不等式及其性质(教师版)
- 格式:doc
- 大小:335.15 KB
- 文档页数:14
高三一轮复习专题一基本不等式及其应用【考点预测】 1.基本不等式如果00>>b a ,,那么2b a ab +≤,当且仅当b a =时,等号成立.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号; 基本不等式2:若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号. 注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致. 【方法技巧与总结】 1.几个重要的不等式(1)()()()20,00,0.a a R a a a a R ≥∈≥≥≥∈ (2)基本不等式:如果,a b R +∈,则2a bab +≥(当且仅当“a b =”时取“”). 特例:10,2;2a ba a ab a>+≥+≥(,a b 同号). (3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)222,1122a b a b ab a b R a b+++≤≤≤∈+即 调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件). 2.均值定理 已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”. 3.常见求最值模型 模型一:)0,0(2>>≥+n m mn xnmx ,当且仅当m n x =时等号成立; 模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma ax na x m a x n mx ,当且仅当m n a x =-时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当a cx =时等号成立; 模型四:)0,0,0(4)21)()(22mnx n m m n mx n mx m m mx n mx mx n x <<>>=-+⋅≤-=-(,当且仅当mnx 2=时等号成 立.【题型归纳目录】题型一:基本不等式及其应用 题型二:直接法求最值 题型三:常规凑配法求最值 题型四:消参法求最值 题型五:双换元求最值 题型六:“1”的代换求最值 题型七:齐次化求最值题型八:利用基本不等式解决实际问题【典例例题】题型一:基本不等式及其应用例1.(2022·江苏·高三专题练习)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +≥>> B .220,0)a b a b +≥>>C .20,0)aba b a b ≤>>+ D .0,0)2a b a b +>>【答案】D 【解析】 【分析】设,AC a BC b ==,得到2a br OF +==,2a b OC -=,在直角OCF △中,利用勾股定理,求得222=2a b FC +,结合FO FC ≤,即可求解.【详解】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===, 又由22a b a bOC OB BC b +-=-=-=, 在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤a b =时取等号. 故选:D.例2.(2022·黑龙江·哈尔滨三中高三阶段练习(文))下列不等式中一定成立的是( ) A .()2111x x >∈+R B .()12,sin sin xx k x k π+>≠∈Z C .21ln ln (0)4x x x ⎛⎫+>> ⎪⎝⎭D .()212x x x +≥∈R【答案】D 【解析】 【分析】 由211x +≥得211x +的范围可判断A ;利用基本不等式求最值注意满足一正二定三相等可判断B ;作差比较214x +与x 的大小可判断C ;作差比较21x +与2x 的大小可判断D.【详解】因为x ∈R ,所以211x +≥,所以21011x <≤+,故A 错误; 1sin 2sin x x+≥只有在sin 0x >时才成立,故B 错误; 因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以214x x +≥,所以21ln ln 4x x ⎛⎫+≥ ⎪⎝⎭,故C 错误;因为()221210x x x +-=-≥,所以212x x +≥,故D 正确. 故选:D.(多选题)例3.(2022·全国·高三专题练习)下列函数中最小值为6的是( ) A .9ln ln y x x=+B .36sin 2sin y x x=+C .233xxy -=+ D .2y =【答案】BC 【解析】 【分析】根据基本不等式成立的条件“一正二定三相等”,逐一验证可得选项. 【详解】解:对于A 选项,当()0,1x ∈时,ln 0x <,此时9ln 0ln x x+<,故A 不正确.对于B 选项,36sin 62sin y x x =+≥,当且仅当36sin 2sin x x =,即1sin 2x =时取“=”,故B 正确.对于C 选项,2336x x y -=+≥=,当且仅当233x x -=,即1x =时取“=”,故C 正确.对于D 选项,26y ≥=,=27x =-无解,故D 不正确.故选:BC.(多选题)例4.(2022·江苏·扬州中学高三开学考试)设0a >,0b >,下列结论中正确的是( )A .()1229a b a b ⎛⎫++≥ ⎪⎝⎭B .()2221a b a b +≥++C .22b a a b a b+≥+D .22a b a b+≥+【答案】ACD 【解析】 【分析】利用基本不等式可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()12222559b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =时,等号成立,A 对;对于B 选项,取1a b ==,则()2221a b a b +<++,B 错;对于C 选项,22b a b a +≥=,22a b a b +≥=, 所以,2222b a a b a b a b +++≥+,即22b a a b a b+≥+,当且仅当a b =时,等号成立,C 对;对于D 选项,因为222a b ab +≥,则()()2222222a b a b ab a b +≥++=+,所以,()()22222a b a b a ba b a b +++≥=≥++a b =时,两个等号同时成立,D 对.故选:ACD. 【方法技巧与总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.题型二:直接法求最值例5.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为( ) A .4- B .4 C .8 D .8-【答案】B 【解析】 【分析】根据()f x 的值域求得1ac =,结合基本不等式求得14c a+的最小值.【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a =即12,2a c ==时等号成立.故选:B例6.(2022·湖北十堰·三模)函数()1111642x x x f x -=++的最小值为( ) A .4 B .C .3D .【答案】A 【解析】 【分析】利用不等式性质以及基本不等式求解. 【详解】因为116224xx x +≥⨯,当且仅当1164x x =,即0x =时等号成立,1122222422x x x x -⨯+=⨯+≥=,当且仅当2222xx⨯=,即0x =时等号成立, 所以()f x 的最小值为4. 故选:A(多选题)例7.(2022·广东·汕头市潮阳区河溪中学高三阶段练习)已知a ,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是( ) A .ab 的最小值是1 B .ab 的最大值是1 C .11a b+的最小值是94D .11a b +的最大值是92【答案】BC 【解析】 【分析】根据等比中项整理得44a b +=,直接由基本不等式可得ab 的最大值,可判断AB ;由111()(4)4a b a b +⋅+⋅展开后使用基本不等式可判断CD. 【详解】因为22164a b ⋅=,所以4422a b +=,所以4424a b ab +=,可得1ab ,当且仅当4a b =时等号成立, 所以ab 的最大值为1,故A 错误,B 正确.因为1111419()(4)(14)(524444b a a b a b a b +⋅+⋅=++++=, 故11a b +的最小值为94,无最大值,故C 正确,D 错误. 故选:BC【方法技巧与总结】直接利用基本不等式求解,注意取等条件.题型三:常规凑配法求最值例8.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】将给定函数化简变形,再利用均值不等式求解即得. 【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x-=-,即0x =时取“=”, 所以当0x =时,22222x x y x -+=-有最大值1-.故选:A例9.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是( )A .4B .3C .D .3【答案】D 【解析】 由()13131y x x =-++-,利用基本不等式求最小值即可. 【详解】因为1x >,所以()131331y x x =-++≥-3=,当且仅当()1311x x -=-,即1x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3. 故选:D. 【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题. 例10.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x yx y +--的最小值为( )A .3B .52C .3D .3+【答案】D 【解析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得. 【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >, 由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=+------当且仅当2111x y =--,即11x y =+=“=”,所以211x y x y +--的最小值为3+ 故选:D例11.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3 【解析】 【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.例12.(2021·江苏·常州市北郊高级中学高一阶段练习)已知1xy =,且102y <<,则22416x yx y -+最大值为______.【解析】由1xy =且102y <<,可得1(2)y x x=>,可得40x y ->,再将22416x y x y -+化为18(4)4x y x y-+-后利用基本不等式求解即可. 【详解】解:由1xy =且102y <<,可得1(2)y x x =>,代入440x y x x-=->,又222441816(4)8(4)4x y x y x y x y xy x y x y--==≤=+-+-+-当且仅当844x y x y-=-,即4x y -= 又1xy =,可得x =y =时,不等式取等, 即22416x y x y -+,. 【方法技巧与总结】1.通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式. 2.注意验证取得条件.题型四:消参法求最值例13.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,则___________.【答案】【解析】 【分析】将点(1,1)-代入直线方程可得3a b +=. 【详解】直线30ax by --=过点(1,1)-,则3a b += 又0,0a b >>,设t =0t >2126t a b =++++=+由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立. 故答案为:例14.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z取得最大值时,212x y z+-的最大值为( )A .0B .3C .94D .1【答案】D 【解析】 【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=, 2234z x xy y ∴=-+.∴22111434432?xy xy x y z x xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212xyz+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.例15.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( ) A .2 B.2 C.2 D .6【答案】B 【解析】 【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842, 用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解. 【详解】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222, 当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.例16.(2022·浙江·高三专题练习)若正实数a ,b 满足32+=b a ab ,则2+a bab 的最大值为______. 【答案】12【解析】 【分析】由已知得a =23b b -,代入2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12,然后结合二次函数的性质可求. 【详解】因为正实数a ,b 满足b +3a =2ab , 所以a =23bb -,则2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12, 当112b =,即b =2 时取得最大值12.故答案为:12. 【点睛】思路点睛:b +3a =2ab ,可解出a ,采用二元化一元的方法减少变量,转化为1b的一元二次函数,利用一元二次函数的性质求最值.例17.(2022·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________. 【答案】2 【解析】 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥,当且仅当14xy xy =,即22x y ==211x y+.故答案为:2例18.(2022·浙江绍兴·模拟预测)若220,0,422>>+-=a b a b ab ,则12++ab a b的取值范围是_________.【答案】23⎡⎢⎣⎦【解析】 【分析】根据已知可得2(2)206a b ab +-=>,求得2a b +>2(2)26a b ab +=+结合基本不等式可求得02a b <+≤12++ab a b变形为14262a b a b ⎛⎫++ ⎪+⎝⎭,采用换元法,利用导数求得结果. 【详解】由题意220,0,422>>+-=a b a b ab 得:2(2)206a b ab +-=> ,则2a b +>,又222(2)26232+⎛⎫+=+≤+⨯ ⎪⎝⎭a b a b ab ,当且仅当2b a ==时取等号,故02a b <+≤2a b <+≤ 所以1142262ab a b a b a b +⎛⎫=++ ⎪++⎝⎭,令2,t a b t =+∈ ,则14()()6f t t t =+ ,222144()(1)66t f t t t -'=-=,2t << 时,()0f t '<,()f t 递减,当2t <≤时,()0f t '>,()f t 递增,故min 2()(2)3f t f ==,而f = ,f =,故2()[3f t ∈,即2[312ab a b ∈++,故答案为:23⎡⎢⎣⎦【方法技巧与总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!题型五:双换元求最值例19.(2022·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,则2ab -的最大值为( )A .3B .C .1D .2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()14a b +=进而根据三角换元得5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可. 【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩, 由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-=≤+当且仅当4πθ=时取等号.故选:D.例20.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+ 【解析】 【分析】令2,,(0,0)c m c n m n -==>> ,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。
不等式的基本性质一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。
二、教学内容:1. 不等式的定义及表示方法2. 不等式的基本性质:a. 不等式两边加(减)同一个数(式子),不等号方向不变。
b. 不等式两边乘(除)同一个正数,不等号方向不变。
c. 不等式两边乘(除)同一个负数,不等号方向改变。
三、教学重点与难点:1. 教学重点:不等式的基本性质及运用。
2. 教学难点:不等式性质的灵活运用,解决实际问题。
四、教学方法:1. 采用启发式教学,引导学生发现不等式的基本性质。
2. 利用例题讲解,让学生学会运用不等式性质解决实际问题。
3. 小组讨论,培养学生的合作意识。
五、教学准备:1. 课件、黑板、粉笔2. 例题及练习题3. 学生分组合作的材料教案内容:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学的相关知识。
2. 提问:不等式有什么特点?如何表示不等式?二、新课讲解(15分钟)1. 讲解不等式的基本性质,引导学生发现规律。
2. 通过例题讲解,让学生学会运用不等式性质解决实际问题。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 教师点评答案,解答学生疑问。
四、小组讨论(10分钟)1. 教师给出讨论题目,让学生分组合作解决问题。
2. 各小组汇报讨论成果,教师点评并总结。
五、课堂小结(5分钟)1. 让学生总结不等式的基本性质及运用。
2. 教师补充讲解,强调重点知识点。
六、课后作业(课后自主完成)1. 巩固不等式的基本性质,提高解题能力。
2. 结合生活实际,解决相关问题。
六、教学拓展(10分钟)1. 引导学生思考:不等式性质在实际生活中的应用。
2. 举例说明:如购物时比较价格、比赛成绩排名等。
七、巩固练习(10分钟)1. 让学生完成一些巩固不等式性质的习题。
2. 教师点评答案,解答学生疑问。
八、课堂互动(10分钟)1. 教师提出问题,让学生分组讨论、回答。
数学《不等式基本性质》教学设计一等奖1、数学《不等式基本性质》教学设计一等奖不等式的基本性质教学目的掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形,数学教案-不等式基本性质。
教学过程老师:我们已经学习了平等和不平等。
现在,我们来看两组公式(老师在黑板上展示了两组公式)。
请观察,哪些是方程?什么是不平等?第一组:1+2=3; a+b=b+a; S =ab; 4+x =7.第二组:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4.生:第一组都是等式,第二组都是不等式。
老师:那么,什么是方程?什么是不平等?生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。
师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。
表示大小关系的不等式是我们中学教学所要研究的。
我们以前研究过这个方程。
你还记得等式的性质吗?生:方程有这样的性质,方程两边加,或减,或乘,或除(除数不为零)同一个数,结果还是方程。
师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习,初中数学教案《数学教案-不等式基本性质》。
练习1 (回答)用小于号“<”或大于号“>”填空。
(1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2;(4)- 4_____-6练习2(口头回答)从练习1的四个不等式出发,进行如下操作。
(1)两边加(或减)5。
结果如何呢?等号的方向变了吗?(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的.方向改变了!老师:学生们观察得很仔细。
第7讲 不等式【知识梳理】1. 比较大小的方法:(1) 作差比较法:0;0;0a b a b a b a b a b a b ->⇔>-=⇔=-<⇔<.步骤:作差——变形——定号——结论. (2) 作商比较法:若0b >,则1;1;1a a aa b a b a b b b b>⇔>=⇔=<⇔<. (3) 性质法;(4) 单调性法; (5) 图象法; (6) 特值法 (选填题) .2.不等式的性质:(1)对称性:a b b a >⇔<.(2)传递性:,a b b c a c >>⇒>.(3)可加性:a b a c b c >⇔+>+.(4)可乘性:,0a b c ac bc >>⇒>;,0a b c ac bc ><⇒<. (5)加法法则:,a b c d a c b d >>⇒+>+. (6)乘法法则:0,0a b c d ac bd >>>>⇒>.(7)乘方、开方法则:00rra b a b >>⇒>>(r 为正有理数) . (8)倒数法则:11,0a b ab a b>>⇔<,同号取倒反向. 3. 一元二次不等式的解法:数形结合:开口方向、根的情况⇔解集. 4.基本不等式:(1) 若,a b R ∈,则222a b ab +≥(和转积).当且仅当a b =时等号成立.变形:若,a b R ∈,则:①222a b ab +≥ (和转积);②222a b ab +≤(积转和);③22222a b a b ++⎛⎫≥ ⎪⎝⎭(和转和),记忆:平方均不小于均平方.(2) 均值不等式:若0,0a b >>,则2a b+≥和转积),当且仅当a b =时等号成立.变形:若0,0a b >>,则:①a b +≥和转积)2a b+≤(积转和);③22a b ab +⎛⎫≤ ⎪⎝⎭(积转和) .(3) 不等式链:若0,0a b >>,则22ab a b a b +≤≤≤+5.求最值:如果,x y 都是正数,那么:(1) 若积xy 是定值P ,则当x y =时,和x y +有最小值(2) 若和x y +是定值S ,则当x y =时,积xy 有最大值22S ⎛⎫⎪⎝⎭.点拨:(1) 正、定、等三个条件缺一不可;(2) 关键是获得定值条件,常需拆项、添项、配凑、“1” 代换等; (3) 多次放缩必需同时取等号才可取得最值.【典例精析】例1. (1)设0,0>>y x ,1x y A x y +=++,11x yB x y=+++,则A B 、的大小关系为 .(2)已知三个不等式:①0>ab ,②bda c >,③ad bc >。
课时目标1.通过观察、对比和归纳,探究出不等式的基本性质,体会不等式变形和等式变形的区别与联系.2.掌握不等式的基本性质并熟练运用.学习重点掌握不等式的三条基本性质.学习难点正确运用不等式的三条基本性质进行不等式变形.课时活动设计回顾引入等式的基本性质是什么?师生活动:学生回顾并回答,教师提问并展示.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,等式仍然成立.等式的基本性质2:在等式的两边都乘(或除以)同一个数(除数不为0),等式仍然成立.设计意图:复习等式的基本性质,为不等式的基本性质的学习做准备,激发学生的学习兴趣.一起探究如图,当a>b时,在数轴上表示a的点位于表示b的点的右侧.在数轴上,与a+3,b+3 对应的点和与a,b对应的点之间具有如下的位置关系: 数点的位置变化a+3 相当于将与a对应的点向右平移3个单位长度b+3 相当于将与b对应的点向右平移3个单位长度(1)确定a+3和b+3的大小.(2)a,b两点都向右平移5个单位长度呢?(3)如果c>0,那么对于a+c和b+c的大小,你有什么猜想?(4)在不等式a>b的两边都减去同一个数或同一个整式,你认为应该有什么结论?师生活动: 教师提出问题,学生独立思考,发言交流,得出答案,教师展示答案,并引导学生进行猜想,最后归纳总结.答:(1)a+3>b+3.(2)a+5>b+5.(3)a+c>b+c.(4)a-c>b-c.总结:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.即如果a>b,那么a±c>b±c.设计意图:引导学生自主学习、自主发现、协作交流并进行归纳总结,让学生感受“由一般到特殊“的数学思想.再探究1.已知8>3 ,计算并用不等号填空:8×2>3×2;8×(-2)<3×(-2).8×0.5>3×0.5; 8×(-0.5)<3×(-0.5).8 ×0.01>3×0.01; 8×(-0.01)<3×(-0.01).对于8>3,在不等式两边同乘一个正数,不等号的方向改变吗?在不等式两边同乘一个负数,不等号的方向会怎样?答:对于8>3,在不等式两边同乘一个正数,不等号的方向不变;同乘一个负数,不等号的方向改变.2.用“<”或“>”填空,并总结其中的规律:(1) 6×5>2×5,6×(-5)< 2 ×(-5);(2) 2×6 > -3×6,2×(-6) < -3 ×(-6).通过上面的探究,你有什么发现?再举几个例子验证你的结论.师生活动: 教师提出问题,并引导学生进行猜想,学生形成小组讨论、交流,组内发表自己的看法,最后统一意见,派出代表进行总结发言.师生一起总结不等式的基本性质2和3:不等式的基本性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变.即如果a >b ,且c >0,那么ac >bc.不等式的基本性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.即如果a >b ,且c <0,那么ac <bc.设计意图:让学生自己动手实践、探索规律,锻炼学生类比、归纳总结的思维能力,提高学生的语言表达能力.典例精讲例 根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1) x -1>2; (2) 2x <x +2; (3)13x <4; (4) -5x >20.师生活动:学生解答,教师展示给出解答示范. 解:(1) x -1>2,x -1+1>2+1(不等式的基本性质1),x >3. (2) 2x <x +2,2x -x <x +2-x (不等式的基本性质1),x <2. (3)13x <4,3×13x <3×4(不等式的基本性质2),x <12.(4)-5x >20,-5x -5<20-5 (不等式的基本性质3),x <-4. 方法归纳:1.将不等式化成“x >a ”或“x <a ”的形式,实质是利用不等式的基本性质对不等式进行变形,把不等式的右边化成常数,左边化成只含有系数1的未知数的一次式的形式.2.不等式的两边同乘或除以同一个数时,要分清乘或除以的是正数还是负数,若是正数,不等号的方向不变,若是负数,不等号方向要改变.设计意图:巩固所学知识,加深对所学知识的理解,提高学生综合运用知识的能力.学以致用1.填空.(1)若x+1>0,两边都减去1,得x>-1;(2)-2<-1,两边都加上-a,得-2-a<-1-a.2.下列不等式变形正确的是(C)A.由a>b,得a+2<b+2B.由a>b,得a2>b2C.由a>b,得-2a<-2bD.由a>b,得|a|>|b|3.把下列不等式化为“x>a”或“x<a”的形式:(1)5>3+x;(2)x-5<9;(3)6x<4x-2.解:(1)x<2.(2)x<14.(3)x<-1.师生活动:学生思考、书写,教师巡视观察学生做的情况,有问题及时纠正.教师总结:利用不等式的基本性质1对不等式进行变形,相当于移项,不改变不等号的方向;利用不等式的基本性质2,3进行变形时,以乘数或除数的正负决定是否改变不等号的方向.设计意图:对所学知识点进行强化,使学生熟练运用解题方法,形成运算能力.课堂8分钟.1.教材第122页习题A组第1,2题,B组第1,2,3题.2.七彩作业.教学反思。
不等式根本性质教学设计〔共5篇〕第1篇:不等式性质教学设计 2022-2022学年度第二学期关集中心校七年级数学组导学案专用纸主备人:胡伟审核人:使用人:第11周讨论时间:不等式的根本性质〔1〕教学设计学习目标1、理解、掌握不等式的根本性质;2、能够运用不等式的根本性质解决有关问题.重点难点重点:不等式的三个性质.难点:不等式性质3的探索及运用.解决方法:不等式的根本性质3的导出,采用通过学生自己动手实践、观察、归纳猜测结论、验证等环节来突破的.并在理解的根底上加强练习,以期到达学生稳固所学知识的目的.教学方法先学后教、讨论、探究、讲练结合教具准备多媒体,或小黑板教学设计流程问题:等式有哪些性质?〔学生交流3-5分钟〕学生答复等式的性质:性质1 等式两边同时加〔或减〕同一个数〔或式子〕,结果仍相等.性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.此次活动中教师应重点关注:〔1〕学生对已学过的等式性质内容的记忆,及表达语言的准确性;〔2〕学生对等式性质得出过程的回忆.探讨不等式的根本性质.〔学生读文8-10分钟后,研讨并解决下面问题〕如果a>b,那么,在数轴上表示a的点A位于表示b 的点B的右侧,画图表示.〔一〕做做1.请你在上面的数轴上画出表示a+3和b+3的点来,哪个点在右侧?并用不等号连接下面的式子: a+3______b+3.类似地,应有 a+c______b+c.2.如果在a>b的两边都减去同一个数或同一个整式,你认为应该有怎样的结论? 让学生多举出几组数据,结合数轴来比拟出两组数的大小关系.〔以小组为单位,充分讨论,通过交流得出结论〕.不等式的根本性质1:如果a>b,那么 a+c>b +c,a-c>b-c.就是说,不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变.〔二〕探究1.根据8>3,用“>〞或“ 8×2_______3 × 2; 8×〔-2〕_______3×〔-2〕.8× _______3×; 8×〔-〕_______3×〔-〕.8×0.01______3×0.01; 8×〔-0.01〕_______3×〔-0.01〕.2.对于8>3,在不等式两边乘同一个正数,不等号方向改变吗?3.对于8>3,在不等式两边乘同一个负数,不等号方向改变吗?4.你有什么发现?再举几例,验证你的结论.通过多组数据,观察、思考、一起探究两组数的大小关系.学生在填空的根底上分组探索不等式的性质.教师深入小组参与活动,观察指导学生的探究方法,并倾听学生的讨论.此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能会直接把等式的性质加以修改,推广得到不等式的性质,而忽略了不等式的两边乘或除以同一个正数或同一个负数时的不同结论,此时教师应引导学生注意观察题目,并继续举几个例子让学生观察比照,体会不等式性质与等式性质的异同,用自己的语言描述发现的规律.不等式的根本性质2:如果a>b,并且c>0,那么ac>bc.不等式的根本性质3:如果a>b,并且c 〔三〕例题例根据不等式的根本性质,把以下不等式化成x>a或x2;〔2〕2x20.学生独立完成,举手答复以下问题.教师填写答案,并对学生出现的问题给予指导,进一步稳固不等式的性质.此次活动中教师应重点关注:〔1〕学生能否说出填空根据的是不等式的哪一条性质;〔2〕学生对不等式性质3的掌握情况.解:〔1〕 x-l>2,x-l+l>2+1〔不等式的根本性质1〕, x>3.〔2〕2x 2x-x 〔不等式的根本性质2〕, x20 〔不等式的根本性质3〕, xa或x 〔四〕教后检测1.如果a〞或“a或x8x+1;〔3〕 x>-4;〔4〕-10x 〔五〕当堂训练1.在以下各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式根本性质.〔1〕假设a-3<9,那么 a ______12;〔2〕假设-a<10,那么a______ -10;答:〔1〕a<12,根据不等式根本性质1.〔2〕a>-10,根据不等式根本性质3. 2.a<0,那么〔1〕a+2 ______2;〔2〕a-1 ______ -1;〔3〕3a______ 0;〔4〕a-1______0;〔5〕|a|______0.答:〔1〕a+2<2,根据不等式根本性质1.〔2〕a-1<-1,根据不等式根本性质1.〔3〕3a<0,根据不等式根本性质2.〔4〕因为a<0,两边同加上-1,由不等式根本性质1,得a-1<-1.又,-1<0,所以 a-1<0.〔5〕因为a<0,所以a≠0,所以|a|>0.〔此题除了进一步运用不等式的三条根本性质外,还涉及了一些旧的根底知识.如a<0表示a是负数;a>0表示a是正数;|a| 是非负数等.〕 3.判断以下各题的推导是否正确?为什么?〔投影〕〔请学生口答〕〔1〕因为7.5>5.7,所以-7.5<-5.7;〔2〕因为a+8>4,所以a>-4;〔3〕因为4a>4b,所以a>b;〔4〕因为-1>-2,所以-a-1>-a-2;〔5〕因为3>2,所以3a>2a.答:〔1〕正确,根据不等式根本性质3.〔2〕正确,根据不等式根本性质1.〔3〕正确,根据不等式根本性质2.〔4〕正确,根据不等式根本性质1.〔5〕不对,应分情况逐一讨论.当a>0时,3a>2a.〔不等式根本性质2〕当 a=0时,3a=2a.当a<0时,3a<2a.〔不等式根本性质3〕〔学生在答复此题的过程中,当遇到困难或问题时,教师应做适当引导、启发、帮助〕4.按照以下条件,写出仍能成立的不等式:〔1〕由-2<-1,两边都加-a;〔2〕由7>5,两边都乘以不为零的-a.5.用不等号填空:〔1〕当a-b<0时,a______ b;〔2〕当a<0,b<0时,ab ______0;〔3〕当a<0,b>0时,ab ______0;〔4〕当a>0,b<0时,ab ______ 0;〔5〕假设a ______ 0,b<0,那么ab>0;〔六〕教后反思第2篇:根本不等式教学设计根本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解根本不等式;③引导学生从不同角度去证明根本不等式;④用根本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的微妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解根本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比拟几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对根本不等式进行严格的证明,包括了比拟法,综合法和分析法,而学生对作差比拟法是比拟熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并标准证明过程,为今后学习证明方法打下根底.第四个环节:训练小结,稳固深化.学习根本不等式最终的目的表达在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对根本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,表达化归的思想,最后设计三道思考题,两道进一步稳固化归思想及应用根本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的时机,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用根本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等〞这样的结论,但已潜移默化为我们下一节课使用根本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解根本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用根本不等式,以及根本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索根本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜测,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??〔教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情〕?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用根本不等式解决生活中的应用问题2.进一步掌握用根本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是根本不等式应用举例的延伸。
不等式的基本性质一、教学目标1. 知识与技能:使学生掌握不等式的性质,能够运用不等式的性质解有关不等式。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现不等式的基本性质。
3. 情感态度价值观:培养学生对数学的兴趣,培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:不等式的性质。
2. 教学难点:不等式性质的应用。
三、教学准备1. 教师准备:教案、PPT、黑板、粉笔。
2. 学生准备:课本、练习本、文具。
四、教学过程1. 导入新课1.1 复习相关知识:回顾一元一次不等式的解法。
1.2 提问:同学们,你们知道不等式有什么性质吗?今天我们就来学习不等式的基本性质。
2. 探究不等式的性质2.1 展示不等式实例,引导学生观察、分析。
2.2 引导学生发现不等式的性质,并总结出不等式的基本性质。
3. 例题讲解3.1 出示例题,讲解例题的解法,引导学生运用不等式的性质解决问题。
3.2 学生自主练习,教师巡回指导。
4. 课堂练习4.1 出示练习题,学生独立完成,教师批改并讲解。
4.2 学生总结练习中的经验教训。
五、课后作业1. 请学生根据不等式的性质,解决课后练习题。
2. 鼓励学生进行不等式性质的探究,发现更多的性质。
六、教学拓展1. 引导学生思考:不等式的性质在实际生活中有哪些应用?2. 举例说明不等式性质在生活中的应用,如购物、分配等。
3. 引导学生进行不等式性质的综合应用,提高解决问题的能力。
七、巩固练习1. 出示巩固练习题,学生独立完成。
2. 教师批改并讲解,学生总结解题思路和方法。
八、课堂小结1. 教师引导学生回顾本节课所学内容,总结不等式的基本性质。
2. 学生分享学习收获和感受。
九、课后反思1. 教师反思本节课的教学效果,找出不足之处,为下一节课做好准备。
2. 学生反思自己的学习过程,找出优点和不足,制定改进措施。
十、布置作业1. 请学生根据不等式的性质,解决课后练习题。
2. 鼓励学生进行不等式性质的探究,发现更多的性质。
沪科版数学七年级下册7.1《不等式及其基本性质》教学设计一. 教材分析《不等式及其基本性质》是沪科版数学七年级下册第七章的第一节内容。
本节主要介绍不等式的概念、不等式的性质以及不等式的运算。
教材通过生活实例引入不等式的概念,让学生感受不等式在实际生活中的应用,培养学生的数学应用意识。
同时,通过探究不等式的性质,使学生掌握不等式的基本运算方法,为学生后续学习更高级的数学知识打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了整数、实数的基本概念,具备了一定的逻辑思维能力。
但他们对不等式的认识尚浅,对不等式的性质和运算方法较为陌生。
因此,在教学过程中,教师需要从学生的实际出发,循序渐进地引导学生掌握不等式的基本概念和性质,培养学生解决实际问题的能力。
三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。
2.学会不等式的基本运算方法,能运用不等式解决实际问题。
3.培养学生的数学思维能力,提高学生的数学应用意识。
四. 教学重难点1.不等式的概念及其性质。
2.不等式的基本运算方法。
五. 教学方法1.情境教学法:通过生活实例引入不等式概念,激发学生的学习兴趣。
2.启发式教学法:引导学生探究不等式的性质,培养学生的逻辑思维能力。
3.实践操作法:让学生通过动手操作,掌握不等式的基本运算方法。
六. 教学准备1.教学课件:制作课件,展示不等式的概念、性质和运算方法。
2.练习题:准备适量练习题,巩固所学知识。
3.教学道具:准备一些实物道具,辅助讲解不等式的概念。
七. 教学过程1.导入(5分钟)利用生活实例,如身高、体重等,引导学生认识不等式。
让学生体会不等式在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)讲解不等式的概念,引导学生理解不等式的含义。
通过示例,让学生了解不等式的基本性质。
3.操练(10分钟)让学生分组讨论,探究不等式的性质。
每组选择一个实例,进行操作验证,总结不等式的性质。
4.巩固(10分钟)出示练习题,让学生运用所学知识解决问题。
高中数学不等式专题教师版一、高考动向考试内容:不等式.不等式的根本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:(1〕理解不等式的性质及其证明.(2〕掌握两个〔不扩展到三个〕正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3〕掌握解析法、综合法、比较法证明简单的不等式.(4〕掌握简单不等式的解法.(5〕理解不等式│ a│- │ b│≤│ a+b│≤│ a│ +│ b│?二、不等式知识要点1.不等式的根本看法〔 1〕不等〔等〕号的定义: a b 0 a b; a b 0 a b; a b 0a b.〔 2〕不等式的分类:绝对不等式;条件不等式;矛盾不等式.(3〕同向不等式与异向不等式 .(4〕同解不等式与不等式的同解变形 .2. 不等式的根本性质(1〕a b b a〔对称性〕〔 2〕a b, b c a c 〔传达性〕〔 3〕a b a c b c 〔加法单调性〕〔 4〕a b, c d a c b d 〔同向不等式相加〕〔 5〕 ab, c da cb d 〔异向不等式相减〕〔 6〕 a. b,c0 ac bc( 7〕 a b, c 0 ac bc 〔乘法单调性〕〔 8〕 ab 0,c d0 acbd 〔同向不等式相乘〕(9) a b 0,0cda b 〔异向不等式相除〕cd(10) a b, ab 01 1〔倒数关系〕ab〔 11〕 a ba nb n ( n Z , 且n1) 〔平方法那么〕〔 12〕 ab 0nanb(nZ ,且n 1) 〔开方法那么〕3. 几个重要不等式〔 1〕 假设 a R,那么 | a | 0,a 2〔2〕假设、R , 那么 22或 22〔当仅当 a=b 时取等号〕a ba b2ab(ab 2 | ab | 2ab)〔 3〕若是 a , b 都是正数,那么aba b. 〔当仅当 a=b 时取等号〕2极值定理:假设 x, y R , xyS, xy P, 那么:1 若是 P 是定值 , 那么当 x=y 时, S 的值最小;○○2若是 S 是定值 , 那么当 x =y 时, P 的值最大 .利用极值定理求最值的必要条件:一正、二定、三相等 .(4) 假设 a 、 b 、c R ,那么a bc3abc 〔当仅当 a=b=c 时取等号〕3(5) 假设 ab 0, 那么ba 2 〔当仅当 a=b 时取等号〕ab〔 7〕 假设a 、bR,那么 || a | | b || | a b | | a | | b |4. 几个着名不等式〔1〕平均不等式:若是 a , b 都是正数,那么2a b a 2 b 2〔当仅当1 ab2 2 .1 aba=b 时取等号〕即:平方平均≥算术平均≥几何平均≥调停平均〔a、b 为正数〕:特别地, ab (ab ) 2 a 2b 2〔当 a = b 时, ( ab ) 2 a 2 b 2ab 〕2222幂平均不等式: a 12a 22...a n 21(a 1 a 2 ... a n ) 2n注:比方: (acbd ) 2 ( a 2 b 2 )(c 2 d 2 ) .常用不等式的放缩法:①1111 1 11n n 1n(n 1)pn 2pn( n 1) n 1n ( n2)② n 1 n1 p 1 p1nn 1(n 1)nn2 nnn11〔 2〕柯西不等式:假设 a 1 ,a 2 , a 3 , , a n R,b 1 ,b 2 ,b 3 , b n R;那么a 2 a 2)(b bb 2 b 2 )〔 a b a b a 3 b 3 a n b )2 (a 2 a 2 2 21 12 2n1 2 3n1 2 3 n当且仅当 a 1 a 2 a 3 an 时取等号b 1 b 2 b 3 b n〔 3〕琴生不等式〔特例〕与凸函数、凹函数假设定义在某区间上的函数 f(x), 关于定义域中任意两点x 1, x 2 ( x 1 x 2 ), 有那么称 f(x)为凸〔或凹〕函数 .5. 不等式证明的几种常用方法比较法、综合法、解析法、换元法、反证法、放缩法、构造法.6. 不等式的解法〔 1〕整式不等式的解法〔根轴法〕.步骤:正化,求根,标轴,穿线〔偶重根打结〕,定解.特例① 一元一次不等式 ax >b 解的谈论;②一元二次不等式 ax 2 +bx +c >0( a ≠ 0) 解的谈论 .( 2〕分式不等式的解法:先移项通分标准化,那么 ( 3〕无理不等式:转变成有理不等式求解 ( 4〕 . 指数不等式:转变成代数不等式 ( 5〕对数不等式:转变成代数不等式( 6〕含绝对值不等式○1应用分类谈论思想去绝对值;○2 应用数形思想;○3应用化归思想等价转变注:常用不等式的解法举例〔 x 为正数〕:① x(1 x) 21 2x(1 x)(1 x) 1(2) 3 422327② yx(1x 2 )y 2 2 x 2 (1 x 2 )(1 x 2 ) 1(2)34y2 32 2 3279近似于 ysin x cos 2x sin x(1 sin 2x) ,③ | x 1 | | x | | 1 | ( x 与 1同号,故取等 ) 2xx x三、利用均值不等式求最值的方法均值不等式abab (a 0,b 0, 当且仅当 a = b 时等号成立〕 是一个重要2的不等式,利用它可以求解函数最值问题。
不等式的基本性质说课稿不等式的基本性质说课稿1我说课的内容是鲁教版义务教育课程标准实验教科书,七年级数学(下)第十一章第二节《不等式的基本性质》。
下面,我从以下几个方面对本节课的教学设计进行说明。
一、教材分析第十一章《一元一次不等式和一元一次不等式组》是在学习了数轴、等式性质、解一元一次方程、一次函数的基础上,从研究不等关系入手,展开对不等式的基本性质、不等式的解集、解一元一次不等式(组)、一元一次不等式与一次函数的研究学习。
本课题为第十一章第二节《不等式的基本性质》。
它在教材中起着承上启下的作用。
关于它的学习以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式和一元一次不等式组的解法的重要理论依据,是学生后继学习的重要基础和必备技能。
二、教学目标知识目标:1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。
能力目标:1、培养学生类比、归纳、猜想、验证的数学研究方法。
2、发展学生的符号表达能力、代数变形能力。
3、培养学生自主探索与合作交流的能力。
情感目标:让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣。
三、教学重点和难点重点:掌握不等式的基本性质并能正确运用将不等式变形难点:不等式基本性质3的运用四、教法分析活动是影响人发展的决定性因素,学生的学习只有通过自主活动并从中体验、感悟、建构自己的知识经验,培养积极的学习情感,才能得到自身的发展。
但学生主动参与学习活动的方向,活动过程的积极化离不开教师的“导”。
本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动。
在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
五、学法分析“教为不教,学为会学”,“授之以鱼”更要“授之以渔”。
2.2.1不等式及其性质(2)教案一、教学目标:1、知识与技能:掌握不等式的基本性质。
并能用不等式的基本性质来证明一些简单的不等式。
2、过程与方法:通过对问题的探究思考、体验认识、广泛参与等培养学生严谨的思维习惯、主动积极地学习品质,提高学生的学习能力。
3、情感、态度与价值观:通过参与活动,参与学习,感受数学的应用性,体会数学推理的严谨美。
二、教学重点:不等式的性质三、教学难点:不等式性质的证明。
四:教学方法:本节通过类比、启发、探究相结合的方法组织教学,按照由易到难,通过问题引导学生明确不等式各个性质的应用范围及会用不等式的性质证明简单的不等式。
五、教学过程:首先由教师讲故事引入课题,故事内容如下:两个小男孩,一个5岁,一个7岁,在一起玩游戏,突然小弟弟对哥哥说:“哥哥,三年后我就比你大了,我就是哥哥了。
”哥哥想了想说:“不是的,我永远是你的哥哥。
”然后教师提出问题,同学们,你们知道故事中隐含着什么数学问题吗?好我们带着这个问题进入本节课的学习。
(一)温故知新:⑴⇔>b a ⇔<b a ⇔=b a ⑵比较两个实数大小的方法是什么?步骤是什么?(3)若p ⇒q ,则p 是q 的 条件,q 是p 的 条件 活动:学生口答,教师板书。
设计意图:复习巩固上节知识,为不等式性质的证明做好铺垫。
学生口答,师生共同完成。
以旧引新,自然过渡。
(二)、自主探究:自学课本p64页回答以下问题,总结性质1、2、3及推论:(1)a>b 与b<a 是否等价?(2)若a>b ,b>c 则a>c 是否成立?(3)若a>b ,那么a+c>b+c 是否成立?若a+c>b+c ,那么a>b 呢?(4)若a>b ,c>d ,那么a+c>b+d 一定成立吗?反之呢?若不成立,请举一反例。
(5)若a>b ,c>d ,那么a -c>b -d 成立吗?试举例说明。
第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质第1课时 不等关系与比较大小【学习目标】1.了解现实世界和日常生活中的等量关系与不等关系.(数学抽象) 2.了解不等式(组)的实际背景,会用不等式(组)表示不等关系.(数学建模) 3.会用作差法(或作商法)比较两个实数或代数式值的大小.(数学运算)【使用说明及学法指导】1.预学指导:精读教材的内容,完成预学案,找出自己的疑惑;2.探究指导:小组成员依次发表观点,有组织,有记录,有展示,有点评;3.展示指导:规范审题,规范书写,规范步骤,规范运算;4.检测指导:课堂上定时训练,展示答案;5.总结指导:回扣学习目标,总结本节内容.【预学案】知识点1 不等式与不等关系 不等式的定义所含的两个要点. (1)不等符号<,>,__≤__,__≥__或≠. (2)所表示的关系是__不等关系__.思考1:不等式“a ≤b ”的含义是什么?只有当“a<b ”与“a =b ”同时成立时,该不等式才成立,是吗?提示:不等式a ≤b 应读作“a 小于或者等于b ”,其含义是指“a<b 或者a =b ”,等价于“a 不大于b ”,即若a<b 或a =b 之中有一个正确,则a ≤b 正确.知识点2 比较两实数a ,b 大小的依据 比较两实数a ,b 的大小⎩⎪⎨⎪⎧依据⎩⎪⎨⎪⎧如果a -b>0,那么__a>b__如果a -b<0,那么__a<b__如果a -b =0,那么__a =b__结论:确定任意两个实数a ,b 的大小关系,只 需确定它们的差a -b 与0的大小关系思考2:(1)在比较两实数a ,b 大小的依据中,a ,b 两数是任意实数吗? (2)若“b -a>0”,则a ,b 的大小关系是怎样的?提示:(1)是 (2)b>a 预学自测:1.判断正误(对的打“√”,错的打“×”) (1)不等式x ≥2的含义是指x 不小于2.( √ ) (2)若x 2=0,则x ≥0.( √ ) (3)若x -1≤0,则x <1.( × )(4)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) [解析] (1)不等式x ≥2表示x >2或x =2,即x 不小于2. (2)若x 2=0,则x =0,所以x ≥0成立. (3)若x -1≤0,则x <1或者x =1,即x ≤1.(4)任意两数之间,有且只有a >b ,a =b ,a <b 三种关系中的一种,没有其他大小关系.2.大桥桥头立着的“限重40吨”的警示牌,是提示司机要安全通过该桥,应使车和货物的总质量T 满足关系( C )A .T <40B .T >40C .T ≤40D .T ≥403.已知x <1,则x 2+2与3x 的大小关系为__x 2+2>3x __.【我的疑惑】_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【探究案】探究一 用不等式(组)表示不等关系例1 某商人如果将进货单价为8元的商品按每件10元销售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品的售价每提高1元,销售量就相应减少10件.若把提价后商品的售价设为x 元,怎样用不等式表示每天的利润不低于300元?[分析] 由“这种商品的售价每提高1元,销售量就相应减少10件”确定售价变化时相应每天的利润,由“每天的利润不低于300元”确定不等关系,即可列出不等式.[解析] 若提价后商品的售价为x 元,则销售量减少x -101×10件,因此,每天的利润为(x -8)·[100-10(x -10)]元,则“每天的利润不低于300元”可以用不等式表示为(x -8)·[100-10(x -10)]≥300.[归纳提升] 将不等关系表示成不等式的思路 (1)读懂题意,找准不等式所联系的量. (2)用适当的不等号连接.例2 某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,且有9名驾驶员,此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.[分析] 首先用变量x ,y 分别表示甲型卡车和乙型卡车的车辆数,然后分析已知量和未知量间的不等关系:(1)卡车数量与驾驶员人数的关系;(2)车队每天运矿石的数量;(3)甲型卡车的数量;(4)乙型卡车的数量.再将不等关系用含未知数的不等式表示出来,要注意变量的取值范围.[解析] 设每天派出甲型卡车x 辆,乙型卡车y 辆,则⎩⎪⎨⎪⎧x +y ≤9,10×6x +6×8y ≥360,0≤x ≤4,0≤y ≤7,x ,y ∈N ,即⎩⎪⎨⎪⎧x +y ≤9,5x +4y ≥30,0≤x ≤4,0≤y ≤7,x ,y ∈N .[归纳提升] 用不等式组表示不等关系的方法首先要先弄清题意,分清是常量与常量、变量与变量、函数与函数还是一组变量之间的不等关系;然后类比等式的建立过程找到不等词,选准不等号,将量与量之间用不等号连接;最后注意不等式与不等关系的对应,不重不漏,尤其要检验实际问题中变量的取值范围.【对点练习】❶ 用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于110 m 2,靠墙的一边长为x m ,试用不等式表示其中的不等关系.[解析] 由于矩形菜园靠墙的一边长为x m ,而墙长为18 m ,所以0<x ≤18, 这时菜园的另一条边长为30-x 2=(15-x2)(m).因此菜园面积S =x ·(15-x2),依题意有S ≥110,即x (15-x2)≥110,故该题中的不等关系可用不等式组表示为⎩⎪⎨⎪⎧0<x ≤18,x (15-x 2)≥110.探究二:比较实数的大小 例3 已知a ,b 为正实数,试比较a b +ba与a +b 的大小. [解析] 方法一(作差法):(a b +ba)-(a +b ) =(a b -b )+(ba-a ) =a -b b +b -a a =(a -b )(a -b )ab=(a -b )2(a +b )ab.∵a ,b 为正实数,∴a +b >0,ab >0,(a -b )2≥0,∴(a -b )2(a +b )ab ≥0,∴a b +b a ≥a +b .方法二(作商法):a b +ba a +b =(a )3+(b )3ab (a +b )=(a +b )(a +b -ab )ab (a +b )=a +b -abab=(a -b )2+ab ab =1+(a -b )2ab ≥1.∵b a +a b >0,a +b >0,∴a b +ba≥a +b . 方法三(平方后作差):∵(a b +b a )2=a 2b +b 2a +2ab ,(a +b )2=a +b +2ab ,∴(a b +b a )2-(a +b )2=(a +b )(a -b )2ab .∵a >0,b >0,∴(a +b )(a -b )2ab ≥0.又a b +b a >0,a +b >0,故a b +ba≥a +b .[归纳提升] 比较大小的方法1.作差法的依据:a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 步骤:作差—变形—判断差的符号—得出结论.注意:只需要判断差的符号,至于差的值究竟是多少无关紧要,通常将差化为完全平方式的形式或多个因式的积的形式.2.作商法的依据:b >(<)0时,a b >1⇔a >(<)b ;a b =1⇔a =b ;ab <1⇔a <(>)b .步骤:作商—变形—判断商与1的大小—得出结论. 注意:作商法的适用范围较小,且限制条件较多,用的较少.3.介值比较法:(1)介值比较法的理论根据:若a >b ,b >c ,则a >c ,其中b 是a 与c 的中介值.(2)介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值.【对点练习】❷ 当x ≤1时,比较3x 3与3x 2-x +1的大小.[解析]3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1)=3x 2(x -1)+(x -1) =(3x 2+1)(x -1). 因为x ≤1,所以x -1≤0, 而3x 2+1>0.所以(3x 2+1)(x -1)≤0, 所以3x 3≤3x 2-x +1.【检测案】1.下列说法正确的是( C )A .某人月收入x 不高于2 000元可表示为“x <2 000”B .小明的身高x ,小华的身高y ,则小明比小华矮表示为“x >y ”C .某变量x 至少是a 可表示为“x ≥a ”D .某变量y 不超过a 可表示为“y ≥a ”[解析] A 应为x ≤2 000,B 应为x <y ,D 应为y ≤a ,故选C . 2.设a =3x 2-x +1,b =2x 2+x ,则( C ) A .a >b B .a <b C .a ≥bD .a ≤b[解析] a -b =3x 2-x +1-(2x 2+x )=x 2-2x +1=(x -1)2≥0,∴a -b ≥0即a ≥b ,故选C .3.设a ,b ∈R ,定义运算“⊗”和“⊕”如下:a ⊗b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,a ⊕b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若m ⊗n ≥2,p ⊕q ≤2,则( A )A .mn ≥4且p +q ≤4B .m +n ≥4且pq ≤4C .mn ≤4且p +q ≥4D .m +n ≤4且pq ≤44.用不等式表示下面的不等关系: (1)a 与b 的积是非负数:__ab ≥0__; (2)m 与n 的和大于p :__m +n >p __;(3)某学校规定学生离校时间t 在16点到18点之间:__16≤t ≤18__. 5.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是__x <y __.【课堂小结】。
不等式的性质(教案)教学设计一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 不等式的定义及表示方法。
2. 不等式的基本性质。
3. 不等式的应用。
三、教学重点与难点1. 教学重点:不等式的概念、表示方法及基本性质。
2. 教学难点:不等式的应用。
四、教学方法1. 采用问题驱动法,引导学生探究不等式的性质。
2. 运用案例分析法,让学生解决实际问题。
3. 利用小组讨论法,培养学生的合作能力。
五、教学过程1. 导入新课:通过生活实例引入不等式的概念,让学生感受不等式在实际生活中的应用。
2. 讲解不等式的表示方法,引导学生掌握不等式的基本写法。
3. 探究不等式的基本性质,引导学生发现并证明不等式的性质。
4. 运用案例分析,让学生解决实际问题,巩固不等式的应用。
5. 课堂小结,总结本节课的主要内容和知识点。
6. 布置作业,巩固所学知识。
附:教学反思在教学过程中,要注意关注学生的学习情况,针对不同学生的特点进行针对性指导。
要注重培养学生的动手操作能力和思维能力,让学生在学习过程中体验到数学的乐趣。
在案例分析环节,要选取具有代表性的实例,引导学生运用所学知识解决实际问题,提高学生的应用能力。
六、教学评价1. 评价内容:学生对不等式概念的理解、不等式表示方法的掌握、不等式性质的应用。
2. 评价方式:课堂问答、作业批改、小组讨论、课后访谈。
3. 评价标准:a. 对不等式概念的理解:能正确表述不等式的定义,区分不等式与等式。
b. 对不等式表示方法的掌握:能熟练运用不等号表示大小关系,正确书写不等式。
c. 对不等式性质的应用:能运用不等式性质解决实际问题,正确进行不等式变形。
七、教学拓展1. 对比等式与不等式的异同,让学生深入理解不等式的概念。
2. 介绍不等式的起源和发展历程,激发学生学习兴趣。
3. 引导学生探究不等式与其他数学知识的关系,如代数、几何等。
目m[蛀知识内容版块一.不等式的性质1 .用不等号(,)表示不等关系的式子叫做不等式.2. 对于任意两个实数 a 和b,在a b,a b,a b 三种关系中,有且仅有一种关系成立.3. 两个实数的大小比较:对于任意两个实数 a,b,对应数轴上的两点,右边的点对应的实数比左边点对应的实数作差比较法:a b 0 a b; a b 0 a b; a b 0 a b.其中符号表示它的左边与右边能够互相推出.4. 不等式的性质:性质1 :(对称性)如果a b ,那么b a ;如果b a ,那么a b . 性质2:(传递性)如果a b,且b c,则a c . 性质3:如果a b,则a c b c .推论1:(移项法则)不等式中的任意一项都可以把它的符号变成相反的符号后,从不等式的一边移到另一边.推论2:如果a b, c d,则a c b d .我们把a b 和c d (或a b 和c d )这类不等号方向相同的不等式,叫做同向不等推论2说明:同向不等式的两边可以分别相加,所得的不等式与原不等式同向. 推广:几个同向不等式的两边分别相加,所得到的不等式与原不等式同向. 性质4:如果a b, c 0,则ac bc;如果a b , c 0,则ac bc.实数大小的作商比较法:当 b 0时,若^ 1,且b 0,则a b ;若^ 1,且b 0, 则a b • 推论1 :如果a b 0,c d 0,则ac bd .推广:几个两边都是正数的同向不等式的两边分别相乘,所得到的不等式与原不等式同 向. b 0 ,则 a n b n (n N , n 1). b 0 ,则寸^ 呢(n N , n 1)对于任意两个实数a,b ,有a b 0 a b ; a b 0 a b ;a b 0 a b,这几个等价符号的左边反映的是实数的运算性质,右边反映的是实数的大小顺序.由此知:比较两个实数的大小,可以归结为判断它 们的差的符号.这是不恒成立与有解问题推论2:如果 推论3:如果<教师备案>1 .1比较,等式这一章的理论基础,是不等式性质的证明,证明不等式和解不等式的主要依据. 在学习了不等式的性质后,比较两个实数的大小还可以用作商法,与但这时要注意分母的正负情况.2.比较两个代数式的大小关系,实际上是比较它们的值的大小,又归结为判断它们的差的符号,要引导学生意识到比较法是不等式证明的基本方法. 它有两个基本步骤:先作差,再变形判断正负号,难点是后者.这里的代数式的字母是有范围的,省略不写时就表示取值范围是实数集,它的主要变形方法有两种,一是因式分解法,二是配方法,变形时要尽量避免讨论,让依据尽量简便.3.可以介绍异向不等式,并提醒学生注意什么样的不等式可以相加相减.对于不等式的性质与推论,可以根据学生的情况适当进行推导(比如性质4的推论3可以用反证法证明),让学生知道这些定理的来龙去脉,在不等式的证明中减少想当然,对数学证明的严格化有一定的认识.版块二.均值不等式1.均值定理:如果a,b R (R表示正实数),那么土^ > 70b,当且仅当a b时,有2等号成立.此结论又称均值不等式或基本不等式.2.对于任意两个实数a,b , J^叫做a,b的算术平均值,J OE叫做a,b的几何平均值.2均值定理可以表述为:两个正实数的算术平均值大于或等于它的几何平均值.3.两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.〈教师备案>1.在利用均值定理求某些函数的最值时,要注意以下几点:⑴函数式中的各项必须都是正数,在异号时不能运用均值不等式,在同负时可以先进行转化,再运用均值不等式;⑵函数式中含变数的各项的和或积必须是常数;⑶只有具备了不等式中等号成立的条件,才能使函数式取到最大或最小值. 否则不能由均值不等式求最值,只能用函数的单调性求最值.运用均值不等式的前提有口诀:一正二定三相等.2.均值不等式的几何解释:半径不小于半弦.⑴对于任意正实数a,b,作线段AB a b,使AD a,DB b;⑵以AB为直径作半圆O,并过D点作CD AB于D , 且交半圆于点C;a b⑶连结AC,BC,OC,贝U OC ,2. • AC BC,CD AB••• CD AD BD ab ,当a b时,在Rt COD中, 有OC ^-^ CD Tab .-G/a 而)2 > 0 4,当且仅当a b ”时等号成立.ab临,当且仅当a b ”时等号成立.了解这组不等式对解决一些不等式的证明题会有帮助,可选择性介绍.板块三.解不等式1 .含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式.有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方 程根的判别式,②参数大于最大值或小于最小值, ③变更主元利用函数与方程的思想求解.当且仅当a b 时,O,D 两点重合,有 OC 史上 CD <ab .23.已知:a 、b R (其中R 表示正实数),a b 法展扼 2222有以下不等式:> yf ab >2 , 2a b其中J —2—称为平方平均数, a b——称为算术平均数,2 构称为几何平均数,乌称为调和平均数. 1 b2证明:一2 ~Z2a b 2.. a 、 b2 .2a b2—,当且仅当 a2 b ”时等号成立.(a b) 一 ab 2ab .ab(a b 2、ab)2b,当且仅当 a b ”时等号成立.2.解不等式⑴解一元二次不等式通常先将不等式化为ax 2 bx c 0或ax 2成c 0 (a 0)的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于 0时两根之 夕卜,小于0时两根之间; ⑵分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; ⑶高次不等式主要利用“序轴标根法”解.【例1】 关于x 的不等式x 1 |x 2 < a 2 a 1的解集为空集,则实数 a 的取值范围是【考点】恒成立与有解问题 【难度】3星 【题型】填空【关键字】2009年,广东湛江高三月考【解析】不等式x 1 x 2 < a 2 a 1的解集为空等价于a 2 a 1 (x 1 x 2 )min ,而结合几何意义知(x 1 x2 ) min 1 , 即 a 2 a 1 1 ,解得 1 a 0 .【答案】(1 , 0)【例2】 若不等式 x - > a 2 1对一切非零实数 x 均成立,则实数 a 的最大值是【考点】恒成立与有解问题 【难度】3星 【题型】填空 【关键字】无【解析】x1的最小值为2,当|a 2 1 < 2时,不等式恒成立.此时|a 2 < 1,解得1 < a< 3.【答案】3【例 3】 设函数 f (x) x 2 1,对任意 x - , , f — 4m 2f(x)V f(x 1) 4f (m)恒3m成立,则实数m 的取值范围是 .1 一 1 . 5昌隹典例分析典例分析【考点】恒成立与有解问题【难度】4星【题型】填空【关键字】2010,天津高考 【解析】略 【答案】,笠U 史,2 2【例4】 若不等式ax 1 2 x 2 0的解集为R ,则a 的范围是()1- 1A. a 0B. a —C. a —D. a 088【考点】恒成立与有解问题 【难度】3星 【题型】选择 【关键字】无1【解析】a0,且 18a0,故a -.8【答案】C已知不等式——L — -log a a 1n 1 n 2 2n 12都成立,试求实数a 的取值范围【考点】恒成立与有解问题 【难度】4星 【题型】解答 【关键字】无 【解析】略1 1 1一 一.【答案】设f n 一; —- L —(n N 且n > 2).因为1 1 1 1----- -------- ------- -------------------- 0 2n 1 2n 2 n 1 2n 1 2n 2f n ,即f n 是关于n 的递增函数. 2 二,即f n 的最小值是—.1212因为a 1 ,所以a 1 —,解之得1 a —-—.2-对于一切大于1的自然数n【例5】所以 故有一,,一 1 2要使f n —log a a 1 一对于一切n > 2的自然数n怛成立,则必须12 31 2 7—log a a 1 -一,即有log a a 1 1.12 3 12 _【考点】恒成立与有解问题 【难度】3星 【题型】填空 【关键字】无【答案】(2,2]2【例7】f (x) ax ax 1在R 上怛物足f (x) 0,则a 的取值氾围是()A a < 0B. a 4C. 4 a 0D. 4 a < 0【考点】恒成立与有解问题 【难度】3星 【题型】解答 【关键字】无a0【解析】a 0时满足;普4a °时也满足,解得 4 a 0.综合知 4 a < 0.【答案】D【例8】 若对于x R ,不等式mx 2 2mx 3 0恒成立,求实数m 的取值范围. 【考点】恒成立与有解问题 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】此题需要对 m 的取值进行讨论,设 f (x) mx 2 2mx 3 .①当m 0时,3 0 ,显然成立.②当m 0时,则 时,显然不等式不恒成立.由①②③知m [0, 3).【例6】若不等式(a 2)x 2 2(a 2)x0对x R 恒成立,则a 的取值范围是【解析】若a2,不等式变为:4 0,a 22满足题意;故有: 综上知:2 ,结合题意知二次函数a202,解得2 a4(a 2)2 16(a 2) 02)x 4的图象在x 的下方,2,0 m 3.③当 m 0【例9】不等式x2 ax 1 > 0对一切x 0,-成立,则a的最小值为(2A. 0 B . 2 C . - D . 32【考点】恒成立与有解问题【难度】3星【题型】选择【关键字】无【解析】:x 0 ,故本题的条件等价于a > x -对x 0,2恒成立.此时x -的最大值为5 ,故a的最小值为5 .【答案】C【例10】不等式|x 3| |x 1|< a2 3a对任意实数x恒成立,则实数a的取值范围为( )A. , 1 U 4,B. , 2 U 5,C. [1 , 2]D. , 1 U 2,【考点】恒成立与有解问题【难度】3星【题型】选择【关键字】2009年,重庆高考【解析】x 3 x 1的最大值为4 ,故a2 3a > 4时满足题意,解得a > 4或a < 1 .【答案】A【例11】对任意a [ 1 , 1],函数f(x) x2(a 4)x 4 2a的值恒大于零,则x的取值范围为.【考点】恒成立与有解问题【难度】3星【题型】填空【关键字】无2 2【解析】设g(a) x (a 4)x 4 2a (x 2)a (x 2),q( 1) 0 一则g(a)的图象为一直线,在a [ 1, 1]上怛大于0 ,故有,即g(1) 03,2x5x 6 02 x 3x 2 0'解得: x 1或x 3 x 的取值范围是(,1)U(3 ,). 【答案】(,1)U(3,) 【例12】若不等式lg2ax lg(a x) 【考点】恒成立与有解问题 1在x [1, 2]时恒成立,试求a 的取值范围. 【难度】4星 【题型】解答 【关键字】无 …… x > 1 【解析】由题设知2ax 0得a 0 ,可知a x 1,所以lg(a x) 0 . 原不等式变形为lg 2ax lg(a x). 2ax a x,即(2x 1)a x .又 x [1,2],可得 2x 1 0 1 1 ,, 1 ------- 恒成立. 2 2x 1 1 七 ----- ,在x 2x 1 2 3 x• a ------- 2x 1 设 f(x)12 综上知【例13】若x 3x 【考点】恒成立与有解问题 【难度】3星 【题型】解答 【关键字】无 【解析】l a amax3x 9x3x 1 1 9x31得u21 22 x令ya a3 "9x2 . 2 [1, 2]上为减函数,可得f(x)min f (2)—,知a -3 3 a 2 9x 0恒成立,求实数a 的取值范围.则有u 2 u (设 u 3 ).y u 2 u 在u 3, 上最大值为12 ,代入①得,a a 2 12 ,解得3 a 4.故实数a 的取值范围为a| 3 a 4 .【答案】a| 3 a 4设F x f x a x 2 2ax 2 a ,则问题转化为当x 1, 时,F x > 0 恒成立. ⑴当 4 a 1 a 2 < 0,即 2 a 1时,对一切x 1, ,总有F x > 0成立. ⑵若 4 a 1 a 20时,由图1可知,F x > 0的充要条件是a 1 a 2 0F 1 > 0 a 3 > 03 < a 22aa < 11 2综上所述可知,a 的取值范围是a 3 , 1 .【答案】a 3, 122a . a 12x log 2log 2 — 0 怛成业,a 1 4a求a 的取值范围【考点】恒成立与有解问题 【难度】4星【例14】设f x x 2 2ax 2,当x 1,范围.【考点】恒成立与有解问题 【难度】3星 【题型】解答 【关键字】无 时,都有f x > a 恒成立,求a 的取值【例15】设对所有实数x不等式x 2 log 2【题型】解答【关键字】无 【解析】由题意得4 a 1log 2 ---------------⑴a 2a 1lo g^r^-4a2a2log 2 ---- 0a 1-2ax 4x【考点】恒成立与有解问题 【难度】3星 【题型】解答 【关键字】无【例17】已知关于x 的不等式x 2 x 【考点】恒成立与有解问题t 0对x R 恒成立,贝U t 的取值范围是三0a 1 ,4 a 1 或⑵ log 2 --------------------a22log 2 竺 a 1 4 a 14log 2 --------------a 2a 1log 2 --------- ----- 04a 2易见⑴的解集为 .下面我们解⑵.令Ja由③有iog 22t「一、一一 a 1t,②可变为log 2 4 log 2 ---------------------a 0,即 2 log 2t 0联立解之得t所以当0 a【答案】0 a 14log 2t 5 0 2,即 J 2 ,a 1时不等式恒成立解得0 【解析】原不等式可化为(a2)x 2 4x (a 1)> 0⑴当a 2 0,即a 3 ...........................................................2时,①式可化为x> -,不满足对任意实数 x 恒成立,故4⑵当a2 0时,欲使①式对任意实数x 恒成立必须满足a *°,a即242 2 …,解得a > 2 .4(a 2)(a 1) < 0故实数 【答案】[2,)a 的取值范围为[2,【例16】已知不等式a 对任意实数恒成立,求实数 a 的取值范围.【难度】3星 【题型】填空 【关键字】无 【解析】t (x 2 x) 1—,对x R 怛成立,故t4【例18】如果|x 1| |x 9| a 对任意实数x 恒成立,则a 的取值范围是(8} A. {a | a 【考点】恒成立与有解问题.{ a | a 8}【难度】3星 【题型】选择 【关键字】无 【解析】x 1 x 9的最小值为 8,故a 8即可.【例19】在R 上定义运算 y).若不等式(x a) (x a) 1对任意头数x 成立, 则()A. 1 a 1B. 0 a 2 - 1 3- 3 1C a — D. - a — 2 2 2 2 x(1xy 【考点】恒成立与有解问题 【难度】2星 【题型】选择 【关键字】2005年,辽宁高考 【解析】• (x 成立,a) (x a) (x a)(1 a), 不等式 (x a) (x a) 1对任意实数x则(x a)(1 a) 1对任意实数x 成立,即使 0对任意实数x 成1 4( 1) 0,解得―a ',故选C.2 2 【例20】设不等式x 2 2axa 2 < 0的解集为M ,如果M [1,4],求实数a 的取值范围.【考点】恒成立与有解问题【难度】4星【题型】解答【关键字】无【解析】M [1,4]有两种情况:其一是M ,此时0;其二是M ,此时0或0 ;故分二种情况计算a的取值范围.设f(x) x2 2ax a 2 ,有(2a)2 4(a 2) 4(a2 a 2),①当0 时,1 a 2, M [1,4];②当0时,a 1或2;当a 1 时,M { 1} [1,4];当a 2 时,M {2} [1,4];•■-a 2满足题意;③当0时,a 1或a 2 .设方程f (x) 0的两根x1,x2,且x1 x2 ,f(1) > 0,且f (4) > 0 那么M [**] , M [1,4] 1< x V x2< 4 Q,1 < a < 4,且0a 3 > 018 7a> 0 18即/ / ,解得2 a <空.1 < a < 4 7a 1 或a 2综上知:M [1,4]时,a的取值范围是(1,18].7【答案】18(1项【例21]如果关于x的不等式2kx2kx 30对一切实数x都成立,贝U k的取值范围8是.【考点】恒成立与有解问题【难度】3星【题型】填空【关键字】2009,福建省上杭二中08 — 09学年单元质量检查必修5数学试题【解析】略【答案】 3 k < 0【例22】已知函数f (x) x 1g (&1 x),若不等式f(m 3x) f (3x 9x 2) 0对任意x R 恒成立,求实数m 的取值范围.【考点】恒成立与有解问题【难度】4星 【题型】解答 【关键字】无 【解析】因为f(x)是奇函数且在R 上是递增函数,所以f(m 3x ) f( 3x9x 2),化为 32x (m 1)3x 2 0 .令3x t 0,则原不等式化为t 2 (m 1)t 2 0. 2令g(t) t (m 1)t 2 , |可题转化为当t 0时,使二次函数g(t) 0怛成立的实数 m 的取值范围. 借助二次函数的图象与性质,且注意到g(0) 2 0,△A 02问题转化为△ 0或m 1 ,即(m 1)2 8 0或(m 1)8» 0 .解各----- < 0 m 1 < 02m (, 2 亶 1). 【答案】m (, 2 2 1)【难度】4星 【题型】解答 【关键字】2008年,广东惠州模拟 【解析】略【答案】⑴ 2X X 2 X 1X 2 < ------------- 2 X 22时等号成立,故u 的取值范围为⑵ 方法一:(函数法) 111X 1— x2—XX 2 X I X 2X I X 2 X 2XXX 2X X 22 2X X 2X X 2k 2 1 - x 1x 2 - 2X X 2【例23】已知集合D |X X 2 k (其中k 为正常数).⑴设u X X 2 ,求u 的取值范围;⑵求证:当k a 1时不等式 1 xX立; (1)1⑶求使不等式 一X — X 2 AXX 2围.2—x 2 < —— 对任意 x , x 2D 恒成X2 kk 2,…o--对任息 X , X 2 D 怛成立的k 的范J 2 uk 2 一 2u < —,又 k > 1, k 24 所以 X i X i 即当 k 2 1 0,X 2X 2k>1时不等式 解法二: XX 2将k 2 X 1 . . X 1 k 2 . .............—上是增函数,4k 2 1X 2 X 2k 2 1 4_2成立.(不等式证明的作差比较法 22k X 2X 2 X 1X 2 4 I? X >2X 2 X1X 2 k 2~r~2k x 1x 2竺X4史2 4 4x 1 X 2k 24x 1 X 2 X 1 X 2X 24X 1X 24x 1 X 2 X 1X 2 X 2 2 X 22 .X 2代入得 A1时, 4 k 2x 1x 2 4k 2X24k 2x 1x 2 … ,一… 1 即当ka1时不等式 一 X1 X 24 k 2x 1x 24k 2X 1⑶ 方法一:(函数法)记 2X 1X 22k x 1x 2 4k 2k 22k X 1&0,X 2X 22成立.X 2fl 即求使 0,恒成立的由⑵知, 要使 X 2X 2D 恒成立,必有因此1 k 2 k 2上递减,在上递增,要使函数f ,一k 2 在0,—上怛有4方法二:(不等式证明的作差比较法,,— 1由⑵可知一X1X1 X2要不等式恒成立,必须k2,一k由0 XX2 v—得一 v4 解得0 k2 < 4格一 (1)因此不等式-4 8. X iX i【例24】若关于x的方程9X 【考点】恒成立与有解问题【难度】3星【题型】解答【关键字】无【解析]法一: (4当且仅当3X2时,k2X2——2k42k华24k24£.2 '即k24> 0恒成立,即X i X2—2 _ _16k 16 < 0 ,X2X2(4 a)3X2 2 2X X2 4 k XX2 4k4k2X1X22<44k恒成立,k2恒成立的k2的范围是0 k2 < 4炳 8.4 0有解,求实数a的取值范围.•■-a < 8法二:3X t(t 0), ..t2(a 4)•■- 2(a 4)【答案】a < 84X43XA 2.33X三,此 a 4<4(4a)t 4 0 ,a4a <8或a s 04 ,•■- a < 8 9X 4a)—— 3X0 …,解得16 > 0【例25】已知a R ,若关于X的方程x2 a 0有实根,则a的取值范围【考点】恒成立与有解问题【难度】3星【题型】填空【关键字】2008,广东高考【解析】方程即10,-4利用绝对值的几何意义(或零点分段法进行求解)可得实数,一’,., (1)a的取值范围为0,—48x 4 a 0在1 x 4内有解,则实数a的取值范围是【例26】若关于x的不等式2x2()A. a 4B. a 4C. a 12D. a 12【考点】恒成立与有解问题【难度】3星【题型】选择【关键字】安徽省涡阳一中2008年必修5数学期中考试卷【解析】法一:由已知条件有,函数y 2x2 8x 4 a的对称轴为x 2,数形结合,知< 0时一定成立,即a < 12成立,若0,即a 12,要使2x2 8x 4 a 0在1 x 4内有解,只需f(4) 0,解得:a 4.法二:由已知有a 2x2 8x 4 ,设g(x) 2x2 8x 4,且x 1,4 ,则g(x) 12, 4 ,则a 4 .【答案】A【例27】已知函数f (x) x a .⑴ 若不等式f (x) < 3的解集为x| 1 < x < 5,求实数a的值;⑵在⑴的条件下,若f (x) f(x 5) > m对一切实数x恒成立,求实数m的取值范围. 【考点】恒成立与有解问题【难度】4星【题型】解答【关键字】2010年,福建高考【解析】略【答案】解法一:(1)由f (x) < 3 得x a < 3 ,解得a 3 < x < a 3 .,一一、…… a 3 1,…又已知不等式f(x) < 3的解集为x| 1 < x< 5 ,所以解得a 2 .a 3 5,⑵当a 2时,f(x) x 2 .设g x f x f(x 5),2x 1, x 3, 于是g x x 2 x 3 5, 3 < x < 2 ,2x 1, x 2.所以当x 3时,g x 5 ;当3 < x < 2 时,g x 5;当x 2 时,g x 5 .综上可得,g x的最小值为5 .从而,若f x f x 5 > m即g x > m对一切实数x恒成立,则m的取值范围为,5 .解法二:⑴同解法一.⑵当a 2 时,f (x) x 2 .设g(x) f (x) f (x 5).由|x 2 |x 3 > x 2 x 3 5 (当且仅当3< x< 2时等号成立)得,g(x)的最小值为5.f(x) f(x 5) A m即g(x) A m对一切实数x恒成立,则m的取值范围为,5 .从而,若。
一元一次不等式的解法(基础)知识讲解【学习目标】1.理解并掌握一元一次不等式的概念及性质;2。
能够熟练解一元一次不等式;3。
掌握不等式解集的概念并会在数轴上表示解集.【要点梳理】要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式. 要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系:相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<"、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.要点二、一元一次不等式的解法1。
解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集.要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用.(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘以(或除以)同一个负数时,不等号的方向要改变.要点三、不等式的解及解集1。
不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.要点诠释:①解集中的每一个数值都能使不等式成立; ②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x —2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点":若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画.注意:在表示a 的点上画空心圆圈,表示不包括这一点.【典型例题】类型一、一元一次不等式的概念1.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0 (2)2x+3>5 (3)384x < (4)1x≥2 (5)2x+y ≤8 【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数.【答案与解析】解:(2)、(3)是一元一次不等式.【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可. 类型二、解一元一次不等式2.解不等式:2)1x (3)1x (2-+<-,并把解集在数轴上表示出来.【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【答案与解析】解:去括号,得:23x 32x 2-+<-移项、合并同类项,得:3x <-系数化1得:3x ->这个不等式的解集在数轴上表示如图:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向. 举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).【答案】C 。
初二下册 第二章 一元一次不等式及一元一次不等式组 1 一、不等式及其性质
【学习目标】 1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系; 2. 理解不等式的三条基本性质,并会简单应用; 3.理解并掌握一元一次不等式的概念及性质; 【要点梳理】 要点一、不等式的概念 一般地,用“<”、 “>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2)五种不等号的读法及其意义: 符号 读法 意义
“≠” 读作“不等于”
它说明两个量之间的关系是不相等的,但不能确定哪
个大,哪个小 “<” 读作“小于” 表示左边的量比右边的量小 “>” 读作“大于” 表示左边的量比右边的量大
“≤” 读作“小于或等于” 即“不大于”,表示左边的量不大于右边的量
“≥” 读作“大于或等于” 即“不小于”,表示左边的量不小于右边的量 (3) 有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立. 类型一、不等式的概念 例1. 判断下列各式哪些是等式,哪些是不等式. (1)4<5; (2)x2+1>0; (3)x<2x-5; (4)x=2x+3; (5)3a2+a; (6)a2+2a≥4a-2.
变式练习: 1.(2017春•城关区校级期末)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是( )
A.18<t<27 B.18≤t<27 C.18<t≤27 D.18≤t≤27 2.(2017春•未央区校级月考)下列式子:①a+b=b+a;②-2>-5;③x≥-1;④ 初二下册 第二章 一元一次不等式及一元一次不等式组 2 31y-4<1;⑤2m≥n;⑥2x-3,其中不等式有( )
A.2个 B.3个 C.4个 D.5个 3.(2017春•南山区校级月考)下面给出了6个式子:•3>0;x+3y>0;x=3;④x-1;⑤x+2≤3;⑥2x≠0;其中不等式有( )
A.2个 B.3个 C.4个 D.5个 4.(2017春•太原期中)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是( )
A.两种客车总的载客量不少于500人 B.两种客车总的载客量不超过500人 C.两种客车总的载客量不足500人 D.两种客车总的载客量恰好等于500人 5.已知有理数m,n的位置在数轴上如图所示,用不等号填空.
(1)n-m 0;(2)m+n 0;(3)m-n 0;(4)n+1 0;(5)m•n 0; (6)m+1 0. 例2.用不等式表示: (1)x与-3的和是负数; (2)x与5的和的28%不大于-6; (3)m除以4的商加上3至多为5.
举一反三: 【变式】aa的值一定是( ). A. 大于零 B.小于零 C.不大于零 D. 不小于零
例3.下列叙述:①a是非负数则a≥0;②“a2减去10不大于2”可表示为a2-10<2; ③“x的倒数超过10”可表示为1x>10;④“a,b两数的平方和为正数”可表示为a2+b2>0.其中正确的个数是( ). A.1个 B.2个 C.3个 D. 4个
要点二、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x是一个一元一次不等式.
要点诠释: (1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式); ②只含有一个未知数; 初二下册 第二章 一元一次不等式及一元一次不等式组 3 ③未知数的最高次数为1. (2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向. 例1.(2017春•沧州期末)下列各式中,一元一次不等式是( )
A.xx5 B.2x>1-x2 C.x+2y<1 D.2x+1≤3x 变式练习 2.(2017春•平川区校级期中)下列是一元一次不等式的是( )
11..xxA B.x2-2<1 C.3x+2 D.2<x-2
3.(2016春•永丰县期中)若不等式2xa<1是关于x的一元一次不等式,则a符合( ) A.a≠1 B.a=0 C.a=1 D.a=2 4.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=( )
A.±1 B.1 C.-1 D.0 5.下列不等式中,是一元一次不等式的有( )个. ①x>-3;②xy≥1;③x2<3;④132xx;⑤11xx;
A.1 B.2 C.3 D.4 要点三、不等式的基本性质 不等式的基本性质1:不等式两边加(或减)同一个数(或整式),不等号的方向不变. 用式子表示:如果a>b,那么a±c>b±c. 不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
用式子表示:如果a>b,c>0,那么ac>bc(或abcc). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变. 用式子表示:如果a>b,c<0,那么ac<bc(或abcc). 例1.判断以下各题的结论是否正确(对的打“√”,错的打“×”). (1)若 b﹣3a<0,则b<3a; (2)如果﹣5x>20,那么x>﹣4; (3)若a>b,则 ac2>bc2; (4)若ac2>bc2,则a>b; (5)若a>b,则 a(c2+1)>b(c2+1).
(6)若a>b>0,则<. . 【答案与解析】 解:(1)若由b﹣3a<0,移项即可得到b<3a,故正确; 初二下册 第二章 一元一次不等式及一元一次不等式组 4 (2)如果﹣5x>20,两边同除以﹣5不等号方向改变,故错误; (3)若a>b,当c=0时则 ac2>bc2错误,故错误; (4)由ac2>bc2得c2>0,故正确; (5)若a>b,根据c2+1,则 a(c2+1)>b(c2+1)正确.
(6)若a>b>0,如a=2,b=1,则<正确. 故答案为:√、×、×、√、√、√. 【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.
例4.(2017•青浦区一模)已知a>b,下列关系式中一定正确的是( )
A.a2<b2 B.2a<2b C.a+2<b+2 D.﹣a<﹣b 【思路点拨】根据不等式的性质分析判断. 【答案】D. 【解析】 解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;
B、若a>b,则2a>2b,故本选项错误;
C、若a>b,则a+2>b+2,故本选项错误; D、若a>b,则﹣a<﹣b,故本选项正确. 【总结升华】不等式的性质是不等式变形的重要依据.关键要注意不等号的方向.性质1和性质2类似于等式的性质但性质3中,当不等式两边乘以或除以同一个负数时,不等号的方向要改变. 举一反三:
【变式】根据不等式的基本性质,将“mx<3”变形为“x>3
m”,则m的取值范围是 .
【答案】m<0. 解:∵将“mx<3”变形为“x>3m”,
∴m的取值范围是m<0. 故答案为:m<0.
【巩固练习】 一、选择题 1. (2016春•北京期末)在式子﹣3<0,x≥2,x=a,x2﹣2x,x≠3,x+1>y中,是不等式的
有( ) A.2个 B.3个 C.4个 D.5个 2.下列不等式表示正确的是( ). A.a不是负数表示为a>0 B.x不大于5可表示为x>5 C.x与1的和是非负数可表示为x+1>0 D.m与4的差是负数可表示为m-4<0 3.式子“①x+y=1;②x>y;③x+2y;④x-y≥1;⑤x<0”属于不等式的有( ) A.2个 B.3个 C.4个 D.5个 初二下册 第二章 一元一次不等式及一元一次不等式组 5 4.已知a<b,则下列不等式一定成立的是( ) A.a+3>b+3 B.2a>2b C.-a<-b D.a-b<0 5.若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是( ).
A.a>c B.a 6.下列变形中,错误的是( ).
A.若3a+5>2,则3a>2-5 B.若213x,则23x
C.若115x,则x>-5 D.若1115x,则511x 二、填空题 7.(2016秋•太仓市校级期末)如果a<b,则﹣3a ﹣3b(用“>”或“<”填空). 8.用不等式表示“x与a的平方差不是正数”为 . 9.在-l,12,0,23,2中,能使不等式5x>3x+3成立的x的值是________;________是不等式-x>0的解. 10.假设a>b,请用“>”或“<”填空 (1)a-1________b-1; (2)2a______2b;
(3)12a_______12b; (4)a+l________b+1. 11.已知a>b,且c≠0,用“>”或“<”填空. (1)2a________a+b (2)2ac_______2bc (3)c-a_______c-b (4)-a|c|_______-b|c| 12. k的值大于-1且不大于3,则用不等式表示k的取值范围是_______.(使用形如a≤x≤b的类似式子填空.) 三、解答题 13.现有不等式的性质: ①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变; ②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等式的方向改变. 请解决以下两个问题: (1)利用性质①比较2a与a的大小(a≠0); (2)利用性质②比较2a与a的大小(a≠0).
14. ①当a=3,b=5时用不等式表示a2+b2与2ab的大小是_______; ②当a=-3,b=5时用不等式表示a2+b2与2ab的大小是__________; ③当a=1,b=1时用不等式表示a2+b2与2ab的大小是________; ④根据上述数学实验你猜想a2+b2与2ab的大小关系_______;