高考数学复习单元检测-数列提升卷单元检测含解析
- 格式:pdf
- 大小:518.93 KB
- 文档页数:7
2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为_______ 2.已知等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的第n 项an 等于 A.2n-5 B.2n-3 C.2n-1D.2n+13.某大楼有20层,有19人在第一层上了电梯,他们分别要去第2层到20层,每层一人,而电梯只允许停一次,可只使一人满意,其余18人都要上楼或下楼。
假设乘客每向下走一层不满意度为1,每向上走一层不满意度为2。
所有人不满意之和为S ,为使S 最小,电梯应停在第( )层。
A,15 B,14 C,13 D,12第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4. 已知数列{}n a ,{}n b 满足11a =,22a =,12b =,且对任意的正整数,,,i j k l ,当i j k l +=+时,都有i j k l a b a b +=+,则201011()2010i i i a b =+∑的值是 ▲ .5.1、各校(园):请各单位对照本单位实际,按马校长的要求做好校园安全工作。
马校长强调:近期安全要关注之处1、学生上下学安全,和家长定接送安全责任状,上学的时候有人值班校干带班。
2、校内各个区域的安全值班,重要的是有人带班和检查一下值班情况。
3、食堂食品和学生饮用水情况。
4、传达室的物品摆放情况和值班情况,不可以让人员随意进出学校。
5、进行特异体质学生调查,统计,跟踪分析一下。
6、对学生的安全教育情况,7、带领全体职工学习安全职责。
8、学校的线路情况如何。
9、楼梯口的安全值班情况。
10、保安的管理情况,不可以有超过七十岁的安保人员。
第六章 单元测试一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d = ( )A .-2B .-12C.12 D .2答案 B解析 由等差中项的定义结合已知条件可知2a 4=a 5+a 3,∴2d =a 7-a 5=-1,即d =-12.故选B. 2.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3答案 D解析 由等比数列性质可知a 3a 5a 7a 9a 11=a 57=243,所以得a 7=3,又a 29a 11=a 7a 11a 11=a 7,故选D.3.已知等差数列{a n }的前n 项和为S n ,a 1+a 5=12S 5,且a 9=20,则S 11=( )A .260B .220C .130D .110答案 D 解析 ∵S 5=a 1+a 52×5,又∵12S 5=a 1+a 5,∴a 1+a 5=0.∴a 3=0,∴S 11=a 1+a 112×11=a 3+a 92×11=0+202×11=110,故选D.4.各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则S 2 009等于 A .0 B .2 C .2 009 D .4 018答案 D解析 各项均不为零的等差数列{a n },由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则a 2n -2a n=0,a n =2,S 2 009=4 018,故选D.5.数列{a n }是等比数列且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于 A .5 B .10 C .15 D .20答案 A解析 由于a 2a 4=a 23,a 4a 6=a 25,所以a 2·a 4+2a 3·a 5+a 4·a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25.所以a 3+a 5=±5.又a n >0,所以a 3+a 5=5.所以选A.6.首项为1,公差不为0的等差数列{a n }中,a 3,a 4,a 6是一个等比数列的前三项,则这个等比数列的第四项是( )A .8B .-8C .-6D .不确定答案 B解析 a 24=a 3·a 6⇒(1+3d )2=(1+2d )·(1+5d ) ⇒d (d +1)=0⇒d =-1,∴a 3=-1,a 4=-2,∴q =2. ∴a 6=a 4·q =-4,第四项为a 6·q =-8.7.设函数f (x )满足f (n +1)=2f n +n 2(n ∈N *),且f (1)=2,则f (20)=( )A .95B .97C .105D .192答案 B解析 f (n +1)=f (n )+n 2,∴⎩⎪⎨⎪⎧f 20=f 19+192,f 19=f 18+182,……f 2=f 1+12.累加,得f (20)=f (1)+(12+22+…+192)=f (1)+19×204=97.8.若a x -1,a y,a-x +1(a >0,且a ≠1)成等比数列,则点(x ,y )在平面直角坐标系内的轨迹位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 ∵成等比,∴(a y )2=ax -1·a-x +1.即2y =x -1-x +1,x -1>0,∴x >1.x -1<x +1,∴y <0,∴位于第四象限.9.已知等比数列{a n }的公比q <0,其前n 项的和为S n ,则a 9S 8与a 8S 9的大小关系是 A .a 9S 8>a 8S 9 B .a 9S 8<a 8S 9 C .a 9S 8≥a 8S 9 D .a 9S 8≤a 8S 9答案 A解析 a 9S 8-a 8S 9=a 9a 11-q 81-q -a 8a 11-q 91-q =a 8a 1q -q 9-1+q 91-q=-a 1a 8=-a 21q 7,因为a 21>0,q <0,所以-a 21q 7>0,即a 9S 8>a 8S 9,故选A.10.在等差数列{a n }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为 A .1 006 B .-2 012 C .2 012 D .-1 006答案 C解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得, ⎩⎪⎨⎪⎧S 2 011=2 011a 1+2 011× 2 011-12d =-2 011,a 1 007=a 1+1 006d =3,即⎩⎪⎨⎪⎧a 1+1 005d =-1,a 1+1 006d =3,解得⎩⎪⎨⎪⎧a 1=-4 021,d =4.所以,S 2 012=2 012a 1+2 012× 2 012-12d=2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012. 方法二 由S 2 011=2 011a 1+a 2 0112=2 011a 1 006=-2 011, 解得a 1 006=-1,则S 2 012=2 012a 1+a 2 0122=2 012a 1 006+a 1 0072=2 012×-1+32=2 012.二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上)11.若m ,n ,m +n 成等差数列,m ,n ,m ·n 成等比数列,则椭圆x 2m +y 2n=1的离心率为________.答案22解析 由题意知2n =m +m +n ,∴n =2m .又n 2=m ·m ·n ,∴n =m 2,∴m 2=2m . ∴m =2,∴n =4,∴a 2=4,b 2=2,c 2=2. ∴e =c a =22. 12.数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =2n 3n +1,则a 100b 100=________.答案199299解析a 100b 100=a 1+a 1992b 1+b 1992=S 199T 199=199299. 13.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于________. 答案 2 解析 ∵S 3=a 1+a 3×32=6,而a 3=4,∴a 1=0.∴d =a 3-a 12=2.14.某人从2012年1月份开始,每月存入银行100元,月利率是3‰(不计复利),到2012年12月底取出的本利和应是________元.答案 1 223.4解析 应为1 200+0.3×12+0.3×11+…+0.3=1 200+0.3×12×132=1 223.4(元).15.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n+2>19的最大正整数n 的值为________. 答案 4解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4.又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n+2=29-3n.由于2-3=18>19,因此要使29-3n >19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n+2>19的最大正整数n 的值为4. 16.等比数列{a n }的首项为a 1=1,前n 项和为S n ,若S 10S 5=3132,则公比q 等于________.答案 -12解析 因为S 10S 5=3132,所以S 10-S 5S 5=31-3232=-132,即q 5=(-12)5,所以q =-12. 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)数列{a n }中,a 1=1,a n ,a n +1是方程x 2-(2n +1)x +1b n=0的两个根,求数列{b n }的前n 项和S n .答案 S n =nn +1解析 ∵a n ,a n +1是x 2-(2n +1)x +1b n=0的两根,∴a n +a n +1=2n +1,a n ·a n +1=1b n.∴a n +1+a n +2=2n +3. ∴a n +2-a n =2. ∴a 3-a 1=2,a 5-a 3=2,……a 2n -1-a 2n -3=2.∴a 2n -1-a 1=2(n -1).∴a 2n -1=2n -1,∴当n 为奇数时,a n =n . 同理可得当n 为偶数时a n =n . ∴a n =n . ∴b n =1a n ·a n +1=1nn +1=1n -1n +1. ∴S n =b 1+b 2+b 3+…+b n=1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1. 18.(本小题满分12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.答案 (1)b n =54·2n -1=5·2n -3(2)略解析 (1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列{b n }的前n 项和S n =541-2n1-2=5·2n -2-54, 即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此{S n +54}是以52为首项,公比为2的等比数列.19.(本小题满分12分)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列,求:(1)p ,q 的值;(2)数列{x n }的前n 项的和S n 的公式.解析 (1)由x 1=3,得2p +q =3,又x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1. (2)S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12.20.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4+a 5=64(1a 3+1a 4+1a 5).(1)求{a n }的通项公式;(2)设b n =(a n +1a n)2,求数列{b n }的前n 项和T n .解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知,有⎩⎪⎨⎪⎧a 1+a 1q =2⎝ ⎛⎭⎪⎫1a 1+1a 1q ,a 1q 2+a 1q 3+a 1q 4=64⎝ ⎛⎭⎪⎫1a 1q 2+1a 1q 3+1a 1q 4,化简,得⎩⎪⎨⎪⎧a 21q =2,a 21q 6=64.又a 1>0,故q =2,a 1=1. 所以a n =2n -1.(2)由(1)知,b n =⎝⎛⎭⎪⎫a n +1a n 2=a 2n +1a 2n +2=4n -1+14n -1+2.因此,T n =(1+4+…+4n -1)+(1+14+…+14n -1)+2n =1-4n1-4+1-14n 1-14+2n =13(4n -41-n)+2n +1.21.(本小题满分12分)某企业2010年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2011年起每年比上一年纯利润减少20万元,2011年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(2011年为第一年)的利润为500(1+12n )万元(n 为正整数).(1)设从2011年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n ,B n 的表达式;(2)依上述预测,从2011年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?思路 (1)A n 是一个等差数列的前n 项和,B n 是一个常数数列和一个等比数列的组合的前n 项和,根据数列的求和公式,就可以求出A n ,B n 的表达式.(2)建模B n >A n ,解这个关于n 的不等式.解析 (1)依题意知,A n 是一个以480为首项,-20为公差的等差数列的前n 项和,所以A n =480n +n n -12×(-20)=490n -10n 2,B n =500(1+12)+500(1+122)+…+500(1+12n )-600=500n +500(12+122+…+12n )-600=500n +500×12[1-12n]1-12-600=500n -5002n -100.(2)依题意得,B n >A n ,即500n -5002n -100>490n -10n 2,可化简得502n <n 2+n -10.∴可设f (n )=502n ,g (n )=n 2+n -10.又∵n ∈N *,∴可知f (n )是减函数,g (n )是增函数. 又f (3)=508>g (3)=2,f (4)=5016<g (4)=10.则当n =4时不等式成立,即4年.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且满足S n +n =2a n (n ∈N *). (1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式;(2)若b n =(2n +1)a n +2n +1,数列{b n }的前n 项和为T n .求满足不等式T n -22n -1>2 010的n的最小值.解析 (1)因为S n +n =2a n ,所以S n -1=2a n -1-(n -1)(n ≥2,n ∈N *).两式相减,得a n=2a n -1+1.所以a n +1=2(a n -1+1)(n ≥2,n ∈N *),所以数列{a n +1}为等比数列. 因为S n +n =2a n ,令n =1得a 1=1.a 1+1=2,所以a n +1=2n ,所以a n =2n -1.(2)因为b n =(2n +1)a n +2n +1,所以b n =(2n +1)·2n. 所以T n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n,① 2T n =3×22+5×23+…+(2n -1)·2n+(2n +1)·2n +1,②①-②,得-T n =3×2+2(22+23+ (2))-(2n +1)·2n +1=6+2×22-2n +11-2-(2n +1)·2n +1=-2+2n +2-(2n +1)·2n +1=-2-(2n -1)·2n +1.所以T n =2+(2n -1)·2n +1.若T n -22n -1>2 010, 则2+2n -1·2n +12n -1>2 010,即2n +1>2 010.由于210=1 024,211=2 048,所以n +1≥11,即n ≥10.所以满足不等式T n -22n -1>2 010的n 的最小值是10.1.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有 A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定 答案 B解析 记等比数列{a n }的公比为q ,由数列{b n }为等差数列可知b 4+b 10=2b 7.又数列{a n }是各项均为正数的等比数列,∴a 3+a 9=a 3(1+q 6)=a 6(1+q6q3)=b 7(1+q6q3),又1+q6q3=1q3+q 3≥2,当且仅当q =1时,等号成立,∴a 3+a 9≥b 4+b 10.故选B.2.已知a n =32n -11(n ∈N +),数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值是A .5B .6C .10D .11答案 D解析 令f (x )=32x -11知f (x )关于(112,0)对称,∴a 1+a 10=a 2+a 9=a 3+a 8=a 5+a 6=0, 且a 6>a 7>a 8>a 9>a 10>…>0. ∴S 10=0,S 11>0,选D.3.数列{a n }中,S n 为其前n 项和,已知S 1=1,S 2=2,且S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),则此数列为( )A .等差数列B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列 答案 D解析 S n +1-3S n +2S n -1=0, ∴S n +1-S n =2S n -2S n -1,∴a n +1=2a n . 又a 1=1,a 2=1,∴从第二项起为等比数列.4.已知数列{a n }满足a 1=23,且对任意的正整数m ,n ,都有a m +n =a m +a n ,则a nn 等于A.12 B.23 C.32 D .2答案 B解析 令m =1,得a n +1=a 1+a n ,即a n +1-a n =a 1=23,可知数列{a n }是首项为a 1=23,公差为d =23的等差数列,于是a n =23+(n -1)·23=23n ,即a n n =23.故选B.5.设a 1,a 2,…,a 50是以-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有A .11个B .12个C .15个D .25个答案 A解析 (a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11个,故选A.6.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有 ( )A .a 1+a 101>0B .a 2+a 100<0C .a 3+a 99=0D .a 51=51答案 C解析 由题意,得a 1+a 2+…+a 101=a 1+a 1012×101=0.所以a 1+a 101=a 2+a 100=a 3+a 99=0.7.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10=________.答案 64解析 a n +a n +1=b n ,a n ·a n +1=2n, ∴a n +1·a n +2=2n +1.∴a n +2=2a n .又∵a 1=1,a 1·a 2=2,∴a 2=2. ∴a 2n =2n,a 2n -1=2n -1(n ∈N *).∴b 10=a 10+a 11=64.8.已知S n 是等差数列{a n }的前n 项和,S 10>0并且S 11=0,若S n ≤S k 对n ∈N *恒成立,则正整数k 构成的集合为________.答案 {5,6}解析 等差数列中由S 10>0,S 11=0,得S 10=10a 1+a 102>0⇒a 1+a 10>0⇒a 5+a 6>0,S 11=11a 1+a 112=0⇒a 1+a 11=2a 6=0,故可知,等差数列{a n }是递减数列且a 6=0,所以S 5=S 6≥S n ,即k =5或6.∴集合为{5,6}.9.(2013·衡水调研)已知各项均为正数的数列{a n }的前n 项和为S n ,函数f (x )=12px2-(p +q )x +q ln x (其中p 、q 均为常数,且p >q >0),当x =a 1时,函数f (x )取得极小值,点(a n,2S n )(n ∈N *)均在函数y =2px 2-q x+f ′(x )+q 的图像上.(其中f ′(x )是函数f (x )的导函数)(1)求a 1的值;(2)求数列{a n }的通项公式; (3)记b n =4S n n +3·q n,求数列{b n }的前n 项和T n . 解析 (1)由题易得f (x )的定义域为(0,+∞).f ′(x )=px -(p +q )+q x =px 2-p +q x +q x =x -1px -qx.令f ′(x )=0,得x =1或x =qp. ∵p >q >0,∴0<q p<1.当x 变化时,f ′(x )、f (x )的变化情况如下表:(0,q p ) q p(q p,1) 1 (1,+∞)f ′(x ) +0 -0 +f (x )极大值极小值1(2)依题意,y =2px 2-q x+f ′(x )+q =2px 2+px -p , 2S n =2p ·a 2n +p ·a n -p (n ∈N *).∴2a 1=2p ·a 21+pa 1-p . 由a 1=1,得p =1. ∴2S n =2a 2n +a n -1.①∴当n ≥2时,2S n -1=2a 2n -1+a n -1-1. ②①-②得2a n =2(a 2n -a 2n -1)+a n -a n -1. ∴2(a 2n -a 2n -1)-(a n +a n -1)=0. ∴(a n +a n -1)(a n -a n -1-12)=0.由于a n +a n -1>0,∴a n -a n -1=12(n ≥2).∴{a n }是以a 1=1为首项,12为公差的等差数列.∴a n =1+(n -1)×12=n +12.(3)S n =n +n n -12·12=n 2+3n 4,∴b n =4S n n +3·q n =nq n .∴T n =q +2q 2+3q 3+…+(n -1)qn -1+nq n.③已知p >q >0,而由(2)知p =1,则q ≠1. ∴qT n =q 2+2q 3+3q 4+…+(n -1)q n +nqn +1.④由③-④,得(1-q )T n =q +q 2+q 3+…+q n -1+q n-nq n +1=q 1-q n 1-q-nq n +1.∴T n =q 1-q n 1-q 2-nq n +11-q. 10.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9…已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=12.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1.①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围. 解析 (1)设数列{b n }的公差为d ,则⎩⎪⎨⎪⎧b 1+d =4,b 1+4d =10,解得⎩⎪⎨⎪⎧b 1=2,d =2,所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且 32<13<42,所以a 10=b 4=8.所以a 13=a 10q 3=8q 3,又a 13=1,解得q =12.由已知可得c n =b n qn -1,因此c n =2n ·(12)n -1=n2n -2.所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n2n -2. 12S n =120+221+…+n -12n -2+n2n -1. 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.解得S n =8-n +22n -2.②由①知,c n =n2n -2,不等式(n +1)c n ≥λ,可化为n n +12n -2≥λ.设f (n )=n n +12n -2,因为f (n +1)-f (n )=n +12-n2n -1,所以当n ≥3时,f (n +1)<f (n ).计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154.因为集合M 的元素个数为3,所以λ的取值范围是(4,5]. 11.已知数列{a n },a 1=1,a n =λa n -1+λ-2(n ≥2).(1)当λ为何值时,数列{a n }可以构成公差不为零的等差数列,并求其通项公式; (2)若λ=3,令b n =a n +12,求数列{b n }的前n 项和S n .解析 (1)a 2=λa 1+λ-2=2λ-2,a 3=λa 2+λ-2=2λ2-2λ+λ-2=2λ2-λ-2.∵a 1+a 3=2a 2,∴1+2λ2-λ-2=2(2λ-2), 得2λ2-5λ+3=0,解得λ=1或λ=32.当λ=32时,a 2=2×32-2=1,a 1=a 2,故λ=32不合题意舍去;当λ=1时,代入a n =λa n -1+λ-2可得a n -a n -1=-1. ∴数列{a n }构成首项为a 1=1,d =-1的等差数列. ∴a n =2-n .(2)当λ=3时,a n =3a n -1+1, 即a n +12=3(a n -1+12),即b n =3b n -1.∴数列{b n }构成首项为b 1=32,公比为3的等比数列.∴b n =32×3n -1=3n2.∴S n =321-3n1-3=34(3n-1). 12.已知等差数列{a n }的前n 项和为S n ,且S 4+a 2=2S 3,等比数列{b n }满足b 1=a 2,b 2=a 4.(1)求证:{b n }中的每一项均为{a n }中的项;(2)若a 1=12,数列{c n }满足:b n +1·c n =(-1)n(1+2log 2b n ),求数列{c n }的前n 项和T n .解析 (1)证明:设等差数列{a n }的公差为d ,由S 4+a 2=2S 3得4a 1+6d +a 1+d =6a 1+6d ,∴a 1=d .则a n =a 1+(n -1)d =na 1.∴b 1=2a 1,b 2=4a 1,等比数列{b n }的公比q =b 2b 1=2. 则b n =2a 1·2n -1=2na 1.∵2n∈N *,∴{b n }中的每一项均为{a n }中的项. (2)解析:∵a 1=12,∴b n =2n×12=2n -1.由b n +1·c n =(-1)n(1+2log 2b n ),得2n·c n =(-1)n[1+2(n -1)]=(-1)n(2n -1). ∴c n =-1n2n -12n=(2n -1)(-12)n.T n =(-12)+3(-12)2+5(-12)3+…+(2n -1)(-12)n ,-2T n =1+3(-12)+5(-12)2+…+(2n -1)(-12)n -1.两式相减,得-3T n =1+2(-12)+2(-12)2+…+2(-12)n -1-(2n -1)(-12)n=1-2+2·[1+(-12)+(-12)2+…+(-12)n -1]-(2n -1)(-12)n=-1+2·1--12n1--12-(2n -1)(-12)n=-1+43-43(-12)n -(2n -1)(-12)n=13-6n +13(-12)n ,∴T n =6n +19(-12)n -19. 13.已知数列{a n }中,a 1=2,a n +1-a n -2n -2=0,(n ∈N *). (1)求数列{a n }的通项公式; (2)设b n =1a n +1+1a n +2+1a n +3+…+1a 2n,若对任意的正整数n ,当m ∈[-1,1]时,不等式t 2-2mt +16>b n 恒成立,求实数t 的取值范围.解析 (1)由题意得a n -a n -1=2n (n ≥2), 累差叠加,得a n =n (n +1)(n ≥2). 又a 1=2,所以a n =n (n +1),(n ∈N *). (2)b n =1n +1n +2+1n +2n +3+…+12n2n +1=1n +1-12n +1=nn +12n +1=n2n 2+3n +1,b n =12n +1n+3,b n 的最大值为b 1=16, 所以t 2-2mt +16>16恒成立,m ∈[-1,1].构造g (m )=-2tm +t 2,即g (m )>0恒成立m ∈[-1,1]. 当t =0,不成立; 当t ≠0,g (m )是一次函数,⎩⎪⎨⎪⎧g -1>0,g1>0,解得t ∈(-∞,-2)∪(2,+∞).14.已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .答案 (1)a n =2n +1,S n =n (n +2) (2)T n =n4n +1解析 (1)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2. 由于a n =a 1+(n -1)d ,S n =n a 1+a n2,所以a n =2n +1,S n =n (n +2).(2)因为a n =2n +1,所以a 2n -1=4n (n +1). 因此b n =14nn +1=14(1n -1n +1). 故T n =b 1+b 2+…+b n=14(1-12+12-13+…+1n -1n +1) =14(1-1n +1)=n4n +1. 所以数列{b n }的前n 项和T n =n4n +1. 15.设数列{a n }是等差数列,其前n 项和S n ,若S 4≥10,S 5≤15,求a 4的最大值. 解析 方法一 a 5=S 5-S 4≤5,S 5=a 1+a 2+…+a 5=5a 3≤15,a 3≤3,则a 4=a 3+a 52≤4,a 4的最大值为4.方法二 ∵⎩⎪⎨⎪⎧S 4=4a 1+6d ≥10,S 5=5a 1+10d ≤15⇒⎩⎪⎨⎪⎧-2a 1-3d ≤-5,a 1+2d ≤3⇒d ≤1.又∵S 5=a 1+a 2+a 3+a 4+a 5=5a 3≤15,∴a 3≤3. ∴a 4≤4.故a 4的最大值为4.方法三 本题也可利用线性规划知识求解.由题意得⎩⎪⎨⎪⎧4a 1+6d ≥10,5a 1+10d ≤15⇒⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.a 4=a 1+3d .画出可行域⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3,求目标函数a 4=a 1+3d 的最大值,即当直线a 4=a 1+3d 过可行域内(1,1)点时截距最大,此时a 4=4.16.(2012·天津)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明:T n +12=-2a n +10b n (n ∈N *). 解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2.所以a n =3n -1,b n =2n,n ∈N *. (2)方法一 由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,① 2T n =22a n +23a n -1+…+2n a 2+2n -1a 1.②由②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=121-2n -11-2+2n +2-6n +2=10×2n-6n -10.而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n-6n -10,故T n +12=-2a n +10b n ,n ∈N *.方法二 (1)当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立; (2)假设当n =k 时等式成立,即T n +12=-2a k +10b k ,则当n =k +1时,有T k +1=a k +1b 1+a k b 2+a k -1b 3+…+a 1b k +1=a k +1b 1+q (a k b 1+a k -1b 2+…+a 1b k ) =a k +1b 1+qT k=a k +1b 1+q (-2a k +10b k -12) =2a k +1-4(a k +1-3)+10b k +1-24 =-2a k +1+10b k +1-12. 即T k +1+12=-2a k +1+10b k +1. 因此n =k +1时等式也成立.由(1)和(2),可知对任意n ∈N *,T n +12=-2a n +10b n 成立.17.(2012·陕西)设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 解析 (1)设数列{a n }的公比为q (q ≠0,q ≠1), 由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4. 即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0,得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2.(2)方法一 对任意k ∈N +,S k +2+S k +1-2S k =(S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k +1 =2a k +1+a k +1·(-2) =0,所以,对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 方法二 对任意k ∈N +,2S k =2a 11-q k1-q,S k +2+S k +1=a 11-q k +21-q +a 11-q k +11-q=a 12-q k +2-q k +11-q,2S k -(S k +2+S k +1)=2a 11-q k1-q-a 12-q k +2-q k +11-q=a 11-q[2(1-q k)-(2-qk +2-q k +1)]=a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.18.(2012·广东)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.解析 (1)∵a 1,a 2+5,a 3成等差数列, ∴2(a 2+5)=a 1+a 3.又∵2a 1=2S 1=a 2-22+1,2(a 1+a 2)=2S 2=a 3-23+1, ∴a 2=2a 1+3,a 3=6a 1+13.因此4a 1+16=7a 1+13,从而a 1=1.(2)由题设条件知,n ≥2时,2S n -1=a n -2n+1, 2S n =a n +1-2n +1+1.∴2a n =a n +1-a n -2n,于是a n +1=3a n +2n (n ≥2).而由(1)知,a 2=2a 1+3=5=3a 1+2, 因此对一切正整数n ,有a n +1=3a n +2n. 所以a n +1+2n +1=3(a n +2n).又∵a 1+21=3,∴{a n +2n}是以3为首项,3为公比的等比数列. 故a n +2n=3n,即a n =3n-2n. (3)∵a n =3n-2n=3·3n -1-2n =3n -1+2(3n -1-2n -1)≥3n -1,∴1a n ≤13n -1. ∴1a 1+1a 2+…+1a n ≤1+13+132+…+13n -1=1-13n1-13<32. 19.(2012·湖北)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 解析 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8.解得⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列的通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7.故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2[2+3n -7]2=32n 2-112n +10.当n =2时,满足此式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.20.(2012·江西)已知数列{a n }的前n 项和S n =kc n-k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n .解析 (1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kcn -1(n ≥2).由a 2=4,a 6=8a 3,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1).解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n -kcn -1=2n (n ≥2),于是a n =2n.(2)T n =∑i =1nia i =∑i =1ni ·2i,即T n =2+2·22+3·23+4·24+…+n ·2n ,T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1=(n -1)2n +1+2.21.(2012·安徽)数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n ∈N *). (1)证明:{x n }是递减数列的充分必要条件是c <0; (2)求c 的取值范围,使{x n }是递增数列.解析 (1)先证充分性,若c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,故{x n }是递减数列; 再证必要性,若{x n }是递减数列,则由x 2<x 1,可得c <0. (2)(ⅰ)假设{x n }是递增数列. 由x 1=0,得x 2=c ,x 3=-c 2+2c . 由x 1<x 2<x 3,得0<c <1. 由x n <x n +1=-x 2n +x n +c 知, 对任意n ≥1都有x n <c ,①注意到c -x n +1=x 2n -x n -c +c =(1-c -x n )(c -x n ),②由①式和②式可得1-c -x n >0,即x n <1-c . 由②式和x n ≥0还可得,对任意n ≥1都有c -x n +1≤(1-c )(c -x n ).③21 反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1.x n <1-c 和c -x n <(1-c )n -1两式相加,知 2c -1<(1-c )n -1对任意n ≥1成立.根据指数函数y =(1-c )n 的性质,得2c -1≤0,c ≤14.故0<c ≤14. (ⅱ)若0<c ≤14,要证数列{x n }为递增数列,即 x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立.下面用数学归纳法证明:当0<c ≤14时,x n <c 对任意n ≥1成立. (1)当n =1时,x 1=0<c ≤12,结论成立. (2)假设当n =k (k ∈N *)时结论成立,即x k <c .因为函数f (x )=-x 2+x +c 在区间(-∞,12]内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由(ⅰ)(ⅱ)知,使得数列{x n }单调递增的c 的范围是(0,14].。
2025年高考数学二轮复习模块1数列专题-特技大招1-特殊值秒解数列选填大招总结当数列的选择填空题中只有一个条件时,在不违背题意的条件下,我们可以直接利用特殊值,令其公差为0或者公比为1,即令数列为常数列,每一项设为x ,只需5秒搞定一道题.题目本身难度其实也不大,但用此方法更快.注意:一定检验是否符合题意,题目中如果出现公差不为0或者公比不为1,则慎用此法.另外,如果问题是求取值范围,则此方法失效.如果问题是求固定值,则可放心使用,详细用法,我们通过例题讲解.典型例题例1.设等差数列{}n a 前n 项和为n S ,若972S =,则249a a a ++=()A.12B.18C.24D.36解方法1:等差数列{}n a 前n 项和为n S ,()199597292a a S a +===,58a ∴=.故24915312324a a a a d a ++=+==,故选C.方法2:令每一项为x ,972S =,即972x =,8x =,249324a a a x ++==,故选C.例2.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =()A.24B.48C.66D.132解方法1:数列{}n a 为等差数列,设其公差为d ,912162a a =+,()11181162a d a d ∴+=++,1512a d ∴+=,即612a =.∴数列{}n a 的前11项和111211S a a a =+++()()()111210576611132a a a a a a a a =+++++++==.故选D.方法2:令每一项为x ,912162a a =+,162x x =+,12x =,1111132S x ==,故选D.已知数列{}n a 是等差数列,且1472a a a π++=,则()35tan a a +的值为()A.3B.C.D.33-方法1:数列{}n a 是等差数列,且1472a a a π++=,147432a a a a π∴++==,423a π∴=,()()3544tan tan 2tantan 33a a a ππ∴+====,故选C.方法2:令每一项为x ,14732a a a x π++==,23x π=,()()354tan tan 2tantan 33a a x ππ∴+====,故选C.例4.已知数列{}n a 是等差数列,n S 是数列{}n a 的前n 项和,269S a +=,则5S 的值为()A.10B.15C.30D.3解方法1:设等差数列{}n a 的公差为d ,269S a +=,1369a d ∴+=,化为:1323a d a +==,则()155355152a a S a +===.故选B.方法2:令每一项为x ,2629S a x x +=+=,3x =,515S =,故选B.例5.已知{}n a 为等差数列,且6154a a +=,若数列{}n a 的前m 项的和为40,则正整数m 的值为()A.10B.20C.30D.40解方法1:由题意可得,()()120206152010402a a S a a +==+=,所以20m =.故选B.方法2:令每一项为x ,61524a a x +==,2x =,240m S m ==,所以20m =.故选B.例6.已知数列{}n a 为正项等比数列,且13355724a a a a a a ++=,则24a a +=()A.1B.2C.3D.4方法1:数列{}n a 为正项等比数列,且13355724a a a a a a ++=,数列{}n a 为正项等比数列,262a a ∴+=.故选B.()222133557226626224a a a a a a a a a a a a ∴++=++=+=,方法2:令每一项为x ,则222133557224a a a a a a x x x ++=++=, 1.x =2622a a x +==,故选B.例7.已知等比数列{}n a 的各项圴为正数,且39a =,则313233log log log a a a +++3435log log a a +=()A.52B.53C.10D.15方法1:()553138333415312345333log log log log log log log log 910a a a a a a a a a a a ++++====,故选C.方法2:不妨令数列为常数项,每一项n 39a a ==,3132333435log log log log log 2a a a a a ++++=+222210+++=,故选C.例8.已知等比数列{}n a 的各项均为正数,且212227log log log a a a +++=7,则2635a a a a +=()A.16B.14C.8D.4解方法1:等比数列{}n a 的各项均为正数,且212227log log log 7a a a +++=,(212log a a ⋅)77a =,71272a a a ∴⋅=,7742a ∴=,42a ∴=,22635428a a a a a ∴+==,故选C.方法2:令每一项为x ,则2122272log log log 7log 7a a a x ++==,2x =,222635a a a a x x +=+=8,故选C.例9.已知{}n a 为等差数列,公差2d =,24618a a a ++=,则57a a +=()A.8B.12C.16D.20解方法1:根据题意知,4262a a a =+,57424a a a d +=+,24618a a a ++=,4318a ∴=,4 6.a ∴=∴57424264220a a a d +=+=⨯+⨯=.故选D.方法2:此题为反例,题干中明确说了公差2d =,所以不能用特殊值的方法,令公差为0,故不能用大招.例10.在等比数列{}n a 中,若3212a a a =+,则2538a a a 的值为()A.12或1-B.12-或1C.2或1-D.12解方法1:根据题意,设等比数列{}n a 的公比为q ,若3212a a a =+,则220q q --=,解可得2q =或1-,若2q =,则22851273811112a a q a a a q a q q ===,若1q =-,则2285127381111a a q a a a q a q q ===-,故2538a a a 的值为12或1-,故选A .方法2:此题为反例,若令每一项为x ,则3212a a a =+变为2x x x =+,0x =,等比数列中0n a ≠,故不能用大招.例11.在各项均为正数的等比数列{}n a 中,226598225a a a a ++=,则113a a 的最大值是()A.25B.254C.5D.25解方法1:等比数列{}n a 的各项都为正数,()2222265986688682225a a a a a a a a a a ∴++=++=+=,6a ∴85a +=,268113682524a a a a a a +⎛⎫∴==⎪⎝⎭,当且仅当6852a a ==时取等号,113a a ∴的最大值是254.故选B.方法2:此题为反例,题目问的是“最大值”,而不是定值,故不能用特殊值这种大招.例12.已知数列{}{},n n a b 满足n 2n b =log a ,n N +∈,其中{}n b 是等差数列,1020112a a =,则122020b b b +++=________.解方法1:数列{}{},n n a b 满足2log n n b a =,n N +∈,其中{}n b 是等差数列,2bn n a ∴=是等比数列,1020112a a =,122020212222020log log log b b b a a a ∴+++=+++()2122020log a a a =⨯⨯⨯=方法2:令数列{}n a 每一项为x ,则21020112a a x ==,n a x ==,21log 2n n b a ==,1220201202010102b b b +++=⨯=.自我检测1.已知等差数列{}n a 的前n 项和n S ,若23109a a a ++=,则9S =()A.27B.18C.9D.3【解析】方法1:设公差为d ,则13129a d +=,1543a d a ∴+==,95927S a ∴==,故选A.方法2:令每一项为x ,则23109a a a x x x ++=++=,3x =,927S =.故选A.2.在等差数列{}n a 中,18153120a a a ++=,则9102a a -的值为()A.20B.22C.24D.8-【解析】方法1:在等差数列{}n a 中,18153120a a a ++=,85120a ∴=,824a ∴=,910182724a a a d a -=+==.故选C.方法2:令每一项为x ,181535120a a a x ++==,24x =,故选C.3.等差数列{}n a 中,若81126a a =+,则19a a +等于()A.54C.10D.6【解析】方法1:设等差数列{}n a 的公差为d ,等差数列{}n a 中,81126a a =+,()1127610a d a d ∴+=++,解得146a d +=.191182612a a a a d ∴+=++=⨯=.故选B.方法2:令每一项为x ,81126a a =+,26x x =+,6x =,19212a a x +==,故选B.4.已知数列{}n a 是等差数列,且23451a a a a +++=,则16a a +=()A.14B.12D.2【解析】方法1:数列{}n a 是等差数列,且23451a a a a +++=,()23451621a a a a a a ∴+++=+=,解得16a a +12=.故选B.方法2:令每一项为x ,234541a a a a x +++==,14x =,16122a a x +==,故选B.5.已知数列{}n a 是等差数列,且31120a a +=,则11152a a -=()A.10B.9C.8D.7【解析】方法1:数列{}n a 是等差数列,且31120a a +=,则1121020a d a d +++=,即1610a d +=,则11152a a -=11122014610a d a d a d +--=+=,故选A.方法2:令每一项为x ,311220a a x +==,10x =,则11152210a a x x x -=-==,故选A.6.在等差数列{}n a 中,3456a a a ++=,则()17 a a +=A.2B.3C.4D.5【解析】方法1:由等差数列的性质,得345436a a a a ++==,解得42a =,17424a a a ∴+==,故选C.方法2:令每一项为x ,34536a a a x ++==,2x =,则1724a a x +==,故选C.7.等差数列{}n a 中,5101530a a a ++=,则22162a a -的值为()A.10-B.20-C.10D.20【解析】方法1:设等差数列{}n a 的公差为d ,5101530a a a ++=,10330a ∴=,1010a ∴=,221610212a a a d ∴-=+()10102610a d a -+=-=-,故选A.方法2:令每一项为x ,51015330a a a x ++==,10x =,则22162210a a x x x -=-=-=-,故选A.8.设n S 是等差数列{}n a 的前n 项和,若152a a +=,则5S =()A.5B.7C.9D.11【解析】方法1:因为数列{}n a 为等差数列,设其公差为d ,前n 项和为n S ,则()2121n n S n a -=-.所以535S a =,又152a a +=,所以31a =,所以5355S a ==,故选A.方法2:令每一项为x ,1522a a x +==,1x =,则555S x ==,故选A .9.已知数列{}n a 是等差数列,57918a a a ++=,则其前13项的和是()A.45B.56C.65D.78【解析】方法1:在等差数列{}n a 中,57918a a a ++=,5797318a a a a ∴++==,解得76a =,∴该数列的前13项之和:()1311371313136782S a a a =⨯+==⨯=,故选D.方法2:令每一项为x ,579318a a a x ++==,6x =,则131378S x ==,故选D.10.公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则5a =()A.4B.2C.1D.8【解析】方法1:公比为2的等比数列{}n a 的各项都是正数,且31116a a =,210112216a a ∴⋅⋅⋅=,且10a >,解得1412a =,4541212a ∴=⋅=.故选C .方法2:题目中提到公比为2,所以不能用大招.11.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为()A.12C.24D.32【解析】方法1:由题意知等比数列{}n a 中0n a >,则公比0q >,因为543264328a a a a +--=,所以432111164328a q a q a q a q ⋅+⋅-⋅-⋅=,即()432164328a q q q q +--=,所以()()2132218a q q q +-=,所以1(3a q q 282)21q +=-,所以()654476111224824969633232121a a a q a q q a q q q q q q+=⋅+⋅=⋅+=⋅=--,设x =21q,则0x >,22242121(1)1y x x x q q =-=-=-- ,所以2421q q -取最大值1时,7696a a +取到最小值24.故选C.方法2:此题为反例,题目问的是“最小值”,而不是定值,故不能用特殊值这种大招.12.已知正项等比数列{}n a ,满足21232527log log log log 4a a a a +++=,则(226log ) a a +的最小值为()A.1B.2D.4【解析】由对数的运算性质可得,()2123252721357log log log log log 4a a a a a a a a +++==,135716a a a a ∴=,由等比数列的性质可知,413574a a a a a =且40a >,42a ∴=,()226224log log log 22a a a ∴+= ,故(22log a )6a +的最小值为2,故选B.方法2:此题为反例,题目问的是“最小值”,而不是定值,故不能用特殊值这种大招.13.在等差数列{}n a 中,已知3810a a +=,则573a a +=__________.【解析】方法1:由等差数列的性质得:()()()()5755756563832222220a a a a a a a a a a a +=++=+=+=+=,故答案为:20.方法2:令每一项为x ,3810a a +=,5x =,57320a a +=,故答案为:20.14.等比数列{}n a 的各项均为正数,且1516a a =,则2122232425log log log log log a a a a a ++++=__________.【解析】方法1:等比数列{}n a 的各项均为正数,且1516a a =,2122232425log log log log log a a a a a ∴++++=()521252log log 410a a a ⨯⨯⨯==.故答案为:10.方法2:令每一项为x ,1516a a =,4x =,2122232425log log log log log 10a a a a a ++++=,故答案为:10.15.在前n 项和为n S 的等差数列{}n a 中,若()()1536932a a a a a ++++18=,则8__________.S =【解析】解:方法1:由等差数列的性质有366618a a +=,有363a a +=,则()()1883684122a a S a a +==+=.故答案为:12.方法2:令每一项为x ,()()()()153********a a a a a x x x x x ++++=++++=,1218x =,32x =,所以83812.2S =⨯=。
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高考数学总复习考点知识讲解与提升练习专题42 数列中的构造问题数列中的构造问题是历年高考的一个热点内容,主、客观题均可出现,一般通过构造新的数列求数列的通项公式.题型一形如a n+1=pa n+f(n)型命题点1a n+1=pa n+q(p≠0,1,q≠0)例1(1)数列{a n}满足a n=4a n-1+3(n≥2)且a1=0,则a2024等于()A.22023-1 B.42023-1 C.22023+1 D.42023+1答案B解析∵a n=4a n-1+3(n≥2),∴a n+1=4(a n-1+1)(n≥2),∴{a n+1}是以1为首项,4为公比的等比数列,则a n+1=4n-1.∴a n=4n-1-1,∴a2024=42023-1.(2)已知数列{a n}的首项a1=1,且1an+1=3an+2,则数列{a n}的通项公式为__________.答案a n=1 2·3n-1-1解析∵1a n+1=3an+2,等式两边同时加1整理得1an+1+1=3⎝⎛⎭⎪⎫1an+1,又∵a 1=1,∴1a 1+1=2,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +1是首项为2,公比为3的等比数列.∴1a n+1=2·3n -1,∴a n =12·3n -1-1.命题点2a n +1=pa n +qn +c (p ≠0,1,q ≠0)例2已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,求数列{a n }的通项公式. 解∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n .命题点3a n +1=pa n +q n (p ≠0,1,q ≠0,1)例3(1)已知数列{a n }中,a 1=3,a n +1=3a n +2·3n +1,n ∈N *.则数列{a n }的通项公式为() A .a n =(2n +1)·3n B .a n =(n -1)·2n C .a n =(2n -1)·3n D .a n =(n +1)·2n 答案C解析由a n +1=3a n +2·3n +1得a n +13n +1=a n 3n +2·3n +13n +1, ∴a n +13n +1-a n3n =2,即数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 3n 是首项为1,公差为2的等差数列,∴a n3n =2n -1,故a n =(2n -1)·3n .(2)在数列{a n }中,a 1=1,且满足a n +1=6a n +3n ,则a n =________. 答案6n3-3n -1解析将已知a n +1=6a n +3n 的两边同乘13n +1,得a n +13n +1=2·a n 3n +13,令b n =a n3n ,则b n +1=2b n +13,利用命题点1的方法知b n =2n 3-13,则a n =6n3-3n -1.思维升华跟踪训练1(1)在数列{a n }中,a 1=1,a n +1=2a n +2n .则数列{a n }的通项公式a n 等于() A .n ·2n -1 B .n ·2n C .(n -1)·2n D .(n +1)·2n 答案A解析由a n +1=2a n +2n 得a n +12n=a n 2n -1+1,设b n =a n 2n -1,则b n +1=b n +1,又b 1=1,∴{b n }是首项为1,公差为1的等差数列. ∴b n =n , ∴a n =n ·2n -1.(2)(2023·黄山模拟)已知数列{a n }满足a 1=1,(2+a n )·(1-a n +1)=2,设⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和为S n,则a2023(S2023+2023)的值为()A.22023-2 B.22023-1 C.2 D.1 答案C解析(2+a n)(1-a n+1)=2,则a n+1=a na n +2,即1an+1=2an+1,得1an+1+1=2⎝⎛⎭⎪⎫1an+1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1an+1是以2为首项,2为公比的等比数列,1an+1=2n,1an=2n-1,a n=12n-1,S2023+2023=2+22+…+22023=22024-2,∴a2023(S2023+2023)=2.(3)已知数列{a n}满足a n+1=2a n+n,a1=2,则a n=________.答案2n+1-n-1解析令a n+1+x(n+1)+y=2(a n+xn+y),即a n+1=2a n+xn+y-x,与原等式比较得,x=y=1,所以an+1+(n+1)+1an+n+1=2,所以数列{a n+n+1}是以a1+1+1=4为首项,2为公比的等比数列,所以a n+n+1=4×2n-1,即a n=2n+1-n-1. 题型二相邻项的差为特殊数列(形如a n+1=pa n+qa n-1)例4(1)已知数列{a n}满足:a1=a2=2,a n=3a n-1+4a n-2(n≥3),则a9+a10等于() A.47 B.48 C.49 D.410答案C解析由题意得a1+a2=4,由a n=3a n-1+4a n-2(n≥3),得a n +a n -1=4(a n -1+a n -2), 即a n +a n -1a n -1+a n -2=4(n ≥3),所以数列{a n +a n +1}是首项为4,公比为4的等比数列,所以a 9+a 10=49.(2)已知数列{a n }满足a 1=1,a 2=2,且a n +1=2a n +3a n -1(n ≥2,n ∈N *).则数列{a n }的通项公式为a n =________. 答案3n -(-1)n4解析方法一因为a n +1=2a n +3a n -1(n ≥2,n ∈N *), 设b n =a n +1+a n ,所以b n b n -1=a n +1+a n a n +a n -1=3(a n +a n -1)a n +a n -1=3,又因为b 1=a 2+a 1=3,所以{b n }是以首项为3,公比为3的等比数列. 所以b n =a n +1+a n =3×3n -1=3n , 从而a n +13n +1+13·a n 3n =13, 不妨令c n =a n 3n ,即c n +1+13c n =13,故c n +1-14=-13⎝ ⎛⎭⎪⎫c n -14,即c n +1-14c n -14=-13,又因为c 1-14=a 13-14=112,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c n -14是首项为112,公比为-13的等比数列,故c n -14=112×⎝ ⎛⎭⎪⎫-13n -1=a n 3n -14,从而a n =3n -(-1)n4.方法二因为方程x 2=2x +3的两根为-1,3, 可设a n =c 1·(-1)n -1+c 2·3n -1, 由a 1=1,a 2=2, 解得c 1=14,c 2=34,所以a n =3n -(-1)n4.思维升华可以化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两个根,若1是方程的根,则直接构造数列{a n -a n -1},若1不是方程的根,则需要构造两个数列,采取消元的方法求数列{a n }.跟踪训练2若x =1是函数f (x )=a n +1x 4-a n x 3-a n +2x +1(n ∈N *)的极值点,数列{a n }满足a 1=1,a 2=3,则数列{a n }的通项公式a n =________. 答案3n -1解析f ′(x )=4a n +1x 3-3a n x 2-a n +2,∴f ′(1)=4a n +1-3a n -a n +2=0,即a n +2-a n +1=3(a n +1-a n ),∴数列{a n +1-a n }是首项为2,公比为3的等比数列, ∴a n +1-a n =2×3n -1,则a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1=2×3n -2+…+2×30+1=3n -1.题型三倒数为特殊数列⎝ ⎛⎭⎪⎫形如a n +1=pa n ra n +s 型 例5(1)已知数列{a n }满足a 1=1,a n +1=a n 4a n +1(n ∈N *),则满足a n >137的n 的最大取值为()A .7B .8C .9D .10 答案C 解析因为a n +1=a n 4a n +1,所以1a n +1=4+1a n ,所以1a n +1-1a n =4,又1a 1=1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以1为首项,4为公差的等差数列.所以1a n =1+4(n -1)=4n -3,所以a n =14n -3,由a n >137,即14n -3>137,即0<4n -3<37,解得34<n <10,因为n 为正整数,所以n 的最大取值为9.(2)(多选)数列{a n }满足a n +1=a n 1+2a n(n ∈N *),a 1=1,则下列结论正确的是()A.2a 10=1a 3+1a 17B.1{2}na 是等比数列C .(2n -1)a n =1D .3a 5a 17=a 49 答案ABC解析由a n +1=a n1+2a n ,可得1a n +1=1+2a na n =1a n +2,所以1a n +1-1a n =2,且1a 1=1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,且该数列的首项为1,公差为2,所以1a n=1+2(n -1)=2n -1,则(2n -1)a n =1,其中n ∈N *,故C 对;1111112=22n n nna a a a ++-=22=4,所以数列1{2}na 是等比数列,故B 对;由等差中项的性质可得2a 10=1a 3+1a 17,故A 对;由上可知a n =12n -1,则3a 5a 17=3×12×5-1×12×17-1=199,a 49=12×49-1=197,所以3a 5a 17≠a 49,故D 错. 思维升华两边同时取倒数转化为1a n +1=s p ·1a n +r p的形式,化归为b n +1=pb n +q 型,求出1a n的表达式,再求a n .跟踪训练3已知函数f (x )=x 3x +1,数列{a n }满足a 1=1,a n +1=f (a n )(n ∈N *),则数列{a n }的通项公式为____________. 答案a n =13n -2(n ∈N *) 解析由已知得,a n +1=a n 3a n +1,∴1a n +1=1a n+3,即1a n +1-1a n=3,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是首项为1a 1=1,公差为d =3的等差数列,∴1a n=1+(n -1)×3=3n -2.故a n =13n -2(n ∈N *).课时精练1.已知数列{a n }满足a 1=2,a n +1=2a n +1,则a 4的值为() A .15 B .23 C .32 D .42 答案B解析因为a n +1=2a n +1,所以a n+1+1=2(a n+1),所以{a n+1}是以3为首项,2为公比的等比数列,所以a n+1=3·2n-1,所以a n=3·2n-1-1,a4=23.2.在数列{a n}中,a1=5,且满足an+12n-5-2=an2n-7,则数列{a n}的通项公式为()A.2n-3B.2n-7C.(2n-3)(2n-7) D.2n-5 答案C解析因为a n+12n-5-2=an2n-7,所以an+12n-5-an2n-7=2,又a12-7=-1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫an2n-7是以-1为首项,公差为2的等差数列,所以an2n-7=-1+2(n-1)=2n-3,所以a n=(2n-3)(2n-7).3.已知数列{a n}满足:a1=1,且a n+1-2a n=n-1,其中n∈N*,则数列{a n}的通项公式为()A.a n=2n-n B.a n=2n+nC.a n=3n-1D.a n=3n+1答案A解析由题设,a n+1+(n+1)=2(a n+n),而a1+1=2,∴{a n+n}是首项、公比均为2的等比数列,故a n+n=2n,即a n =2n -n .4.已知数列{a n }满足a 2=14,a n -a n +1=3a n a n +1,则数列的通项公式a n 等于()A.13n -2B.13n +2C .3n -2D .3n +2 答案A解析∵a n -a n +1=3a n a n +1,a 2=14,∴a 1-a 2=3a 1a 2, 即a 1-14=34a 1,解得a 1=1. 由题意知a n ≠0, 由a n -a n +1=3a n a n +1得1a n +1-1a n=3,又1a 1=1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以1为首项,3为公差的等差数列,∴1a n=1+3(n -1)=3n -2,则a n =13n -2.5.在数列{a n }中,若a 1=3,a n +1=a 2n ,则a n 等于() A .2n -1 B.3n -1 C .132n - D .123n -答案D解析由a 1=3,a n +1=a 2n 知a n >0,对a n +1=a 2n 两边取以3为底的对数得,log 3a n +1=2log 3a n ,则数列{log 3a n }是以log 3a 1=1为首项,2为公比的等比数列, 则log 3a n =1·2n -1=2n -1,即a n =123n -.6.设数列{a n }满足a 1=1,a n =-a n -1+2n (n ≥2),则数列的通项公式a n 等于() A.13·2n +13 B.13·2n+13·(-1)n C.2n +13+13 D.2n +13+13·(-1)n 答案D解析∵a n -1+a n =2n ,两边同时除以2n得,a n 2n +12·a n -12n -1=1.令c n =a n2n ,则c n =-12c n -1+1.两边同时加上-23得c n -23=-12·⎝⎛⎭⎪⎫c n -1-23.∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c n-23是以c 1-23为首项,-12为公比的等比数列,∴c n -23=⎝ ⎛⎭⎪⎫c 1-23·⎝ ⎛⎭⎪⎫-12n -1=13·⎝ ⎛⎭⎪⎫-12n ,∴c n =23+13·⎝ ⎛⎭⎪⎫-12n,∴a n =2n·c n =2n +13+13·(-1)n .7.(多选)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是()A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等差数列 B .{a n }的通项公式为a n =12n -1-3C .{a n }为递减数列 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案CD 解析因为a n +1=a n 2+3a n,所以1a n +1=2+3a na n=2a n+3,所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 且1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,即1a n+3=4×2n -1,所以1a n=2n +1-3,可得a n =12n +1-3, 故选项A ,B 错误; 因为1a n=2n +1-3单调递增,所以a n =12n +1-3单调递减, 即{a n }为递减数列,故选项C 正确;⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=(22+23+…+2n +1)-3n=22×1-2n1-2-3n =2n +2-3n -4,故选项D 正确.8.将一些数排成如图所示的倒三角形,其中第一行各数依次为1,2,3,…,2023,从第二行起,每一个数都等于它“肩上”的两个数之和,最后一行只有一个数M ,则M 等于()A .2023×22020B .2024×22021C .2023×22021D .2024×22022 答案B解析记第n 行的第一个数为a n ,则a 1=1,a 2=3=2a 1+1,a 3=8=2a 2+2,a 4=20=2a 3+4,…,a n =2a n -1+2n -2,∴a n 2n -2=a n -12n -3+1,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -2是以a 12-1=2为首项,1为公差的等差数列.∴a n 2n -2=2+(n -1)×1=n +1,∴a n =(n +1)×2n -2.又每行比上一行的数字少1个, ∴最后一行为第2023行, ∴M =a 2023=2024×22021.9.已知数列{a n }满足a 1=32,a n +1=3a n a n +3,若c n =3n a n ,则c n =____________.答案(n +1)3n -1解析因为a 1=32,a n +1=3a na n +3,所以1a n +1=a n +33a n =13+1a n, 即1a n +1-1a n =13, 所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是首项为1a 1=23,公差为13的等差数列,所以1a n =23+13(n -1)=n +13,则c n =3na n=(n +1)3n -1.10.已知数列{a n }满足a n +1=3a n -2a n -1(n ≥2,n ∈N *),且a 1=0,a 6=124,则a 2=________. 答案4解析由a n +1=3a n -2a n -1(n ≥2,n ∈N *)可得a n +1-a n =2(a n -a n -1), 若a n -a n -1=0,则a 6=a 5=…=a 1,与题中条件矛盾,故a n -a n -1≠0, 所以a n +1-a na n -a n -1=2,即数列{a n +1-a n }是以a 2-a 1为首项,2为公比的等比数列,所以a n +1-a n =a 2·2n -1,所以a 6-a 1=a 2-a 1+a 3-a 2+a 4-a 3+a 5-a 4+a 6-a 5=a 2·20+a 2·21+a 2·22+a 2·23+a 2·24=31a 2=124,所以a 2=4.11.在数列{a n }中,a 1=1,且满足a n +1=3a n +2n ,则a n =________. 答案52·3n -1-n -12解析∵a n +1=3a n +2n ①,∴a n =3a n -1+2(n -1)(n ≥2),两式相减得,a n +1-a n =3(a n -a n -1)+2,令b n =a n +1-a n ,则b n =3b n -1+2(n ≥2),利用求a n +1=pa n +q 的方法知,b n =5·3n -1-1,即a n +1-a n =5·3n -1-1②,再利用累加法知,a n =52·3n-1-n-12⎝⎛⎭⎪⎫或联立①②解出a n=52·3n-1-n-12.12.英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列{x n}满足x n+1=x n-f(xn)f′(xn),则称数列{x n}为牛顿数列.如果函数f(x)=2x2-8,数列{x n}为牛顿数列,设a n=ln xn+2xn-2,且a1=1,x n>2.数列{a n}的前n项和为S n,则S n=________. 答案2n-1解析∵f(x)=2x2-8,∴f′(x)=4x,又∵x n+1=x n-f(xn)f′(xn)=x n-2x2n-84x n=x2n+42x n,∴x n+1+2=(x n+2)22x n,x n+1-2=(x n-2)22x n,∴xn+1+2xn+1-2=⎝⎛⎭⎪⎫x n+2xn-22,又x n>2,∴ln xn+1+2xn+1-2=ln⎝⎛⎭⎪⎫x n+2xn-22=2lnxn+2xn-2,又a n=ln xn+2xn-2,且a1=1,∴a n+1=2a n,∴数列{a n}是首项为1,公比为2的等比数列,∴{a n}的前n项和S n=1×(1-2n)1-2=2n-1.。
高考数学数列多选题复习训练题(含答案解析)1.(2022·江苏江苏·一模)记n S 为等差数列{}n a 的前n 项和,则( ) A .6422S S S =−B .()6423S S S =−C .2n S ,42n n S S −,64n n S S −成等差数列D .22S ,44S ,66S 成等差数列【答案】BCD 【解析】 【分析】利用等差数列求和公式分别判断. 【详解】 由已知得()112n n n dS a n −=+, A 选项,61615S a d =+,4146S a d =+,212S a d =+,所以42162611S S a d S −=+≠,A 选项错误;B 选项,()42163615S S a d S −=+=,B 选项正确;C 选项,()()221122122n S a n n n d a n n n d =+−=+−,()414241n S a n n n d =+−,()616361n S a n n n d =+−,()242126n n S S a n n n d −=+−,()2641210n n S S a n n n d −=+−,则()()()22264114241222262n n n n S S S a n n n d a n n n d S S ⎡⎤+−=+−=+−=−⎣⎦,C 选项正确;D 选项,2112222S a d d a +==+,411463442S a d a d +==+,6116155662S a d a d +==+,则6241232264S S Sa d +=+=⨯,D 选项正确; 故选:BCD.2.(2022·江苏南通·模拟预测)若数列{}n a 是等比数列,则( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列B .数列{}n ka 是等比数列C .数列{}1n n a a ++是等比数列D .数列{}2n a 是等比数列【答案】AD 【解析】 【分析】设等比数列{}n a 的公比为()0q q ≠,利用等比数列的定义结合特例法可判断各选项的正误. 【详解】设等比数列{}n a 的公比为()0q q ≠,11111n n n na a a q a ++==,则1n a ⎧⎫⎨⎬⎩⎭是以1q 为公比的等比数列,A 对; 0k =时,0n ka =,则{}n ka 不是等比数列,B 错;()11n n n n n a a a a q a q ++=+=+,1q =−时,10n n a a ++=,此时{}1n n a a ++不是等比数列,C 错;2212n na q a +=,所以,{}2n a 是公比为2q 的等比数列,D 对. 故选:AD .3.(2022·福建宁德·模拟预测)数列{n a }中,设12n n T a a a =⋅…….若n T 存在最大值,则n a 可以是( ) A .62n n a −= B .()1nn a =− C .29n a n =− D .121n n a n +=− 【答案】BD 【解析】 【分析】根据数列的单调性即可判断. 【详解】对于A ,()()115436212322n n n n n T a a aa −−−−+−=== ,当n 趋于无穷大时,n T 也趋于无穷大, 故n T 不存在最大值; 对于B ,()()()()()()1123211111n n nn T +=−−−−=− ,当()12n n + 为偶数时,1n T = ,当()12n n +为奇数时,1n T =− , 故n T 的最大值为1;对于C ,()()1121128n n n n n T T a a a a T n ++−=−=− ,当5n ≥ 时,10,n n n T T T +>> ,∴5n ≥ 时n T 是递增的数列,不存在最大值; 对于D ,1232342,1,,135a a a ===== 即当3n ≥ 时,0121n n <+<− ,1n a < , 即3n ≥ 时,()1110n n n n T T T a ++−=−< ,所以n T 是递减的数列, 最大值为122T T == ; 故选:BD.4.(2022·福建·模拟预测)已知等差数列{}n a 的前n 项和为2212n a n n S +=,公差为d ,则( )A .11a =B .1d =C .()213521n n S a n −=+++⋅⋅⋅+−D .2222n nn S a a =+ 【答案】ABC 【解析】 【分析】运用代入法,结合等差数列的通项公式和前n 项和公式逐一判断即可. 【详解】取1n =,则21112a a +=,解得11a =,即A 正确;由A 可知,22n n nS +=,则212321d S a =−=−=,即B 正确;于是有1(1)1n a n n =+−⋅=,因为22n n S a n −=,且()()212113212n n n n +−+++−==,即C 正确; 因为()222222222nn n n nS n n a a +==+=+,即D 错误.故选:ABC5.(2021·山东·模拟预测)设等比数列{an }的公比为q ,其前n 项和为Sn ,前n 项积为Tn ,并满足条件a 1>1,a 2019a 2020>1,2019202011a a −−<0,下列结论正确的是( )A .S 2019<S 2020B .a 2019a 2021﹣1<0C .T 2020是数列{Tn }中的最大值D .数列{Tn }无最大值 【答案】AB 【解析】 【分析】根据题意,由等比数列的通项公式可得(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,分析可得q >0,可得数列{an }各项均为正值,又由2019202011a a −−<0可得2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,由等比数列的性质分析可得q 的范围,据此分析4个选项,综合即可得答案. 【详解】根据题意,等比数列{an }的公比为q ,若a 2019a 2020>1,则(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,又由a 1>1,必有q >0,则数列{an }各项均为正值, 又由2019202011a a −−<0,即(a 2019﹣1)(a 2020﹣1)<0,则有2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,又由a 1>1,必有0<q <1,则有2019202011a a >⎧⎨<⎩,对于A ,有S 2020﹣S 2019=a 2020>0,即S 2019<S 2020,则A 正确; 对于B ,有a 2020<1,则a 2019a 2021=(a 2020)2<1,则B 正确;对于C ,2019202011a a >⎧⎨<⎩,则T 2019是数列{Tn }中的最大值,C 错误,同理D 错误;故选:AB6.(2022·海南·模拟预测)在数列{}n a 中,11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,设n S 为{}n a 的前n 项和,则( )A .121n na =− B .1122n n a =+ C .数列{}n a 为递减数列 D .378S >【答案】ACD 【解析】 【分析】由已知结合等比数列通项公式可求11na +,进而可求n a ,然后结合单调性定义及数列的求和分别检验各选项即可判断和选择. 【详解】因为11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,所以111222n nna −+=⋅=所以121n n a =−,故A 正确,B 错误; 因为()21,1xy x =−≥是单调增函数,故()1,121x y x =≥−是单调减函数, 故数列{}n a 是减数列,故C 正确; 31231171378S a a a =++=++>,故D 正确.故选:ACD .7.(2022·江苏连云港·模拟预测)“外观数列”是一类有趣的数列,该数列由正整数构成,后一项是前一项的“外观描述”.例如:取第一项为1,将其外观描述为“1个1”,则第二项为11;将11描述为“2个1”,则第三项为21;将21描述为“1个2,1个1”,则第四项为1211;将1211描述为“1个1,1个2,2个1”,则第五项为111221,…,这样每次从左到右将连续的相同数字合并起来描述,给定首项即可依次推出数列后面的项.对于外观数列{}n a ,下列说法正确的是( ) A .若13a =,则5131213a =B .若122a =,则10022a =C .若16a =,则100a 的最后一个数字为6D .若1123a =,则100a 中没有数字4【答案】BCD 【解析】 【分析】根据题干中的递推规律,依次分析各项的正误. 【详解】对于A 项,13a =,即“1个3”,213a =,即“1个1,1个3”,31113a =,即“3个1,1个3”,故43113a =,故A 项错;对于B 项,122a =,即“2个2”, 222a =,即“2个2”,以此类推,该数列的各项均为22,则10022a =,故B 项正确;对于C 项,16a =,即“1个6”, 216a =,即“1个1,1个6”, 31116a =,即“3个1,1个6”,故43116a =,即“1个3,2个1,1个6”,以此类推可知,()*n a n ∈N 的最后一个数字均为6,故C 项正确;对于D 项,1123a =,则2111213a =,331121113a =,41321123113a =,L ,若数列{}n a 中,()5,N k a k k *≥∈中为第一次出现数字4,则1k a −中必出现了4个连续的相同数字,如11111k a −=,则在2k a −的描述中必包含“1个1,1个1”, 即211k a −=,显然2k a −的描述是不合乎要求的, 若12222k a −=或13333k a −=,同理可知均不合乎题意,故()N n a n *∈不包含数字4,故D 项正确. 故选:BCD.8.(2022·广东茂名·模拟预测)一组数据1x ,2x ,…,10x 是公差为1−的等差数列,若去掉首末两项1x ,10x 后,则( ) A .平均数不变 B .中位数没变C .极差没变D .方差变小【答案】ABD 【解析】 【分析】根据平均数的概念结合等差数列的性质判断A ,由中位数的概念可判断B ,由方差及等差数列的通项公式计算即可判断C ,根据极差及等差数列的通项公式可判断D . 【详解】由题意可知,对于选项A , 原数据的平均数为1210511()5(1010x x x x x =+++=⨯+ 6561)()2x x x =+,去掉1x ,10x 后的平均数为2395656111()4()()882x x x x x x x x x '=+++=⨯+=+=,即平均数不变,故选项A 正确;对于选项B ,原数据的中位数为561()2x x +,去掉1x ,10x 后的中位数仍为561()2x x +,即中位数没变,故选项B 正确;对于选项C ,原数据的极差为11099x x d −=−=, 去掉1x ,10x 后的极差为2977x x d −=−=, 即极差变小,故选项C 错误;对于选项D ,设公差为d ,则原数据的方差为222215625610561111()()()10222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2221975()()()10222[d d d =−+−+−222311()()()222d d d +−+−++2222357933()()()()2224]2d d d d +++=, 去掉1x ,10x 后的方差为22222563569561111()()()8222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤'=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2222222217531135721()()()()()()()()8222222224[]d d d d d d d d =−+−+−+−++++=, 即方差变小,故选项D 正确. 故选:ABD.9.(2022·山东济宁·二模)已知一组数据1x ,2x ,…,11x 是公差不为0的等差数列,若去掉数据6x ,则( ) A .中位数不变 B .平均数变小 C .方差变大 D .方差变小【答案】AC 【解析】 【分析】由中位数的概念可判断A ,根据平均数的概念结合等差数列的性质判断B ,由方差计算公式即可判断CD. 【详解】对于选项A ,原数据的中位数为6x ,去掉6x 后的中位数为5761()2x x x +=,即中位数没变,故选项A 正确;对于选项B ,原数据的平均数为()111121161111()11112x x x x x x x +=+++=⨯=,去掉6x 后的平均数为1111257811610()11()10102x x x x x x x x x x x +'=+++++++=⨯==即平均数不变,故选项B 错误:对于选项C ,则原数据的方差为()()22221626116]1[()11s x x x x x x =−+−++−,去掉6x 后的方差为()()()()()22222216265676116110s x x x x x x x x x x ⎡⎤'=−+−++−+−++−⎣⎦,故2s 2s '<,即方差变大,故选项C 正确,选项D 错误.10.(2022·山东临沂·模拟预测)设数列{}n a 的前n 项和为n S ,已知233=+nn S .数列{}n b 满足3log n n n a b a =,则( )A .13,1,3, 1.n n n a n −=⎧=⎨>⎩B .113n n n b −−=C .数列{}n b 的前n 项和113211243n n n T −+=−⋅ D .数列{}n b 的前n 项和113211243n n n T −−=+⋅ 【答案】AC 【解析】 【分析】根据n S 与n a 的关系,即可求出n a ,利用错位相减法即可求出数列{}n b 的前n 项和n T ,据此,逐个选项判断即可得出答案. 【详解】对于A ,因为233=+nn S ,所以,当1n =时,11226S a ==,得13a =,当2n ≥时,1113332n n n n n n a S S −−−−=−==,经检验,当1n =时,不符合13−=n n a ,所以,13,1,3, 1.n n n a n −=⎧=⎨>⎩故A 正确;对于B ,因为3log n n n a b a =,得311,1log 31,23n n nn n a b n a n −⎧=⎪⎪==⎨−⎪≥⎪⎩,故B 错误; 对于C ,数列{}n b 的前n 项和1232311123133333n n n n T b b b b −−=++++=+++++①, 234111231393333n nn T −=+++++②,所以,−①②得, 23122111111()3933333n n n n T −−=++⨯+++−11515311193293929333n n n n n n −−−⎛⎫=+−=+⨯−− ⎪⎝⎭1823n=−⋅,得 113211243n n n T −+=−⋅,故C 正确,D 错误; 故选:AC11.(2023·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =−,则下列说法正确的是( ). A .{}n a 是递增数列 B .{}n a 是递减数列C .122n a n =-D .数列{}n S 的最大项为5S 和6S【答案】BCD 【解析】 【分析】根据211n S n n =−,利用二次函数的性质判断D ,利用数列通项和前n 项和关系求得通项公式判断ABC. 【详解】解:因为22111211124n S n n n ⎛⎫=−=−−+ ⎪⎝⎭,所以数列{}n S 的最大项为5S 和6S ,故D 正确;当1n =时,110a =,当2n ≥时,由211n S n n =−,得()()211111n S n n −=−−−,两式相减得:212n a n =−+, 又110a =,适合上式, 所以212n a n =−+,故C 正确;因为120n n a a −−=−<,所以{}n a 是递减数列,故A 错误,B 正确; 故选:BCD12.(2022·湖南怀化·一模)设{}()*n a n N ∈是各项为正数的等比数列,q 是其公比,nK是其前n 项的积,且56678,K K K K K <=>,则下列选项中成立的是( ) A .01q << B .71a =C .95K K >D .6K 与7K 均为n K 的最大值【答案】ABD【分析】结合等比数列的定义利用数列的单调性判断各选项. 【详解】由已知数列各项均为正,因此乘积n K 也为正,公比0q >, 又56678,K K K K K <=>, 6651K a K =>,7761Ka K ==,B 正确; 8871K a K =<,761aq a =<,即01q <<,A 正确; 由71a =得681a a =,591a a =,所以49K K =,而51a >,54K K >,因此95K K <,C 错; 由上知126781a a a a a <<<<=<<,{}n K 先增后减,6K 与7K 均为n K 的最大值,D 正确.故选:ABD .13.(2022·福建龙岩·模拟预测)已知等比数列{}n a 的前n 项和为n S ,公比为q ,则下列命题正确的是( )A .若11a =,2q =,则663S =B .若1q >,则数列{}n a 是单调递增数列C .若10a >,0q >,lg n n b a =,则数列{} n b 是公差为lg q 的等差数列D .若10a >,0q >,且()21105612a a a a +=+,则110a a +的最小值为4 【答案】AC 【解析】 【分析】A :利用等比数列前n 项和公式即可计算;B :根据函数单调性即可判断;C :根据等差数列定义即可判断;D :利用基本不等式即可判断. 【详解】对于A ,66612216312S −==−=−,故A 正确;对于B ,∵11n n a a q −=⋅,故{}n a 的单调性由q 和1a 共同决定,q >1无法判断数列为递增数列,如10a <,此时数列为递减数列,故B 错误;对于C ,∵111lg lg lg lg n n n n n na b b a a q a +++−=−==为常数,∴数列{}n b 是公差为lg q 的等差数列,故C 正确;对于D ,若10a >,0q >,则0n a >,56110a a a a =, ∵()21105612a a a a +=+, ∴()2211011011012122a a a a a a +⎛⎫+=++ ⎪⎝⎭…,即()()22110110124a a a a +++…,即()211016a a +≤,即11004a a <+…,即当110a a =时,110a a +的最大值为4,故D 错误. 故选:AC .14.(2022·江苏泰州·模拟预测)数列{}n a 满足1111,,2n n n a a a n N *+==∈,n S 为数列{}n a 的前n 项和,则( ) A .418a =B .1n n a a +≤C .3n S <D .132n n S S −<【答案】BC 【解析】 【分析】根据题意求得212112n n n n n n a a a a a a ++++==,得到{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,由414a =,可判定A 错误;求得n 为奇数和n 为偶数时,数列的通项公式,可判定B 正确;根据n 为奇数和偶数,求得n S ,可判定C 正确;结合2n =时,可判定D 错误. 【详解】由题意,数列{}n a 满足11,2n n na a n N *+=∈,可得212112n n n n n na a a a a a ++++==, 因为11a =,可得2112a a =,所以212a =, 所以{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,对于A 中,可得421124a a =⨯=,所以A 错误; 对于B 中,若n 为奇数时,可数列的通项公式为1122111()()22n n n a −−=⨯=; 若n 为偶数时,可数列的通项公式为122111()()222n n n a +=⨯=,当n 为奇数时,121()2n n a −=,2211()2n n a ++=,此时1n n a a +<,当n 为偶数时,121()2n n a +=,1211()2n n a ++=,此时1n n a a +=,综上可得:1n n a a +≤,所以B 正确; 对于C 中,数列{}n a 为1111111,,,,,,,224488,可得{}1n n a a ++构成首项为32,公比为12的等比数列,当n 为偶数时,可得2231[1()]1223[1()]31212nn n S −==⋅−<−, 当n 为奇数时,可得121211[1()]12112[1()]31212n n n S −−⋅−=+=+⋅−<−,所以C 正确;对于D 中,当2n =时,可得213122S =+=,13322S =,此时132n n S S −=,所以D 错误.故选:BC.15.(2022·重庆·二模)设数列{}n a 的前n 项和为n S ,已知12a =,且()1210n n n a na ++−=()n N *∈,则下列结论正确的是( ) A .{}n na 是等比数列 B .n a n ⎧⎫⎨⎬⎩⎭是等比数列C .2n n a n =⋅D .()122nn S n =−⋅+【答案】BC 【解析】 【分析】由条件变形,先求n a n ⎧⎫⎨⎬⎩⎭的通项公式,再判断选项【详解】 由题意得121n n a a n n +=⋅+,故n a n ⎧⎫⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1222n n na n−=⋅=,则2n n a n =⋅.故B ,C 正确,A 错误 122222n n S n =+⋅++⋅, 23122222n n S n +=+⋅++⋅,两式相减得:()1212(222)122n n n n S n n ++=⋅−+++=−⋅+,故D 错误.故选:BC16.(2022·广东茂名·模拟预测)已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( ) A .数列{}1n a +是等比数列 B .数列{}1n a +是等差数列C .数列{}n a 的通项公式为21n n a =−D .1n T > 【答案】AC 【解析】 【分析】由1121n n n n a S S a ++=−=+可得,1121n n a a ++=+,可判断A,B 的正误,再求出n a ,可判断C 的正误,利用裂项相消法求n T ,可判断D 的正误. 【详解】因为121n n n S S a +=++,所以1121n n n n a S S a ++=−=+,1+122n n a a +=+, 即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是首项为2,公比为2的等比数列,故A 正确,B 错误;所以12nn a +=,即21n n a =−,故C 正确;因为()()111212122211121n n n n n n n n a a +++−−−−==−⋅,所以12231121212121111111111212121n n n n T ++−+−+=−−−−+−−−=−−<…, 故D 错误; 故选:AC.17.(2022·重庆·二模)设等差数列{}n a 前n 项和为n S ,公差0d >,若920S S =,则下列结论中正确的有( ) A .150a = B .当15n =时,n S 取得最小值 C .10220a a +> D .当0n S >时,n 的最小值为29【答案】ABC 【解析】 【分析】根据等差数列的前n 项和公式,结合该数列的单调性逐一判断即可. 【详解】 解:根据题意,由9201111511998202019140022S S a d a d a d a =⇒+⨯⨯=+⨯⨯⇒+=⇒=.故A 正确;因为0d >,故当15n <时,0n a <,150a =,当15n >时,0n a >,当15n =或14n =时,n S 取得最小值,故B 正确;由于()102216150a a a a d d +=2=2+=2>,故C 正确;因为0d >,n *∈N ,所以由1111(1)(14)(1)(29)0222n S na n n d n d n n d dn n =+−=−+−=−>,可得:29,n >n *∈N ,因此n 的最小值为30,故D 错误.故选:ABC18.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且满足11a =,22a =,1143n n n a a a +−=−,则下面说法正确的是( ) A .数列{}1n n a a +−为等比数列 B .数列{}13n n a a +−为等差数列C .131n n a -=+D .3142n n nS −=+【答案】ABD【分析】由已知递推式可得()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,从而可得数列{}1n n a a +−为公比为3的等比数列,数列{}13n n a a +−为常数列,从而可求出,n n a S ,进而可分析判断 【详解】根据题意得()()111113434344n n n n n n n n n a a a a ka k a a k a a k +−+−−⎛⎫=−⇒+=+−=+−⎪+⎝⎭,令2343014k k k k k =−⇒++=⇒=−+或3k =−,所以可得:()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,所以数列{}1n n a a +−为公比为3的等比数列,故选项A 正确;数列{}13n n a a +−为常数列,即为公差为0的等差数列,故选项B 正确;所以1113n n n a a −+−=⨯,且131n n a a +−=−,解得1312n n a −+=,所以C 错误,所以12n n S a a a =++⋅⋅⋅+ 011313131222n −+++=++⋅⋅⋅+()011133322n n −=++⋅⋅⋅++ 1132132n n −=⨯+− 3142n n −=+,所以D 正确,故选:ABD .19.(2022·全国·模拟预测)已知数列{}n a 满足()1213n n n a a a m ++=+,12n a ≠−,则下列说法正确的有( )A .若12=−m ,11a =,则35a =B .若0m =,112a =,则11331n n n a −−=+C .若12m =,12a ≠−,3,则32n n a a ⎧⎫−⎨⎬+⎩⎭是等比数列 D .若12m =−,11a =,则766n n a =−【答案】BC 【解析】A 选项由递推关系计算可判断;B 选项,递推关系变形为1111113n n a a +⎛⎫−=− ⎪⎝⎭,构造一个等比数列11n a ⎧⎫−⎨⎬⎩⎭,可求出通项公式,从而判断;C 选项由递推关系变形出1132n n a a ++−+3372n n a a −=−⨯+,从而得到判断;D 选项,递推关系变形得出112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是等比数列,从而求得通项公式进行判断. 【详解】A 选项:若12=−m ,则()121312n n n a a a ++=−,即131221n n n a a a +−=+.又11a =,则231233a −==−,391221615a −−==−+,故A 错误. B 选项:若0m =,则()1213n n n a a a ++=,即1321nn n a a a +=+, 即112133n n a a +=+,则1111113n n a a +⎛⎫−=− ⎪⎝⎭.又112a =,则111211a −=−=, 所以11n a ⎧⎫−⎨⎬⎩⎭是首项为1,公比为13的等比数列,则11113n n a −⎛⎫−= ⎪⎝⎭,即1111113133n n n n a −−−+⎛⎫=+= ⎪⎝⎭,即11331n n n a −−=+,故B 正确.C 选项:若12m =,则()121312n n n a a a ++=+,即131221n n n a a a ++=+,则()()1131233123213213122312221221n n n n n n n n n n a a a a a a a a a a +++−+−+−+===+++++++393371472n n n n a a a a ⎛⎫−+−=−⨯ ⎪++⎝⎭,所以32n n a a ⎧⎫−⎨⎬+⎩⎭是公比为37−的等比数列,故C 正确.D 选项:若12m =−,则113221n n n a a a +−=+,则11132112222121n n n n n n a a a a a a +−−−−−==++,则1212121111112121222n n n n n n a a a a a a +−+⎛⎫==+=+≠ ⎪−−⎝⎭−−,即11111122n n a a +−=−−.又11a =,则11212a =−,所以112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是首项为2,公差为1的等差数列,所以1112n n a =+−, 即1121n a n −=+,即1112n a n =++,故D 错误, 故选:BC.20.(2022·广东·一模)已知数列{}n a 满足11a =,*12()N n n n a a n ++=∈,则下列结论中正确的是( ) A .45a =B .{}n a 为等比数列C .202212202123a a a +++=−D .2023122022223a a a −+++=【答案】AD 【解析】 【分析】利用递推式可求得234,,a a a 的值,可判断A,B;将122021a a a +++变为1235202042021()()()a a a a a a a ++++++++,利用等比数列的求和公式,求得结果,判断C; 将122022a a a +++变为412320212022))()((a a a a a a +++++++,利用等比数列的求和公式,求得结果,判断D; 【详解】11a =,则1222,1a a a +== ,又2334,3a a a +== ,同理33442,5a a a +== ,故A 正确;而32121,3a a a a == ,故{}n a 不是等比数列,B 错误; 1220211235204202021()()()a a a a a a a a a a =+++++++++++1010101120222420204-4-12-112+2++2=1+==1-433=+(14) ,故C 错误; 122022123202120242()a a a a a a a a a ++++=++++++()()101110112023132021-24-22-22+2++2===1-433⨯=2(14),故D 正确, 故选:AD21.(2022·福建·模拟预测)已知{}n a 是正项等差数列,其公差为d ,若存在常数c ,使得对任意正整数n 均有12n n n ac a a c+=+,则以下判断不正确的是( ) A .0d > B .0d = C .1c > D .01c <<【答案】ACD 【解析】 【分析】利用基本不等式可得101n a +<≤,结合通项公式可得0d =,从而可得()212c c a −=,故可得02c <<,故可得正确的选项.【详解】由题设可得{}n a 是无穷正项等差数列,故0d ≥且0c >, 由基本不等式有122nn n a c a a c+=+≥, 所以101n a +<≤对任意的正整数n 恒成立, 即101a nd <+≤对任意的正整数n 恒成立,即111a nd a −<≤−对任意的正整数n 恒成立,故0d =且101a <≤. 而1112a c a a c=+,故()212c c a −=, 所以()021c c <−≤,所以02c <<, 故选:ACD22.(2022·重庆市育才中学模拟预测)已知数列{an }满足11a =,21n n n a a a +=+,则( )A .{an }是递增数列B .n a n ≥C .202120222a ≤D .121111111n a a a ++⋅⋅⋅+<+++ 【答案】ABD 【解析】 【分析】由递推公式和20n a >可判断A ,由数列递增和11a =可判断B ,由递推公式知21n n a a +>可判断C ,对递推公式取倒裂项,然后累加、放缩可判断D. 【详解】因为a 1=1,21n n n a a a +=+,所以1n n a a +>,故A 正确;易知,所以n a 为正整数,又{an }是递增数列,所以n a n ≥,故B 正确;由递推公式得:232,64a a ==>,又221n n n n a a a a +=+>,所以244a >,22225(4)4a >=,()23222644a >=,易知201922021202242a >>,故C 不正确;取倒得1111(1)11n n n n n a a a a a +=−++=,则由累加法得2341123123111111111111()1111n n n a a a a a a a a a a a a ++++⋅⋅⋅+=+++⋅⋅⋅+−+++⋅⋅⋅+++++整理得123111111111111111n n n a a a a a a a +++++⋅⋅⋅+=−=−++++, 又110n a +>所以121111111n a a a ++⋅⋅⋅+<+++故选:ABD23.(2022·河北张家口·三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,则( ) A .n S n ⎧⎫⎨⎬⎩⎭是等差数列B .n S 是关于n 的二次函数C .{}n na 不可能是等差数列D .“0d >”是“112n n n S S S −++>”的充要条件【答案】AD 【解析】 【分析】根据等差数列前n 项公式及函数特征结合等差数列的定义即可判断ABC ,再结合充分条件和必要条件的定义即可判断D. 【详解】解:由11(1)2n S na n n d =+−知,11(1)2n S a n d n =+−,则1112+−=+n n S S d n n ,所以n S n ⎧⎫⎨⎬⎩⎭是等差数列,故A 正确; 当0d =时,1n S na =不是n 的二次函数,故B 不正确; 当0d =时,11,n n a a na na ==,则()111n n n a na a ++−=,所以{}n na 是等差数列,故C 不正确; 当0d >时,1102n n n S S d S −+=−>+,故112n n n S S S −++>,11111120n n n n n n n n n n n S S S S S S S a a a a d −++−+++>⇔−>−⇔>⇔−=>,所以“0d >”是“112n n n S S S −++>”的充要条件,故D 正确. 故选:AD.24.(2022·江苏江苏·三模)已知各项都是正数的数列{}n a 的前n 项和为n S ,且122n n na S a =+,则( ) A .{}2n S 是等差数列B .212n n n S S S +++<C .1n n a a +>D .1ln n nS n S −≥ 【答案】ABD 【解析】 【分析】对于A,求出1a ,再将n a 转化为n S ,即可证明,对于B,利用A 的结论求出n S ,再利用基本不等式,即可证明. 对于C ,求出21a a <,即可判断正误,对于D ,构造函数()12ln f x x x x=−−,即可判断正误【详解】 1111122a a S a ==+,10a >,解得:111S a == 2n ≥时,()11122n n n n n S S S S S −−−=+−, 整理得:2211n n S S −−=故{}2n S 是等差数列,选项A 正确;2211n S S n n =+−=,则=n S212n n n S S S +++<==,选项B 正确;22111a S S a =−=<,选项C 错误;令()12ln f x x x x =−−,1≥x ,()()2210x f x x −'=≥ ()f x 在[)1,+∞递增,()()10f x f ≥=,则ln 0fn≥ 即1ln n nS n S −≥,选项D 正确; 故选:ABD.25.(2022·河北保定·一模)已知n S 是数列{}n a 的前n 项和,且21n n S S n +=−+,则下列选项中正确的是( ).A .121n n a a n ++=−(2n ≥)B .22n n a a +−=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫− ⎪⎝⎭【答案】AC 【解析】 【分析】对于A , 由 21n n S S n +=−+,多写一项,两式相减即可得出答案.对于B ,由 121n n a a n ++=−(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥. 对于C ,由分析知22n n a a +−=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案. 对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<<,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=−+,当()2121n n n S S n −≥=−+−,,两式相减得:121n n a a n ++=−(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=−(2n ≥),所以()+122+11=21n n a a n n ++=−+, 两式相减得:22n n a a +−=(2n ≥),所以B 不正确.对于C ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,因为10a =,所以21a =.令2n =,则324S S =−+,112324a a a a a ++=−−+ ,所以32a =.因为22n n a a +−=(2n ≥),而312a a −=,所以22n n a a +−=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列. 偶数项是以21a =为首项,2为公差的等差数列. 则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,则2121a a =−+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a −=−−+=+, 同理:()4311=552223a a a a −=−+=−+,()5411=772324a a a a −=−−+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<<,解12a a <得:113a <,解23a a <得:114a >−,解34a a <得:114a <, 解45a a <得:114a >−,解56a a <得:114a <, 所以1a 的取值范围是11,44⎛⎫− ⎪⎝⎭,所以D 不正确.故选:AC. 【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=−,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.26.(2022·山东日照·二模)已知数列{}n a 满足11a =,()12ln 11n n n a a a +=++,则下列说法正确的有( ) A .31225a a a <+ B .2211n nn a a a +−≤+ C .若2n ≥,则131141n i i a =≤<+∑ D .()()1ln 121ln 2nni i a =+≤−∑【答案】BCD 【解析】 【分析】直接计算出23,a a 即可判断A 选项;构造函数函数()ln 1f x x x =−−,由ln 1x x +…,得到ln 1n n a a +…,进而判断B 选项;由ln 11n a +…得到121n n a a ++…,再结合累乘法得到12n n a +…,按照等比数列求和公式即可判断C 选项;构造函数()12ln g x x x x=−+,由11ln 2x x x ⎛⎫− ⎪⎝⎭…得到212n n n a a a ++…,结合累乘法求得()1ln 12ln2n n a −+…,按照等比数列求和公式即可判断D 选项.【详解】()()2113222ln 113,2ln 116ln37a a a a a a =++==++=+,则()3122512ln360a a a −+=−>,又120a a +>,所以31225a a a >+,A 不正确. 令函数()ln 1f x x x =−−,则()11f x x'=−,则()f x 在()0,1上单调递减,在()1,∞+上单调递增,()()10f x f =…,即ln 1x x +…,又易得{}n a 是递增数列,11n a a =…,故ln 1n n a a +…,所以2121n n a a ++…,B 正确.易知{}n a 是递增数列,所以11n a a =…,则()1ln 11,2ln 1121n n n n n a a a a a ++=+++厖,则()1121n n a a +++…,即1121n n a a +++…,所以11212111211n n n n n a a a a a a −−−−++⋅⋅++…,即()111212n n n a a −++=…,所以1112n n a +…,所以2111111111221111222212n n n ni i a =⎛⎫− ⎪⎝⎭+++==−<+−∑…,而当2n …时,则有11211131114ni i a a a =+=+++∑…,C 正确. 令函数()12ln g x x x x =−+,则()222212110x x g x x x x−+−=−−='…,所以()g x 在()0,∞+上单调递减,所以当1x …时,()()10g x g =…,则11ln 2x x x ⎛⎫− ⎪⎝⎭…, 所以211121122n n n n n n a a a a a a +⎡⎤⎛⎫−++=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦…,()()()()()()()()()211121211ln 1ln 1ln 1ln 111,2,2ln 1ln 1ln 1ln 1n n n n n n n n n a a a a a a a a a a +−−+−−++++++⋅⋅⋅++++剟?,()()111ln 12ln 12ln2n n n a a −−++=…,所以())()11ln 1(122ln221ln2nn n i i a −=++++=−∑…,D 正确.故选:BCD. 【点睛】本题关键点在于B 选项通过构造函数()ln 1f x x x =−−进行放缩得到ln 1n n a a +…,结合()12ln 11n n n a a a +=++即可判断;C 选项由ln 11n a +…放缩得到121n n a a ++…,D 选项构造函数()12ln g x x x x=−+得到212n nn a a a ++…,再结合累乘法和求和公式进行判断. 27.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A −记为20a =,()30,1A −记为31,a =−⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =−C .82n a n =D .()245312n n n n S ++=【答案】ABD 【解析】 【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2−−,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,即可求解判断D 选项.【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a −=+++=,即 240S =,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =−+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =−+=−+=−,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2−−,则16224a =−−=−,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++−++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD 【点睛】关键点点睛:观察图形,利用对称性求解问题,对D 选项,考虑已知的前n 项和与所求的关系,结合图形,可适当先列举找到规律,再求解.28.(2022·辽宁·东北育才学校二模)如图所示,正五边形ABCDE 的边长为1a ,正五边形11111A B C D E 的边长为2a ,正五边形22222A B C D E 的边长为3a ,……,依次下去,正五边形11111n n n n n A B C D E −−−−−的边长为n a ,记ACE α∠=,则下列结论中正确的是( )A.cos α=B .数列{}n aC .数列{}n a的等比数列D .对任意θ∈R ,cos cos(2)cos(4)cos(6)cos(8)1θθαθαθαθα++++++++= 【答案】AB 【解析】 【分析】根据正五边形的几何性质可知1111111,,,B EAC AE AC CE AB AE CB AB AE B E B C λ======,根据长度关系列方程解得λ=,再利用正弦定理可求得cos α,通过图形类比归纳的12211n n a a a a λ+==,对于D ,注意5πα=,利用诱导公式和两角和差公式化简计算. 【详解】在△ACE ,2CAE AEC α∠=∠=,设1AC CE AE a λλ=== 易知△ACE ∽△1B AE ,则111B E a λ=,11AB AE a ==1ACE CAB ∠=∠,则111AB CB a ==∵11CB B E CE +=,即1111a a a λλ+=,解得λ=又∵AC AE λ=,由正弦定理得sin 2sin αλα=,即2sin cos sin ααλα=∴cos 2λα=,A 正确; 同理:△11B EC ∽△1B AE ,则111211B C B E AE λλ==即2121a a λ=,则2211a a λ==以此类推,1n n a a +={}n aB 正确,C 不正确;∵cos α=2cos 22cos 1αα=−=又∵5πα=,则可得: cos cos(2)cos(4)cos(6)cos(8)θθαθαθαθα++++++++[][][]cos cos(2)cos ()πcos ()πcos (2)2πθθαθαθαθα=+++−+++++−+cos cos(2)cos()cos()cos(2)θθαθαθαθα=++−−−++−()cos 2cos cos 22cos cos cos 12cos 22cos 0θθαθαθαα=+−=+−=D 不正确; 故选:AB .。
B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
2025届高考数学二轮复习-数列题型解答题专项训练一、解答题1.已知数列{}n a 的前n 项和为n S ,且()113n n S a =-.(1)求1a ,2a ;(2)证明:数列{}n a 是等比数列.答案:(1)112a =-;214a =(2)数列{}n a 是首项和公比均为12-的等比数列解析:(1)当1n =时,()111113a S a ==-,所以112a =-.当2n =时,()22211123S a a =-+=-,所以214a =.(2)由()113n n S a =-,得()1111(2)3n n S a n --=-≥,所以()111(2)3n n n n n a S S a a n --=-=-≥,所以11(2)2n n a a n -=-≥.又112a =-,所以数列{}n a 是首项和公比均为12-的等比数列.所以数列{}n a 是以3为首项,2为公差的等差数列.(2)由(1)知()32121n a n n =+-=+.3.在数列{}n a 中,14a =,1431n n a a n +=-+,*n ∈N .(1)设n n b a n =-,求证:数列{}n b 是等比数列;(2)求数列{}n a 的前n 项和n S .答案:(1)见解析(2)()1412n n n ++-解析:(1)证明:1431,n n a a n +=-+11(1)43114()4,n n n n n b a n a n n a n b ++∴=-+=-+--=-=又111413,b a =-=-=∴数列{}n b 是首项为3、公比为4的等比数列;(2)由(1)可知134n n a n --=⨯,即134n n a n -=+⨯,()()()31411412142n n n n n n n S -++∴=+=--.4.在数列{}n a 中,616a =,点()()1,n n a a n *+∈N 在直线30x y -+=上.(1)求数列{}n a 的通项公式;(2)若2n n n b a =,求数列{}n b 的前n 项和n T .答案:(1)32n a n =-(2)见解析解析:(1)依题意,130n n a a +-+=,即13n n a a +-=,因此数列{}n a 是公差为3的等差数列,则63(6)32n a a n n =+-=-,所以数列{}n a 的通项公式是32n a n =-.(2)由(1)得(32)2n n b n =-⋅,则132421242(32)2n n T n =⨯+⨯+⋅⋅⋅+-⨯+⨯,于是23121242(35)2(32)2n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得2123112(12))23(222(32)22(312)232n n n n n T n n ++--=+++⋅⋅⋅+--⋅--⋅-=+⋅-1(532)10n n +⋅=--,所以1(35)210n n T n +=-⋅+.5.已知公差不为0的等差数列{}n a 的前n 项和为n S ,且636S =,1a ,3a ,13a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若不等式4n kT <对任意的*n ∈N 都成立,求实数k的取值范围.答案:(1)21n a n =-(2)2k ≥.解析:(1)设等差数列{}n a 公差为d ,由题意1211161536(2)(12)a d a d a a d +=⎧⎨+=+⎩,0d ≠,解得112a d =⎧⎨=⎩,所以12(1)21n a n n =+-=-;(2)由(1)111111()(21)(21)22121n n a a n n n n +==--+-+,所以1111111111(1)()((12323522121221n T n n n =-+-++-=--++,易知n T 是递增的且12n T <,不等式4n k T <对任意的*n ∈N 都成立,则142k ≥,所以2k ≥.6.已知数列{}n a 的前n 项和n S 满足24(1)n S n =+,n +∈N .(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的n +∈N ,不等式25n T a a <-恒成立,求实数a 的取值范围.答案:(1) 1, 1 21, 24n n a n n =⎧⎪=⎨+≥⎪⎩(2)3a ≤-或4a ≥解析:(1)24(1)n S n =+当1n =时,214(11)a =+,即11a =当2n ≥时,由1n n n a S S -=-,故224(1)21n a n n n =+-=+,得214n n a +=.易见11a =不符合该式,故 1 121, 24n n a n n =⎧⎪=⎨+=⎪⎩,(2)由0n a >,易知n T 递增;112145T a a ==当2n ≥时,()()111611821232123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭.从而41111111281285577921235235n T n n n ⎛⎫=+-+-++-=-< ⎪+++⎝⎭.又由25n T a a <-,故212a a ≤-,解得3a ≤-或4a ≥即实数a 的取值范围为3a ≤-或4a ≥7.记n S 为数列{}n a 的前n 项和,已知112a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列.(1)求{}n a 的通项公式;(2)设()1nn n b a =-,求{}n b 的前2n 项和2n T .答案:(1)12n a n =(2)2n解析:(1)由n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列,且111S a =,则()11111222n n S n n a =+-⨯=+,即()21n n S n a =+,当2n ≥时,112n n S na --=,两式相减可得:()121n n n a n a na -=+-,整理可得11n n a na n -=-,故121121121121212n n n n n a a a n n a a n n a a a n ----=⋅⋅⋅⋅=⨯⨯⨯⨯-=-,将1n =代入上式,12n a =,故{}n a 的通项公式为12n a n =.(2)由()1nn n b a =-,则21212342221n n n n a a T b a a a a b b -=-+-+-+-+++=()()()()22121242132122n n n n n a a n a a a a a a a a --++=+++-+++=-()111122*********n nn n ⎡⎤=⨯+⨯-⨯-⨯⎢⎥⎦=-⎣.8.已知数列{}n a 是各项均为正数的等比数列,且11a =,34a =,数列{}n b 中()*221log log n n n b a a n +=+∈N .(1)求数列{}n b 的通项公式;(2)若数列{}n b 的前n 项和为n S ,数列{}n c 满足141n n c S =-,求数列{}n c 的前n 项和n T .答案:(1)21n b n =-(2)21n nT n =+解析:(1)正项等比数列{}n a 的公比为q ,由231a a q =,得24q =,而0q >,解得2q =,于是1112n n n a a q --==,由221log log n n n b a a +=+,得12222log o 21l g n n n n b -=+=-,所以数列{}n b 的通项公式21n b n =-.(2)由(1)知,21n b n =-,显然数列{}n b 是等差数列,21(21)2n n S n n +-=⋅=,2111111(4141(21)(21)22121n n c S n n n n n ====----+-+,所以11111111[(1)()()](1)2335212122121n nT n n n n =-+-++-=-=-+++.9.已知等差数列{}n a 前n 项和为n S ,满足33a =,410S =.数列{}n b 满足12b =,112n n n nb a b a ++=,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 满足()1(1)32n n n n n c a b +-+=,*n ∈N ,求数列{}n c 的前n 项和n T .答案:(1)见解析(2)见解析解析:(1)设数列{}n a 的公差为d ,11234610a d a d +=⎧∴⎨+=⎩,解得11a =,1d =,n a n ∴=.()121n n n b b n ++=,112n n b n b n++∴=,且121b =,所以n b n ⎧⎫⎨⎬⎩⎭是等比数列,2n nb n∴=,2n n b n ∴=⋅(2)()()()()1111(1)3211(1)(1)(1)12212212n n n nn n n n n n n c n n n n n n ++++⎛⎫-+--==-+=- ⎪ ⎪+⋅⋅+⋅⋅+⋅⎝⎭,()1111(1)212n n n T n ++∴=---+⋅10.已知各项为正的数列{}n a 的首项为2,26a =,22211122n n n n n n n n a a a a a a a a +++++-=--.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和n S ,求数列{}28n n S a +-(其中*n ∈N )前n 项和的最小值.答案:(1)42n a n =-(2)最小值为38-解析:(1)因为22211122n n n n n n n n a a a a a a a a +++++-=--,所以有()()12120n n n n n a a a a a +++++-=,而0n a >,10n n a a +∴+≠,所以2120n n n a a a +++-=,则211121n n n n n n a a a a a a a a +++--=-=-=⋅⋅⋅=-,又12a =,26a =,∴214a a -=,由等差数列定义知数列{}n a 是以2为首项,4为公差的等差数列.∴数列{}n a 的通项公式为42n a n =-.(2)由(1)有2(1)=2+4=22n n n S n n -⨯,()()2282430253n n S a n n n n ∴+-=+-=+-,令280n n S a +->,有4,5,6,n =⋅⋅⋅;280n n S a +-<,有1,2n =;280n n S a +-=,有3n =.所以{}28n n S a +-前n 项和的最小值为()()()()215132252338+-++-=-,当且仅当2n =,3时取到.11.记n S 为数列{}n a 的前n 项和,已知2n S n =,等比数列{}n b 满足11b a =,35b a =.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和n T .答案:(1)()*21n a n n =-∈N (2)当3q =时,3122n n T =-;当3q =-时,1(3)44n n T -=-.解析:(1)当1n =时,111a S ==,当2n ≥时,1n n n a S S -=-22(1)n n =--21n =-,因为11a =适合上式,所以()*21n a n n =-∈N .(2)由(1)得11b =,39b =,设等比数列{}n b 的公比为q ,则2319b b q =⋅=,解得3q =±,当3q =时,()113311322n n nT ⋅-==--,当3q =-时,11(3)1(3)1(3)44nn n T ⎡⎤⋅---⎣⎦==---.12.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若4a ,7a ,9a 成等比数列,求n S 的最小值.答案:(1)证明见解析(2)12n =或13时,n S 取得最小值,最小值为-78解析:(1)由221nn S n a n+=+,得2n n 22S n a n n +=+,①所以2112(1)2(1)(1)n n S n a n n ++++=+++,②②-①,得112212(1)21n n n a n a n a n ++++=+-+,化简得11n n a a +-=,所以数列{}n a 是公差为1的等差数列.(2)由(1)知数列{}n a 的公差为1.由2749a a a =,得()()()2111638a a a +=++,解得112a =-.所以22(1)251256251222228n n n n n S n n --⎛⎫=-+==-- ⎪⎝⎭,所以当12n =或13时,n S 取得最小值,最小值为-78.13.已知数列{}n a 满足11a =,11,,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数,数列{}n b 满足22n n b a =-.(1)求2a ,3a .(2)求证:数列{}n b 是等比数列,并求其通项公式.(3)已知12log n n c b =,求证:122311111n nc c c c c c -+++<.答案:(1)232a =,352a =-(2)证明见解析(3)证明见解析解析:(1)由数列{}n a 的递推关系,知2113122a a =+=,325222a a =-⨯=-.(2)()12221212211112(21)2(21)4(21)12222n n n n n n b a a n a n a n n a ++++=-=++-=+-=-+-=-()211222n n a b =-=.因为12122b a =-=-,所以数列{}n b 的各项均不为0,所以112n n b b +=,即数列{}n b 是首项为12-,公比为12的等比数列,所以1111222n nn b -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭.(3)由(2)知11221log log 2nn n c b n ⎛⎫=== ⎪⎝⎭.所以12231111n nc c c c c c -+++1111223(1)n n =+++⨯⨯-1111112231n n=-+-++--11n=-1<.14.已知数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列.(1)求数列{}n a 的通项公式;(2)若21log nn na b a +=,设数列{}n b 的前n 项和为n T ,求证:13n T ≤<.答案:(1)2n n a =(2)证明见解析解析:(1)因为2a ,3a ,44a -成等差数列,所以32424a a a =+-,又因为数列{}n a 的公比为2,所以2311122224a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =,所以1222n n n a -=⨯=.(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===,所以2323412222n nn T +=++++,①231123122222n n n n n T ++=++++,②①-②得23111111122222n nn n T ++⎛⎫=++++- ⎪⎝⎭212111111111122221111221122n n n n n n -+++⎛⎫-- ⎪++⎝⎭=+-=+---11112133122222n n n n n +++++=+--=-.所以3332n nn T +=-<.又因为102n n n b +=>,所以{}n T 是递增数列,所以11n T T ≥=,所以13n T ≤<.15.在①221n n b b =+,②212a b b =+,③1b ,2b ,4b 成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{}n a 中,11a =,13n n a a +=,公差不等于0的等差数列{}n b 满足__________,__________求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n S .答案:选①②;选②③解析:因为11a =,13n n a a +=,所以{}n a 是以1为首项,3为公比的等比数列,所以13n n a -=.方案一:选①②.设数列{}n b 的公差为d ,因为23a =,所以123b b +=.因为221n n b b =+,所以1n =时,2121b b =+,解得123b =,273b =,所以53d =,所以533n n b -=,满足221n n b b =+,所以533n n n b n a -=,所以12123122712533333n n nn b b b n S a a a -=+++=++++,所以2341127125853333333n n n n n S +--=+++++,两式相减,得23111122111532515533109533333336233223n n n n n n n n n S ++++--+⎛⎫=++++-=+--=- ⎪⨯⨯⎝⎭,所以9109443n n n S +=-⨯.方案二:选②③.设数列{}n b 的公差为d ,因为2133a a ==,所以123b b +=,即123b d +=.因为1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以11d b ==,所以n b n =,所以13n n n b n a -=,所以120121121233333n n n n b b b n S a a a -=+++=++++,所以123111231333333n n nn n S --=+++++,两式相减,得1231211113132311333333233223n n n n n n n n n S -+⎛⎫=+++++-=--=- ⎪⨯⎝⎭,所以1923443n n n S -+=-⨯.方案三:选①③.设数列{}n b 的公差为d ,因为221n n b b =+,所以1n =时,2121b b =+,所以11d b =+.又1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以1b d =,此式与11d b =+矛盾.所以等差数列{}n b 不存在,故不符合题意.。
高考数学一轮复习等差数列专项练习(含解析)假如一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那个数列就叫做等差数列。
查字典数学网为考生整理了等差数列专题训练,请考生认真做题。
一、填空题1.(2021重庆高考)若2,a,b,c,9成等差数列,则c-a=________.[解析] 由题意得该等差数列的公差d==,因此c-a=2d=.[答案]2.在等差数列{an}中,d=2,a15=-10,则S15=________.[解析] 由a15=a1+142=-10得a1=-38,因此S15===-360.[答案] -3603.等差数列{an}前9项的和等于前4项的和,若a1=1,ak+a4=0,则k =________.[解析] 由S9-S4=0,即a5+a6+a7+a8+a9=0,即a7=0.又ak+a4=0=2a7,故k=10.[答案] 104.(2021福建高考改编)等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为________.[解析] 法一:设等差数列{an}的公差为d,由题意得解得d=2.法二:在等差数列{an}中,a1+a5=2a3=10,a3=5.又a4=7,公差d=7-5=2.[答案] 25.假如等差数列{an}中,a5+a6+a7=15,那么a3+a4++a9=________.[解析] 等差数列{an}中,a5+a6+a7=15,由等差数列的性质可得3a6=1 5,解得a6=5.那么a3+a4++a9=7a6=35.[答案] 356.《九章算术》竹九节问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.[解析] 设自上第一节竹子容量为a1,则第9节容量为a9,且数列{an}为等差数列.则解之得a1=,d=,故a5=a1+4d=.[答案]7.(2021辽宁高考改编)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=________.[解析] S11===88.[答案] 888.(2021重庆高考)已知{an}是等差数列,a1=1,公差d0,Sn为其前n 项和,若a1,a2,a5成等比数列,则S8=________.[解析] a1,a2,a5成等比数列,a=a1a5,(1+d)2=1(4d+1),d2-2d=0.d0,d=2.S8=81+2=64.[答案] 64二、解答题9.(2021湖北高考)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式;(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn60n+800?若存在,求n的最小值;若不存在,说明理由.[解] (1)设等差数列{an}的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,an=2;当d=4时,an=2+(n-1)4=4n-2,从而得数列{an}的通项公式为an=2或an=4n-2.(2)当an=2时,Sn=2n.明显2n60n+800,现在不存在正整数n,使得Sn60n+800成立.当an=4n-2时,Sn==2n2.令2n260n+800,即n2-30n-4000,解得n40或n-10(舍去),现在存在正整数n,使得Sn60n+800成立,n的最小值为41.综上,当an=2时,不存在满足题意的n;当an=4n-2时,存在满足题意的n,其最小值为41.10.(2021福建高考)已知等差数列{an}的公差d=1,前n项和为Sn.(1)若1,a1,a3成等比数列,求a1;(2)若S5a1a9,求a1的取值范畴.[解] (1)因为数列{an}的公差d=1,且1,a1,a3成等比数列,因此a= 1(a1+2),即a-a1-2=0,解得a1=-1或a1=2.(2)因为数列{an}的公差d=1,且S5a1a9,家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。
单元质检六 数列(A )(时间:45分钟 满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.已知等差数列{a n }的前n 项和为S n ,a 6=15,S 9=99,则等差数列{a n }的公差是( ) A.14 B.4 C.-4 D.-3答案:B解析:∵数列{a n }是等差数列,a 6=15,S 9=99, ∴a 1+a 9=22,∴2a 5=22,a 5=11. ∴公差d=a 6-a 5=4.2.已知公比为√23的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 16=( ) A.4 B.5 C.6 D.7答案:B解析:由等比中项的性质,得a 3a 11=a 72=16. 因为数列{a n }各项都是正数,所以a 7=4. 所以a 16=a 7q 9=32.所以log 2a 16=5.3.在等差数列{a n }中,已知a 4=5,a 3是a 2和a 6的等比中项,则数列{a n }的前5项的和为( ) A.15 B.20C.25D.15或25答案:A解析:设{a n }的公差为d.∵在等差数列{a n }中,a 4=5,a 3是a 2和a 6的等比中项,∴{a 1+3a =5,(a 1+2a )2=(a 1+a )(a 1+5a ),解得{a 1=-1,a =2, ∴S 5=5a 1+5×42d=5×(-1)+5×4=15.故选A .4.已知等差数列{a n }和等比数列{b n }满足3a 1-a 82+3a 15=0,且a 8=b 10,则b 3b 17=( ) A.9B.12C.16D.36答案:D解析:由3a 1-a 82+3a 15=0,得a 82=3a 1+3a 15=3(a 1+a 15)=3×2a 8,即a 82-6a 8=0.因为a 8=b 10≠0,所以a 8=6,b 10=6,所以b 3b 17=a 102=36.5.设公比为q (q>0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1=( ) A.-2 B.-1C.12D.23答案:B解析:∵S 2=3a 2+2,S 4=3a 4+2,∴S 4-S 2=3(a 4-a 2),即a 1(q 3+q 2)=3a 1(q 3-q ),q>0,解得q=32,代入a 1(1+q )=3a 1q+2,解得a 1=-1.6.已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=x (1-x ).若数列{a n }满足a 1=12,且a n+1=11-a a,则f (a 11)=( ) A.2 B.-2 C.6 D.-6答案:C解析:设x>0,则-x<0.因为f (x )是定义在R 上的奇函数, 所以f (x )=-f (-x )=-[-x (1+x )]=x (1+x ). 由a 1=12,且a n+1=11-a a,得a 2=11-a 1=11-12=2,a 3=11-a 2=11-2=-1,a 4=11-a 3=11-(-1)=12,……所以数列{a n }是以3为周期的周期数列, 即a 11=a 3×3+2=a 2=2.所以f (a 11)=f (a 2)=f (2)=2×(1+2)=6.二、填空题(本大题共2小题,每小题7分,共14分) 7.已知数列{a n }满足a 1=1,a n -a n+1=2a n a n+1,则a 6= . 答案:111解析:由a n -a n+1=2a n a n+1,得1a a +1−1a a=2,即数列{1a a}是以1a 1=1为首项,2为公差的等差数列.所以1a 6=1a 1+5×2=11,即a 6=111.8.我国古代数学家杨辉、朱世杰等研究过高阶等差数列的求和问题,如数列{a (a +1)2}就是二阶等差数列.数列{a (a +1)2}(n ∈N *)的前3项和是 .答案:10 解析:令a n =a (a +1)2,则a 1=1×22=1,a 2=2×32=3,a 3=3×42=6,S 3=1+3+6=10.故答案为10.三、解答题(本大题共3小题,共44分)9.(14分)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解:(1)设{a n }的公差为d ,由题意得3a 1+3d=-15. 由a 1=-7得d=2.所以{a n }的通项公式为a n =2n-9. (2)由(1)得S n =n 2-8n=(n-4)2-16.所以当n=4时,S n 取得最小值,最小值为-16. 10.(15分)已知数列{a n }满足a n =6-9a a -1(n ∈N *,n ≥2).(1)求证:数列{1aa -3}是等差数列;(2)若a 1=6,求数列{lg a n }的前999项的和.答案:(1)证明∵1a a -3−1a a -1-3=a a -13a a -1-9−1a a -1-3=a a -1-33a a -1-9=13(n ≥2),∴数列{1a a -3}是等差数列.(2)解∵{1a a -3}是等差数列,且1a 1-3=13,d=13,∴1aa-3=1a 1-3+13(n-1)=a 3.∴a n =3(a +1)a.∴lg a n =lg(n+1)-lg n+lg3. 设数列{lg a n }的前999项的和为S ,则S=999lg3+(lg2-lg1+lg3-lg2+…+lg1000-lg999)=999lg3+lg1000=3+999lg3. 11.(15分)设数列{a n }满足a 1=2,a n+1-a n =3·22n-1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 解:(1)由已知,当n ≥1时,a n+1=[(a n+1-a n )+(a n -a n-1)+…+(a 2-a 1)]+a 1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a 1=2,所以数列{a n }的通项公式为a n =22n-1.(2)由b n =na n =n ·22n-1知S n =1·2+2·23+3·25+…+n ·22n-1.①从而22·S n =1·23+2·25+3·27+…+n ·22n+1.②①-②,得(1-22)S n =2+23+25+…+22n-1-n ·22n+1,即S n =19[(3n-1)22n+1+2].。
高考数学复习各地数列模拟测试题及解析一、有关通项问题1、利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩求通项.(北师大版第23页习题5)数列{}n a 的前n 项和21n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列吗?(3)你能写出数列{}n a 的通项公式吗?变式题1、(2005湖北卷)设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式; 解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 变式题2、(2005北京卷)数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.解:(I )由a 1=1,113n n a S +=,n=1,2,3,……,得 211111333a S a ===,3212114()339a S a a ==+=,431231116()3327a S a a a ==++=, 由1111()33n n n n n a a S S a +--=-=(n ≥2),得143n n a a +=(n ≥2),又a 2=31,所以a n =214()33n -(n ≥2),∴ 数列{a n }的通项公式为21114()233n n n a n -=⎧⎪=⎨⎪⎩≥变式题3、(2005山东卷)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈,证明数列{}1n a +是等比数列.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+ 故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;2、解方程求通项:(北师大版第19页习题3)在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求.变式题1、{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于(A )667 (B )668 (C )669 (D )670 分析:本题考查等差数列的通项公式,运用公式直接求出. 解:1(1)13(1)2005n a a n d n =+-=+-=,解得669n =,选C点评:等差等比数列的通项公式和前n 项和的公式是数列中的基础知识,必须牢固掌握.而这些公式也可视作方程,利用方程思想解决问题.3、待定系数求通项:(人教版第38页习题4)写出下列数列{}n a 的前5项:(1)111,41(1).2n n a a a n -==+>变式题1、(2006年福建卷)已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列.12.n n a ∴+=即 *21().n n a n N =-∈4、由前几项猜想通项:(北师大版第10页习题1)根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式.(1) (4)(7)( ) ( )变式题1、(深圳理科一模).如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a ,则6a = ;345991111a a a a +++⋅⋅⋅+= .解:由图可得:22(1)n a n n n n n =+-=+,所以642a =;又211111(1)1n a n n n n n n ===-+++ 所以345991111a a a a +++⋅⋅⋅+=1111111197()()()3445991003100300-+-++-=-=变式题2、(北师大版第11页习题2)观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 . A .40个 B .45个 C .50个 D .55个解:由题意可得:设{}n a 为n 条直线的交点个数,则21a =,1(1),(3)n n a a n n -=+-≥,因为11n n a a n --=-,由累加法可求得:(1)12(1)2n n n a n -=+++-=,所以10109452a ⨯==,选B.2条直线相交,最多有1个交点3条直线相交,最多有3个交点4条直线相交,最多有6个交点二、有关等差、等比数列性质问题1、(北师大版第35页习题3)一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )A .83B .108C .75D .63变式题1、一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。
模块检测卷(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项符合题目要求)1.曲线y =x ln x 在点(e ,e)处的切线方程为( ) A.y =2x -e B.y =-2x -e C.y =2x +eD.y =-x -1解析 y ′=ln x +1,则曲线在点(e ,e)处的切线斜率ln e +1=2,所以切线方程为y -e =2(x -e),即y =2x -e ,故选A. 答案 A2.在等差数列{a n }中,4(a 3+a 4+a 5)+3(a 6+a 8+a 14+a 16)=36,那么该数列的前14项和为( ) A.20 B.21 C.42D.84解析 由4(a 3+a 4+a 5)+3(a 6+a 8+a 14+a 16)=36,得12a 4+12a 11=36,即a 4+a 11=3,则数列{a n }的前14项和为14(a 1+a 14)2=7(a 4+a 11)=21.答案 B3.设等比数列{a n }的前n 项和为S n ,且满足a 1+a 4=94,S 6=9S 3.若b n =log 2a n ,则数列{b n }的前10项和是( ) A.-35 B.-25 C.25D.35解析 设等比数列{a n}的公比为q .由题意知q ≠1,则⎩⎪⎨⎪⎧a 1(1+q 3)=94,a 11-q (1-q 6)=9a 11-q (1-q 3),解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a n =14×2n -1=2n -3,所以b n =n -3,所以数列{b n }的前10项和T 10=10(b 1+b 10)2=5×(-2+7)=25.故选C.答案 C4.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A.0<b <1 B.b <1 C.b >0D.b <12解析 因为f ′(x )=3x 2-3b =0,所以x 2=b ,若y =f (x )在(0,1)内有极小值,则只需⎩⎨⎧b >0,0<b <1,即0<b <1. 答案 A5.中国明代商人程大位对文学和数学也颇感兴趣,他于60岁时完成杰作《直指算法统宗》.这是一本风行东亚的数学名著,该书第五卷有问题云:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”翻译成现代文为:今有白米一百八十石,甲、乙、丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少石米?请你计算甲应该分得( ) A.78石 B.76石 C.75石D.74石解析 今有白米一百八十石,甲、乙、丙三个人来分,设他们分得的米数构成等差数列{a n },只知道甲比丙多分三十六石,因此公差d =a 3-a 13-1=-362=-18,则前3项和S 3=3a 1+3×22×(-18)=180,解得a 1=78.所以甲应该分得78石.故选A. 答案 A6.已知数列{a n }是等差数列,{b n }是正项等比数列,且b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6,则a 2 019+b 9=( ) A.2 025 B.2 529 C.2 026D.2 275解析 设数列{b n }的公比为q (q >0),∵b 1=1,b 3=b 2+2,∴q >1且b 1q 2=b 1q +2,即q 2=q +2,解得q =-1(舍)或q =2,∴b n =2n -1.∵数列{a n }是等差数列,公差设为d ,b 4=a 3+a 5=23,b 5=a 4+2a 6=24, ∴2a 4=23,a 4+2a 6=24,∴a 4=4,a 6=6. ∴由a 6=a 4+2d ,得d =1, 由a 6=a 1+5d ,得a 1=1,∴a n =n . ∴a 2 019+b 9=2 019+28=2 275,故选D. 答案 D7.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f (x )x>0,则对于任意的a ,b ∈(0,+∞),当b >a 时,有( ) A.af (b )>bf (a ) B.af (b )<bf (a ) C.af (a )<bf (b )D.af (a )>bf (b )解析 因为y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f (x )x>0,所以xf ′(x )+f (x )x >0,令F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x ),则当x >0时,F ′(x )>0,F (x )单调递增.因为a ,b ∈(0,+∞),当b >a 时,F (b )>F (a ),即af (a )<bf (b ),故选C. 答案 C8.已知可导函数f (x )的导函数为f ′(x ),若对任意的x ∈R ,都有f (x )>f ′(x )+1,且f (x )-2 019为奇函数,则不等式f (x )-2 018e x<1的解集为( ) A.(0,+∞) B.(-∞,0)C.⎝⎛⎭⎪⎫-∞,1e D.⎝ ⎛⎭⎪⎫1e ,+∞解析 构造函数g (x )=f (x )-1ex,则g ′(x )=f ′(x )-f (x )+1ex<0,所以函数g (x )=f (x )-1ex在R 上单调递减.由于函数y =f (x )-2 019为奇函数,则f (0)-2 019=0,则f (0)=2 019,所以g (0)=f (0)-1e=2 018.由f (x )-2 018e x <1,得f (x )-1<2 018e x,即f (x )-1ex<2 018,所以g (x )<g (0).由于函数y =g (x )在R 上单调递减,因此x >0,故选A.答案 A二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的不得分) 9.如图是导数y =f ′(x )的图象,下列说法正确的是( )A.(-1,3)为函数y =f (x )的单调递增区间B.(3,5)为函数y =f (x )的单调递减区间C.函数y =f (x )在x =0处取得极大值D.函数y =f (x )在x =5处取得极小值解析 由题图,可知当x <-1或3<x <5时,f ′(x )<0;当x >5或-1<x <3时,f ′(x )>0,所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以函数y =f (x )在x =-1,x =5处取得极小值,在x =3处取得极大值,故选项C 说法错误,ABD 正确. 答案 ABD10.等差数列{a n }是递增数列,满足a 7=3a 5,前n 项和为S n ,下列选择项正确的是( ) A.d >0B.a 1<0C.当n =5时S n 最小D.S n >0时n 的最小值为8解析 由题意,设等差数列{a n }的公差为d ,因为a 7=3a 5,可得a 1+6d =3(a 1+4d ),解得a 1=-3d ,又由等差数列{a n }是递增数列,可知d >0,则a 1<0,故A ,B 正确;因为S n =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n =d 2n 2-7d 2n =d 2⎝ ⎛⎭⎪⎫n -722-49d 8, 由n ∈N *可知,当n =3或4时S n 最小,故C 错误,令S n =d 2n 2-7d2n >0,解得n <0或n >7,即S n >0时n 的最小值为8,故D 正确.答案 ABD11.若函数f (x )=e x-1与g (x )=ax 的图象恰有一个公共点,则实数a 可能取值为( ) A.2 B.0 C.1D.-1解析 由f (x )=e x -1与g (x )=ax 恒过(0,0),如图,当a ≤0时,两函数图象恰有一个公共点,当a >0时,函数f (x )=e x-1与g (x )=ax 的图象恰有一个公共点, 则g (x )=ax 为f (x )=e x-1的切线,且切点为(0,0), 由f ′(x )=e x ,所以a =f ′(0)=e 0=1, 综上所述,a =0,-1或1. 答案 BCD12.已知函数f (x )=e x·x 3,则以下结论正确的是( ) A.f (x )在R 上单调递增B.f (log 52)<f ⎝ ⎛⎭⎪⎫e -12<f (ln π)C.方程f (x )=-1有实数解D.存在实数k ,使得方程f (x )=kx 有4个实数解解析 f (x )=e x·x 3,则f ′(x )=e x ·x 3+e x ·3x 2=x 2e x(x +3), 故函数在(-∞,-3)上单调递减,在(-3,+∞)上单调递增,A 错误;0<log 52<12,12<e -12<1,ln π>1,根据单调性知f (log 52)<f ⎝ ⎛⎭⎪⎫e -12<f (ln π),B 正确;f (0)=0,f (-3)=-27e3<-1,故方程f (x )=-1有实数解,C 正确;f (x )=kx ,易知当x =0时成立,当x ≠0时,k =f (x )x=e x x 2,设g (x )=e x x 2,则g ′(x )=e xx (x +2),故函数在(-∞,-2),(0,+∞)上单调递增,在(-2,0)上单调递减,且g (-2)=4e2.画出函数图象,如图所示:当0<k <4e2时有3个交点.综上所述:存在实数k ,使得方程f (x )=kx 有4个实数解,D 正确;故选BCD. 答案 BCD三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.函数f (x )=a ln x +bx 2在点(1,f (1))处的切线方程为y =4x -3,则a =________,b =________.(本题第一空2分,第二空3分)解析 由题得f ′(x )=ax+2bx ,由导数的几何意义可得f (1)=1,f ′(1)=4, 即b =1,a1+2b ×1=4,所以a =2,b =1.答案 2 114.已知数列{a n }为等差数列,S n 为数列{a n }的前n 项和,若1≤a 2≤5,2≤a 3≤7,则S 6的取值范围是________.解析 依题意⎩⎪⎨⎪⎧1≤a 1+d ≤5,2≤a 1+2d ≤7,设S 6=6a 1+15d =x (a 1+d )+y (a 1+2d ),由⎩⎪⎨⎪⎧6=x +y ,15=x +2y ,解得⎩⎪⎨⎪⎧x =-3,y =9. 则⎩⎪⎨⎪⎧-15≤-3(a 1+d )≤-3,18≤9(a 1+2d )≤63,两式相加得3≤S 6≤60,即S 6的取值范围是[3,60]. 答案 [3,60]15.在数列{a n }中,已知a 1=2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),记数列{a n }的前n 项之积为T n ,若T n =2 017,则n 的值为________.解析 由a n a n -1=2a n -1-1(n ≥2,n ∈N *)及a 1=2,得a 2=32,a 3=43,a 4=54,…,a n =n +1n .数列{a n }的前n 项之积为T n =21×32×43×…×n +1n =n +1.∴当T n =2 017时,n 的值为2 016. 答案 2 01616.若函数f (x )=x 3-3x 在区间(a ,6-a 2)上有最小值,则实数a 的取值范围是________. 解析 若f ′(x )=3x 2-3=0,则x =±1,且x =1为函数的极小值点,x =-1为函数的极大值点.函数f (x )在区间(a ,6-a 2)上有最小值,则函数f (x )的极小值点必在区间(a ,6-a 2)内,且左端点的函数值不小于f (1),即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2. 解a <1<6-a 2,得-5<a <1.不等式a 3-3a ≥f (1)=-2,即a 3-3a +2≥0,a 3-1-3(a -1)≥0,(a -1)(a 2+a -2)≥0,即(a -1)2(a +2)≥0,即a ≥-2,故实数a 的取值范围为[-2,1). 答案 [-2,1)四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知数列{a n }的前n 项和为S n ,且2S n =3a n -1. (1)求数列{a n }的通项公式;(2)若数列{b n -a n }是等差数列,且b 1=2,b 3=14,求数列{b n } 的前n 项和T n . 解 (1)数列{a n }的前n 项和为S n ,且2S n =3a n -1①. 当n =1时,解得a 1=1. 当n ≥2时,2S n -1=3a n -1-1②, ①-②得,a n =3a n -1,又a 1≠0, 故a na n -1=3(常数),所以数列{a n }是以1为首项,3为公比的等比数列. 所以a n =3n -1.(2)数列{b n -a n }是等差数列,且b 1=2,b 3=14, 设c n =b n -a n ,则c 1=b 1-a 1=1,c 3=b 3-a 3=5, 公差d =c 3-c 12=5-12=2,所以c n =2n -1.则b n =a n +c n =3n -1+2n -1.故T n =(30+31+…+3n -1)+(1+3+…+2n -1)=3n -13-1+n (2n -1+1)2=3n-12+n 2.18.(本小题满分12分)设a ∈R ,函数f (x )=13x 3-12(2a +1)x 2+(a 2+a )x .(1)若函数g (x )=f ′(x )x(x ≠0)为奇函数,求实数a 的值; (2)若函数f (x )在x =2处取得极小值,求实数a 的值. 解 (1)由已知,得f ′(x )=x 2-(2a +1)x +a 2+a ,g (x )=f ′(x )x =x +a 2+a x-2a -1,x ≠0.∵g (x )=f ′(x )x(x ≠0)为奇函数, ∴∀x ≠0,g (-x )+g (x )=0,即-2a -1=0, ∴a =-12.(2)f ′(x )=x 2-(2a +1)x +a 2+a =(x -a )[x -(a +1)].当x 变化时,f ′(x ),f (x )的变化情况如下表:19.(本小题满分12分)已知数列{a n }满足a 1=1,a n +1=2a n +1. (1)证明数列{a n +1}是等比数列,并求数列{a n }的通项公式; (2)令b n =3n ·(a n +1),求数列{b n }的前n 项和T n . 解 (1)由a n +1=2a n +1可得a n +1+1=2(a n +1).∵a 1+1=2≠0,∴{a n +1}是首项为2,公比为2的等比数列. ∴a n +1=2×2n -1=2n ,∴a n =2n-1.(2)由(1)知b n =3n ·2n,∴T n =3×21+6×22+9×23+…+3(n -1)·2n -1+3n ·2n,∴2T n =3×22+6×23+9×24+…+3(n -1)·2n+3n ·2n +1,∴-T n =3×(21+22+23+…+2n )-3n ·2n +1=3×2(1-2n )1-2-3n ·2n +1=(3-3n )2n +1-6.∴T n =(3n -3)·2n +1+6.20.(本小题满分12分)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于数列{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2, 当n ≥2时,a n =S n -S n -1 =n 2+n -(n -1)2-(n -1)=2n , 又a 1=2=2×1适合上式.综上,数列{a n }的通项公式a n =2n (n ∈N *).(2)证明 由于a n =2n ,则b n =n +1(n +2)2a 2n=n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. T n =116⎣⎢⎡1-132+122-142+132-152+…⎦⎥⎤+1(n -1)2-1(n +1)2+1n 2-1(n +2)2 =116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝ ⎛⎭⎪⎫1+122=564.所以对于任意的n ∈N *,都有T n <564.21.(本小题满分12分)已知函数f (x )=x ln x (x >0). (1)求f (x )的单调区间和极值;(2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.解 (1)由f (x )=x ln x (x >0),得f ′(x )=1+ln x , 令f ′(x )>0,得x >1e ;令f ′(x )<0,得0<x <1e.∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫1e ,+∞,单调减区间是⎝ ⎛⎭⎪⎫0,1e . 故f (x )在x =1e 处有极小值f ⎝ ⎛⎭⎪⎫1e =-1e ,无极大值.(2)由f (x )≥-x 2+mx -32及f (x )=x ln x ,得m ≤2x ln x +x 2+3x恒成立,问题转化为m ≤⎝ ⎛⎭⎪⎫2x ln x +x 2+3x min.令g (x )=2x ln x +x 2+3x (x >0),则g ′(x )=2x +x 2-3x2, 由g ′(x )>0⇒x >1,由g ′(x )<0⇒0<x <1.所以g (x )在(0,1)上是减函数,在(1,+∞)上是增函数,所以g (x )min =g (1)=4, 因此m ≤4,所以m 的最大值是4.22.(本小题满分12分)已知函数f (x )=x 3+ax . (1)讨论函数f (x )的单调性;(2)若函数g (x )=f (x )-x ln x 在⎣⎢⎡⎦⎥⎤12,2上有零点,求实数a 的取值范围.解 (1)因为f (x )=x 3+ax ,所以f ′(x )=3x 2+a .①当a ≥0时,f ′(x )=3x 2+a ≥0,所以f (x )在R 上单调递增; ②当a <0时,令f ′(x )>0, 得x <--3a 3或x >-3a3; 令f ′(x )<0,得--3a 3<x <-3a3. 则f (x )在⎝⎛⎭⎪⎫-∞,--3a 3,⎝ ⎛⎭⎪⎫-3a 3,+∞上单调递增,在⎝⎛⎭⎪⎫--3a 3,-3a 3上单调递减.(2)因为g (x )=f (x )-x ln x ,所以g (x )=x 3+ax -x ln x .函数g (x )在⎣⎢⎡⎦⎥⎤12,2上有零点,等价于方程g (x )=0在⎣⎢⎡⎦⎥⎤12,2上有解,即x 3+ax -x ln x =0在x ∈⎣⎢⎡⎦⎥⎤12,2上有解.因为x 3+ax -x ln x =0,所以a =-x 2+ln x .设h (x )=-x 2+ln x ,x ∈⎣⎢⎡⎦⎥⎤12,2,则h ′(x )=-2x +1x =-2x 2-1x ,x ∈⎣⎢⎡⎦⎥⎤12,2. 令h ′(x )<0,得22<x ≤2; 令h ′(x )>0,得12≤x <22,则h (x )在⎝⎛⎦⎥⎤22,2上单调递减,在⎣⎢⎡⎭⎪⎫12,22上单调递增.因为h ⎝ ⎛⎭⎪⎫12=-⎝ ⎛⎭⎪⎫122+ln 12=-14-ln 2, h (2)=-22+ln 2=-4+ln 2,所以h ⎝ ⎛⎭⎪⎫12-h (2)=154-2ln 2>154-2>0, 则h (x )min =h (2)=-4+ln 2,h (x )max =h ⎝⎛⎭⎪⎫22=-12+ln 22=-12-12ln 2, 故实数a 的取值范围为⎣⎢⎡⎦⎥⎤-4+ln 2,-12-12ln 2.。
单元质检卷五 数列(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021湖南永州高三月考)“a ,b ,c 成等比数列”是“a 2,b 2,c 2成等比数列”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 2.(2021福建宁德高三三模)在等差数列{a n }中,其前n 项和为S n ,若S 1=S 25,a 3+a 8=32,则S 16=( ) A.80B.160C.176D.198 3.(2021湖北武汉高三月考)“十二平均律”是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的振动数之比完全相等,亦称“十二等程律”,即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音的频率是最初那个音的2倍.设第8个音的频率为f ,则频率为√842f的音是( ) A.第3个音 B.第4个音C.第5个音D.第6个音 4.(2021河北邯郸高三期末)在等差数列{a n }中,a 2+2a 5=15,S n 为数列{a n }的前n 项和,则S 7=( )A.30B.35C.40D.455.(2021湖北武昌高三一模)已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a2m a m=5m+1m -1,则数列{a n }的公比为( )A.-2B.2C.-3D.36.(2021浙江金华高三月考)已知数列na n 是等差数列,则( )A.a 3+a 6=2a 4B.a 3+a 6=a 4+a 5C.1a 3+1a 6=2a 4D.1a 3+1a 6=1a 4+1a 57.(2021北京朝阳高三二模)记S n 为等比数列{a n }的前n 项和,已知a 1=8,a 4=-1,则数列{S n }( ) A.有最大项,有最小项 B .有最大项,无最小项 C.无最大项,有最小项D .无最大项,无最小项8.(2021湖南长郡中学高三二模)在数列{a n }中,a n =1f (n ),其中f (n )为最接近√n 的整数,若数列{a n }的前m 项和为20,则m=( ) A.15B.30C.60D.110二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021山东德州高三期中)在数列{a n}中,a1=1,a n a n-1-a n-1+1=0(n≥2,n∈N*),S n是其前n项和,则()2A.a6=2B.S12=6C.a112=a10a12D.2S11=S10+S1210.(2021河北衡水一中高三月考)已知数列{a n}是等比数列,公比为q,前n项和为S n,下列说法正确的有()为等比数列A.数列1a nB.数列log2a n为等差数列C.数列{a n+a n+1}为等比数列D.若S n=3n-1+r,则r=-1311.(2021广东佛山高三开学考试)若直线3x+4y+n=0(n∈N*)与圆C:(x-2)2+y2=a n2(a n>0)相切,则()A.a1=65B.数列{a n}为等差数列C.圆C可能过坐标原点D.数列{a n}的前10项和为2312.(2021广东珠海高三二模)分形几何学是一门以不规则几何形态为研究对象的几何学,分形的外表结构极为复杂,但其内部却是有规律可循的,一个数学意义上的分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法得到一系列图形,如图1,在长度为1的线段AB,以线段CD为边在线段AB的上方作一个正方形,然后擦掉线AB上取两个点C,D,使得AC=DB=14段CD,就得到图2;对图2中的最上方的线段EF作同样的操作,得到图3;依次类推,我们就得到以下的一系列图形.设图1,图2,图3,……,图n,各图中的线段长度和为a n,数列{a n}的前n项和为S n,则()A.数列{a n}是等比数列B.S10=6657256C.a n<3恒成立D.存在正数m,使得S n<m恒成立三、填空题:本题共4小题,每小题5分,共20分.13.(2021江苏南通高三三模)已知等差数列{a n}的前n项和为S n,公差为d,若S2n=2S n+n2,则d=.14.(2021福建三明高三二模)已知各项均为正数的等比数列{a n}的前n项和为S n,a n a n+1=22n+1,则S n=.15.(2021江西南昌高三开学考试)在数列{a n}中,a n+a n+2=n(n∈N*),则数列{a n}的前20项和S20=.16.(2021北京昌平高三模拟)已知数列{a n}的通项公式为a n=ln n,若存在p∈R,使得a n≤pn对任意n ∈N*都成立,则p的取值范围为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021广西南宁高三月考)已知等差数列{a n}满足a n+2a n+1=3n+5.(1)求数列{a n}的通项公式;(2)记数列1a n a n+1的前n项和为S n.若∀n∈N*,S n<-λ2+4λ(λ为偶数),求实数λ的值.18.(12分)(2021山东泰安高三模拟)已知S n为等比数列{a n}的前n项和,若a3=2,且4a1,3S2,2S3是等差数列{b n}的前三项.(1)求数列{a n}的前n项和S n;(2)求数列{b n}的通项公式,并求使得a n>b n的n的取值范围.19.(12分)(2021重庆巴蜀中学高三月考)已知数列{a n}满足a n>0,数列{a n}的前n项和为S n,若,在以下三个条件中任选一个条件填入横线上,完成问题(1)和(2):①a1+3a2+32a3+…+3n-1a n=n·3n(n∈N*);②数列{c n}满足:c n=1a n+1−1a n,a1=3,且{c n}的前n项和为12n+3−13;③S n=(a n+1)24-1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}是首项和公比均为2的等比数列,求数列{a b}中有多少个小于2 021的项.n20.(12分)已知数列{a n}的前n项和S n满足:tS n+1-S n=t(a n+1+a n-1),t∈R且t(t-1)≠0,n∈N*.(1)求数列{a n}的通项公式;(2)已知数列{b n}是等差数列,且b1=3a1,b2=2a2,b3=a3,求数列{a n b n}的前n项和T n.21.(12分)(2021福建龙岩高三期中)已知各项均为正数的无穷数列{a n}的前n项和为S n,且a1=1,nS n+1=(n+1)S n+n(n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)记[x]表示不超过x的最大整数,如[0.99]=0,[3.01]=3.令b n=[√a n],求数列{b n}的前51项和T51.22.(12分)(2021天津和平高三模拟)已知函数f(x)=x2+m,其中m∈R,定义数列{a n}如下:a1=0,a n+1=f(a n),n∈N*.(1)当m=1时,求a2,a3,a4的值;(2)是否存在实数m,使a2,a3,a4成公差不为0的等差数列?若存在,请求出实数m的值;若不存在,请说明理由;时,总能找到k∈N*,使得a k>2 021.(3)求证:当m>14单元质检卷五 数列1.A 解析 若a ,b ,c 成等比数列,则b 2=ac ,此时a 2c 2=(ac )2=b 4,则a 2,b 2,c 2成等比数列,即充分性成立.反之当a=1,b=1,c=-1时满足a 2,b 2,c 2成等比数列,但a ,b ,c 不成等比数列,即必要性不成立,即“a ,b ,c 成等比数列”是“a 2,b 2,c 2成等比数列”的充分不必要条件.故选A .2.B 解析 设等差数列{a n }的首项为a 1,公差为d ,则根据题意可知,{a 1=25a 1+12×25×24×d ,a 1+2d +a 1+7d =32,即{2a 1+25d =0,2a 1+9d =32,解得{a 1=25,d =-2,故S 16=16×25+12×16×15×(-2)=160.故选B .3.C 解析 由题意知,这13个音的频率成等比数列,设这13个音的频率分别是a 1,a 2,…,a 13,公比为q (q>0),则a13a 1=q 12=2,得q=√212,所以a n =a 8q n-8=(√212)n-8f=2n -812f.令2n -812f=√842f=2-14f ,解得n=5.故选C .4.B 解析 由a 2+2a 5=15得a 2+a 4+a 6=15,即3a 4=15,因此a 4=5,于是S 7=7a 4=7×5=35.故选B .5.B 解析 设数列{a n }的公比为q.若q=1,则S 2m S m=2,与题中条件矛盾,故q ≠1.∵S2m S m=a 1(1-q 2m )1-q a 1(1-q m )1-q=q m +1=9,∴q m=8.∵a 2m a m=a 1q 2m -1a 1q m -1=q m =8=5m+1m -1,∴m=3,∴q 3=8,∴q=2.故选B .6.C 解析 设数列na n 的公差为d ,则4a 4=3a 3+d ,5a 5=3a 3+2d ,6a 6=3a 3+3d ,因此1a 3+1a 6=1a 3+163a 3+3d =123a 3+d =12×4a 4=2a 4,故选项C 正确;a 6=2a 3da 3+1,a 4=4a 3da 3+3,不满足a 3+a 6=2a 4,故选项A 错误;a 5=5a 32da 3+3,a 3+a 6≠a 4+a 5,故选项B 错误;1a 3+1a 6=32a 3+12d ,1a 4+1a 5=2720a 3+1320d ,则1a 3+1a 6≠1a 4+1a 5,故选项D 错误.故选C .7.A 解析 设数列{a n }的公比为q ,则q 3=a 4a 1=-18,所以q=-12,所以S n =a 1(1-q n )1-q=8[1-(-12) n ]1-(-12)=1631--12n.当n 为偶数时,S n =1631-12n,即S 2<S 4<S 6<…<163;当n 为奇数时,S n =163(1+12n),即S 1>S 3>S 5>…>163,所以数列{S n }有最大项S 1,最小项S 2,故选A .8.D 解析 由题意知,函数f (n )为最接近√n 的整数.f (1)=1,f (2)=1,f (3)=2,f (4)=2,f (5)=2,f (6)=2,f (7)=3,f (8)=3,f (9)=3,f (10)=3,f (11)=3, f (12)=3,…,由此可得在最接近√n 的整数f (n )中,有2个1,4个2,6个3,8个4,….又由a n =1f (n ),可得a 1=a 2=1,a 3=a 4=a 5=a 6=12,a 7=a 8=…=a 12=13,…,则a 1+a 2=2,a 3+a 4+a 5+a 6=2,a 7+a 8+…+a 12=2,….因为数列{a n }的前m 项和为20,即S m =10×2=20,可得m 为首项为2,公差为2的等差数列的前10项和,所以m=10×2+10×92×2=110.故选D .9.ABC 解析 当n=2时,有a 2a 1-a 1+1=0,即12a 2-12+1=0,解得a 2=-1,同理可得a 3=2,a 4=12,因此数列{a n }的项以3为周期重复出现,且S 3=a 1+a 2+a 3=12-1+2=32,所以a 6=a 3=2,故选项A正确;S 12=4S 3=4×32=6,故选项B 正确;因为a 11=a 2=-1,a 10=a 1=12,a 12=a 3=2,所以a 112=a 10a 12,故选项C 正确;因为2S 11=2(S 9+a 10+a 11)=23×32+12-1=8,S 10+S 12=S 9+a 10+S 12=3S 3+4S 3+a 10=7×32+12=11,所以2S 11≠S 10+S 12,故选项D 不正确,故选ABC.10.AD 解析 对于A 选项,设b n =1a n ,则b n+1b n =a n a n+1=1q (n ≥1,n ∈N *),所以数列1a n 为等比数列,故A 正确;对于B 选项,若a n <0,则log 2a n 没意义,故B 错误;对于C 选项,当q=-1时,a n +a n+1=0,等比数列的任一项都不能为0,故C 错误;对于D 选项,由题意得q ≠1,S n =a 1(1-q n )1-q=a 1q q -1q n-1-a 1q -1.由S n =3n-1+r 得,q=3,a 1q q -1=1,即a 1=23,所以r=-a 1q -1=-13,故D 正确.故选AD .11.BCD 解析 由圆C :(x-2)2+y 2=a n 2(a n >0),则圆心C (2,0),半径为a n .因为直线3x+4y+n=0与圆C :(x-2)2+y 2=a n 2(a n >0)相切,所以圆心C (2,0)到直线3x+4y+n=0的距离为a n ,即√9+16=n+65=a n ,则a 1=75,故选项A 错误;由a n =n+65,可得a n+1-a n =15,所以数列{a n }是以15为公差的等差数列,故选项B 正确;将(0,0)代入C :(x-2)2+y 2=a n 2,解得a n =2.由n+65=2,解得n=4,所以当n=4时,圆C 过坐标原点,故选项C 正确;设数列{a n }的前n 项和为S n ,则S n =n(75+n+65)2=n (n+13)10,所以S 10=10×(10+13)10=23,故选项D 正确.故选BCD.12.BC 解析 由题意可得a 1=1,a 2=a 1+2×12,a 3=a 2+2×122,以此类推可得a n+1=a n +2×12n ,则a n+1-a n =22n ,所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)=1+221+222+…+22n -1=1+1-12n -11-12=3-12n -2,所以数列{a n }不是等比数列,故A 错误;对于B 选项,S 10=3×10-2(1-1210)1-12=26+128=6 657256,故B 正确;对于C 选项,a n =3-12n -2<3恒成立,故C 正确;对于D 选项,因为a n =3-12n -2>0恒成立,且a n+1-a n =3-12n -1-3+12n -2=12n -1>0,则数列{S n }为递增数列,所以数列{S n }无最大值,因此不存在正数m ,使得S n <m ,故D 错误.故选BC .13.1 解析 因为数列{a n }为公差为d 的等差数列,所以S 2n =2n (a 1+a 2n )2=n (a 1+a 2n ),S n =n (a 1+a n )2.又S 2n =2S n +n 2,所以n (a 1+a 2n )=2×n (a 1+a n )2+n 2,即a 1+a 2n =a 1+a n +n ,所以a 2n -a n =nd=n ,解得d=1.14.2n+1-2 解析 设各项均为正数的等比数列{a n }的公比为q (q>0),首项为a 1(a 1>0). 因为a n a n+1=22n+1,所以a n+1a n+2=22n+3,因此a n+1a n+2an a n+1=22n+322n+1=4,即q 2=4,所以q=2.而a 1a 2=8,即a 12q=8,所以a 1=2,所以S n =2(1-2n )1-2=2n+1-2.15.95 解析 因为a n +a n+2=n (n ∈N *),所以a n+1+a n+3=n+1(n ∈N *),所以a n +a n+1+a n+2+a n+3=2n+1(n ∈N *),所以S 20=a 1+a 2+…+a 20=(a 1+a 2+a 3+a 4)+…+(a 17+a 18+a 19+a 20)=2×1+1+2×5+1+2×9+1+2×13+1+2×17+1=2×(1+5+9+13+17)+5=2×(1+17)×52+5=95. 16.ln33,+∞ 解析 若存在p ∈R ,使得a n ≤pn 对任意的n ∈N *都成立,则p ≥lnnnmax .设f (x )=lnxx(x ∈N *),则f'(x )=1x ·x -lnxx 2.令f'(x )=1-lnxx 2=0,解得x=e,所以函数f (x )在(0,e)上单调递增,在(e,+∞)上单调递减,所以函数在x=e 时取最大值.因为n ∈N *,所以当n=3时函数最大值为ln33,所以p 的取值范围是ln33,+∞. 17.解 (1)设等差数列{a n }的公差为d. 因为a n +2a n+1=3n+5,所以{a 1+2a 2=8,a 2+2a 3=11即{3a 1+2d =8,3a 1+5d =11,解得{a 1=2,d =1,所以a n =2+(n-1)=n+1.经检验,a n =n+1符合题设,所以数列{a n }的通项公式为a n =n+1. (2)由(1)得,1a n a n+1=1(n+1)(n+2)=1n+1−1n+2,所以S n =12−13+13−14+…+1n+1−1n+2=12−1n+2. 因为n ∈N *,所以S n <12.又因为∀n ∈N *,S n <-λ2+4λ, 所以-λ2+4λ≥12,即(λ-2)2≤72. 因为λ为偶数,所以实数λ的值为2.18.解 (1)设等比数列{a n }的公比为q.由4a 1,3S 2,2S 3是等差数列{b n }的前三项,得6S 2=4a 1+2S 3,即3S 2=2a 1+S 3, 所以3(a 1+a 1q )=2a 1+a 1+a 1q+a 1q 2,整理得q 2=2q ,解得q=2. 由a 3=2,得a 1×22=2,所以a 1=12, 所以S n=12(1-2n )1-2=2n -12. (2)由(1)得a n =2n-2,所以4a 1=2,3S 2=92,2S 3=7, 即等差数列{b n }的前三项为2,92,7, 所以b n =2+(n-1)92-2=12(5n-1).由a n >b n ,得12×2n-1>12×(5n-1),即2n-1>5n-1. 令c n =2n-1-5n+1,则有c n+1-c n =2n-1-5.当1≤n ≤3时,c n+1-c n <0,即c 1>c 2>c 3>c 4; 当n ≥4时,c n+1-c n >0,即c 4<c 5<…<c n <…. 而c 1=-3,c 5=-8,c 6=3,所以使a n >b n 的n 的取值范围是{n|n ≥6,n ∈N *}. 19.解 (1)若选①.因为a 1+3a 2+32a 3+…+3n-1a n =n·3n (n ∈N *),所以当n ≥2时,a 1+3a 2+32a 3+…+3n-2a n-1=(n-1)·3n-1, 两式相减得3n-1a n =(2n+1)·3n-1,则a n =2n+1. 又a 1=2+1=3,符合上式,所以a n =2n+1(n ∈N *). 若选②.由于c1+c2+…+c n=1a2−1a1+1a3−1a2+…+1a n+1−1a n=1a n+1−1a1=12n+3−13,又a1=3,所以a n+1=2n+3,因此当n≥2时,a n=2n+1.又a1=2+1=3,符合上式,所以a n=2n+1(n∈N*).若选③.当n=1时,a1=3.因为S n=(a n+1)24-1(n∈N*),所以当n≥2时,S n-1=(a n-1+1)24-1(n∈N*),两式相减得a n=S n-S n-1=(a n+1)24−(a n-1+1)24,即4a n=a n2+2a n+1-a n-12-2an-1-1,所以(a n+a n-1)(a n-a n-1-2)=0.又a n>0,所以a n-a n-1=2, 故数列{a n}为等差数列,而a1=3,d=2,所以a n=2n+1.(2)由已知得b n=2n,所以a bn =2b n+1=2n+1+1,易知数列{a bn}为递增数列.又210=1 024<2 021,211=2 048>2 021,所以n+1≤10,n≤9,n∈N*,所以数列{a bn}中有9个小于2 021的项.20.解(1)当n=1时,tS2-S1=t(a2+a1-1),解得a1=t,当n≥2时,tS n+1-S n=t(a n+1+a n-1),tS n-S n-1=t(a n+a n-1-1),两式相减得ta n+1-a n=t(a n+1-a n-1),即a n=ta n-1.又因为a1=t≠0,所以a n-1≠0,即a na n-1=t,所以数列{a n}是以t为首项,t为公比的等比数列,故数列{a n}的通项公式为a n=t n,n∈N*.(2)由题意可知,2b2=b1+b3,即4a2=3a1+a3,所以4t2=3t+t3.因为t≠0,所以t2-4t+3=0,解得t=3,t=1.又因为t≠1,所以t=3,故a n=3n,n∈N*.设数列{b n}的公差为d.由b1=9,b2=18,b3=27,可知d=9,因此b n=b1+(n-1)d=9+9(n-1)=9n,所以a n b n=9n·3n=n·3n+2,所以T n=1×33+2×34+3×35+…+n·3n+2, ①3T n=1×34+2×35+…+(n-1)·3n+2+n·3n+3, ②①-②得-2T n=33+34+35+…+3n+2-n·3n+3=3n+3-272-n·3n+3,所以T n=(2n-1)3n+3+274.21.解(1)因为nS n+1=(n+1)S n+n(n+1),所以S n+1n+1=S nn+1.又因为S1=a1=1,所以数列S nn是以1为首项,1为公差的等差数列,因此S nn=n,即S n=n2.当n≥2时,a n=S n-S n-1=2n-1,又因为a1=1符合上式,故a n=2n-1(n∈N*).(2)由(1)知b n=[√a n]=[√2n-1],当n∈{1,2}时,b n=[√2n-1]=1;当n∈{3,4}时,b n=[√2n-1]=2;当n∈{5,6,7,8}时,b n=[√2n-1]=3;当n∈{9,10,11,12}时,b n=[√2n-1]=4;当n∈{13,14,15,16,17,18}时,b n=[√2n-1]=5;当n∈{19,20,21,22,23,24}时,b n=[√2n-1]=6;当n∈{25,26,…,31,32}时,b n=[√2n-1]=7; 当n∈{33,34,…,37,40}时,b n=[√2n-1]=8;当n∈{41,42,…,49,50}时,b n=[√2n-1]=9;当n=51时,b n=[√2n-1]=10,所以数列{b n}的前51项和T51=2×1+2×2+4×3+4×4+6×5+6×6+8×7+8×8+10×9+1×10=320.22.(1)解因为m=1,所以f(x)=x2+1.因为a1=0,所以a2=f(a1)=f(0)=1,a3=f(a2)=f(1)=2,a4=f(a3)=f(2)=5.(2)解存在.(方法1)假设存在实数m,使得a2,a3,a4成公差不为0的等差数列,则a2=f(0)=m,a3=f(m)=m2+m,a4=f(a3)=(m2+m)2+m.因为a2,a3,a4成等差数列,所以2a3=a2+a4,所以2(m2+m)=m+(m2+m)2+m,化简得m2(m2+2m-1)=0,解得m=0(舍),m=-1±√2.经检验,此时a2,a3,a4的公差不为0,所以存在m=-1±√2,使得a2,a3,a4成公差不为0的等差数列.(方法2)因为a2,a3,a4成等差数列,所以a3-a2=a4-a3,即a22+m-a2=a32+m-a3,所以(a32−a22)-(a3-a2)=0,即(a3-a2)(a3+a2-1)=0.因为公差d≠0,故a3-a2≠0,所以a3+a2-1=0,解得m=-1±√2.经检验,此时a2,a3,a4的公差不为0,所以存在m=-1±√2,使得a2,a3,a4成公差不为0的等差数列.(3)证明因为a n+1-a n=a n2+m-a n=a n-122+m-14≥m-14,且m>14,所以令t=m-14>0,得a n-a n-1≥t,a n-1-a n-2≥t,…,a2-a1≥t.将上述不等式全部相加得a n-a1≥(n-1)t,即a n≥(n-1)t, 因此要使a k>2 021成立,只需(k-1)t>2 021,因此只要取正整数k>2021t+1,就有a k≥(k-1)t>2021t·t=2 021.综上,当m>14时,总能找到k∈N*,使得a k>2 021.11。
单元检测十一 算法、统计与统计案例(提升卷)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间100分钟,满分130分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018·上海十四校联考)若x 1,x 2,x 3,…,x 10的平均数为3,则3(x 1-2),3(x 2-2),3(x 3-2),…,3(x 10-2)的平均数为( ) A .3 B .9 C .18 D .27 答案 A解析 由题意得x 1+x 2+x 3+…+x 10=30,所以3(x 1-2)+3(x 2-2)+3(x 3-2)+…+3(x 10-2)=3(x 1+x 2+x 3+…+x 10)-60=30,所以所求平均数3(x -2)=3010=3,故选A.2.(2018·青岛模拟)一个公司有8名员工,其中6位员工的月工资分别为5 200,5 300,5 500,6 100, 6 500,6 600,另两位员工数据不清楚,那么8位员工月工资的中位数不可能是( ) A .5 800 B .6 000 C .6 200 D .6 400 答案 D解析 由题意知,当另外两位员工的工资都小于5 200时,中位数为(5 300+5 500)÷2=5 400;当另外两位员工的工资都大于6 600时,中位数为(6 100+6 500)÷2=6 300,所以8位员工月工资的中位数的取值区间为[5 400,6 300],所以这8位员工月工资的中位数不可能是6 400,故选D.3.若x 1,x 2,…,x 2 019的平均数为3,标准差为4,且y i =-3(x i -2),i =1,2,…,2 019,则新数据y 1,y 2,…,y 2 019的平均数和标准差分别为( ) A .-9,12 B .-9,36 C .-3,36 D .-3,12答案 D解析 由平均数和标准差的性质可知,若x 1,x 2,x 3,…,x n 的平均数为x ,标准差为s ,则kx 1+b ,kx 2+b ,kx 3+b ,…,kx n +b 的平均数为k x +b ,标准差为|k |s ,据此结合题意可得y 1,y 2,…,y 2 019的平均数为-3(3-2)=-3,标准差为3×4=12,故选D. 4.执行如图所示的程序框图,若输出的结果为1,则输入x 的值为( )A .-2或-1或3B .2或-2C .3或-1D .3或-2答案 D解析 由-2x -3=1 ,解得x =-2 ,因为-2>2 不成立,所以-2是输入的x 的值;由log 3(x 2-2x )=1 ,即x 2-2x =3 ,解得x =3或x =-1(舍去). 综上,x 的值为-2或3, 故选D.5.(2018·济南模拟)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图,若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱号者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为( )A .2B .4C .5D .6 答案 B解析 由茎叶图得班里40名学生中,获得“诗词达人”称号的有8人,获得“诗词能手”称号的有16人,获得“诗词爱好者”称号的有16人,则由分层抽样的概念得选取的10名学生中,获得“诗词能手”称号的人数为10×1640=4,故选B.6.某市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛,他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86.若正实数a ,b 满足a ,G ,b 成等差数列,且x ,G ,y 成等比数列,则1a +4b的最小值为( )A.49 B .2 C.94 D .9 答案 C解析 甲班学生成绩的中位数是80+x =81,解得x =1.由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y +1+3+6)=598+y ,又乙班学生成绩的平均数是86,所以86×7=598+y ,解得y =4.若正实数a ,b 满足a ,G ,b 成等差数列,且x ,G ,y 成等比数列,则2G =a +b ,xy =G 2,即有a +b =4,则1a +4b =14(a +b )·⎝⎛⎭⎫1a +4b =14⎝⎛⎭⎫1+4+b a +4a b ≥14⎝⎛⎭⎫5+2 b a ·4a b =14×9=94,当且仅当a =43,b =83时,取等号.故选C. 7.某校九年级有400名学生,随机抽取了40名学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,用样本估计总体,下列结论正确的是( )A .该校九年级学生1分钟仰卧起坐的次数的中位数为25B .该校九年级学生1分钟仰卧起坐的次数的众数为24C .该校九年级学生1分钟仰卧起坐的次数超过30的人数约为80D .该校九年级学生1分钟仰卧起坐的次数少于20的人数约为8 答案 C解析 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,所以中位数在第三组内,设中位数为25+x ,则x ×0.08=0.5-0.1-0.3=0.1,所以x =1.25,所以中位数为26.25,故A 错误;最高矩形是第三组数据,第三组数据的中间值为27.5,所以众数为27.5,故B 错误;学生1分钟仰卧起坐的成绩超过30次的频率为0.04×5=0.2,所以超过30次的人数为400×0.2=80,故C 正确;学生1分钟仰卧起坐的成绩少于20次的频率为0.02×5=0.1,所以1分钟仰卧起坐的成绩少于20次的人数为400×0.1=40,故D 错误.故选C.8.某程序框图如图所示,若输出S =3,则判断框中M 为( )A .k <14?B .k ≤14?C .k ≤15?D .k >15? 答案 B解析 由程序框图可知S =11+2+12+3+…+1k +k +1, 因为1k +k +1=k +1-k ,所以S =2-1+3-2+4-3+…+k +1-k =k +1-1, 所以S =k +1-1=3,解得k =15,即当k =15时程序退出, 故选B.9.某班一次测试成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息可确定被抽测的人数及分数在[90,100]内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 答案 C解析 由频率分布直方图可得分数在[50,60)内的频率是0.008×10=0.08,又由茎叶图可得分数在[50,60)内的频数是2,则被抽测的人数为20.08=25.又由频率分布直方图可得分数在[90,100]内的频率与分数在[50,60)内的频率相同,则频数也相同,都是2,故选C.10.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K 2=6.705,则所得到的统计学结论是认为“学生性别与支持该活动没有关系”的把握是( )A.99.9% B .99% C .1% D .0.1% 答案 C解析 因为 6.635<6.705<10.828,所以有1%的把握认为“学生性别与支持该活动没有关系”,故选C.11.设某中学的高中女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到线性回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kgD .若该中学某高中女生身高为160 cm ,则可断定其体重必为50.29 kg 答案 D解析 y 与x 具有正线性相关关系,A 正确;由线性回归方程的性质可知,B 正确;身高每增加1 cm ,体重约增加0.85 kg ,C 正确;某女生身高为160 cm ,则其身高约为50.29 kg ,D 错误,故选D.12.以下四个结论,正确的是( )①质检员从匀速传递的产品生产流水线上,每间隔10分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②在频率分布直方图中,所有小矩形的面积之和为1;③在线性回归方程y ^=0.2x +12中,当变量x 每增加一个单位时,变量y 一定增加0.2个单位; ④对于两个分类变量X 与Y ,求出其统计量K 2的观测值k ,观测值k 越大,我们认为“X 与Y 有关系”的把握程度就越大. A .①④ B .②③ C .①③ D .②④ 答案 D解析 对于①,易得这样的抽样为系统抽样,①错误;对于②,由频率分布直方图的概念易得②正确;对于③,由线性回归方程的概念易得变量y 约增加0.2个单位,③错误;对于④,由独立性检验易得④正确.综上所述,故选D.第Ⅱ卷(非选择题 共70分)二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知下表所示数据的线性回归方程为y ^=4x +242,则实数a =________.答案 262解析 由题意得x =4,y =15(1 028+a ),代入y ^=4x +242,可得15(1 028+a )=4×4+242,解得a =262.14.抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:则成绩较为稳定(方差较小)的那位学生成绩的方差为________. 答案 20解析 由数据可得甲的平均数是15(65+80+70+85+75)=75,方差为15[(65-75)2+(80-75)2+(70-75)2+(85-75)2+(75-75)2]=50,乙的平均数是15(80+70+75+80+70)=75,方差为15[(80-75)2+(70-75)2+(75-75)2+(80-75)2+(70-75)2]=20<50,故成绩较稳定的学生为乙,其方差为20.15.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在[40,60)内的汽车有________辆.答案 80解析 由频率分布直方图可得时速在[40,60)内的频率为(0.01+0.03)×10=0.4,则时速在[40,60)内的汽车有0.4×200=80(辆).16.对某两名高三学生连续9次数学测试的成绩(单位:分)进行统计得到如下折线图.下列有关这两名学生数学成绩的分析中,正确的结论是________.(写出所有正确结论的序号)①甲同学的成绩折线图具有较好的对称性,与正态曲线相近,故而平均成绩为130分; ②根据甲同学成绩折线图中的数据进行统计,估计该同学平均成绩在区间[110,120]内; ③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学在这连续九次测验中的最高分与最低分的差超过40分. 答案 ②③④解析 ①甲同学的成绩折线图具有较好的对称性,最高分是130分,故而平均成绩小于130分,①错误;②根据甲同学成绩折线图中的数据易知,该同学平均成绩在区间[110,120]内,②正确;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中的最高分大于130分,最低分小于90分,差超过40分,故④正确.三、解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)某网站针对“2019年法定节假日调休安排”提出的A ,B ,C 三种放假方案进行了问卷调查,调查结果如下:(1)从所有参与调查的人中,用分层抽样的方法抽取n 个人,已知从支持A 方案的人中抽取了6人,求n 的值;(2)从支持B 方案的人中,用分层抽样的方法抽取5人,这5人中在35岁以下的人数是多少?35岁以上(含35岁)的人数是多少?解 (1)由题意知,6100+200=n 200+400+800+100+100+400,解得n =40.(2)这5人中,35岁以下的人数为5400+100×400=4,35岁以上(含35岁)的人数为5400+100×100=1.18.(12分)某高校组织自主招生考试,共有2 000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名学生的成绩进行统计,将统计的结果按如下方式分成八组:第一组[195,205),第二组[205,215),…,第八组[265,275].如图是按上述分组方法得到的频率分布直方图:(1)求a 的值和这2 000名学生的平均分;(2)若计划按成绩选取1 000名学生进入面试环节,试估计应将分数线定为多少. 解 (1)由(0.004+0.008+0.01×2+a +0.016+0.02×2)×10=1,解得a =0.012, 则这2 000名学生的平均分为200×0.04+(210+220)×0.1+(230+240)×0.2+250×0.16+260×0.12+270×0.08=237.8(分).(2)设这2 000名学生成绩的中位数为x 分,因为0.04+0.1+0.1+0.2=0.44<0.5,0.04+0.1+0.1+0.2+0.2=0.64>0.5,所以中位数x 位于第五组,则(x -235)×0.02=0.5-(0.04+0.1+0.1+0.2),解得x =238. 故应将分数线定为238分.19.(13分)某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系.参考数据:参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解 根据所给数据得到如下2×2列联表:根据2×2列联表中的数据,得到K 2的观测值为 k =50×(30×5-10×5)2(30+10)(5+5)(30+5)(10+5)≈2.38<2.706. ∴不能在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系. 20.(13分)某农科所对冬季昼夜温差x (℃)与某反季节新品种大豆种子的发芽数y (颗)之间的关系进行了分析研究,他们分别记录了12月1日至12月5日每天的昼夜温差与实验室每天每100颗种子的发芽数,得到的数据如下表所示:该农科所确定的研究方案是:先从这5组数据中选取3组求线性回归方程,剩下的2组数据用于线性回归方程的检验.(1)请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^; (2)若由线性回归方程得到的估计数据与所选的验证数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得到的线性回归方程是否可靠?如果可靠,请预测温差为14 ℃时种子的发芽数;如果不可靠,请说明理由. 解 (1)由已知得x =11+13+123=12, y =25+30+263=27, 则b ^=52,a ^=y -b ^x =-3.所以y 关于x 的线性回归方程为y ^=52x -3.(2)当x =10时,y ^=52×10-3=22,|22-23|<2;当x =8时,y ^=52×8-3=17,|17-16|<2.所以(1)中所得到的线性回归方程是可靠的. 当x =14时,有y ^ =52×14-3=32,即预测当温差为14 ℃时,每天每100颗种子的发芽数约为32颗.。
单元检测(六) 数列一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2021·江西五校联考]在等差数列{a n }中,a 1=1,a 6a 5=2,则公差d 的值是( ) A .-13 B .13 C .-14 D .142.公比为2的等比数列{a n }的各项都是正数,则a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .73.[2021·蓉城名校高三联考]若等差数列{a n }的前n 项和为S n ,且S 5=20,a 4=6,则a 2的值为( )A .0B .1C .2D .34.[2022·吉林长春模拟]已知等差数列{a n }的前n 项和为S n ,若S 13<0,S 12>0,则在数列中绝对值最小的项为( )A .第5项B .第6项C .第7项D .第8项5.已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为( )A .a n =2nB .a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2 C .a n =2n -1 D .a n =2n +16.若数列{a n }的通项公式是a n =(-1)n +1·(3n -2)(n ∈N *),则a 1+a 2+…+a 2 018=( )A .-3 027B .3 027C .-3 030D .3 0307.[2021·广东七校联考]已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .88.[2022·山东青岛模拟]设S n 是等差数列{a n }的前n 项和,若S 3S 6 =13 ,则S 6S 12=( ) A .310 B .13 C .18 D .199.在数列{a n }中,已知对任意正整数n ,有a 1+a 2+…+a n =2n -1,则a 21 +a 22 +…+a 2n =( )A .(2n -1)2B .13(2n -1)2 C .4n -1 D .13(4n -1) 10.[2021·湖北武汉部分重点中学联考]等比数列{a n }的前n 项和为S n ,若对任意的正整数n ,S n +2=4S n +3恒成立,则a 1的值为( )A .-3B .1C .-3或1D .1或311.[2022·内蒙古巴彦淖尔月考]定义n p 1+p 2+p 3+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”,已知数列{a n }的前n 项的“均倒数”为12n +1.若b n =a n +14 ,则1b 1b 2 +1b 2b 3 +…+1b 10b 11为( ) A .111 B .910 C .1011 D .111212.数列{a n }满足a 1=65 ,a n =a n +1-1a n -1(n ∈N *),若对n ∈N *,都有k >1a 1 +1a 2 +…+1a n 成立,则最小的整数k 是( )A .3B .4C .5D .6二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.在公差为2的等差数列{a n }中,a 3-2a 5=4,则a 4-2a 7=________.14.已知等差数列{c n }的首项c 1=1,若{2c n +3}为等比数列,则c 2 019=________.15.已知数列{a n }满足递推关系式a n +1=2a n +2n -1(n ∈N *),且⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列,则实数λ的值是________.16.[2022·安徽五校检测]设数列{a n }满足a 1=5,且对任意正整数n ,总有(a n +1+3)(a n +3)=4a n +4成立,则数列{a n }的前2 018项的和为________.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12.(1)求数列{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.18.(本小题满分12分)已知由实数构成的等比数列{a n }满足a 1=2,a 1+a 3+a 5=42.(1)求数列{a n }的通项公式;(2)求a 2+a 4+a 6+…+a 2n 的值.19.(本小题满分12分)已知数列{a n }的前n 项和为S n ,S n =n 2+n +a +1(a 为常数).(1)若a =2,求数列{a n }的通项公式;(2)若数列{a n }是等差数列,b n =a n +1n ·S n +1,求数列{b n }的前n 项和T n .20.(本小题满分12分)已知n ∈N *,设S n 是单调递减的等比数列{a n }的前n 项和,a 2=12,且S 4+a 4,S 6+a 6,S 5+a 5成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =-log 2a n +λn (λ≠-1),数列⎩⎨⎧⎭⎬⎫1b n b n +1 的前n 项和T n 满足T 2 018=2 018,求实数λ的值.21.(本小题满分12分)设数列{a n }的各项均为正数,其前n 项和为S n ,且2S n =a n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)记b n =1a n +a n +1,若b 1+b 2+…+b n >1,求正整数n 的最小值.22.(本小题满分12分)[2021·河南林州调研]已知数列{a n }是等比数列,首项a 1=1,公比q >0,其前n 项和为S n ,且S 1+a 1,S 3+a 3,S 2+a 2成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足a n +1=⎝⎛⎭⎫12 an b n ,T n 为数列{b n }的前n 项和,若T n ≥m 恒成立,求m的最大值.。