学而思七年级尖子班课后答案
- 格式:doc
- 大小:1.17 MB
- 文档页数:2
1初一秋季·第7讲·尖子班·教师版一 有理数基本概念1. 正数、负数及有理数概念2. 用正、负数表示相反意义的量3. 有理数: 整数与分数统称有理数.4. 有理数的分类:⑴ 按整数和分数分类; ⑵ 按正数、负数和零分类.注:①正数和零统称为非负数;②负数和零统称为非正数; ③正整数和零统称为非负整数; ④负整数和零统称为非正整数.⎧⎫⎪⎬⎨⎭⎪⎩有限小数可化成分数形式,是有理数小数无限循环小数无限不循环小数——不可以化成分数形式,不是有理数二 数轴、相反数、绝对值、倒数、负倒数1. 数轴:规定了原点、正方向和单位长度的直线叫做数轴;2. 相反数:只有符号不同的两个数,互称为相反数.如果a 与b 互为相反数,则有0a b =+,反之亦然.3. 绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是本身,0的绝对值是0,负数的绝对值是它的相反数.绝对值的性质:⑴ 绝对值的非负性,可以用下式表示:0a ≥,这是绝对值非常重要的性质;⑵ (0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ;⑶ 若a a =,则0a ≥;若a a =-,则0a ≤; ⑷ 若a b =,则a b =或a b =-; ⑸ a a =-; 7期中复习2初一秋季·第7讲·尖子班·教师版⑹ a b - 数轴上表示数a 的点与表示数b 的点之间的距离,且a b b a -=-.教师备案:1. 解决绝对值的相关问题大多数都是去绝对值符号问题.(看到绝对值就想到去绝对值符号)2. 让学生掌握绝对值的几何意义,利用数形结合及分类思想解题.3. 让学生灵活运用绝对值的基本性质.4. 倒数:乘积为1的两个数互为倒数,特别地,0没有倒数;倒数是它本身的数是1±,正数的倒数是正数,负数的倒数是负数.5. 负倒数:乘积为1-的两个数互为负倒数,特别地,0没有负倒数 ;a 、b 互为负倒数,则有1ab =-,反之亦然.三 有理数的加减法1. 有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 2. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变. a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. ()()a b c a b c ++=++(加法结合律) 3. 有理数减法法则:减去一个数,等于加上这个数的相反数.例:()a b a b -=+-四 有理数乘除法1. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘都得0.2. 有理数乘法运算律:乘法交换律、乘法结合律、乘法分配律.3. 有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.4. 有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.5. 有理数乘方:求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂. 在n a 中,a 叫做底数,n叫做指数. 特别注意负数及分数的乘方,应把底数加上括号. 6. 有理数混合运算的运算顺序:先乘方,再乘除,最后加减. 7. 科学记数法科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a <≤,n 是正整数),此种记法叫做科学记数法.例如:5200000210=⨯就是科学记数法表示数的形式. 710200000 1.0210=⨯也是科学记数法表示数的形式.【例1】 ⑴在有理数1-,0,35-,(4)--,()1.2+-,4--,56%,()3---中,整数有________有理数综合复习3初一秋季·第7讲·尖子班·教师版个,负数有_________个.⑵下列代数式:2m 、22x +、x 、1a +、1||2a +、21x -、2()|1|ab ---的值,一定为正数的有 个.⑶下列说法正确的有( )个①正数和负数统称为有理数;②1是最小的自然数;③整数和分数统称为有理数;④非 负数是正数和0;⑤正整数和负整数统称为整数;⑥分数都可以化为小数,反过来小数 不一定能化为分数。
第十八讲平移、对称、旋转趣题引路】如图18-1,已知△ABC内有一点M,沿着平行于边BC的直线运动到CA边上时,再沿着平行于AB的直线运动到BC边时,又沿着平行于AC直线运动到AB边时,再重复上述运动,试证:点M最后必能再经过原来的出发点证明设点M运动过程中依次与三角形的边相遇于点A1,B1,B2,C2,C3,A3,A4,B5,….易知△AC2B₂≌△A1CB1≌△A3C3B.按点M平移的路线,△A C2B2可由△A1CB1平移得到;△A3C3B可由△AC2B2平移得到;△A1CB1可由△A3C3B平移得到,此时,A3应平移至A4,所以A4与A1重合.而这时的平移方向恰与点M开始平移时的方向一致,因此从A3平移到A1的过程中必经过点M,这表明在第七步时,点M又回到了原来的出发点.图18-1知识拓展】1.平移、对称和旋转是解决平面几何问题常用的三种图形变换方法,它们零散地分布在初中几何教材之中.例如,平行四边形的对边可以看成是平行移动而形成,这里的平行移动,就是平移变换.2.一般地,把图形F上的所有点都按照一定的方向移动一定距离形成图形F'.则由F到F'的变换叫做平移变换,简称平移.由此可知,线段平移可以保持长短、方向不变,角、三角形等图形平移保持大小不变.将平面图形F变到关于直线l成轴对称的图形F',这样的几何变换简称为对称,它可使线段、角大小不变.3.将平面图形F绕着平面内的一个定点O旋转一个定角a到图形F',由F到F'的变换简称为旋转.旋转变换下两点之间的距离不变,两直线的夹角不变,且对应直线的夹角等于旋转角.4.运用平移、对称或旋转变换,能够集中图形中的已知条件,沟通各条件间的联系.例1 已知:如图18-2,△ABC中,AD平分∠CAB,交BC于D,过BC中点E作AD的平行线交AB于F,交CA的延长线于C.求证:2ACAB=CG=BF.图18-2解析直接证三角形全等或者用角平分线定理显然不能解决问题.注意到要证式的形式,条件中又有角平分线和中点,如果能切分BF、CG,使分出的两部分一部分是AB的一半,余下的是AC的一半,问题就解决了.由中点,我们不难想到中位线,两条有推论效力的辅助线(EH和EI)就产生了,H、I切分了BF、CG,由平行线性质∠1=∠2=∠3=∠4=∠6,再由中位线定理,等腰三角形的判定定理,切分后的结论不难证明.略证过E作AC、AB的平行线交AB、AC于H、I,由平行线性质及已知条件得,∠1=∠2=∠3=∠4=∠6, ∴EI =GI ,EH =FH .∵E 为BC 中点,EH ∥AC ,EI ∥AB , ∴EI =2AB =BH ,EH =2AC=CI , ∴EI =GI =2AB=BH , FH =EH =2AC=CI . 由于BF =BH +FH , CG =GI +CI , ∴2ACAB =BF =CG .例2 如图18-3,E 是正方形ABCD 的BC 边上的一点,F 是∠DAE 的平分线与CD 的交点,求证:AE =FD +BE .图18-3解析 表面上看所要证等式的各边分布在正方形不同的边上,欲证它们之间的关系,似乎不可能.但我们可以将某一条边作适当的延伸,使等量关系转移(比如证某两个三角形全等,中位线的关系等).此题中可将FD 延长至G ,使得DG =BE ,于是易证△AGD ≌△AEB ,则将AE 与AG ,BE 与GD 联系了起来,转而只需证明AG =GF ,即只要证明△AGF 为等腰三角形即可,由∠1=∠2,∠3=∠4及AB ∥CD 即证得.略证 延长FD 至G 使DG =BE , ∵△ADG ≌△ABE ,∴AG =AE ,GD =BE ,∠1=∠2. 又∵ ∠3=∠4, ∴∠1+∠4=∠2+∠3. 由于DC ∥AB ,∴∠DFA =∠2+∠3, ∴∠1+∠4=∠DFA , ∴GF =AG .即GD +DF =BE +FD =AE .例3 已知∠MON =40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上的点,则△PAB 的周长取最小值时,求∠APB 的度数.图18-4解析 如图18-4,若在OM 上A 点固定,不难在ON 上找出点B (B 为P 关于ON 的对称点P ''与A 点的连线与ON 的交点),同样若在ON 上B 点已固定,则点P 关于OM 的对称点P'与B 点的连线与OM 交于A ,因此A 、B 应为P'P ''与0M 、ON 的交点,这时可求得∠A .解 作P'为P 关于OM 的对称点,P ''为P 关于ON 的对称点,连接P'P ''分别交OM 、ON 于A 、B 两点,则△PAB 周长为最小,这时△ABP 的周长等于P'P ''的长(连接两点间距离最短).∵OM P P ⊥',ON P P ⊥''垂足分别为C 、D , ∴∠OCP =∠ODP =90°. ∵∠M O N=40°,∴∠CPD =180°-40°=140°.∴∠PP'P ''=∠P P ''P'=180°-140°=40°.由对称性可知:∠PAB =2∠P',∠PBA =2∠P '', ∴∠APB =180°-(∠PAB -∠PBA )=180°-(2∠P'-2∠P '')=100°.例4 如图18-5,在ABC 中,BC =h ,AB +AC =l ,由B ,C 向∠BAC 外角平分线作垂线,垂足为D 、E , 求证:BD ·CE =定值.图18-5解析 BC =h 是定值,AB +AC =l 是定值,要证BD ·CE 是定值,设法使BD ·CE 用h ,l 的代数式来表示,充分利用DE 是BAC 的外角平分线,构造对称图形,再利用勾股定理。
1初一秋季·第1讲·尖子班·学生版长度单位实数5级 有理数综合运算实数4级 有理数与数轴 实数3级 有理数的混合运算 满分晋级阶梯漫画释义1有理数与数轴2初一秋季·第1讲·尖子班·学生版知识点切片(3个)2+1+1知识点目标有理数与数轴(2) 1、点表示数;2、比较大小 相反数与数轴(1) 1、相反数的几何意义 绝对值与数轴(1)1、绝对值的几何意义题型切片(6个)对应题目题型目标用数轴表示数 例1、练习1数轴上点、线段的移动 例2、例3、练习2 利用数轴比较大小例4、练习3 利用数轴性质建立方程求点对应的数 例5、练习4 数轴折叠 例6、练习5 周期问题与数轴例7、练习6数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向、单位长度称为数轴的三要素,三者缺一不可.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π.相反数:只有符号不同的两个数,互称为相反数.特别地,0的相反数是0.数轴上,位于原点两侧且到原点距离相等的点表示的数互为相反数.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.数轴上的点,对应的数绝对值越大,离原点越远.【例1】 ⑴在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”连接起来.⑵如图,数轴上表示数2-的相反数的点是( ) A .点P B .点Q C .点M D .点N ⑶数轴的单位长度为1,点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A .4- B .2- C .0 D .4【例2】 ⑴数轴上有一点A ,它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向3210﹣1﹣2P Q M BA3初一秋季·第1讲·尖子班·学生版右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .⑵在数轴上,坐标是整数的点称为“整点”.设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2013厘米的线段AB ,则线段AB 盖住的整点至少有 个, 至多有 个.【例3】 ⑴一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数. ①求3x 、5x 的值.②比较2013x 与2014x 的大小.⑵电子跳蚤在数轴上的某一点0K ,第一步由点0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步由点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94.求电子跳蚤的初始位置点0K 所表示的数.【例4】 ⑴有理数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小.4初一秋季·第1讲·尖子班·学生版0ba⑵已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )DCB A a bab 0abb a【例5】 ⑴如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=.试问:数轴上的原点在哪一点上?A B C D MNabcd⑵如图,数轴上标出若干个点,每相邻的两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d .①若2a b c d +++=-,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点② 若7a b +=,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点⑶如图,在数轴上有若干个点,每相邻两个点之间的距离是一个单位长,有理数a 、b 、c 、d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,已知343a b =-,求2c d +的值.A5初一秋季·第1讲·尖子班·学生版dc b a【例6】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1表示的点与1-表示的点重合,则2-表示的点与数 表示的点重合: ⑵ 若1-表示的点与3表示的点重合,则5表示的点与数 表示的点重合;⑶ 若数轴上A 、B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【例7】 如图所示,数轴被折成90︒,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3.先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合?初一秋季·第1讲·尖子班·学生版987654312367初一秋季·第1讲·尖子班·学生版训练1. 已知a b +与a b -互为相反数,求2000200020032003a b a b ++-训练2. 在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 .训练3. 设a 是大于1的有理数,若a ,23a +,213a +在数轴上对应的点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 .训练4. ⑴ a 、b 、c 、d 分别为有理数,a 是绝对值最小的有理数,b 是最小的正整数,c 的相反数是其本身,d 为负数且它的倒数是本身.求:①ab 的值;②a b c d ++-的值.⑵ 非零整数m ,n 满足||||50m n +-=,所有这样的有序(即()(),,m n n m 和不同)整数组()m n ,共有 组.8初一秋季·第1讲·尖子班·学生版用数轴表示数【练习1】 一辆货车从超市出发,向东走了3km 到达小彬家,继续向前走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km ,在数轴上表示出小明,小彬,小颖家的位置. ⑵小明家距离小彬家多远? ⑶货车一共行驶了多少千米?数轴上的点、线段的移动【练习2】 ⑴在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度 向动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?⑵在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2007cm 的线段AB .被线段AB 盖住的整数有( )个.A .2005或2006B .2006或2007C .2007或2008D .2008或2009利用数轴比较大小 【练习3】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为 .利用数轴性质建立方程求点对应的数9初一秋季·第1讲·尖子班·学生版【练习4】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( ).A .A 点B .B 点C .C 点D .D 点DCB A数轴折叠【练习5】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1-表示的点与5表示的点重合,则7表示的点与数 表示的点重合; ⑵ 若数轴上A 、B 两点之间的距离为8个单位长度,点A 表示的有理数是10-,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?周期问题与数轴【练习6】 如图,圆的周长为3,在圆的三等分点处标上数字0、1、2. 圆从图示的位置向右滚动,那么数轴上的2013将与圆上哪个数字重合?120…201321﹣1数轴是谁最先发现的?勒内·笛卡儿1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。
1初一秋季·第1讲·尖子班·教师版长度单位实数5级 有理数综合运算实数4级 有理数与数轴 实数3级 有理数的混合运算 满分晋级阶梯漫画释义1有理数与数轴2初一秋季·第1讲·尖子班·教师版知识点切片(3个)2+1+1知识点目标有理数与数轴(2) 1、点表示数;2、比较大小 相反数与数轴(1) 1、相反数的几何意义 绝对值与数轴(1)1、绝对值的几何意义题型切片(6个)对应题目题型目标用数轴表示数 例1、练习1数轴上点、线段的移动 例2、例3、练习2 利用数轴比较大小例4、练习3 利用数轴性质建立方程求点对应的数 例5、练习4 数轴折叠 例6、练习5 周期问题与数轴例7、练习6数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向、单位长度称为数轴的三要素,三者缺一不可.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π.相反数:只有符号不同的两个数,互称为相反数.特别地,0的相反数是0.数轴上,位于原点两侧且到原点距离相等的点表示的数互为相反数.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.数轴上的点,对应的数绝对值越大,离原点越远.【例1】 ⑴在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”连接起来.⑵如图,数轴上表示数2-的相反数的点是( )A .点PB .点QC .点MD .点N ⑶数轴的单位长度为1,点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A .4- B .2- C .0 D .4【解析】⑴分别将数的对应点在数轴上画出,如图,按数轴上从左到右的点对应从小到大的实数,得到 1420 2.552-<-<<< ⑵A .⑶B .【例2】 ⑴数轴上有一点A ,它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .3210﹣1﹣2P Q M BA 52.50-2123初一秋季·第1讲·尖子班·教师版⑵在数轴上,坐标是整数的点称为“整点”.设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2013厘米的线段AB ,则线段AB 盖住的整点至少有 个, 至多有 个.【解析】 ⑴由数轴的基本定义可知为62-+,.⑵2013;2014针对例2⑵的铺垫:1、⑴在数轴上,表示1999-和1999的两个点之间有 个整数(含1999-和1999). ⑵在数轴上,表示1999.1-和1999.9的两个点之间有 个整数. 【解析】 ⑴3999;⑵ 3999.针对例2⑵的拓展:1、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长120132厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.2、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (M 为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.3、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (1m M m <<+,m为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.【解析】 1、2013;2014. 2、M ,1M +.3、m ,1m +.【例3】 ⑴一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数. ①求3x 、5x 的值.②比较2013x 与2014x 的大小.⑵电子跳蚤在数轴上的某一点0K ,第一步由点0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步由点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94.求电子跳蚤的初始位置点0K 所表示的数.【解析】⑴①33x =,51x =.②2013405x =,2014404x =,20132014x x <.⑵假设电子跳蚤的起点0K 为0x ,规定向左为负,向右为正,根据题意可得: 01234569910019.94x -+-+-+--+=,030.06x =-.【例4】 ⑴有理数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小. 0ba4初一秋季·第1讲·尖子班·教师版⑵已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )DCB A a bab 0abb a【解析】⑴根据a b ,在数轴上的位置可知,00a b <>,,且a 的绝对值比2b 的绝对值大,所以a b a a b b b a -<<+<-<<-.⑵ C ,根据题意,00a b <>,,且在数轴上a 的对应点与原点的距离较b 的对应点大.【例5】 ⑴如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=.试问:数轴上的原点在哪一点上?A B C D MNabcd⑵如图,数轴上标出若干个点,每相邻的两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d .①若2a b c d +++=-,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点② 若7a b +=,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点⑶如图,在数轴上有若干个点,每相邻两个点之间的距离是一个单位长,有理数a 、b 、c 、d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,已知343a b =-,求2c d +的值.dc b a【解析】⑴由数轴可知,3d a =+,代入24d a -=得324a a +-=,解得1a =-所以原点应在点B 处.⑵①C .(3)(4)(7)2a a a a ++++++=-,4a =-,1b =-,0c =,3d =. ② A .37a a ++=,4a a +=,∴0a >,2a =.⑶2-. 提示:2b a =+.【例6】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1表示的点与1-表示的点重合,则2-表示的点与数 表示的点重合: ⑵ 若1-表示的点与3表示的点重合,则5表示的点与数 表示的点重合;⑶ 若数轴上A 、B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A 、A5初一秋季·第1讲·尖子班·教师版B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】 ⑴ 2;⑵3-; ⑶此时折线与数轴的交点表示的有理数是12a c ±.【例7】 如图所示,数轴被折成90︒,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3.先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合?98765431023【解析】201345031÷=,则与数字0重合. 针对例7的铺垫:如图所示,圆的周长为4个单位长度,在圆的4等分点处 标上数字0,1,2,3.先让圆周上数字0所对应的点与数轴上的数1-所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数2012-将与圆周上的数字 重合.3210-5-4-3-2-10【解析】20124503÷=,则与数字0重合. 针对例7的拓展:1、如图所示,一数轴被折围成长为3,宽为2的长方形,圆的周长为4且圆上刻一指针,若1在数轴固定的情况下,圆紧贴数轴沿数轴正方向滚动,当圆与7接触的时候,指针的方向是( )DCBA76543210-12、如图,边长为1的等边三角形ABC 从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在2013x =处时,三角形停止滚动. ①落在2013x =处的点是ABC △的哪个顶点?说明理由. ②在滚动过程中,点A 走过的路程是多少?…20131C B A6初一秋季·第1讲·尖子班·教师版3、把一数轴折成如图所示,第1段为1个单位长度,第2段为2个单位长度,第3段为3个单位长度,……,点O 处有一个圆,圆上刻一指针,开始指针朝东,圆周为4个单位长度,圆紧贴数轴沿着数轴的正方向滚动,当圆与点A 接触时,指针指向 (东、南、西、北),当圆与2009接触时,指针指向 (东、南、西、北).O 北西南东A-10【解析】1、C .2、①顶点C ;②894π.3、在直的数轴上,线段41AO =,414101=⨯+,指针指向北;2009(14)2023--=,因为636420162⨯=,202320167-=,故2009在点O 的西边,202345053÷=+,指针指 向西.7初一秋季·第1讲·尖子班·教师版训练1. 已知a b +与a b -互为相反数,求2000200020032003a b a b ++-【解析】 0. 因为a b +与a b -互为相反数,所以0a b a b ++-=,从而得到00a b ==,所以原式等于0.训练2. 在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 . 【解析】 2000.训练3. 设a 是大于1的有理数,若a ,23a +,213a +在数轴上对应的点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 .(人大附中期中)【解析】 B C A .训练4. ⑴ a 、b 、c 、d 分别为有理数,a 是绝对值最小的有理数,b 是最小的正整数,c 的相反数是其本身,d 为负数且它的倒数是本身.求:①ab 的值;②a b c d ++-的值.⑵ 非零整数m ,n 满足||||50m n +-=,所有这样的有序(即()(),,m n n m 和不同)整数组()m n ,共有 组.(清华附中期中)【解析】 ⑴ 0ab =,2a b c d ++-=;⑵ 5m n +=,若1m =,4n =,有()14,,()14-,,()14-,,()14--,; 若2m =,3n =,有()23,,()23-,,()23-,,()23--,; 若3m =,2n =,有()32-,,()32,,()32-,,()32--,; 若4m =,1n =,有()41,,()41-,,()41--,,()41-,. 所以共有16组.8初一秋季·第1讲·尖子班·教师版用数轴表示数【练习1】 一辆货车从超市出发,向东走了3km 到达小彬家,继续向前走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km ,在数轴上表示出小明,小彬,小颖家的位置. ⑵小明家距离小彬家多远? ⑶货车一共行驶了多少千米? 【解析】⑴如图所示:小颖家小彬家超市小明家西东-6-5-4-3-2-154321⑵小明距离小彬家8km⑶货车共行驶了3 1.59.5519km +++=. 数轴上的点、线段的移动【练习2】 ⑴在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度向右运动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?⑵在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2007cm 的线段AB .被线段AB 盖住的整数有( )个.A .2005或2006B .2006或2007C .2007或2008D .2008或2009【解析】⑴点A 对应的数是694,点B 对应的数是714-,线段AB 的长度是35;⑵C.利用数轴比较大小 【练习3】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为 .【解析】a c b d +<+.利用数轴性质建立方程求点对应的数【练习4】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( ).A .A 点B .B 点C .C 点D .D 点DCB A【解析】C .2(4)9b b --=,1b =-.9初一秋季·第1讲·尖子班·教师版数轴折叠【练习5】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1-表示的点与5表示的点重合,则7表示的点与数 表示的点重合; ⑵ 若数轴上A 、B 两点之间的距离为8个单位长度,点A 表示的有理数是10-,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】⑴ 3-;⑵此时折线与数轴的交点表示的有理数是6-或14-.周期问题与数轴【练习6】 如图,圆的周长为3,在圆的三等分点处标上数字0、1、2. 圆从图示的位置向右滚动,那么数轴上的2013将与圆上哪个数字重合?120…201321﹣1【解析】1.数轴是谁最先发现的?勒内·笛卡儿1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。
1初一秋季·第3讲·尖子班·教师版饕餮盛宴实数7级 实数初步实数6级 绝对值实数5级 有理数综合运算满分晋级阶梯漫画释义3绝对值2初一秋季·第3讲·尖子班·教师版题型切片(5个)对应题目 题型目标 aa的化简例1;练习1 无条件的绝对值的化简例2;练习2 零点分段法例3;练习3 用绝对值的几何意义求两点间的距离例4;练习4 用绝对值的几何意义求代数式的最值 例5,例6;练习51.绝对值:在数轴上,一个数a 所对应的点与原点的距离称为该数的绝对值,记作a . 2.绝对值的性质:⑴ 绝对值的非负性,可以用下式表示:0a ≥,这是绝对值非常重要的性质; ⑵ (0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ;⑶ 若a a =,则0a ≥;若a a =-,则0a ≤; ⑷ 若a b =,则a b =或a b =-; ⑸ a a =- . ⑹当0a >时,1a aa a==; 当0a <时,1a aa a==-.(主要考察分类讨论)【例1】 ⑴若a b ,均为非零的有理数,求a ba b-的值. ⑵若a b c ,,均为非零的有理数,求a b ca b c++的值. 【解析】 ⑴①当a b ,都是正数时,原式=0a ba b=-. ②当a b ,一个是正数,一个是负数时,原式=2±.∴原式的值为202-、、.⑵①当a b c ,,都是正数时,原式3a b ca b c=++=. ②当a b c ,,都是负数时,原式3=-.③当a b c ,,有两个正数一个负数时,原式1=. ④当a b c ,,有两个负数一个正数时,原式1=-.aa的化简3初一秋季·第3讲·尖子班·教师版∴原式的值为3113--、、、.针对例1进行拓展1.已知a b c abcx a b c abc=+++,且a b c ,,都不等于0,求x 的所有可能值【解析】 4或0或4-2.已知a b c ,,是非零整数,且0a b c ++=,求a b c abca b c abc +++的值. 【解析】 因为a b c ,,是非零有理数,且0a b c ++=,若a b c ,,中有一正二负,不妨设000a b c ><<,,,则原式()()11110a b c abc a b c abc =+++=+-+-+=--. 若a b c ,,中有二正一负,同理原式=0 综上,原式=03. 若a b c ,,均为非零的有理数,求a b c d a b c d+++的值.【解析】 420±±、、.老师可以继续下去,给学生们总结一下到n 的规律.【例2】 化简下列各式⑴1x -; ⑵3x -. 【解析】 ⑴当x ≥1时,则11x x -=-;当1x <时,则11x x -=-+,∴()()111=11x x x x x ⎧-⎪-⎨-+<⎪⎩≥.⑵当3x ≥时,则33x x -=-;当3x <时,则33x x -=-,∴()()333=33x x x x x ⎧-⎪-⎨-<⎪⎩≥.【例3】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下三种情况:·⑴当1x <-时,原式()()1221x x x =-+--=-+.零点分段法无条件的绝对值化简4初一秋季·第3讲·尖子班·教师版⑵当12x -<≤时,原式()123x x =+--=. ⑶当2x ≥时,原式1221x x x =++-=-.综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥.通过阅读上面的文字,请你解决下列的问题:. ⑴分别求出2x +和4x -的零点值; ⑵化简代数式24x x ++-.【解析】⑴分别令20x +=和40x -=,分别求得2x =-和4x =,所以2x +和4x -的零点值分别为2x =-和4x =⑵当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当24x -<≤时,原式()246x x =+--=;当4x ≥时,原式2422x x x =++-=-. 所以综上讨论,原式()()()222624224x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥.针对例3进行拓展1.求12m m m +-+-的值.【解析】先找零点,0m =,10m -=,20m -=,解得0m =,1,2.依这三个零点将数轴分为四段:0m <,01m ≤<,12m ≤<,2m ≥. 当0m <时,原式()()1233m m m m =-----=-+; 当01m ≤<时,原式()()123m m m m =----=-+; 当12m ≤<时,原式()()121m m m m =+---=+; 当2m ≥时,原式()()1233m m m m +-+-=-.2.化简:121x x --++.【解析】先找零点.10x -=,1x =.10x +=,1x =-.120x --=,12x -=,12x -=或12x -=-,可得3x =或者1x =-;综上所得零点有1,-1,3 ,依次零点可以将数轴分成四段.⑴ 3x ≥,10x ->,120x --≥,10x +>,12122x x x --++=-; ⑵ 13x <≤,10x -≥,120x --<,10x +>,1214x x --++=; ⑶ 11x -<≤,10x -<,120x --<,10x +≥,12122x x x --++=+; ⑷ 1x <-,10x -<,120x --<,10x +<,12122x x x --++=--.5初一秋季·第3讲·尖子班·教师版a b -表示数轴上数a 与数b 两点之间的距离. 且a b b a -=-.【例4】 ⑴ m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.① x 的几何意义是数轴上表示 的点与 之间的距离;x 0x -② 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;③ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .④ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x = .⑤ 当1x =-时,则22x x -++= .⑵ 如图表示数轴上四个点的位置关系,且它们表示的数分别 为p ,q ,r ,s .若10p r -=,12p s -=,9q s -=, 则q r -= .⑶ 不相等的有理数,,a b c 在数轴上的对应点分别为A ,B ,C ,如果a b b c a c -+-=-,那么点A ,B ,C 在数轴上的位置关系是( )A .点A 在点B ,C 之间 B .点B 在点A ,C 之间 C .点C 在点A ,B 之间D .以上三种情况均有可能【解析】 ⑴ ①x ,原点;=;② 1;③x ,3,2或4;④x ,2-,0或4-;⑤4;⑵ 7;⑶ B. 【点评】此题是对绝对值几何意义的考察.【例5】 利用绝对值的几何意义完成下题:已知2x =,利用绝对值的几何意义可得2x =±;若21x +=,利用绝对值的几何意义可得1x =-或3-.已知125x x -++=,利用绝对值在数轴上的几何意义得x = . 利用绝对值的几何意义求12x x -++的最小值 .52x x ++-的最小值为 . 214x x x ++-+-的最小值 . 7326x x x x ++++-+-的最小值 . 归纳: 若1221n a a a +<<<,当x 时,1221n x a x a x a +-+-++-取得最 小值. 若122n a a a <<<,当x 满足 时,122n x a x a x a -+-++-取得最小值.【解析】 2x =或3x =-;3;7; 6;18;1n x a +=;1n n a x a +≤≤. 用绝对值的几何意义求代数式的最值用绝对值的几何意义求两点间的距离sr q p6初一秋季·第3讲·尖子班·教师版【点评】 若1221n a a a +<<<,当1n x a +=时,1221n x a x a x a +-+-++-取得最小值.若122n a a a <<<,当x 满足1n n a x a +≤≤时,122n x a x a x a -+-++-取得最小值.【例6】 如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?城市G【解析】 因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄B C、之间,7个村庄依次排列为A B G C D E F 、、、、、、.设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:4101215171920y x x x x x x x =-+-+-+-+-+-+-因为4101215171920<<<<<<,所以当15x =时y 有最小值,所以活动中心应当建在C 处.【选讲题】【例7】 有理数a 、b 、c 在数轴上的位置如图所示:若11m a b b a c c =+------,则1000m = .【解析】 由图可知,01b a c <<<<,∴()a b a b +=-+,11b b -=-,a c c a -=-,11c c -=-10001000(11)1000(2)2000m a b b c a c =⨯---+-+-+=⨯-=-.【例8】 ①化简:124x x x -+++-②求15y x x =--+的最大值和最小值. 【解析】 ①当4x >时,则12433x x x x -+++-=-当14x <≤时,则1245x x x x -+++-=+ 当21x -<≤时,则1247x x x x -+++-=-+ 当2x -≤时,则12433x x x x -+++-=-+ ②法一:根据几何意义可以得答案;法二:找到零点5-,1,可以分为以下三段进行讨论:当5x -≤时,15156y x x x x =--+=-++=; 当51x -<<时,151524y x x x x x =--+=---=--; 当1x ≥时,15156y x x x x =--+=---=-; 综上所得最小值为6-,最大值为6.c ba初一秋季·第3讲·尖子班·教师版78初一秋季·第3讲·尖子班·教师版训练1. 若a 、b 互为相反数,b 、c 互为倒数,并且m 的立方等于它本身.⑴ 试求223a bbc ++的值;⑵ 若1a >,且0m <,12322S a b b m b =----+.试求()()()42222a S a S a S -+---的值.⑶ 若0m ≠,试讨论:x 为有理数时,x m x m +--是否存在最大值,若存在,求出这个最大值,并写出解答过程;若不存在,也请你说明理由. (八一中学期中)【解析】 ⑴ 1⑵ 1a > 1b <- ∵0m <, ∴1m =-∴1232(1)()2S a b b b =-++++=522a +∴原式=105a S -=5105(2)2a a -+=252-⑶ ∵0m ≠ ∴1m =或者1m =-当1m =时,||||x m x m +--=|1||1|x x +--最大值为2; 当1m =-时,|||||1||1|x m x m x x +--=--+最大值为2 ∴当x 为有理数时,||||x m x m +--的最大值为2训练2. a b c ,,为非零有理数,且0a b c ++=,则a b b c c a a bb cc a++的值等于多少?【解析】 由0a b c ++=可知,,a b c 里存在两正一负或者一正两负;a b b c c a b c aa b c a bb cc aa b b c c a++=⋅+⋅+⋅ 若两正一负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-; 若一正两负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-.9初一秋季·第3讲·尖子班·教师版综上所得1a b b c c a a bb cc a++=-.训练3. 如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?【解析】 因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄B C、之间,7个村庄依次排列为A B G C D E F 、、、、、、.设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:4101215171920y x x x x x x x =-+-+-+-+-+-+-因为4101215171920<<<<<<,所以当15x =时y 有最小值,所以活动中心应当建在C 处.训练4. 有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是12-=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.⑴若小明依次输入3,4,5,则最后输出的结果是_______; ⑵若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m ,则m 的最大值为_______;⑶若小明将1到n (n ≥3)这n 个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m . 探究m 的最小值和最大值. (海淀期末)【解析】 ⑴4;⑵2010;⑶对于任意两个正整数1x ,2x ,21x x -一定不超过1x 和2x 中较大的一个,对于任意三个正整数1x ,2x ,3x ,123x x x --一定不超过1x ,2x 和3x 中最大的一个,以此类推,设小明输入的n个数的顺序为,,,n x x x 21则,||||||||321n x x x x m ----= m 一定不超过,,,n x x x 21中的最大数,所以0m n ≤≤,易知m 与12n +++的奇偶性相同;1,2,3可以通过这种方式得到0:3210--=; 任意四个连续的正整数可以通过这种方式得到0: |||(1)|(3)|(2)|0a a a a -+-+-+=①;下面根据前面分析的奇偶性进行构造,其中k 为非负整数,连续四个正整数结合指的是按①式结构计算. 当4n k =时,12n +++为偶数,则m 为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n ,则最大值为n ; 当41n k =+时,12n +++为奇数,则m 为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n ,则最大值为n ;10 初一秋季·第3讲·尖子班·教师版当42n k =+时,12n +++为奇数,则m 为奇数,从1开始连续四个正整数结合得到0,仅剩下n 和1n -,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n ,最大值为1n -; 当43n k =+时,12n +++为偶数,则m 为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n ,则最大值为1n -.初一秋季·第3讲·尖子班·教师版a a 的化简 【练习1】 若a 、b 、c 都不为0,求c a b a b c ++的值. 【解析】 3±或1±. 无条件的绝对值的化简 【练习2】 化简:23x -. 【解析】 当23x ≥时,则2332x x -=-; 当23x <时,则2323x x -=-, 零点分段法【练习3】 化简:212x x ---.【解析】 由题意可知:零点为122x x ==,. 当12x <时,原式1x =--. 当122x <≤时,原式33x =-. 当2x ≥时,原式1x =+用绝对值的几何意义求两点间的距离【练习4】 (1)阅读下面材料:点A 、B 在数轴上分别表示的数是a 、b ,A 、B 两点之间的距离表示为AB ,特别地,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,则0AB OB b a b ==-=-;当A 、B 两点都不在原点时:如图2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-.如图4,点A 、B 在原点的两边,AB OA OB a b a b a b =+=+=-=-。
第十讲代数式的化简与求值趣题引路】如图10-1所示的八个点处各写一个数字,已知每个点处所写的数字等于和这个点有线段相连的三个点" + b + c + 〃 + *(e+ /" + &+力)</ + Z> + c + J- i(e + / + g + 〃)解答如下:-a=d + h + e , b=a + c+ f , J + 宀, d=a + c + h.3 3 3 32(a + b + c + d) + (e + f + g +力)/• a+b+e= ------------------ --------------------- .3设a+b+c+cl=/n, e+f+g+h=n ・• a. , . 2m + n■ ■ a+b+c+d= -----3. 2/n + n..m= ---------- ,3m=n.即a+b+c+d=e+f+g+h ・知识拓展】1.在前面几讲中我们分别学习了整式、分式以及根式的恒等变形与证明,苴中也涉及到它们的化简与求值.本讲主要是把这三种类型的代数式综合起来,其中求值问题是代数式运算中的非常重要的内容.2.对于代数式的化简、求值,常用到的技巧有:(1)因式分解,对所给的条件、所求的代数式实施因式分解,达到化繁为简的目的;(2)运算律,适当运用运算律,也有助于化简;(3)换元、配方、待定系数法、倒数法等;(4)有时对含有根式的等式两边同时实施平方,也不失为一种有效的方法.例1已知x=4-d,求"f—X+lh+T的值. x— 8x + 15处的数字的平均数,则代数式a + h + c + cl + ^(e+ f + f* + h)a + h + c + d --(e+ f + g+h)3 32m - n 32 3m一n2m -m 3 3-------- x --------- =—2 3m - m 4应填扌.图10-1解析:由已知得(x—4尸=3,即A2—8x+13=0.所以兀** - 6A?— 2f +1 8A' + 23 _ x2 (x"— 8x + 13) + 2x(才—8x +13) + (A*~— 8x + 13) + 10 _ 10 _、F x2-8x + 15 (X2-8X +13)+2 込—…点评:本题使用了整体代换的作法.例2已知A+Y+Z=3. (^),求匕上空学二遊二岀£2竺凹的值. (x-6/f+(y-t/f+(z-6/f解析:分式的分子、分母是轮换对称形式,可考虑用换元法.解:由x+y+z=3e 得(x—a)(y—a)(z~a)=0.设x—“=〃】, y—a=n> z~a—p>贝0 m+n+p=0・•••" = — (〃?+〃)・•『i 弋—mn + n P + m P —mn + P(m + n) —nm一(m + n)2_ -m2一mn一n2_1八m2 + n2 + p2 nf + n2 + p2 nr + n2 + (m + n)2 2(nr + mn + n2) 2 *点评:实际上,本例有巧妙的解法,将〃?+”+" = 0两边平方,得加2 + "2+卩2=一2(”山+ " + 〃初,.・.mn + np + mp _1m2 +n2 + 2 "例 3 已知" + i = + 求(“ + 〃)(/+、)(「+ “)的值.c b a abc解析:对于分式等式,如岀现两个(或两个)以上的等于号,可设为一个字母为h解:设c^b-c =a-b + c = -a + b + c=k cb aa + b-c = ck,① < a —b +c = bk 9 (^)-a + b + c = ak・③① + ②+③,得:R("+b+e)="+b+c・当“+b+e0 时,k=l,此时a+b=2c,“+c=2b, b+c=2a・.(a + h)(b + c)(c + a) _ 2a ■ 21} ■ 2cabc abc当“+〃+c=0 时♦“ + b= —Ct a + c= —b,〃+c= —a.・・.原式=(-“)•(如p)=_l.abc点评:注意本例须按a+h+c等于零和不等于零两种情况进行讨论.例4 已知“+b+c=l, a2-\-b2+c2=2. a3+b3+c3=39求(1) “be 的值;(2) a4+b4-^c4的值. 解析:•••以+胪+5=2, :•(“+b+c)2—2(ab+be+ca)=2.A ab-¥bc~i rca = ——•2又•••帀+沪+"=3,(“+b+c)(</2+b2-\-c2— ab—be—ca) + 3abc=3 ・:.1x(2+ —)+3“bc=3・2:.abc=-,即"c的值为丄.6 6又•: a4+沪+c4=(a2+护+c2)2—2(crb2+b2c2+c2a2)=4 —2[(ab+be+ca)2—2abc{a + 方+c)]=4—2(丄4 cl ix 25—2x- xl)=—・6 6•••/+戸+疋的值为色.6点评:这道题充分体现了三个数的平方和,三个数的立方和,及三个数四次方和的常规用法,这些常用处理方法对我们今后的学习是十分重要的.好题妙解】佳题新题品味例1 (2003年河北初中数学应用竞赛题)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为",第二次提价的百分率为b:乙商场:两次提价的百分率都是⑺(">0, 2 b>0);丙商场:第一次提价的百分率为几第二次提价的百分率为",则提价最多的商场是( )A.甲B.乙C•.丙 D.不能确定解析用代数式表示三个商场提价后的价格,再比较大小.解:(1)甲商场两次提价后,价格为(l+“)(l+b)=l+“+b+“b.(2)乙商场两次提价后,价格为(1 + 口)(1 + 口)=1+(“+坊+(口)2:2 2 2(3)丙商场两次提价后,价格为(1+")(1+“)=/+"+b+“b.因为(爭)2 —“b>0,所以(字)2>“b.故乙商场两次提价后,价格最髙.选B.例2已知非零实数“、b、c满足0+护+以=1, “(J.+J_)+b(丄+ b + c(丄+丄)=一3,求a+b+c的 b c a c a b 值.解析:因为ubc^O,在已知的第二个等式两边同乘以“be,得"2(c+b)+b2(c+")+c2(“+")= —3"bc, 即ab(a+/?)+bc(b-\-c)4-ac(a+c) + 3abc=0.将&历c 拆开为ubc+abc+ubc,可得ab(“+b+c)+bc(a+b+ c)+ac(a+/?+c)=0・于是(a+b+c)(ab+he+ac)=0.所以a+h+c=0或ab+bc+ac=0.若ab+bc+ac=O.由(a+b+c)2=a2+b2+c2+2cd^2bc+2cic= 1 得“+b+c=±l ・ \ 所以“+"+c的值可能为6 — 1 >1.中考真题欣赏例1 (2003年陕西中考题)先化简,再求值:皆胃L岳,其中眉存—x + 1 (x2+1)(A+ l)(x-l) x-3 _ x-1 x-3 _ 2 尿 = - : 一 = — =0+1 (x + 1) A +1x + 1 x + 1 x + 1解析:当x= 73 + 1时,原式== 4一2逅.V3+2例2 (重庆市)阅读下而材料:在计算3+5+7+9+11 + 13+15+17+19+21时,我们发现,从第一个数开始,以后的每个数与它的前一个数的差都是一个相同的左值.具有这种规律的一列数,除了直接相加外,我们还可以用公式5= 必+巴二12xd计算它们的和.(公式中的〃表示数的个数,“表示第一个数的值,〃表示这个相差的泄值), 2那么3+5+7+9+11 + 13+15 + 17+19+21 = 10x3+巴” x2=120・2用上而的知识解决下列问题:为保护长江,减少水上流失,我市某县决泄对原有的坡荒地进行退耕还林.从1995年起在坡荒地上植树造林,以后每年又以比上一年多植相同面积的树木改造坡荒地.由于每年因自然灾害、树木成活率、人为因素等的影响,都有相同数量的新坡荒地产生,下表为1995、1996、1997年的坡荒地面积和植树的面积的统汁数据•假设坡荒地全部种上树后,不再有水上流失形成新的坡荒地,问到哪一年,可以将全县所有的坡荒地全部种上树木.解析:1997 年减少了24 000-22 400=1 600.m年减少了1 200+400x(/?/-1 996)・1 200+1 600+…+ 1 200+400(加一1 996)=25 200.令n=m—\ 995»得必1200 + 盲_><400一1)=400x HX3+———-=25200. 2 ..・.% +竺匸—6326n+n(n-1)=126n:+5n-126=0.m 二9,血二一14 (舍去).m=1995+9=2004.••• 到2004年,可以将坡荒地全部种上树木°竞赛样题展示例1 (2003年“信利杯”)某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将苴排列成前多后少的梯形队阵(排数>3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有( )A. 1种B.2种C. 4种D. 0种解析设最后一排有k个人,共有n排,那么从后往前各排的人数分别为k, k+1, lc+2,…,k+ (n-l),由题意可知如+ 答丄= 100,即〃[2« + (“-1)] = 200.因为k, n都是正整数,且n$3,所以n<2k+ (n-l),且n与2k+ (n-l)的奇偶性不同。
尖子生培优教材数学七年级上第四讲。
平方根与立方根讲义及答案第四讲:平方根与立方根知识导引:平方根和立方根的概念在数学中起到了十分重要的作用。
这些概念是通过逆运算来建立的,并且有多种不同的情况。
因此,理解这些概念的最好方法是从平方和立方的概念开始。
此外,还应该学会使用平方根、立方根等知识去解决一些简单的实际问题。
1.有关平方根:1) 一个正数有正负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
2) 算术平方根a的双重非负性:a≥0;a≥0.3) a的三层含义:开方的运算符号,表示对a进行开方运算;特征符号,表示a的算术平方根;表示一种新的数,是开不尽方的数(即无理数)的表示形式。
2.有关立方根:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
因此,任何数都有立方根。
3.实数的几种非负形式:1) a≥0(a为实数);2) a < 0,|a|≥0(a为实数)。
4.算术平方根的主要性质:1) (√a)²=a;2) a≥0,√(a²)=a;3) ab≥0,√(ab)=√a·√b(a≥0,b≥0);4) a≥0,b>0,(√a/√b)²=a/b。
典例精析:例1:填空题:1) (-3)的算术平方根是______。
2) 平方根等于它本身的数是______。
3) 和数轴上的点一一对应的数是______。
例1-1:下列说法正确的有:(填入相应的序号)。
①-8是64的平方根;②4的算术平方根是2;③任何数都有立方根;④6根2是2;⑤根是±8;⑥9=±3.例1-2:已知x+2+y-3+(z+1)²=______,求x+y+z的平方根。
例2:比较大小:1) -23与-32.2) 1/2,x,x,x(<x<1)。
例2-1:设a=3-2,b=2-3,c=3-2,则a、b、c的大小关系是( )。
A、a>b>cB、a>c>bC、c>b>aD、b>c>a例3:观察下列等式:32/22=23,33=33=43,34.可得出一般规律是______。
第二十讲 点共线与线共点趣题引路】例1 证明梅涅劳斯定理:如图20-1,在△ABC 中,一直线截△ABC 的三边AB 、AC 及BC 的延长线于D 、E 、F 三点。
求证:1=⋅⋅DBADEA CE FC BF 解析:左边是比值的积,而右边是1,转化比值使其能约简,想到平行线分线段成比例作平行线即可. 证明过点C 作CG /∥EF 交AB 于G . ,,BF BD EC DGCF DG AE AD∴== ∴1=⋅⋅=⋅⋅BDADAD DG DG BD BD AD EA CE FC BF例2 证明塞瓦定理:如图20-2,在△ABC 内任取一点P ,直线AP 、BP 、CP 分别与BC 、CA 、AB 相交于D 、E 、F ,求证:1=⋅⋅FBAF EA CE DC BD 证明,,.BCP ACPABP ACP BAP BCPS S S BD CE AF DC S EA S FB S ∆∆∆∆∆∆===∴1=⋅⋅=⋅⋅∆∆∆∆∆∆BCPACPABP BCP ACP ABP S S S S S S FB AF EA CE DC BD知识拓展】1.证明三点共线和三线共点的问题,是几何中常遇到的困难而有趣的问题,解这类问题一定要掌握好证三点共线和三线共点的基本方法。
2.证明三点共线的方法是:(1)利用平角的概念,证明相邻两角互补、 (2)当AB ±BC =AC 时,A 、B 、C 三点共线。
(3)用同一方法证明A 、B 、C 中一点必在另两点的连线上。
(4)当AB 、BC 平行于同一直线时,A 、B 、C 三点共线。
(5)若B 在PQ 上,A 、C 在P 、Q 两侧,∠ABP =∠CBQ 时,A 、B 、C 三点共线. (6)利用梅涅劳斯定理的逆定理. 3.证明三线共点的基本方法是:(1)证明其中两条直线的交点在第三条直线上 (2)证明三条直线都经过某一个特定的点.(3)利用已知定理,例如任意三角形三边的中垂线交于一点,三条内角平分线交于一点,三条中线交于一点以及三条高所在直线交于一点等。
目录Contents第1讲平行线四大模型 (1)第2讲实数三大概念 (17)第3讲平面直角坐标系 (33)第4讲坐标系与面积初步 (51)第5讲二元—次方程组进阶 (67)第6讲含参不等式(组) (79)1 平行线四大模型知识目标目标一熟练掌握平行线四大模型的证明目标二熟练掌握平行线四大模型的应用目标三掌握辅助线的构造方法,熟悉平行线四大模型的构造秋季回顾平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP ,求证AE //CF .模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) (七一中学2015-2016七下3月月考)如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB∥DE,BF、 DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.练如图,已知AB∥DE,∠FBC=∠ABF,∠FDC=∠FDE.(1)若n=2,直接写出∠C、∠F的关系;(2)若n=3,试探宄∠C、∠F的关系;(3)直接写出∠C、∠F的关系(用含n的等式表示).例3如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.求证:∠E= 2 (∠A+∠C) .练如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校 2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、 CD的延长线上的点,∠EAM和∠EDN 的平分线相交于点 F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EFA= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+∠CHG= .例6已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NAn,探索∠A1、∠A2、…、∠An,∠B1、∠B2…∠Bn-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NAn,探索∠A1、∠A2、…、∠An之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.挑战压轴题(粮道街2015—2016 七下期中)如图1,直线AB∥CD,P是截线MN上的一点,MN与CD、AB分别交于E、F.(1) 若∠EFB=55°,∠EDP= 30°,求∠MPD的度数;(2) 当点P在线段EF上运动时,∠CPD与∠ABP的平分线交于Q,问:是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P在线段EF的延长线上运动时,∠CDP与∠ABP的平分线交于Q,问的值足否定值,请在图2中将图形补充完整并说明理由.第一讲平行线四大模型(课后作业)1.如图,AB // CD // EF , EH⊥CD于H ,则∠BAC+∠ACE +∠CEH等于( ).A. 180°B. 270°C. 360°D. 450°2.(武昌七校2015-2016七下期中)若AB∥CD,∠CDF=∠CDE,∠ABF=∠ABE,则∠E:∠F=( ).A.2:1 B.3:1 C.4:3 D.3:23.如图3,己知AE∥BD,∠1=130°,∠2=30°,则∠C= .4.如图,已知直线AB∥CD,∠C =115°,∠A= 25°,则∠E= .5.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .6.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .7.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .8.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是 .。
第一讲有理数知识导引本讲的主要内容是从自然数到分数和有理数的概念,小学数学主要学习了自然数、分数(小数)及数的运算,并且这种“数”的概念是建立在一种意义上的,实际上,仅有自然数和分数是不够的,数还需作进一步的扩展,实际生活、生产中大量的量从其意义上来理解却具有相反的意义,为了准确地区分这些相反意义的量就有必要引入负数,用正数和负数来区分这些具有相反意义的量,这样就产生了有理数的概念,所以有理数其实是对数的进一步认识,是数的一次重要扩充。
建立了有理数的概念之后,又不要对有理数进行分类,有理数通常按两种不同的标准进行分类:一是以有理数的正负性为主要标准,将有理数分为正数、零和负数三大类;二是以有理数的整数和非整数为主要标准,将有理数分为整数和分数两大类。
这里要注意的是零既不是正数也不是负数,具体的数的概念应从其意义上理解,例如“负整数”应理解为“负数中的整数”等等。
典例精析例1:珠穆朗玛峰和吐鲁番盆地处都标有表明高度的数(单位:米),如图所示,这些数通常称为海拔,它是相对于海平面来讲的,请说出图中所示的数8848和-155表示的实际意义,海平面的高度用什么数表示?例2:(1)如果把商店盈利100元记做+100,那么亏损20元记做(2)如果把仪表的指针逆时针转3圈记做+3,那么-2圈表示把仪表的指针(3)正常水位为0,水位高于正常水位0.2米时可记做+0.2米,那么-0.5米表示什么意思?例2—1:(1)下列说法中,不具有相反意义的一对量是()A、向东3.5米和向南2千米B、上升5米和下降1.8米C、收入5000元和亏损1500元D、零上6℃和零下7℃(2)若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为()A、-10秒B、-5秒C、+5秒D、+10秒例3:把数-7,4.8,4,0,-9,-7.9,-12,213-,23,800%,54,851-分别填在相应的位置内。
正数:{ }; 负数:{ }; 整数:{ }; 正整数:{ }; 负分数:{ }; 非负数:{ }。
专题二实数的三大概念目标一理解算术平方根、平方根、立方根的概念目标二掌握开平方、开立方的计算方法目标三熟练运用..a的双重非负性表二表三106、、25642的平方根为 __________题型一:概念应用例 1(1)求下列各数的算术平方根和平方根被开方 数4225169361121 361? 160.09 0.16 0.0001 算术平 方根平方根被开方数232234537262190.1算术平方 根平方根(3)求下列各数的算术平方根和平方根:81U _6)2.0.01,081 .0.04.324124 25、:J900的平方根为 ______ J ( 6)2的算术平方根为 _________例2(1) 一个非负数的平方根是 2a 1和a 5,则这个非负数是多少(2)已知2a 1与 a 2是m 的平方根,求 m 的值。
练(1)(洪山区2015-2016七下期中)一个正数 a 的平方根是3x 4与2 2x ,则这个正数 (2)已知x 1与2x 4是k 的平方根,求k 的值。
(、、2013)2 =(5)2的算术平方根为 _______J 0.1)2 —竞赛链接(2009联赛)已知a,b是正整数, 且满足2 t15 , 是整数, 则这样的有序数对(a,b)共有例 3 (1)若•一x 1 y 3 0 ,求.x y 的值。
(2)已知3x 2y 1 、5x_5,求6x 3y的平方根练若(x 2y 2)2与2x_y—5互为相反数,求x y的算术平方根例4 (1)若根式j x—2有意义,则x应满足_______若根式45—x有意义,则x应满足_________若根式J3 x和J x 3有意义,则x应满足____________若根式&~x 丘~1有意义,则x应满足_________________ _ ___ 5⑵已知y . 2x 3 . 3 2x 5,求x y 的平方根2(3)(梅苑中学2015-2016七下期中)若y勺x? 4 J4 x?,则2x y的平方根为________________x 2练(1)若(x y)2.,厂..^"X,求x y的值(2)已知y , 2x 1 J 2x 16x,求、.xy的平方根例5(1)已知2015 a J a 2016 a,求a 20152的值(2)已知2a 4 b 2 J(a 3)b2 4 2a,求a b 的值练已知5 x j x—6 x 4,求―2的平方根拓已知....X y 8 8 x y , x 2y a x y a,求x y a的算术平方根模块二立方根3^25 ______ 勺64 ------------------ 旷27 ___V27 _ 引0.0008 _ V 512 __ 旷27的立方根等于_______ 3G03的立方根等于 ___________________________ 3 ~ a^64的立方根为_______ 3 ( 2)3__38的立方根为 ________書64的立方根为_______ 旷8的立方根为________例7(1)(洪山区2015-2016七下期中)求一个数的立方根,有些可以直接求,如 3 8 2,有些数则不能直接求得,如39,但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得,请同学们观察下表:已知V2"16 1-293,V21?6 2785,返16 6,运用你发现的规律,求321600000(2) 7036 _________ 屈_________________ 73600 ______________已知V102.01 10.1,则V1-0201 _______已知J1.477 1.215,(4.77 3.843,则J0.01477 ______练(汉阳区2015-2016七下期中)观察下列计算过程,猜想立方根3 3 3 3 3 3 3 3 31 1,2 8,3 27,4 64,5 125,6 216,7 343,8 512,9 729 。
领先中考培优课程MATHEMATICS3平面坐标系知识目标目标一理解有序数对、有序数对、点的坐标的概念目标二掌握象限、坐标轴、坐标轴夹角平分线的点的坐标特征目标三灵活运用点和线的平移变换。
点的对称变换求坐标1模块一平面直角坐标系的相关概念知识导航1有序数对有顺序的两个数a与b组成的数对,叫做有序数对,记作〔a,b),利用有序数对可以可以很准确的表示出一个位置。
2平面直角坐标系ⅠⅡ第一象限第二象限原点ⅢⅣ第三象限第四象限在平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系、水平的数轴称为x轴或横轴,习惯上取向右为正方向:竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面坐标系的原点。
如左图,建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成了Ⅰ ,Ⅱ,Ⅲ,Ⅳ四个局部,每个局部称为象限,分别叫做第一象限、第二象限、第三象限、第四象限。
坐标轴上的点不属于任何象限。
3、点的坐标平面内的点可以用一个有序数对表示,这个有序数对就叫做点的坐标。
对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫做该点横坐标、纵坐标。
如图,点p为坐标平面内一点,过点p作x轴的垂线,垂足M在x轴上对应点的数是-2,那么-2就是p的横坐标;过点p作y轴的垂线,垂足N在y轴上对应的数为3,那么3为点p的纵坐标,点p就可以用有序数对〔-2,-3〕来表示,记作p〔-2,3〕。
由坐标确定点的方法:要确定由坐标〔a,b)所表示的点 p的位置,先在x轴上找到表示a的点,过这点作x轴的垂线;再在y轴上找到表示b的点,过这点作y轴的垂线,两条垂线的交点p即为所求的位置。
由点求坐标的方法:先由点p分别向x轴和y轴作垂线,设垂足分别为A和B,再求出A在x轴上的坐标a和B在轴上的坐标b,那么点p的坐标为〔a,b)2稳固练习点的坐标在图1的平面直角坐标系中描出以下个点:A(3,4),B(-2,3),C(-5,-2),D(4,-1),E(1,0),F(0,3),G(-2,0),H(0,-4).写出图2中点A、B、C、D、E、F、G、H的坐标。
解方程满分晋级阶梯漫画释义6含参一元一次 方程的解法方程4级 方程中的设元 方程3级含参一元一次方程的解法方程2级 二元一次方程组的 概念及基本解法题型切片(四个) 对应题目题型目标 复杂一元一次方程 例1;例2;练习1; 同解一元一次方程 例3;例8;练习2; 含参一元一次方程 例4;例5;练习3;练习4 绝对值方程例6;例7;练习5;练习6对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中()ax bx a b x +=+的应用.【引例】 解方程:111123452345x x x x +++=+++. 【解析】 法一:1111111123452345x ⎛⎫+++=+++ ⎪⎝⎭,所以1x =;法二:111102345x x x x ----+++=,1111()(1)02345x +++-=,所以1x =.【点评】 注意传递给学生两种解决此类问题的思路.【例1】 ⑴解方程:2152234x x +--=.(西城期末) ⑵解方程:1123(23)(32)11191313x x x -+-+=【解析】 ⑴ 去分母(方程两边同乘以12),得 4(21)3(52)24x x +--=.去括号,得 8415624x x +-+=. 移项,得 8152446x x -=--. 合并同类项,得 714x -=. 系数化为1,得 2x =-.∴ 原方程的解是 2x =-.⑵ 原方程可变为111(23)(23)(23)0111913x x x ---+-=,即111(23)0111319x ⎛⎫+--= ⎪⎝⎭, 又1110111319+-≠,所以230x -=,即32x =. 点评:若0ab =,则0a =或0b =.复杂一元一次方程思路导航题型切片【例2】 解方程:2009122320092010x xx+++=⨯⨯⨯【解析】 1112009122320092010x ⎛⎫+++= ⎪⨯⨯⨯⎝⎭,1120092010x ⎛⎫-= ⎪⎝⎭即200920092010x =, 故2010x =.若两个一元一次方程的解有等量关系,先分别求出这两个方程的解,再通过数量关系列等式. 两个解的数量关系有很多种,比如相等、互为相反数、多几倍等等.【引例】 当m =________时,方程5443x x +=-的解和方程2(1)2(2)x m m +-=-的解相同.(北京四中期中考试)【解析】 法一:方程5443x x +=-的解为7x =-,方程2(1)2(2)x m m +-=-的解为362m x -=.由题意解相同,所以3672m --=,解得83m =-. 法二:方程5443x x +=-的解为7x =-,把7x =-代入2(1)2(2)x m m +-=-中,求得83m =-.【点评】同解方程问题,先分别求出这两个方程的解,再让解相等,或求出一个方程的解,把解代入另一个方程.【例3】 ⑴已知:关于x 的方程42x k -=与()322x k +=的解相同,求k 的值及相同的解.(石景山期末)⑵若关于x 的方程5342x x =-和12524ax ax x -=+有相同的解,求a 的值. ⑶若()40k m x ++=和(2)10k m x --=是关于x 的同解方程,求2km-的值.【解析】 ⑴ 22643k k +-=,解得6k =,2x ∴= ⑵ 方程5342x x =-的解为8x =-,把8x =-代入12524a x ax x -=+中,求得12a =.⑶ 法一:方程()40k m x ++=的解为4x k m-=+,方程(2)10k m x --=的解为12x k m =-,所以412k m k m -=+-,所以3m k =,所以523k m -=-. 法二:方程(2)10k m x --=等号两边乘以4-得(48)40m k x -+=,故同解一元一次方程思路导航48k m m k +=-,523k m -=-.当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成ax b =的形式,方程ax b =的解根据a b ,的取值范围分类讨论.① 当0a ≠时,方程有唯一解bx a=.② 当0a =且0b =时,方程有无数个解,解是任意数. ③ 当0a =且0b ≠时,方程无解.【引例】 当a ,b 时,方程1ax x b +=-有唯一解;当a ,b 时,方程1ax x b +=-无解;当a ,b 时,方程1ax x b +=-有无穷多个解. 【解析】 1a b ≠,为任意数;11a b =≠-,;11a b ==-,. 【例4】 ⑴ 已知:关于x 的方程32ax x b +=-有无数多个解,试求2011()5aba b x x a b a b+-=-++ 的解.⑵ 若a 、b 为定值,关于x 的一元一次方程2236kx a x bk+--=,无论k 为何值时,它的解总是1x =,求23a b +的值.(北师大附中期中)【解析】 ⑴ 原方程整理为(2)3a x b -=--,因为当20a -=且30b --=该方程有无数多组解,所以23a b ==-,,故把23a b ==-,代入2011()5aba b x x a b a b+-=-++得610x x --=, 解得107x =-.⑵ 方程2236kx a x bk+--=可化为:(41)212k x a bk -++=,由该方程总有解1x =可知41212k a bk -++=,即(4)132b k a +=-,又k 为任意值,故401320b a +=⎧⎨-=⎩,231a b +=.【例5】 解关于x 的方程()()134m x n x m -=-【解析】 去分母,化简可得:(43)43m x mn m -=-当34m ≠时,方程的解为4343mn mx m -=-;当34m =,34n =时,解为任意值;思路导航含参一元一次方程当34m =,34n ≠时,方程无解.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解1.形如ax b c +=的方程,可分如下三种情况讨论: ⑴0c <,则方程无解;⑵0c =,则根据绝对值的定义可知,0ax b +=; ⑶0c >,则根据绝对值的定义可知,ax b c +=±. 2.形如ax b cx d +=+型的绝对值方程的解法:首先根据绝对值的定义得出,()ax b cx d +=±+,且0cx d +≥;分别解方程ax b cx d +=+和()ax b cx d +=-+,然后将得出的解代入0cx d +≥检验即可. 3.含多重绝对值符号的绝对值方程的解法:主要方法是根据定义,逐层去掉绝对值.【引例】 解绝对值方程:15x -=【解析】 15x -=可知,15x -=或15x -=-,故6x =或4x =-.【例6】 若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,下列选项正确的是( )A .m n k <<B .m n k ≤≤C .m n k >>D .m n k ≥≥【解析】 C .【例7】 解绝对值方程:⑴ 4812x +=⑵ 4329x x +=+⑶ 方程125x x -++=的解是 .(北京四中期中)【解析】 ⑴由4812x +=可知,4812x +=±,故1x =或5x =-.⑵方程4329x x +=+可化为,43(29)x x +=±+,且290x +≥,解方程4329x x +=+可得,3x =;解方程43(29)x x +=-+可得,2x =-,代入检验可知,3x =,2x =-均满足题意.⑶法一:1x -与2x +的零点分别是1x =和2x =-.由“零点分段法”,分情况讨论: 若2x <-,则原方程可化为(1)25x x ---+=(),解得32x =-<-,满足题意,故3x =-是原方程的解;若21x -≤≤,则原方程可化为(1)25x x --++=(),无解;若1x >,则原方程可化为(1)25x x -++=(),解得21x =>,满足题意,故2x =也思路导航绝对值方程是方程的解.综上:方程125x x -++=的解为3x =-或2x =. 法二:用绝对值的几何意义画数轴即可解决.【选讲题】【例8】 已知:333n x m n p ++-=与2321m x m np --+=-都是关于x 的一元一次方程,且它们的解互为相反数,求关于x 的方程115x p -+=的解.(人大附中期中练习)【解析】 由题意可知,312211n n m m +==-⎧⎧⇒⎨⎨-==⎩⎩,故题中的两个方程变为1x p +=和42x p -=,由上述两个方程的解互为相反数可知,114205p p p -++=⇒=-,故方程115x p -+=变为1111655x x --=⇒-=,从而可知,5x =-或7x =.训练1. 方程3x a b x b c x c a c a b ------++=中,若11100abc a b c≠++≠,则x = . 【解析】 .x a b c =++训练2. 解关于x 方程:4x a b c x b c d x a c d x a b dd a b c------------+++=【解析】 原方程可变()()()()0x a b c d x a b c d x a b c d x a b c d d a b c -+++-+++-+++-++++++=也就是1111[()]0x a b c d a b c d ⎛⎫+++-+++= ⎪⎝⎭当11110a b c d +++=时,原方程有无穷多个解; 当11110a b c d+++≠时,原方程的解为:x a b c d =+++.训练3. 已知关于x 的方程1(1)12x k -=-的解与351148x k x +--=的解相同,求k 的值.【解析】 由 1(1)12x k -=-得 122x k -=- 12x k -=- 12x k =-+ 由351148x k x +--=得()()23518x k x +--=62518x k x +-+= 72x k =-∵两个方程的解相同, ∴1272k k -+=- ∴2k =.训练4. ⑴ 方程158x x -++=的解是 .⑵ 解绝对值方程:35162x x ---= 【解析】 ⑴2x =或6x =-.⑵35162x x ---=或6-,即3572x x -=-或3552x x -=+ 当70x -≥时(即7x ≥),3502x ->,3572x x -=-化为3572x x -=-,解得9x =-.当50x +≥时(5x -≥),若还有3502x -≥(即53x ≥),3552x x -=+,解得15x =.当50x +≥时(5x -≥),若还有3502x -<(即5<3x ),3552x x -=--,解得1x =-.检验这三个解9x =-(舍去),故15x =,1x =-.复杂一元一次方程 巩固练习【练习1】 解方程:0.130.41200.20.5x x +--=【解析】 10x =-. (提示:含有小数的一元一次方程在求解过程中通常是先将小数化成整数)两个一元一次方程解的关系问题 巩固练习【练习2】 已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦与3151128x a x +--=有相同的解,求a 的值及方程的解.【解析】 把a 当常数,方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦的解为37x a =,方程3151128x a x +--=的解为27221a x -=, 故3272721a a -=,解得2711a =,所以8177x =.(同解方程问题)含字母系数的一元一次方程 巩固练习【练习3】 已知关于x 的方程2(1)(5)3a x a x b -=-+无解,那么a = ,b .【解析】 2253ax a x ax b -=-+,即(35)23a x a b -=+,故350a -=且230a b +≠,即53a =,复习巩固109b ≠-. 【练习4】 如果关于x 的方程2(3)15(23)326kx x +++=有无数个解,求k 值. 【解析】 原方程整理得(410)0k x -=,由方程有无数个解得4100k -=,52k =.绝对值方程 巩固练习【练习5】 解方程:3548x -+=【解析】 3548x -+=或8-(舍),即354x -=,所以354x -=或4-,即39x =或31x =,故3x =或13x =.【练习6】 方程147x x -++=的解是 .2x =或5x =-.每个人的成功都有秘诀,那你知道爱因斯坦的成功公式是什么?数学史第十三种品格:公平不要羡慕别人的生活,别人不见得比你活得好,世间是公平的,每个人都有自己的欢乐和痛苦。
1 第二级(下)·第6讲·尖子班·教师版
题型一 实数 巩固练习
【练习1】
【解析】 ⑴1-;⑵ 1.14-; ⑶42-. 题型二 平面直角坐标系 巩固练习
【练习2】
【解析】 ⑴ (,)a b -,(,)a b -,(,)a b -- ⑵ D.
【练习3】
【解析】 ⑴ 如图 ⑵ ()22A '--,,()00B ',
,()31C '-, ⑶ 22131552222ABC S ⨯⨯⨯=⨯-
--△ 3510222
=--- 4= (提示:补形,用一个大的长方形面积减去3个小直角三角形面积) 题型三 二元一次方程组 巩固练习
【练习4】
【解析】 先将含a 的项消去,将原方程组转化为一个方程,再与4x y +=组成一个关于x 、y 的二元一
次方程组,求出x 、y 的值,然后将x 、y 的值代入原方程组中任意一个方程,便可求得a 的值.①3⨯-②,得153015x y +=-,
即21x y +=-,
由214x y x y +=-⎧⎨+=⎩
,,得95.x y =⎧⎨=-⎩, 将95x y =⎧⎨=-⎩
,代入②,得()39956a ⨯-⨯-=,即12a =.
题型四 一元一次不等式(组) 巩固练习
【练习5】
【解析】 ⑴设该商店购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元, 根据题意得方程
组
8395056800a b a b +=⎧⎨+=⎩,解得10050a b =⎧⎨=⎩
所以购进一件A 种纪念品需要100元,购进一件B 种纪念品需要50元.
⑵设该商店购进A 种纪念品x 个,则购进B 种纪念品有()100x -个
10050(100)750010050(100)7650x x x x +-⎧⎨+-⎩
≥≤ 复习巩固
6 期中复习
2 第二级(下)·第6讲·尖子班·教师版
解得5053x ≤≤
因为x 为正整数,所以共有4种进货方案.
⑶因为B 种纪念品利润较高,故B 种数量越多总利润越高,因此选择购A 种纪念品50个,购B 种50个.总利润502050302500=⨯+⨯=(元)
故购A 种纪念品50个,B 种纪念品50个时,可获最大利润,最大利润为2500元.
课后测
【测1】
【解析】 4,3,2.
【测2】
【解析】 A
【测3】如.
【解析】 (3.
【测4】
【解析】 解方程组4539x y x y -=⎧⎨+=⎩得23x y =⎧⎨=⎩,将23x y =⎧⎨=⎩代入13418ax by ax by +=-⎧⎨-=⎩得23161218a b a b +=-⎧⎨-=⎩
, 化简得23123a b a b +=-⎧⎨-=⎩ , 解得11a b =⎧⎨=-⎩. 【测5】
【解析】 1a ≤。