23题,6分)如图,∠AOB=30°,OP平分∠AOB,PC⊥OB于点C.若OC=2,则PC的长是.考点:含30度角的直角三角形;勾股定理;矩形的判定与性质.专题:计算题.分析:延长CP,与OA交于点Q,过P作PD⊥OA,利用角平分线定理得到PD=PC,在直角三角形OQC中,利用锐角三角函数定义求出QC的长,在直角三角形QDP中,利用锐角三角函数定义表示出PQ,由QP+PC=QC,求出PC的长即可.解答:解:延长CP,与OA交于点Q,过P作PD⊥OA,∵OP平分∠AOB,PD⊥OA,PC⊥OB,∴PD=PC,在Rt△QOC中,∠AOB=30°,OC=2,∴QC=OCtan30°=2×=,∠APD=30°,在Rt△QPD中,cos30°==,即PQ=DP=PC,∴QC=PQ+PC,即PC+PC=,解得:PC=.故答案为:点评:此题考查了含30度直角三角形的性质,锐角三角函数定义,熟练掌握直角三角形的性质是解本题的关键.5.6.7.8.三、解答题1. (2014•某某某某,第27题9分)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)°.考点:解直角三角形的应用.分析:过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.解答:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,在Rt△ABE中,BE=20米,=,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=CFcot∠D=20米,∴AD=AE+EF+FD=50+6+20≈90.6(米).故坝底AD的长度约为90.6米.点评:本题考查了坡度及坡角的知识,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.2. (2014•某某枣庄,第21题8分)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)考点:解直角三角形的应用分析:(1)根据三角函数分别表示出OE和DE,再根据点D到点O的距离为30cm 可列方程求解;(2)在Rt△BDE中,根据三角函数即可得到滑动支架的长.解答:解:(1)在Rt△BOE中,OE=,在Rt△BDE中,DE=,则+=30,解得BE≈10.6cm.故B点到OP的距离大约为10.6cm;(2)在Rt△BDE中,BD=≈25.3cm.故滑动支架的长25.3cm.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.3. (2014•某某潍坊,第21题10分)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是450,然后:沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B 的俯角是600,求两海岛间的距离AB .考点:解直角三角形的应用-仰角俯角问题.分析:首先过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F ,易得四边形ABFE 为矩形,根据矩形的性质,可得AB =EF ,AE =BF .由题意可知:AE =BF =100米,CD =500米,然后分别在Rt △AEC 与Rt △BFD 中,利用三角函数即可求得CE 与DF 的长,继而求得岛屿两端A 、B 的距离.解答:如图,过点A 作AE ⊥CD 于点E ,过点B 作BF 上CD ,交CD 的延长线于点F , 则四边形ABFE 为矩形,所以AB =EF , AE =BF , 由题意可知AE =BF =1100—200=900,CD =19900.∴在Rt △AEC 中,∠C =450, AE =900, ∴90045tan 900tan 0==∠=C AE CE在Rt △BFD 中,∠BDF =600,BF =900,BF =900 ∴330060tan 900tan 0==∠=BDF BF DF∴ AB =EF =CD +DF -CE =19900+3300-900=19000+3300 答:两海岛之间的距离AB 是(19000+300√3)米点评:此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.4. (2014•某某某某,第21题7分)小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.考点:解直角三角形的应用.分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB ﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.解答:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.点评:本题考查了解直角三角形的应用﹣坡度坡角问题,作出辅助线得到Rt△ACD是解题的关键.5.(2014•某某某某,第21题,10分)两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.考点:解直角三角形的应用-方向角问题;作图—应用与设计作图分析:(1)到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C.(2)作CD⊥MN于点D,由题意得:∠CMN=30°,∠D=45°,分别在Rt△CMD中和Rt△D中,用CD表示出MD和ND的长,从而求得CD的长即可.解答:解:(1)答图如图:(2)作CD⊥MN于点D,由题意得:∠CMN=30°,∠D=45°,∵在Rt△CMD中,=tan∠CMN,∴MD==;∵在Rt△D 中,=tan∠M,∴ND==CD;∵MN=2(+1)km ,∴MN=MD+DN=CD+CD=2(+1)km,解得:CD=2km.∴点C到公路ME的距离为2km.点评:本题考查了解直角三角形的应用及尺规作图,正确的作出图形是解答本题的关键,难度不大.6.(2014•某某某某,第21题,8分)如图:我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似值.)考点:解直角三角形的应用-方向角问题.分析:首先作CD⊥AB,交AB的延长线于D,则当渔政310船航行到D处时,离渔政船C的距离最近,进而表示出AB的长,再利用速度不变得出等式求出即可.解答:解:作CD⊥AB,交AB的延长线于D,则当渔政310船航行到D处时,离渔政船C的距离最近,设CD长为x,在Rt△ACD中,∵∠ACD=60°,tan∠ACD=,∴AD=x,在Rt△BCD中,∵∠CBD=∠BCD=45°,∴BD=CD=x,∴AB=AD﹣BD=x﹣x=(﹣1)x,设渔政船从B航行到D需要t小时,则=,∴=,∴(﹣1)t=0.5,解得:t=,∴t=,答:渔政310船再按原航向航行小时后,离渔船C的距离最近.点评:此题主要考查了方向角问题以及锐角三角函数关系等知识,利用渔政船速度不变得出等式是解题关键.7. (2014•某某抚州,第21题,9分)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图 2.晾衣架伸缩时,点G在射线DP上滑动,∠CED20cm ,且===20cm .AH DE EG⑴ 当∠CED =60°时,求C 、D 两点间的距离;⑵ 当∠CED 由60°变为120°时,点A 向左移动了多少cm ?(结果精确到)⑶ 设DG x =cm ,当∠CED 的变化X 围为60°~ 120°(包括端点值)时,求x 的取值X 围 .(结果精确到)(参考数据.≈31732,可使用科学计算器) 解析:(1)如图1,∵每个菱形的边长都是20㎝,且DE=20㎝, ∴CE=DE, ∵∠CED=60°, ∴⊿CED 是等边三角形,∴CD=20cm, ∴C 、D 两点之间的距离是20cm. (2)如图2,作EH ⊥CD 于H,图1图2在⊿CED中,CE=DE ,∠CED=120°∴∠ECD=30°,∴EH=12CE=10,∴CH=103 , ∴CD=203,∴点C向左移动了(203-20),∴点A向左移动了(203-20)×3≈ .(3)如图1,当∠CED=60°时,∵ED=EG, ∠CGD=30°,在Rt⊿CGD中,DGCGcos︒=30,∵CG=40,∴DG=203≈34.6;如图2,当∠CED=120°时,∠CGD=60°,∴DG=12CG=20, ∴20≤x≤34.6.8.(2014•某某聊城,第21题,8分)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的某某大道和风景带称为我市的一道新景观.在数学课外实践活动中,小亮在河西岸某某大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)考点:解直角三角形的应用.分析:如图,过点D作DE⊥AC于点E.通过解Rt△EAD和Rt△EBD分别求得AE、BE的长度,然后根据图示知:AB=AE﹣BE﹣100,把相关线段的长度代入列出关于ED的方程﹣=100.通过解该方程求得ED的长度.解答:解:如图,过点D作DE⊥AC于点E.∵在Rt △EAD 中,∠DAE=60°,∴tan60°=,∴AE=同理,在Rt △EBD中,得到EB=.又∵AB=100米,∴AE﹣EB=100米,即﹣=100.则ED=≈≈323(米).答:观景台D到徒骇河西岸AC的距离约为323米.点评:本题考查了解直角三角形的应用.主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.9.(2014年某某黔东南)黔东南州22.(10分)某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-仰角俯角问题.分析:过点A作AM⊥EF于M,过点C作⊥EF于N,则MN=0.25m.由小明站在B点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠E==,代入、EN解方程求出x的值,继而可求得旗杆的高EF.解答:解:过点A作AM⊥EF于M,过点C作⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则=(x+6)m,EN=(x﹣0.25)m,∵∠E=30°,∴tan∠E===,解得:x≈8.8,则EF=E M+MF≈8.8+1.5=10.3(m).答:旗杆的高EF为10.3m.点评:本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.10.(2014•某某21.(8分))如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E 作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt △AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.点评:本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.11.(2014•某某15.(3分))如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:,,)考点:解直角三角形的应用-方向角问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD 中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣35°=45°.在直角△ABD 中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.12.(2014•某某22.(8分))如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:,)考点:解直角三角形的应用-方向角问题分析:先过点C作CP⊥AB于P,根据已知条件求出∠PCB=∠PBC=45°,∠CAP=60°,再根据轮船的速度和航行的时间求出BC的值,在Rt△PCB中,根据勾股定理求出BP=CP的值,再根据特殊角的三角函数值求出AP的值,最后根据AB=AP+PB,即可求出答案.解答:解:过点C作CP⊥AB于P,∵∠BCF=45°,∠ACE=60°,AB∥EF,∴∠PCB=∠PBC=45°,∠CAP=60°,∵轮船的速度是45km/h,轮船航行2小时,∴BC=90,∵BC2=BP2+CP2,∴BP=CP=45,∵∠CAP=60°,∴tan60°==,∴AP=15,∴AB=AP+PB=15+45=15×2.45+45×1.41≈100(km).答:小岛A与小岛B之间的距离是100km.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.13.(( 2014年某某) 19.9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
中考数学真题三角函数汇总1、(2014?黄冈)如图,在南北方向的海岸线 MN 上,有A 、B 两艘巡逻船,现均收到故障船 C 的求救信号.已知A 、B 两船相距100 (汀卞+1)海里,船C 在船A 的北偏东60。
方向上,船C 在船B 的东南方向上,MN 上有一观测 点D ,测得船C 正好在观测点D 的南偏东75方向上.(1)分别求出A 与C , A 与D 之间的距离AC 和AD (如果运算结果有根号,请保留根号) .(2)已知距观测点 危险?(参考数D 处100海里范围内有暗礁.若巡逻船 A 沿直线AC 去营救船C ,在去营救的途中有无触暗礁血勺.41,需勺.73)端A 处,视线与水平线夹角 / ADE 为39°且高CD 为1.5米,求建筑物的高度 AB .(结果精确到0.1米)(参考数据:sin39°0.63, cos39°0.78, tan39°0.81) 3、(2014?兰州)如图,在电线杆上的 C 处引拉线CE 、CF 固定电线杆,拉线 CE 和地面成60°角,在离电线杆6米 的B 处安置测角仪,在 A 处测得电线杆上 C 处的仰角为30°已知测角仪高 AB 为1.5米,求拉线CE 的长(结果 保留根号)4、(2014?泸州)海中两个灯塔 A 、B ,其中B 位于A 的正东方向上,渔船跟踪鱼群由西向东航行,在点C 处测得灯塔A 在西北方向上,灯塔 B 在北偏东30°方向上,渔船不改变航向继续向东航行 30海里到达点D ,这是测得灯 6、(2014绵阳)如图,一艘海轮位于灯塔 P 的北偏东30°方向,距离灯塔 80海里的A 处,它沿正南方向航行一段 时间后,到达位于灯塔 P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为()24M2题图2、18. ( 7分)(2014?长春)如图,为测量某建筑物的高度 AB ,在离该建筑物底部 24米的点C 处,目测建筑物顶B 间的距离.(计算结果用根号表示,不取近似值)/ ABC=62 °坡面长度AB=25米(图为横截面) ,为了使堤坝更加牢固,/ ADB=50 °贝毗时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数sin62° 出88, cos62° M7, tan50° 核0) 1题图塔A 在北偏西60方向上,求灯塔 A 、A. 40 「海里 B . 40:;海里C. 80海里D. 40.:海里图① 團② 圉③ 囿④7、(2014?遂宁)如图,根据图中数据完成填空,再按要求答题:2 2 2 2 2 2 sin A i +sin B i = ______________ ; sin A 2+sin B 2= ___ ; sin A 3+sin B 3= .(1)观察上述等式,猜想:在 Rt △ ABC 中,/ C=90 °都有sin 2A+sin 2B=(2)如图④,在Rt △ ABC 中,/ C=90 ° / A 、/ B 、/ C 的对边分别是 a 、b 、c ,利用三角函数的定义和勾股定 理,证明你的猜想.(3)已知:/ A+ / B=90 °且sinA=^,求sinB .138 ( 2014山东日照)如图某天上午9时,向阳号轮船位于 A 处,观测到某港口城市 P 位于轮船的北偏西 67.5 ;轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市 P 位于该船的南偏西 36.9方向, (8题图) 9、 (2014年湖北荆门)钓鱼岛自古以来就是中国的领土•如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域 巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A 处和正东方向的B 处,这时两船同时接到立即赶往C 处海域巡查的任务,并测得 C 处位于A 处北偏东59°方向、位于B 处北偏西44°方向•若甲、乙两船分别沿 AC , BC 方 向航行,其平均速度分别是 20海里/小时,18海里/小时,试估算哪艘船先赶到 C 处.(cos59° 0^2, sin46 ° 0.72)10、 (2014?临沂)如图,在某监测点 B 处望见一艘正在作业的渔船在南偏西 15方向的A 处,若渔船沿北偏西 75° 方向以40海里/小时的速度航行,航行半小时后到达 C 处,在C 处观测到B 在C 的北偏东60方向上,贝U B 、C 之 间的距离为( )A . 20海里B . 10.二海里C . 20二海里D . 30海里11. 如图,要在木里县某林场东西方向的两地之间修一条公路 MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从 A 向东走600米到达B 处,测得C 在点B 的北偏西60°方亠,tan67.5°13.3〜1.732 ) (2)若修路工程顺利进行,要使3 3求此时轮船所处位置 B 与城市P 的距离?(参考数据:sin36.9°恙,tan36.9°= , sin67.5 (第 21 题)向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:修路工程比原计划提前 5天完成,需将原定的工作效率提高 25%,则原计划完成这项工程需要多少天12.1题图 2. 某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BAD 60o ,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造•经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结3.如图,AC 是我市某大楼的高,在地面上B 点处测得楼顶 A 的仰角为450,沿BC 方向前进18米到达D 点,5测得tan / ADC = 5 •现打算从大楼顶端 A 点悬挂一幅庆祝建国 60周年的大型标语,若标语底端距地面15m ,请你3 计算标语AE 的长度应为多少?D 点是洞的入口,游人从入口进洞游览后, 可经山洞到达山顶的出口凉亭 A AB 返回山脚下的B 处•在同一平面内,若测得斜坡 BD 的长为100米,坡 角 DBC 10°,在B 处测得A 的仰角 ABC 40°在D 处测得A 的仰角 ADF 85° ,过D 点作地面BE 的 垂线,垂足为C •(1) 求 ADB 的度数;(2) 求索道AB 的长.(结果保留根号)1. •如图,山顶建有一座铁塔,塔高 CD 30m ,某人在点求此人距CD 的水平距离 AB • (参考数据: sin 20 0 〜0.342, cos 20 0 〜0.940, tan 20sin 23o ~ 0.391 , cos 23o ~ 0.921 , tan 23o ~ 0.424 ) A 处测得塔底C 的仰角为20o ,塔顶D 的仰角为23o ,』・::• C~ 0.364 ,A 4 23BC // AD ,斜坡AB 40米,坡角4.某旅游区有一个景观奇异的望天洞,处观看旅游区风景,最后坐缆车沿索道 2题图.答案1、解直角三角形的应用-方向角问题.分析:(1)作CE 丄AB,设AE=x 海里,贝U BE=CE= _ 住海里.根据AB=AE+BE=x+ 一_;x=100 (屆1),求得x的值后即可求得AC的长;过点D作DF丄AC于点F,同理求出AD的长;(2)作DF丄AC于点F,根据AD的长和/ DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE丄AB ,由题意得:/ ABC=45 ° / BAC=60 °设AE=x海里,在Rt△ AEC 中,CE=AE?tan60° :;x; 在Rt△ BCE 中,BE=CE=#G x.•AE+BE=x+ . ':x=100 ( .「;+1),解得:x=100 .AC=2x=200 .在厶ACD 中,/ DAC=60 ° / ADC=75 ° 则/ ACD=45 °过点D作DF丄AC于点F,设AF=y,则DF=CF= 「;y,•AC=y+ : ;y=200 ,解得:y=100 (「;- 1),•AD=2y=200 (頒-1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200 ( :- - 1)海里.(2)由(1)可知,DF=U1AF二巫X100 (虧-1) -127•/ 127> 100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.2、考点:解直角三角形的应用-仰角俯角问题.分析:过D作DE丄AB于点E,继而可得出四边形BCDE为矩形,DE=BC=24米,CD=BE=1.5 米,根据/ ADE=39 °在Rt△ ADE中利用三角函数求出AE的长度,继而可求得AB 的长度.解答:解:过D作DE丄AB于点E,•••四边形BCDE为矩形,DE=BC=24 米,CD=BE=1.5 米,在Rt△ ADE 中,•/ / ADE=39 °••• tan / ADE= —=tan39 °0.81 ,DE• AE=DE ?tan39°24 >0.81=19.44 (米), • AB=E+EB=19.44+1.5=20.94 P0.9 (米). 答:建筑物的高度 AB 约为20.9米.点评:本题考查了解直角三角形的应用,解答本题的关键是利用仰角构造直角三角形,禾U 用三角函数求解.3、考点:解直角三角形的应用-仰角俯角问题 专题:计算题;压轴题.分析:由题意可先过点 A 作AH 丄CD 于H .在Rt △ ACH 中,可求出CH ,进而CD=CH+HD=CH+AB ,再在 Rt △ CED 中,求出 CE 的长.解答:解:过点A 作AH 丄CD ,垂足为H ,由题意可知四边形 ABDH 为矩形,/ CAH=30 ° • AB=DH=1.5 , BD=AH=6 , 在 Rt △ ACH 中,tan / CAH=丄, AH• CH=AH ?tan / CAH ,• CH=AH ?tan / CAH=6tan30 °6 > 丄,:.(米), •/ DH=1.5 , • CD=2品\+1.5, 在 Rt △ CDE 中, •// CED=60 ° sin / CED=—,CE=(4+ .;)(米),4、考点:解直角三角形的应用-方向角问题.分析:根据方向角的定义以及锐角三角函数关系得出AN , NC 的长进而求出BN 即可得出答案.解答:解:如图所示:由题意可得出: / FCA= / ACN=45 ° / NCB=30 ° / ADE=60 ° 过点A 作AF 丄FD ,垂足为F ,• CE=贝U / FAD=60 ° / FAC= / FCA=45 ° / ADF=30 ° ,• AF=FC=AN=NC ,设AF=FC=x ,6、考点: 解直角三角形的应用一方向角问题.分析: 根据题意画出图形,进而得出 PA , PC 的长,即可得出答案.解答: 解:过点P 作PC 丄AB 于点C ,由题意可得出:/ A = 30° / B = 45° AP = 80海里, 故CP =」AP = 40 (海里),\2则PB =——=40 2 (海里).sin45c故选:A .5、FD X-F30 3解得:x=15 (-汁1),B W15(V3+1)解得:BN=15+5 -;••• AB=AN+BN=15 ( :;+1 ) +15+5. ;=30+20 .:,考点:解直角三角形的应用-坡度坡角问题.分析:过A 点作AE 丄CD 于E .在Rt △ ABE 中,根据三角函数可得 中,根据三角函数可得 DE ,再根据DB=DC - BE 即可求解.解答:解:过A 点作AE 丄CD 于E .AE , BE ,在 Rt △ ADE在 Rt △ ABE 中,/ ABE=62• AE=AB ?sin62 °25 >0.88=22 米,BE=AB米,在 Rt △ ADE 中,/ ADB=50 °DE=AE tanSO*• DB=DC - BE£58 米. 故此时应将坝底向外拓宽大约6.58米.答:灯塔A 、B 间的距离为(30+20 :■;)海里.勾股定理;互余两角三角函数的关系;解直角三角形. -(1)由前面的结论,即可猜想出:在Rt△ ABC中,/ C=90 °都有sin2A+sin2B=1(2)在Rt△ ABC中,/ C=90 °利用锐角三角函数的定义得出sinA=2sinB±,则c csin2A+sin2B=且,再根据勾股定理得到a 2+b2=c2,从而证明sin2A+sin2B=1 ;(3)利用关系式sin2A+sin2B=1,结合已知条件sinA=§,进行求解.13解答:解:(1) 1.(2)如图,在Rt△ ABC 中,/ C=90°■/ sinA=2, sinB=±, q |c2 , , 2.2 2 a + b…sin2A+sin 2B= ----- :—c•••/ ADB=90 °••• BD2+AD2=AB2,2 2•- sin2A+cos2A=1 .9、考点:解直角三角形的应用-方向角冋题.(3) •/ sinA=-,13.2 2sin2A+sin 2B=1 ,PC在Rt△ APC 中,T tan/ A=—ACPC 在Rt△ PCB 中,T tan/ B=—BC5x 4x T AC + BC=AB=21 X5,^ 一12 3c PC5xAC = ....... 3分tan 67.512xBC=4x...... 5分ta n36.9321 5,解得x60.sin B PC,•PBPC• PBsin B6060 5100 (海里).sin 36.9 3B与城市P的距离为100海里.考点:分析:&过点P作PC丄AB,垂足为C,设PC=x海里.•向阳号轮船所处位置分析: 作CD 丄AB 于点D ,由题意得:/ ACD=59 ° / DCB=44 °设CD 的长为a 海里,分别在 Rt △ ACD 中, 和在Rt △ BCD 中,用a 表示出AC 和BC ,然后除以速度即可求得时间,比较即可确定答案 解答: 解:如图,作CD 丄AB 于点D , 由题意得:/ ACD=59 ° / DCB=44 ° 设CD 的长为a 海里,•••在 Rt △ ACD 中,-lU=cos Z ACD ,AC••• AC= __ QU _ =—5—羽.92a ;casZ^ACD 0. 52•••在 Rt △ BCD 中,丄=cos / BCD , BC•• BC= ___ 丄 __ =―J 羽.39a ;casZ^BCD 0. 72• •其平均速度分别是 20海里/小时,18海里/小时, • 1.92a 吃0=0.096a.1.39a T 8=0.077a ,a > 0,10、考点:解直角三角形的应用-方向角问题分析:如图,根据题意易求厶ABC 是等腰直角三角形,通过解该直角三角形来求 解答:解:如图,•••/ ABE=15 ° / DAB= / ABE , •••/ DAB=15 °•••/ CAB= / CAD+ / DAB=90 °又•••/ FCB=60 ° / CBE= / FCB ,/ CBA+ / ABE= / CBE , •••/ CBA=45 °•在直角△ ABC 中,sin / ABC= • BC=20 二海里.0.096a > 0.077a ,••乙先到达.钓鱼岛4OX1V2 B CBC2BC 的长度.。
阅读理解、图表信息一、选择题1. (2014•山东潍坊,第12题3分)如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(—2012,2)B .(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M 的对应点的坐标,即可得规律.解答:∵正方形ABCD ,点A (1,3)、B (1,1)、C (3,1).∴M 的坐标变为(2,2)∴根据题意得:第1次变换后的点M 的对应点的坐标为(2-1,-2),即(1,-2), 第2次变换后的点M 的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M 的对应点的为坐标为(2-2014, 2),即(-2012, 2)故答案为A .点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2)是解此题的关键.2.(2014山东济南,第14题,3分)现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)【解析】由于序列0S 含5个数,于是新序列中不能有3个2,所以A ,B 中所给序列不能作为1S ; 又如果1S 中有3,则1S 中应有3个3,所以C 中所给序列也不能作为1S ,故选D .二、填空题1.(2014•四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是②③④(写出所有正确的序号)①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.考点:锐角三角函数的定义;特殊角的三角函数值.专题:新定义.分析:根据已知中的定义以及特殊角的三角函数值即可判断.解答:解:①cos(﹣60°)=cos60°=,命题错误;②sin75°=sin(30°+45°)=sin30°•cos45°+cos30°•sin45°=×+×=+=,命题正确;③sin2x=sinx•cosx+cosx•sinx═2sinx•cosx,故命题正确;④sin(x﹣y)=sinx•cos(﹣y)+cosx•sin(﹣y)=sinx•cosy﹣cosx•siny,命题正确.故答案是:②③④.点评:本题考查锐角三角函数以及特殊角的三角函数值,正确理解题目中的定义是关键.三、解答题1. (2014•四川巴中,第22题5分)定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.考点:新定义.分析:首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.解答:3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:<x<.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.2.(2014•湖南张家界,第23题,8分)阅读材料:解分式不等式<0解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解,解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列分式不等式:(1)≤0(2)>0.考点:一元一次不等式组的应用.专题:新定义.分析:先把不等式转化为不等式组,然后通过解不等式组来求分式不等式.解答:解:(1)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解,解②得:﹣2.5<x≤4所以原不等式的解集是:﹣2.5<x≤4;(2)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:x>3,解②得:x<﹣2.所以原不等式的解集是:x>3或x<﹣2.点评:本题考查了一元一次不等式组的应用.本题通过材料分析,先求出不等式组中每个不等式的解集,再求其公共部分即可.3.(2014•江西抚州,第24题,10分)【试题背景】已知:∥m∥n∥,平行线与m、m与n、n与之间的距离分别为d1、d2、d3,且d1 =d3 = 1,d2 = 2 . 我们把四个顶点分别在、m、n、这四条平行线上的四边形称为“格线四边形”.【探究1】 ⑴ 如图1,正方形ABCD 为“格线四边形”,BE l ⊥于点E ,BE 的反向延长线交直线于点F . 求正方形ABCD 的边长.【探究2】 ⑵ 矩形ABCD 为“格线四边形”,其长 :宽 = 2 :1 ,则矩形ABCD 的宽为--------------------37132或. (直接写出结果即可)【探究3】 ⑶ 如图2,菱形ABCD 为“格线四边形”且∠ADC =60°,△AEF 是等边三角形,AE ⊥k 于点E , ∠AFD =90°,直线DF 分别交直线、于点G 、M . 求证:EC DF =.【拓 展】 ⑷ 如图3,∥,等边三角形ABC 的顶点A 、B 分别落在直线、上,AB ⊥k于点B ,且AB =4 ,∠ACD =90°,直线CD 分别交直线、于点G 、M ,点D 、E 分别是线段GM 、BM 上的动点,且始终保持AD =AE ,DH l ⊥于点H .猜想:DH 在什么范围内,BC ∥DE ?并说明此时BC ∥DE 的理由.解析:(1) 如图1,∵BE ⊥l , l ∥k ,∴∠AEB=∠BFC=90°,又四边形ABCD 是正方形,∴∠1+∠2=90°,AB=BC, ∵∠2+∠3=90°, ∴ ∠1=∠3,∴⊿ABE ≌⊿BCF(AAS),∴AE=BF=1 , ∵BE=d 1+d 2=3 , ∴+=223110,10 .(2)如图2,3,⊿ABE ∽⊿BCF,∴BF BC AE AB ==21 或 BF BCAE AB ==12∵BF=d 3=1 ,∴AE=12 或AE =2∴AB=⎛⎫+= ⎪⎝⎭22137322 或AB=+=223213∴矩形ABCD 的宽为372或13.(注意:要分2种情况讨论)(3)如图4,连接AC ,∵四边形ABCD 是菱形,∴AD=DC,又∠ADC=60°,∴⊿ADC 是等边三角形,∴AD=AC ,∵AE ⊥k , ∠AFD=90°, ∴∠AEC=∠AFD=90°,∵⊿AEF 是等边三角形, ∴ AF=AE,∴⊿AFD ≌⊿AEC(HL), ∴EC=DF.(4)如图5,当2<DH <4时, BC ∥DE .理由如下:连接AM,∵AB ⊥k , ∠ACD=90°,∴∠ABE=∠ACD=90°,∵⊿ABC 是等边三角形,∴AB=AC ,已知AE=AD, ∴⊿ABE ≌⊿ACD(HL),∴BE=CD ;在Rt ⊿ABM 和Rt ⊿ACM 中,AB ACAM AM =⎧⎨=⎩,∴Rt ⊿ABM ≌Rt ⊿ACM(HL), ∴ BM=CM ;∴ME=MD,∴ME MD MB MC= , ∴ED ∥BC. 4. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x 的函数y=2kx 2﹣(4kx+1)x ﹣k+1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x >1时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.考点:二次函数综合题分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.点评:本题考查了二次函数的综合,立意新颖,结合考察了数学解题过程中经常用到的几种解题方法,同学们注意思考、理解,难度一般.5. ( ( 2014年河南)21.10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。
中考数学三角形的边与角真题归类(附答案)以下是查字典数学网为您推荐的中考数学三角形的边与角真题归类(附答案),希望本篇文章对您学习有所帮助。
中考数学三角形的边与角真题归类(附答案)一.选择题1. (2019荆门)已知:直线l1∥l2,一块含30角的直角三角板如图所示放置,1=25,则2等于()A. 30B. 35C. 40D. 45解析:∵3是△ADG的外角,A+1=30+25=55,∵l1∥l2,4=55,∵EFC=90,EFC=90﹣55=35,2=35.故选B.2.(2019中考)如图,在△ABC中,C=70,沿图中虚线截去C,则2=【 B 】A.360B.250C.180D.1403.(2019连云港)如图,将三角尺的直角顶点放在直线a上,a∥b,1=50,2=60,则3的度数为()A. 50B. 60C. 70D. 80考点:平行线的性质;三角形内角和定理。
分析:先根据三角形内角和定理求出4的度数,由对顶角的性质可得出5的度数,再由平行线的性质得出结论即可. 解答:解:∵△BCD中,1=50,2=60,4=1801-2=180-50-60=70,4.(2019深圳)如图所示,一个60o角的三角形纸片,剪去这个600角后,得到一个四边形,则么的度数为【】A. 120OB. 180O.C. 240OD. 3000【答案】C。
【考点】三角形内角和定理,平角定义。
【分析】如图,根据三角形内角和定理,得4+600=1800,又根据平角定义,3=1800,4=1800,1800-1+1800-2+600=1800。
2=240O。
故选C。
5.(2019聊城)将一副三角板按如图所示摆放,图中的度数是()A.75B.90C.105D.120考点:三角形的外角性质;三角形内角和定理。
专题:探究型。
分析:先根据直角三角形的性质得出BAE及E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.解答:解:∵图中是一副直角三角板,BAE=45,E=30,6.(2019毕节)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若1=120,2=80,则3的度数是( )A.40B.60C.80D.120解析:根据平行线性质求出ABC,根据三角形的外角性质得出1-ABC,代入即可得出答案.7.(2019十堰)如图,直线BD∥EF,AE与BD交于点C,若ABC=30,BAC=75,则CEF的大小为( D )A.60B.75C.90D.105【考点】平行线的性质;三角形内角和定理.【专题】探究型.【分析】先根据三角形外角的性质求出1的度数,再由平行线的性质即可得出结论.【解答】解:∵1是△ABC的外角,ABC=30,BAC=75,ABC+BAC=30+75=105,∵直线BD∥EF,CEF=1=105.故选D.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.8.(2019梅州)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A重合,若A=75,则2=()A.150B.210C.105D.75考点:三角形内角和定理;翻折变换(折叠问题)。
全等三角形一、选择题1. (2014•年山东东营,第4题3分)下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等考点:命题与定理.分析:利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项.解答:解:A、错误,如3与﹣3;B、对角线互相垂直的平行四边形是菱形,故错误,是假命题;C、旋转前后的两个图形,对应点所连线段不一定相等,故错误,是假命题;D、正确,是真命题,故选D.点评:本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质.2.(2014•四川遂宁,第9题,4分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()3.(2014•四川南充,第5题,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题1.(2014•福建福州,第15题4分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使1CF BC2..若AB=10,则EF的长是.2.(2014•广州,第15题3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.三、解答题1.(2014•湖南怀化,第19题,10分)如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF 的角平分线.求证:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.,2.(2014•湖南张家界,第24题,10分)如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD 相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.,,=3. (2014山东济南,第23题,7分)(本小题满分7分)(1)如图,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EC EB =.【解析】在ABE ∆和DCE ∆中,EDC EAB DE AE DC AB ∠=∠==,,,于是有 DCE ABE ∆≅∆,所以EC EB =.4.(2014•山东聊城,第20题,8分)如图,四边形ABCD 是平行四边形,作AF ∥CE ,BE ∥DF ,AF 交BE 与G 点,交DF 与F 点,CE 交DF 于H 点、交BE 于E 点.求证:△EBC ≌△FDA .A BCDE 第23题(1)图5. (2014•浙江杭州,第18题,8分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.6.(2014•遵义24.(10分))如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.==,∠C.8.(( 2014年河南) 22.10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE 填空:(1)∠AEB的度数为 60 ;(2)线段AD、BE之间的数量关系是AD=BE。
统计一、选择题1.(2014年天津市,第11题3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁考点:加权平均数.菁优网分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.点评:此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.2.(2014•新疆,第7题5分)某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()360×=2523.(2014年云南省,第8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A. 9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2014•温州,第2题4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()5.(2014•温州,第6题4分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()6.(2014•舟山,第2题3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()7.(2014•舟山,第4题3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()8.(2014•毕节地区,第5题3分)下列叙述正确的是()9.(2014•毕节地区,第7题3分)我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()10.(2014•武汉,第4题3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是()11.(2014•襄阳,第6题3分)五箱梨的质量(单位:kg)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为()12.(2014•邵阳,第4题3分)如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()=1.513.(2014•孝感,第7题3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()14.(2014•四川自贡,第7题4分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()D15.(2014·台湾,第25题3分)有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16 B.a=24 C.b=24 D.b=34分析:先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.故选D.点评:此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.(2014•浙江湖州,第5题3分)数据﹣2,﹣1,0,1,2的方差是()A.0 B.C.2D.4分析:先求出这组数据的平均数,再根据方差的公式进行计算即可.解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:[(﹣2)2+(﹣1)2+02+12+22]=2.故选C.点评:本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17. (2014•株洲,第3题,3分)下列说法错误的是()=218. (2014•泰州,第3题,3分)一组数据﹣1、2、3、4的极差是()19. (2014•扬州,第4题,3分)若一组数据﹣1,0,2,4,x的极差为7,则x的值是()20.(2014•呼和浩特,第2题3分)以下问题,不适合用全面调查的是()21.(2014•滨州,第8题3分)有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()22.(2014•德州,第9题3分)雷霆队的杜兰特当选为2013﹣2014赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为()中位数为:=2923.(2014•菏泽,第4题3分)2014年4月8日我市区县的可吸入颗粒物数值统计如下表:该日这一时刻的可吸入颗粒物数值的众数和中位数分别是()24.(2014•济宁,第6题3分)从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是()25.(2014年山东泰安,第9题3分)以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90 分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二.填空题1. (2014•福建泉州,第12题4分)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为5件.2. (2014•广西玉林市、防城港市,第15题3分)下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是9℃.3. (2014•广西贺州,第15题3分)近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x=22.考点:算术平均数.分析:根据算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数的算术平均数进行计算即可.解答:解:(11+13+15+19+x)÷5=16,解得:x=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.4.(2014年广东汕尾,第14题5分)小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为,平均数为.分析:根据众数和平均数的概念求解.解:6出现的次数最多,故众数为6,平均数为:=6.故答案为:6,6.点评:本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.5.(2014•孝感,第14题3分)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃; ③掷一次骰子,向上一面的数字是2; ④度量四边形的内角和,结果是360°. 其中是随机事件的是 ①③ .(填序号)6.(2014·云南昆明,第11题3分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:22=甲S ,5.12=乙S ,则射击成绩较稳定的是 (填“甲”或“乙”).7.(2014•浙江湖州,第14题4分)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b 天,则a+b=.分析:根据折线图即可求得a、b的值,从而求得代数式的值.解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案是:12.点评:本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.(2014·浙江金华,第14题4分)小亮对60名同学进行节水方法的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是▲ .【答案】240°. 【解析】试题分析:根据扇形圆心角的计算方法,表示“一水多用”的扇形圆心角的度数是4036024040578⨯︒=+++︒.考点:扇形圆心角的计算.9.(2014•浙江宁波,第15题4分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是 150 支.10. (2014•湘潭,第11题,3分)未测试两种电子表的走时误差,做了如下统计则这两种电子表走时稳定的是甲.11. (2014•益阳,第11题,4分)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是2.16米.12. (2014•株洲,第12题,3分)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为108°.等级所占的百分比为:13. (2014年江苏南京,第10题,2分)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.考点:众数、极差分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解答:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.14. (2014•扬州,第12题,3分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.×15.(2014•呼和浩特,第12题3分)某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 1.6.=)))∴这组数据的方差是[3×的平均数为[)))三.解答题1. (2014•福建泉州,第23题9分)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?1300×=5202. (2014•广东,第22题7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3. (2014•珠海,第14题6分)某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定供远的人数.1000×4. (2014•广西贺州,第22题8分)学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16万人次到图书馆阅读,其中商人占百分比为12.5%;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)根据学生的人数除以占的百分比,求出总人数;求出商人占的百分比即可;(2)求出职工的人数,补全条形统计图即可;(3)由职工的百分比乘以28000即可得到结果.解答:解:(1)根据题意得:4÷25%=16(万人次),商人占的百分比为×100%=12.5%;(2)职工的人数为16﹣(4+2+4)=6(万人次),补全条形统计图,如图所示:(3)根据题意得:×100%×28000=10500(人次),则估计其中约有10500人次读者是职工.故答案为:(1)16;12.5%点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.5. (2014•广西玉林市、防城港市,第22题8分)第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?0.12×=0.686.(2014年四川资阳,第18题8分)阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女个2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.考点:条形统计图;列表法与树状图法.菁优网分析:(1)先求的在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比,再估计该社区对消防知识“特别熟悉”的居民人数的百分比乘以900即可;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列出树状图,再根据概率公式求解.解答:解:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.7.(2014年天津市,第20题8分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?考点:条形统计图;用样本估计总体;扇形统计图;中位数;众数.菁优网专题:计算题.分析:(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.解答:解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.8.(2014•新疆,第18题8分)如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?9.(2014年云南省,第18题9分)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解答:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10.(2014•温州,第23题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E 五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可))=,11.(2014•舟山,第19题6分)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?=0.2512.(2014•毕节地区,第24题12分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.则概率是:=13.(2014•襄阳,第20题7分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是6个;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率..14.(2014•孝感,第21题10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.=40×=54°3500×=.15.(2014•邵阳,第22题8分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18﹣23岁部分的圆心角;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.××=40016.(2014•四川自贡,第20题10分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:。
点线面角一、选择题1. (2014•广西贺州,第3题3分)如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°考点:余角和补角分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,若∠1=55°,∴∠AO∠=90°,即∠2+∠1=90°,∴∠2=35°,故选:A.点评:本题考查了余角和补角,两个角的和为90°,这两个角互余.2.(2014•襄阳,第5题3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()3.(2014•襄阳,第7题3分)下列命题错误的是()4.(2014·浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2014•滨州,第5题3分)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()×6.(2014•济宁,第3题3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()7.(2014年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确;故选D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.二.填空题1. (2014•福建泉州,第9题4分)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC= 50°.2. (2014•福建泉州,第13题4分)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2=65°.3. (2014•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=110°.4.(2014•邵阳,第11题3分)已知∠α=13°,则∠α的余角大小是77°.5.(2014•浙江湖州,第13题4分)计算:50°﹣15°30′=.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解:原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.。
解直角三角形一、选择题1.(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()absinαabcosα==CE×absinα的面积是:absinα2. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(),,(、底边上的高是=3. (2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()(第2题图)B﹣2∠AC,==2﹣)﹣=﹣===4.(2014•滨州,第11题3分)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()=,得到.×=10×=6=,.5.(2014•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()4米米中,∵=,==6二.填空题1.(2014•新疆,第13题5分)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)=,2.(2014•舟山,第12题4分)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).=3.(2014•浙江宁波,第17题4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17 个这样的停车位.(≈1.4)=2.2×≈1.54=5×≈3.5=2.2÷≈3.144. (2014•株洲,第13题,3分)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为182米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).(第1题图)=5. (2014•泰州,第16题,3分)如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于1或2cm.(第2题图),即cm=cm AE=6.(2014•济宁,第12题3分)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB 的长为3+.,,=..三.解答题1. (2014•安徽省,第18题8分)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).考点:解直角三角形的应用.菁优网分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.2. (2014•广东,第20题7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC 中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.3. (2014•珠海,第17题7分)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:≈1.41,≈1.73,≈2.45)=9090=90=60,÷20=34. (2014•广西贺州,第24题8分)如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)考点:解直角三角形的应用-方向角问题.分析:(1)过C作AB的垂线,设垂足为D,则CD的长为海轮在航行过程中与灯塔C的最短距离;(2)在Rt△BCD中,根据55°角的余弦值即可求出海轮在B处时与灯塔C的距离.解答:解:(1)C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离是60海里.点评:本题考查了解直角三角形的应用:方向角问题,具体就是在某点作出东南西北,即可转化角度,也得到垂直的直线.5.(2014年四川资阳,第19题8分)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.考点:解直角三角形的应用-方向角问题.菁优网分析:过A作AD⊥BC于D,先由△ACD是等腰直角三角形,设AD=x,得出CD=AD=x,再解Rt△ABD,得出BD==x,再由BD+CD=4,得出方程x+x=4,解方程求出x的值,即为A到岸边BC的最短距离.解答:解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的最短距离.在Rt△ACD中,∠ACD=45°,设AD=x,则CD=AD=x,在Rt△ABD中,∠ABD=60°,由tan∠ABD=,即tan60°=,所以BD==x,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2)公里.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.6.(2014年天津市,第22题10分)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).考点:解直角三角形的应用.菁优网专题:应用题.分析:(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.解答:解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.点评:本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.7.(2014年云南省,第21题6分)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.8.(2014•四川自贡,第18题8分)如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:)=0.9≈1.29.(2014·云南昆明,第20题6分)如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,tan32°= 0.62)64.1310.(2014•浙江宁波,第21题8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;第20题图(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)11. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第1题图),.=4×≈546.712. (2014•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.(第2题图),根据≠且≠•(﹣,最后根据x﹣+)=4×=2.,在=,,≠且≠,此时△),=PB=﹣x=x=x,x﹣)x+•(x)x)时,取得最小值x13. (2014•株洲,第17题,4分)计算:+(π﹣3)0﹣tan45°.14. (2014•株洲,第22题,8分)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.=,在===m=,===15. (2014•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形AB C.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).(第5题图)==,×==×=的面积为===.===,,==的长度为16.(2014年江苏南京,第23题)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)考点:解直角三角形的应用分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解答:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.17. (2014•泰州,第22题,10分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)18.(2014•呼和浩特,第18题6分)如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)=.cos cos。
一元一次方程及其应用一、选择题1.(2014·台湾,第19题3分)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()A.5.4 B.5.7 C.7.2 D.7.5分析:根据甲、乙、丙三杯内水的高度比变为3︰4︰5,设后来甲、乙、丙三杯内水的高度为3x、4x、5x,由表格中的数据列出方程,求出方程的解得到x的值,即可确定出甲杯内水的高度.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选C.点评:此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.2.(2014•滨州,第4题3分)方程2x﹣1=3的解是().二、填空题1.(2014•浙江湖州,第11题4分)方程2x﹣1=0的解是x=.分析:此题可有两种方法:(1)观察法:根据方程解的定义,当x=时,方程左右两边相等;(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.解:移项得:2x=1,系数化为1得:x=.点评:此题虽很容易,但也要注意方程解的表示方法:填空时应填x=,不能直接填.2. (2014•湘潭,第15题,3分)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.三、解答题1. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第1题图),,==4×2. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.依题意得:,解得:3. (2014•株洲,第20题,6分)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?4. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第4题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.5. (2014•泰州,第20题,8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.=126.(2014·浙江金华,第20题8分)一种长方形餐桌的四周可坐6 从用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【答案】(1)18,34;(2)22.【解析】7.(2014•浙江宁波,第24题10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?,∴盒子的个数为:=308.(2014•滨州,第19题3分)(1)解方程:2﹣=9.(2014•德州,第20题8分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?10.(2014•菏泽,第17题7分)(1)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输,某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?。
三角形的边与角(命题的有关知识)一.选择题(2018•江苏宿迁•3分)如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D 的度数是()A. 24°B. 59°C. 60°D. 69°【答案】B【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.【详解】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=35°+24°=59°,又∵DE∥BC,∴∠D=∠DBC=59°,故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏苏州•3分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.4.(2018•山东聊城市•3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.6.(2018•山东聊城市•3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+β D.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.7. (2018•杭州•3分)如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.【答案】A【考点】三角形内角和定理,矩形的性质【解析】【解答】解:∵矩形ABCD∴∠PAB+∠PAD=90°即∠PAB=90°-∠PAB∵∠PAB=80°∴∠PAB+∠PBA=180°-80°=100°∴90°-∠PAB+∠PBA=100°即∠PBA-∠PAB=10°①同理可得:∠PDC-∠PCB=180°-50°-90°=40°②由②-①得:∠PDC-∠PCB-(∠PBA-∠PAB)=30°∴故答案为:A【分析】根据矩形的性质,可得出∠PAB=90°-∠PAB,再根据三角形内角和定理可得出∠PAB+∠PBA=100°,从而可得出∠PBA-∠PAB=10°①;同理可证得∠PDC-∠PCB=40°②,再将②-①,可得出答案。
开放性问题1. (2014•四川巴中,第28题10分)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.考点:矩形的判定.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH 时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).点评:本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.2. (2014•山东威海,第24题11分)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD 上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.,4. (2014•山东烟台,第25题10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.考点:全等三角形,正方形的性质,勾股定理,运动与变化的思想.分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.点评:本题主要考查了四边形的综合知识.综合性较强,特别是第(4)题要认真分析.5. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.,﹣﹣。
三角形的边与角
一、选择题
1. (2014•广东,第9题3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17
考点:等腰三角形的性质;三角形三边关系.
分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.
解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;
②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.
故这个等腰三角形的周长是17.
故选A.
点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.
2. (2014•广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()
,
3. (2014•湖南邵阳,第5题3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()
∠×
4.(2014·台湾,第18题3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()
A.24 B.30 C.32 D.36
分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.
解:∵直线M为∠ABC的角平分线,
∴∠ABP=∠CBP.
∵直线L为BC的中垂线,
∴BP=CP,
∴∠CBP=∠BCP,
∴∠ABP=∠CBP=∠BCP,
在△ABC中,3∠ABP+∠A+∠ACP=180°,
即3∠ABP+60°+24°=180°,
解得∠ABP=32°.
故选C.
点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.
5.(2014·台湾,第20题3分)如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD、AE、BE、CD的大小关系,下列何者正确?()
A.AD=AE B.AE<AE C.BE=CD D.BE<CD
分析:由∠C<∠B利用大角对大边得到AB<AC,进一步得到BE+ED<ED+CD,从而得到BE<C D.
解:∵∠C<∠B,
∴AB<AC,
即BE+ED<ED+CD,
∴BE <C D .
故选D .
点评:考查了三角形的三边关系,解题的关键是正确的理解题意,了解大边对大角.
6.(2014·云南昆明,第5题3分)如图,在△ABC 中,∠A =50°,
∠ABC =70°,BD 平分∠ABC ,则∠BDC 的度数是( )
A . 85°
B . 80°
C . 75°
D . 70°
7. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( ) ,
D
C
B
A
(
、底边上的高是=,可知是顶角
二.填空题
1. (2014•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=110°.
2. (2014•扬州,第10题,3分)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.
3. (2014•扬州,第15题,3分)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.
(第2题图)
三.解答题
1. (2014•益阳,第15题,6分)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.
(第1题图)
∠。