江苏省13市2015年中考数学试题分类解析汇编 专题4 不等式(组)问题
- 格式:doc
- 大小:461.26 KB
- 文档页数:11
2015年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)(2015•南京)计算:|﹣5+3|的结果是()A.﹣2 B.2C.﹣8 D.82.(2分)(2015•南京)计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y93.(2分)(2015•南京)如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆5.(2分)(2015•南京)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.(2分)(2015•南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O 相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)(2015•南京)4的平方根是;4的算术平方根是.8.(2分)(2015•南京)若式子在实数范围内有意义,则x的取值范围是.9.(2分)(2015•南京)计算的结果是.10.(2分)(2015•南京)分解因式(a﹣b)(a﹣4b)+ab的结果是.11.(2分)(2015•南京)不等式组的解集是.12.(2分)(2015•南京)已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m的值是.13.(2分)(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(,).14.(2分)(2015•南京)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工 5 7000木工 4 6000瓦工 5 5000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差(填“变小”、“不变”或“变大”).15.(2分)(2015•南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=°.16.(2分)(2015•南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.18.(7分)(2015•南京)解方程:.19.(7分)(2015•南京)计算:(﹣)÷.20.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.21.(8分)(2015•南京)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)(2015•南京)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)(2015•南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)24.(8分)(2015•南京)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.25.(10分)(2015•南京)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26.(8分)(2015•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.27.(10分)(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?2015年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)(2015•南京)计算:|﹣5+3|的结果是()A.﹣2 B.2C.﹣8 D.8考点:有理数的加法;绝对值.分析:先计算﹣5+3,再求绝对值即可.解答:解:原式=|﹣2|=2.故选B.点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.2.(2分)(2015•南京)计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y9考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.解答:解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).3.(2分)(2015•南京)如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=考点:相似三角形的判定与性质.分析:由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2014年底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(2分)(2015•南京)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间考点:估算无理数的大小.分析:先估算的范围,再进一步估算,即可解答.解答:解:∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间,故选:C.点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.(2分)(2015•南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O 相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2考点:切线的性质;矩形的性质.分析:连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.解答:解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)(2015•南京)4的平方根是±2;4的算术平方根是2.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.(2分)(2015•南京)若式子在实数范围内有意义,则x的取值范围是x≥﹣1.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.(2分)(2015•南京)计算的结果是5.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5.点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.10.(2分)(2015•南京)分解因式(a﹣b)(a﹣4b)+ab的结果是(a﹣2b)2.考点:因式分解-运用公式法.分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可.解答:解:(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.(2分)(2015•南京)不等式组的解集是﹣1<x<1.考点:解一元一次不等式组.分析:分别解每一个不等式,再求解集的公共部分.解答:解:,解不等式①得:x>﹣1,解不等式②得:x<1,所以不等式组的解集是﹣1<x<1.故答案为:﹣1<x<1.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.12.(2分)(2015•南京)已知方程x2+mx+3=0的一个根是1,则它的另一个根是3,m 的值是﹣4.考点:根与系数的关系;一元二次方程的解.分析:利用一元二次方程的根与系数的关系,两根的和是﹣m,两个根的积是3,即可求解.解答:解:设方程的另一个解是a,则1+a=﹣m,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.(2分)(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(﹣2,3).考点:关于x轴、y轴对称的点的坐标.分析:分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案.解答:解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.点评:此题主要考查了关于x轴、y轴对称点的性质.(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.(2分)(2015•南京)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工 5 7000木工 4 6000瓦工 5 5000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差变大(填“变小”、“不变”或“变大”).考点:方差.分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大.解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:增大.点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.(2分)(2015•南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= 215°.考点:圆内接四边形的性质.分析:连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.解答:解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.(2分)(2015•南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是y=.考点:反比例函数与一次函数的交点问题.分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,由于点A在反比例函数y1=上,设A(a,),求得点B的坐标代入反比例函数的解析式即可求出结果.解答:解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1=上,∴设A(a,),∴OC=a,AC=,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△OBD,∴,∵A为OB的中点,∴=,∴BD=2AC=,OD=2OC=2a,∴B(2a,),设y2=,∴k=2a•=4,∴y2与x的函数表达式是:y=.故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.解答:解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(7分)(2015•南京)解方程:.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)(2015•南京)计算:(﹣)÷.考点:分式的混合运算.分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.考点:相似三角形的判定与性质.分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.解答:(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.(8分)(2015•南京)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共10000名,其中小学生4500名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为3600名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)(2015•南京)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答:解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.(8分)(2015•南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)考点:解直角三角形的应用.分析:设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO和DO,再利用DC=DO﹣CO,得出x的值即可.解答:解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=≈=13.5.因此,B处距离码头O大约13.5km.点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(8分)(2015•南京)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定.分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP是菱形,只要证MN=NQ,再证∠MGE=∠QFH得出即可.解答:(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF,∵FH平分∠DFE,∴∠EFH=∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证GE=FH、∠GME=∠FGH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)(2015•南京)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析: ①以A 为圆心,以3为半径作弧,交AD 、AB 两点,连接即可;②连接AC ,在AC 上,以A 为端点,截取1.5个单位,过这个点作AC 的垂线,交AD 、AB 两点,连接即可;③以A 为端点在AB 上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC 一个点,连接即可;④连接AC ,在AC 上,以C 为端点,截取1.5个单位,过这个点作AC 的垂线,交BC 、DC 两点,然后连接A 与这两个点即可;⑤以A 为端点在AB 上截取3个单位,再作着个线段的垂直平分线交CD 一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)(2015•南京)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE .(1)求证:∠A=∠AEB ;(2)连接OE ,交CD 于点F ,OE ⊥CD ,求证:△ABE 是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.分析:(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE,然后利用等边对等角可得∠DCE=∠AEB,进而可得∠A=∠AEB;(2)首先证明△DCE是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.解答:证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB;(2)∵∠A=∠AEB,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.(10分)(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.参与本试卷答题和审题的老师有:张其铎;放飞梦想;zcl5287;caicl;sdwdmahongye;王学峰;1987483819;gbl210;sd2011;星期八;733599;zhangCF;CJX;gsls;守拙;sjzx (排名不分先后)菁优网2015年6月25日。
2015年江苏省泰州市中考数学试卷一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣的绝对值是()A.﹣3B.C.﹣D.32.(3分)下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()03.(3分)描述一组数据离散程度的统计量是()A.平均数B.众数C.中位数D.方差4.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱5.(3分)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)6.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上)7.(3分)2﹣1等于.8.(3分)我市2014年固定资产投资约为220 000 000 000元,将220 000 000 000用科学记数法表示为.9.(3分)计算:﹣2等于.10.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.11.(3分)圆心角为120°,半径长为6cm的扇形面积是cm2.12.(3分)如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于.13.(3分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.14.(3分)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.15.(3分)点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是.16.(3分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)17.(12分)(1)解不等式:(2)计算:÷(a+2﹣)18.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.19.(8分)为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.20.(8分)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.21.(10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?22.(10分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,P A:PB=1:5,求一次函数的表达式.23.(10分)如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)24.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tan C.25.(12分)如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由;(3)求四边形EFGH面积的最小值.26.(14分)已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.2015年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣的绝对值是()A.﹣3B.C.﹣D.3【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数即可求解.【解答】解:﹣的绝对值是,故选:B.【点评】考查了绝对值,计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.2.(3分)下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()0【考点】26:无理数;6E:零指数幂.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:π是无理数,故选:C.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.3.(3分)描述一组数据离散程度的统计量是()A.平均数B.众数C.中位数D.方差【考点】W A:统计量的选择.【分析】根据方差的意义可得答案.方差反映数据的波动大小,即数据离散程度.【解答】解:由于方差反映数据的波动情况,所以能够刻画一组数据离散程度的统计量是方差.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【考点】I6:几何体的展开图.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥.故选:A.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.5.(3分)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)【考点】R7:坐标与图形变化﹣旋转.【分析】根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.【解答】解:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,﹣1),根据旋转变换的性质,点(1,﹣1)即为旋转中心.故旋转中心坐标是P(1,﹣1).故选:B.【点评】本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,熟练掌握网格结构,找出对应点的位置是解题的关键.6.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【考点】KB:全等三角形的判定;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【专题】16:压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO ≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上)7.(3分)2﹣1等于.【考点】6F:负整数指数幂.【分析】负整数指数幂:a﹣p=()p,依此计算即可求解.【解答】解:2﹣1=1=.故答案是:.【点评】本题考查了负整数指数幂.负整数指数为正整数指数的倒数.8.(3分)我市2014年固定资产投资约为220 000 000 000元,将220 000 000 000用科学记数法表示为 2.2×1011.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将220 000 000 000用科学记数法表示为2.2×1011.故答案为:2.2×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(3分)计算:﹣2等于2.【考点】78:二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=3﹣=2.故答案为:2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.【考点】JA:平行线的性质.【专题】11:计算题.【分析】先根据平行线的性质,由l1∥l2得∠3=∠1=40°,再根据平行线的判定,由∠α=∠β得AB∥CD,然后根据平行线的性质得∠2+∠3=180°,再把∠1=40°代入计算即可.【解答】解:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.11.(3分)圆心角为120°,半径长为6cm的扇形面积是12πcm2.【考点】MO:扇形面积的计算.【分析】将所给数据直接代入扇形面积公式S扇形=进行计算即可得出答案.【解答】解:由题意得,n=120°,R=6cm,故=12π.故答案为12π.【点评】此题考查了扇形面积的计算,属于基础题,解答本题的关键是熟记扇形的面积公式及公式中字母所表示的含义,难度一般.12.(3分)如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于130°.【考点】M5:圆周角定理;M6:圆内接四边形的性质.【分析】根据圆内接四边形的对角互补求得∠C的度数,再根据圆周角定理求解即可.【解答】解:∵∠A=115°∴∠C=180°﹣∠A=65°∴∠BOD=2∠C=130°.故答案为:130°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.13.(3分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是5.【考点】X3:概率的意义.【分析】根据概率的意义解答即可.【解答】解:事件A发生的概率为,大量重复做这种试验,则事件A平均每100次发生的次数为:100×=5.故答案为:5.【点评】本题考查了概率的意义,熟记概念是解题的关键.14.(3分)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为5.【考点】S9:相似三角形的判定与性质.【分析】易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD的值.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.【点评】本题主要考查的是相似三角形的判定与性质,由角等联想到三角形相似是解决本题的关键.15.(3分)点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是﹣1<a<1.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上时,②当点(a﹣1,y1)、(a+1,y2)在图象的两支上时.【解答】解:∵k>0,∴在图象的每一支上,y随x的增大而减小,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1<y2,∴a﹣1>a+1,解得:无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1<y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故答案为:﹣1<a<1.【点评】此题主要考查了反比例函数的性质,关键是掌握当k>0时,在图象的每一支上,y 随x的增大而减小.16.(3分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为 4.8.【考点】KQ:勾股定理;LB:矩形的性质;PB:翻折变换(折叠问题).【专题】16:压轴题.【分析】由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=8,由ASA证明△ODP ≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8;故答案为:4.8.【点评】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)17.(12分)(1)解不等式:(2)计算:÷(a+2﹣)【考点】6C:分式的混合运算;CB:解一元一次不等式组.【专题】11:计算题;524:一元一次不等式(组)及应用.【分析】(1)根据一元一次不等式组的解法,首先求出每个不等式的解集,再求出这些解集的公共部分即可.(2)根据分式的混合运算顺序,首先计算小括号里面的,然后计算除法,求出算式÷(a+2﹣)的值是多少即可.【解答】解:(1)由x﹣1>2x,可得x<﹣1,由,可得x<﹣8,∴不等式的解集是:x<﹣8.(2)÷(a+2﹣)=÷=﹣【点评】(1)此题主要考查了一元一次不等式组的解法,要熟练掌握,解答此题的关键是要明确:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.(2)此题还考查了分式的混合运算,要注意运算顺序,分式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.18.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.【考点】A3:一元二次方程的解;AA:根的判别式.【分析】(1)找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值.【解答】解:(1)由题意得,a=1,b=2m,c=m2﹣1,∵△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.19.(8分)为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.【考点】V5:用样本估计总体;VB:扇形统计图;VD:折线统计图.【分析】(1)用1减去其余四个部分所占百分比得到“科技类”所占百分比,再乘以360°即可;(2)由折线统计图得出该市2012年抽取的学生一共有300+200=500人,再乘以体育类与理财类所占百分比的和即可;(3)先求出该市2014年参加社团的学生所占百分比,再乘以该市2014年学生总数即可.【解答】解:(1)“科技类”所占百分比是:1﹣30%﹣10%﹣15%﹣25%=20%,α=360°×20%=72°;(2)该市2012年抽取的学生一共有300+200=500人,参加体育类与理财类社团的学生共有500×(30%+10%)=200人;(3)50000×=28750.即估计该市2014年参加社团的学生有28750人.【点评】本题考查的是折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况;扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.也考查了利用样本估计总体.20.(8分)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的只有1种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【考点】8A:一元一次方程的应用.【专题】124:销售问题.【分析】设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.【解答】解:设每件衬衫降价x元,依题意有120×400+(120﹣x)×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出合适的等量关系,列出方程求解.22.(10分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,P A:PB=1:5,求一次函数的表达式.【考点】FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)利用对称轴公式求得m,把P(﹣3,1)代入二次函数y=x2+mx+n得出n=3m﹣8,进而就可求得n;(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得B的纵坐标,代入二次函数的解析式中求得B的坐标,然后利用待定系数法就可求得一次函数的表达式.【解答】解:∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴﹣=﹣1,∴m=2,∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),∴9﹣3m+n=1,得出n=3m﹣8.∴n=3m﹣8=﹣2;(2)∵m=2,n=﹣2,∴二次函数为y=x2+2x﹣2,作PC⊥x轴于C,BD⊥x轴于D,则PC∥BD,∴=,∵P(﹣3,1),∴PC=1,∵P A:PB=1:5,∴=,∴BD=6,∴B的纵坐标为6,代入二次函数为y=x2+2x﹣2得,6=x2+2x﹣2,解得x1=2,x2=﹣4(舍去),∴B(2,6),∴,解得,∴一次函数的表达式为y=x+4.【点评】本题考查了待定系数法求二次函数的解析式和一次函数的解析式,根据已知条件求得B的坐标是解题的关键.23.(10分)如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】(1)根据坡度定义直接解答即可;(2)作DS⊥BC,垂足为S,且与AB相交于H.证出∠GDH=∠SBH,根据=,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS.【解答】解:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∴=,∵DG=EF=2m,∴GH=1m,∴DH==m,BH=BF+FH=3.5+(2.5﹣1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.【点评】本题考查了解直角三角形的应用﹣﹣坡度坡角问题,熟悉坡度坡角的定义和勾股定理是解题的关键.24.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tan C.【考点】MD:切线的判定.【专题】14:证明题.【分析】(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=2AE,CE=4AE,然后在RT△BEC中,即可求得tan C的值.【解答】(1)证明:连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE==2AE,在RT△BEC中,tan C===.【点评】本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定,勾股定理的应用以及直角三角函数等,是一道综合题,难度中等.25.(12分)如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由;(3)求四边形EFGH面积的最小值.【考点】LO:四边形综合题.【专题】16:压轴题.【分析】(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF =GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出结论;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EFGH面积为S,BE=xcm,则BF=(8﹣x)cm,由勾股定理得出S=x2+(8﹣x)2=2(x﹣4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.【解答】(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG,在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形;(2)解:直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的中心;(3)解:设四边形EFGH面积为S,设BE=xcm,则BF=(8﹣x)cm,根据勾股定理得:EF2=BE2+BF2=x2+(8﹣x)2,∴S=x2+(8﹣x)2=2(x﹣4)2+32,∵2>0,∴S有最小值,当x=4时,S的最小值=32,∴四边形EFGH面积的最小值为32cm2.【点评】本题是四边形综合题目,考查了正方形的性质与判定、菱形的判定、全等三角形的判定与性质、勾股定理、二次函数的最值等知识;本题综合性强,有一定难度,特别是(2)(3)中,需要通过作辅助线证明三角形全等和运用二次函数才能得出结果.26.(14分)已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.【考点】FI:一次函数综合题.【专题】15:综合题;16:压轴题.【分析】(1)对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB的中点时d1+d2的值;(2)根据题意确定出d1+d2的范围,设P(m,2m﹣4),表示出d1+d2,分类讨论m的范围,根据d1+d2=3求出m的值,即可确定出P的坐标;(3)设P(m,2m﹣4),表示出d1与d2,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d2,代入d1+ad2=4,根据存在无数个点P求出a的值即可.【解答】解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,即无数个解,∴a﹣2=0,即a=2.【点评】此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.。
中考数学试题分类分析汇编(12专题) 专题3:方程(组)和不定式(组)一.选择题1. (2001年福建福州4分)随着计算机技术的迅猛发展,电脑价格不断降低。
某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为【 】 A. 4(n m )5+元B. 5(n m )4+元 C. (5m n)+元D. (5n m)+元【答案】B 。
【考点】一元一次方程的应用。
【分析】设电脑的原售价为x 元,则()()x m 120%n --=,∴x=5n m 4+。
故选B 。
2. (2003年福建福州4分)不等式组2x 4x 30≥⎧⎨+>⎩的解集是【 】(A ) x>-3 (B )x≥2 (C )-3<x≤2 (D ) x<-3 【答案】B 。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,2x 4x 2x 2x 30x 2≥≥⎧⎧⇒⇒≥⎨⎨+>>-⎩⎩。
故选B 。
3.(2003年福建福州4分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是【 】(A )2x 5x 60++= (B )2x 5x 60-+= (C )2x 5x 60--= (D )2x 5x 60+-=【答案】B 。
【考点】一元二次方程根与系数的关系。
【分析】∵所求一元二次方程的两根是α、β,且α、β满足α+β=5、αβ=6,∴这个方程的系数应满足两根之和是b 5a-=,两根之积是c 6a =。
当二次项系数a=1时,一次项系数b=-5,常数项c=6。
故选B 。
4. (2005年福建福州大纲卷3分)如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为【 】A 、x+y=180x=y+10⎧⎨⎩错误!未找到引用源。
分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
中考数学分类汇编专题测试——不等式(组)一、选择题1.(08山东省日照市)在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( )A .-1<m <3B .m >3C .m <-1D .m >-12.(2008浙江义乌)不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )3.(2008山东烟台) 关于不等式22x a -+≥的解集如图所示,a 的值是( )A 、0B 、2C 、-2D 、-44.(2008年山东省临沂市)若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A . a >0B . a =0C . a >4D . a =45.(2008年辽宁省十二市)不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是( )6.(2008年天津市)若440-=m ,则估计m 的值所在的范围是( ) A .21<<m B .32<<mC .43<<mD .54<<m7.(2008年四川巴中市)点(213)P m -,在第二象限,则m 的取值范围是( ) A .12m > B .12m ≥C .12m <D .12m ≤-31 0 A .-31 0 B .-31 0 C .-31 0 D .1 02 A . 1 0 2 B . 1 0 2 C . 1 0 2 D .8.(2008年成都市)在函数中,自变量x 的取值范围是( );(A )x ≥ - 3(B )x ≤ - 3(C )x ≥ 3(D )x ≤ 39.(2008年乐山市)函数12y x =-的自变量x 的取值范围为( ) A 、x ≥-2 B 、x >-2且x ≠2 C 、x ≥0且≠2 D 、x ≥-2且≠210.(2008年大庆市)使分式21xx -有意义...的x 的取值范围是( ) A .12x ≥ B .12x ≤C .12x >D .12x ≠11.(2008年大庆市)已知关于x 的一元二次方程220x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A .0m < B .2m <- C .0m ≥D .1m >-12.(2008广州市)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>13.(2008广东肇庆市)下列式子正确的是( )A .2a >0 B .2a ≥0 C .a+1>1 D .a ―1>114.(2008云南省)不等式组233x x +⎧⎨-⎩≤≤ 的解集是( )A .3x -≥B .3x ≥图3C .1x ≤D .31x -≤≤15.(08厦门市)在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A .66厘米 B .76厘米 C .86厘米 D .96厘米16.(08绵阳市)以下所给的数值中,为不等式-2x + 3<0的解的是( ).A .-2B .-1C .23D .2 17.(2008年陕西省)把不等式组3156x x -<-⎧⎨-<⎩,的解集表示在数轴上正确的是( )18.(2008年江苏省无锡市)不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <-D.12x <-19.(2008年云南省双柏县)不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <320.(2008湖北黄石)若不等式组5300x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .B .C .D .A .53m ≤B .53m <C .53m >D .53m ≥21.(2008湖北黄石)若23132a b a b +->+,则a b ,的大小关系为( ) A .a b < B .a b > C .a b = D .不能确定22. (2008 河南)不等式—x —5≤0的解集在数轴上表示正确的是 ( )23.(2008 四川 泸州)不等式组310x x >⎧⎨+>⎩的解集是( )A .1x >-B .3x >C .1x <-D .13x -<<24.(2008 湖南 怀化)不等式53-x <x +3的正整数解有( ) (A )1个 (B )2个 (C )3个 (D )4个25.(2008 重庆)不等式042≥-x 的解集在数轴上表示正确的是( )A B C D26.(2008 湖北 恩施)如果a<b<0,下列不等式中错误..的是( ) A. ab >0 B. a+b<0 C.ba<1 D. a-b<027.(2008 河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示, 则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,28.(2008 江西南昌)不等式组2131x x -<⎧⎨>-⎩,的解集是( )A .2x <B .1x >-C .12x -<<D .无解0-202-220 429.不等式组23124x x -->-⎧⎨-+⎩≤的解集在数轴上可表示为( )A B C D30.(2008湖北武汉)不等式3x <的解集在数轴上表示为( ). A. B.C. D.31.(2008江苏盐城)实数a 在数轴上对应的点如图所示,则a ,a -,1的大小 关系正确的是( ) A .1a a -<< B .1a a <-< C .1a a <-< D .1a a <<-32.(2008永州市) 如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b33. (2008永州市)下列判断正确的是( )A .23<3<2 B . 2<2+3<3 C . 1<5-3<2D . 4<3·5<534.(2008 台湾)解不等式32x +1≤92x +31,得其解的范围为何?( ) (A) x ≥ 23 (B) x ≥32 (C) x ≤ -23 (D) x ≤ -32.35.(2008 台湾)某段隧道全长9公里,有一辆汽车以每小时60公里到80公里之间的速率通过该隧道.下列何者可能是该车通过隧道所用的时间?( ) (A) 6分钟 (B) 8分钟 (C) 10分钟 (D) 12分钟二、填空题1.(2008年山东省潍坊市)已知3x+4≤6+2(x-2),则1x + 的最小值等于________.32 1 03 2 1 0 3 2 1 0 a 第2题图2(2008年浙江省绍兴市)如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为 .3.(2008年天津市)不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .4.(2008年沈阳市)不等式26x x -<-的解集为 .5.(2008年大庆市)不等式组253(2)123x x x x ++⎧⎪-⎨<⎪⎩≤的整数解的个数为 .6.(2008山东聊城)已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,则a 的取值范围是 .7.(2008湖北孝感)不等式组84113422x x x x +-⎧⎪⎨≥-⎪⎩的解集是 .8.(2008山东泰安)不等式组210353x x x x >-⎧⎨+⎩,≥的解集为9.(2008年江苏省连云港市)不等式组2494x xx x-<⎧⎨+>⎩的解集是 .10.(2008湖北咸宁)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 .Oxy 1 P y=x+by=ax+311.(08厦门市)不等式组2430x x >-⎧⎨-<⎩的解集是 .12.(2008泰安)不等式组210353x x x x>-⎧⎨+⎩,≥的解集为 .13.(2008年上海市)不等式30x -<的解集是 .三、简答题1.(2008年四川省宜宾市)某学校准备添置一些“中国结”挂在教室.若到商店去批量购买,每个“中国结”需要10元;若组织一些同学自己制作,每个“中国结”的成本是4元,无论制作多少,另外还需共付场地租金200元.亲爱的同学,请你帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?2.(2008年浙江省衢州市)1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元(库存处理费销售总收入总毛利润-=)?(2)设椪柑销售价格定为x )2x 0(≤<元/千克时,平均每天能售出y 千克,求y 关于x 的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?3.(08浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:(第12题图)(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?4、(2008淅江金华)解不等式:5x- 3 < 1- 3x5、(2008浙江宁波) 解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,6.(2008湖南益阳)乘坐益阳市某种出租汽车.当行驶 路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x ≥2时乘车费用y (元)与行驶路程x (千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x 的范围.7.(2008年山东省潍坊市)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1) 种植草皮的最小面积是多少?(2) 种植草皮的面积为多少时绿化总费用最低?最低费用为多少?8.(2008年成都市)解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整数解. 9.(2008年乐山市)若不等式组 231x +<1(3)2x x >- 的整数解是关于x 的方程24x ax -=的根,求a 的值10. 解方程|1||2|5x x -++=.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图(17)可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x=2或x=-3参考阅读材料,解答下列问题:(1)方程|3|4x +=的解为 (2)解不等式|3||4|x x -++≥9;(3)若|3||4|x x --+≤a 对任意的x 都成立,求a 的取值范围11.(2008浙江金华))解不等式:5x- 3 < 1- 3x12.(2008湖北黄冈)解不等式组255432x x x x -<⎧⎨-+⎩≥,.13.(2008湖南株洲)22.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(3) 若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?比赛项目 票价(元/场)男 篮 1000 足 球 800 乒乓球50014. (2008黑龙江哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公4 0 2 -2 1 1司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.15.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?16.(2008年江苏省苏州市)解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥并判断32x =是否满足该不等式组.17.(2008年云南省双柏县)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种 A B C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元)685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.18.(2008湖南郴州)解不等式组:718532x x x +<⎧⎨>-⎩①②19.(2008江苏南京)(6分)解不等式组. 并把解集在数轴上表示出来.0x -2>54-5-4-3-2-132120.(2008山东济南)解不等式组⎩⎨⎧<+>+6342xx,并把解集在数轴上表示出来.21.(2008湖北黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?22.(2008 河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的32,但又不少于B种笔记本数量的31,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?23.(2008 湖南长沙)解不等式组:⎪⎩⎪⎨⎧-<-≤-xxx1434121,并将其解集在数轴上表示出来.0 1 2 3-1-2-3-4-5-624.(2008 湖南怀化)5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.25.(2008北京)解不等式5122(43)x x--≤,并把它的解集在数轴上表示出来.26.(2008安徽)解不等式组31422xx x->-⎧⎨<+⎩①②,并将解集在数轴上表示出来.27.(2008湖北鄂州)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A B,两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a b,的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.28.(2008湖北咸宁)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;总计 240吨260吨 500吨设A、B 两个蔬菜基地的总运费为元,写出与之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案.29. (2008永州市)某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?30.(2008 广东)解不等式x x <-64,并将不等式的解集表示在数轴上.31.(2008 河南实验区)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来.32.(2008广东)解不等式x x <-64,并将不等式的解集表示在数轴上.33.(2008山西太原)解不等式组:()2532213x x x x +≤+⎧⎪⎨-⎪⎩34.(2008湖北襄樊)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的西欧啊朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?35.(2008浙江湖州)解不等式组:⎩⎨⎧>++>-1013112x x x36.(2008湖南常德市)解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x① ②37.(2008湖北宜昌市)解不等式:2(x +21)-1≤-x +938.(2008桂林市)某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)如果该单位要印刷2400份,那么甲印刷厂的费用是 ,乙印刷厂费的用是 .(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?39.(2008广东肇庆市) 解不等式:)20(310x x --≥70.40.(2008江苏淮安)解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.41. (2008浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题.(1(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?42. (2008新疆乌鲁木齐市)解不等式组2392593x x x x ++⎧⎨+>-⎩≥43.(2008黑龙江黑河)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.不等式(组)答案一.选择题1. A2. A3.A4. B5.A6.B7. C8. C9. D 10.D 11.D 12. D 13. B 14. D 15.D 16.C 17.C 18.C19.D 20.A 21.A 22.B 23.B 24.C 25.C 26.C 27.B 28.C 29.D 30.B 31.D 32.C 33.A 34.C 35.B二.填空题1. 12. 1x >3. 34<<-x4. 4x >5. 46.32a -<-≤7. 3x8.52x 2≤9. 3x < 10. x <-1 11. 23x -<< 12. 2<x ≤52 13. 3x < 三.解答题1. 解:设需要中国结x 个,则直接购买需4x+200元,自制需10x 元分两种情况: (1)若10x<4x+200,得2333x <,即少于33个时,到商店购买更便宜 (2)若10x>4x+200,得2333x >即少于33个时,自已制作更便宜. 2. 解:(1))(600060100千克=⨯,所以不能在60天内售完这些椪柑,5000600011000=-(千克)即60天后还有库存5000千克,总毛利润为W=元1175005.0500026000=⨯-⨯;(2))2x 0(1100x 500501.0x 2100y ≤<+-=⨯-+= 要在2月份售完这些椪柑,售价x 必须满足不等式11000)1100x 500(28≥+-解得414.17099x ≈≤ 所以要在2月份售完这些椪柑,销售价最高可定为1.4元/千克.3. 解:(1)25x -;5(25)x --(2)根据题意,得105(25)100x x -->解得15x >x ∴的最小正整数解是16x =答:小明同学至少答对16道题4. 5x+3x<1+38x<4 x<21 5. 解:解不等式(1),得1x -≥. ···················· 2分 解不等式(2),得3x <. ························· 4分 ∴原不等式组的解是13x -<≤. ······················ 6分 6..解:(1) 根据题意可知:y =4+1.5(x -2) ,∴ y =1.5x +1(x ≥2) ················ 4分(2)依题意得:7.5≤1.5x +1<8.5 ··················· 6分∴ 313≤x <5 ····················· 8分7. (1)解设种植草皮的面积为x 亩,则种植树木面积为(30-x )亩,则:1030103(30)2x x x x ⎧⎪≥⎪-≥⎨⎪⎪≥-⎩解得1820x ≤≤答:种植草皮的最小面积是18亩.(2)由题意得:y=8000x+12000(30-x)=360000-4000x ,当x=20时y 有最小值280000元8. 解:解不等式x+1>0,得x >-1 ……2分解不等式x ≤223x -+,得x ≤2 ……2分 ∴不等式得解集为-1<x ≤2 ……1分∴该不等式组的最大整数解是2 ……1分9. 解不等式得31x --,则整数解x=-2代入方程得a=410. 解:(1)1或7-. ·························· 3分(2)3和4-的距离为7,因此,满足不等式的解对应的点3与4-的两侧.当x 在3的右边时,如图(2), 易知4x ≥. ··············· 5分 当x 在4-的左边时,如图(2),易知5x -≤. ·············· 7分∴原不等式的解为4x ≥或5x -≤ ····················· 8分(3)原问题转化为: a 大于或等于|3||4|x x --+最大值. ·········· 9分 当1x -≥时,|3||4|0x x --+≤,当41x -<<-,|3||4|21x x x --+=--随x 的增大而减小,当4x -≤时,|3||4|7x x --+=,即|3||4|x x --+的最大值为7. ······················ 11分 故7a ≥. 12分11. 解:(2)5x+3x<1+38x<4 x<21 12. 解:25,543 2.x x x x -<⎧⎨-+⎩≥ 12()()由不等式(1)得:x <5由不等式(2)得:x ≥3所以:5>x ≥313. 解:(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x +500(15-x )=12000,解得:x = 9 ∴151596x -=-=(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, 解得:2545714y ≤≤.由y 为正整数可得y =5. 15-2y =5答:(1)略 (2)略14. 解:(1)设租用一辆甲型汽车的费用是x 元,租用一辆乙型汽车的费用是y 元.由题意得2250022450x y x y +=⎧⎨+=⎩·························· 2分 -4 图(2)7解得800850x y =⎧⎨=⎩ ······························· 1分答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z 辆,则租用乙型汽车(6)z -辆.由题意得1618(6)100800850(6)5000z z z z +-⎧⎨+-⎩≥≤ ····················· 2分 解得24z ≤≤ ······························ 1分 由题意知,z 为整数,2z ∴=或3z =或4z =∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆. ··············· 1分 方案一的费用是800285045000⨯+⨯=(元);方案二的费用是800385034950⨯+⨯=(元);方案三的费用是800485024900⨯+⨯=(元)500049504900>>,所以最低运费是4900元. ··············· 1分 答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.15. 解:(1)解:由题意: 600120(15)50001(15)2x x x x +-≤⎧⎪⎨≥-⎪⎩,………………2分 解得:5≤x ≤203………………3分 ∵x 为整数,∴x =5,6 ………………4分∴共两种购票方案:方案一:A 种船票5张,B 种船票10张方案二:A 种船票6张,B 种船票9张 ………………5分(2)因为B 种船票价格便宜,因此B 种船票越多,总购票费用少.∴第一种方案省钱,为5×600+120×10=4200(元)………………8分前两年第20题知识点分布:2006年考查内容不等式组设计方案,2007年考查内容不等式组设计方案16. 解:原不等式组的解集是:31x -<≤,x =满足该不等式组. 17. 解:(1)由题得到:2.2x +2.1y+2(30-x -y )=64 所以 y = -2x +40又x ≥4,y ≥4,30-x -y ≥4,得到14≤x ≤18-120(2)Q=6x +8y+5(30-x -y )= -5x +170Q 随着x 的减小而增大,又14≤x ≤18,所以当x =14时,Q 取得最大值,即Q= -5x +170=100(百元)=1万元.因此,当x =14时,y = -2x +40=12, 30-x -y=4所以,应这样安排:A 种水果用14辆车,B 种水果用12辆车,C 种水果用4辆车18. 解不等式① 得x < 1 ··············· 2分 解不等式② 得x > -1 ················ 4分 所以这个不等式组的解集为:-1<x <1 ··············· 6分19. 解:解不等式①,得x<2, …………………………………………………2分解不等式②,得x ≥-1. ………………………………………………4分所以,不等式组的解集是-1≤x<2. ……………………………………5分不等式组的解集在数轴上表示如下:………………………………………………………………………………6分20. 解:解①得x>-2……4分解②得x<3……5分所以,这个不等式组的解集是-2<x<3……6分解集在数轴上表示正确.……7分21. 解 依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则(1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+.由0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ···················· (2分) (2)由201680017560W x =+≥,38x ∴≥.3840x ∴≤≤,38x =,39,40.∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件.②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件.③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件.(3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+-(20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样.③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大. ························· (8分)22. 解:(1)设能买A 种笔记本x 本,则能买B 种笔记本(30-x )本依题意得:12x+8(30-x)=300,解得x=15.因此,能购买A ,B 两种笔记本各15本 …………………………3分(2)①依题意得:w=12n+8(30-n),即w=4n+240,且n <32(30-n )和n ≥)30(31n - 解得215≤n <12 所以,w (元)关于n (本)的函数关系式为:w=4n+240,自变量n 的取值范围是215≤n <12,n 为整数. ………………7分 ②对于一次函数w=4n+240,∵w 随n 的增大而增大,且215≤n <12,n 为整数, 故当n 为8 时,w 的值最小此时,30-n =30-8=22,w =4×8+240=272(元).因此,当买A 种笔记本8本、B 种笔记本22本时,所花费用最少,为272元23. 解:由11024314x x x ⎧-⎪⎨⎪-<-⎩≤得⎩⎨⎧->≤52x x , 不等式组的解集为-5<x≤2.解集在数轴上表示略.24. 解: (1)因为租用甲种汽车为x 辆,则租用乙种汽车()x -8辆.由题意,得()()42830,38820.x x x x +-⎧⎪⎨+-⎪⎩≥≥ 解之,得.5447≤≤x 即共有两种租车方案:第一种是租用甲种汽车7辆,乙种汽车1辆; 第二种是全部租用甲种汽车8辆(2)第一种租车方案的费用为780001600062000⨯+⨯=元 第二种租车方案的费用为8800064000⨯=元 所以第一种租车方案最省钱25. 解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤. 系数化为1,得2x -≥.不等式的解集在数轴上表示: 26. [解] 由①得1x >-, 由②得2x <,∴原不等式组的解集是12x -<<.在数轴上表示为:27. 解:(1)2326a b b a -=⎧⎨-=⎩,1210a b =⎧∴⎨=⎩.(2)设购买污水处理设备A 型设备X 台,B 型设备(10)X -台,则:1210(10)105X X +-≤2.5X ∴≤,X 取非负整数,012X ∴=,,,∴有三种购买方案:①A 型设备0台,B 型设备10台;②A 型设备1台,B 型设备9台;③A 型设备2台,B 型设备8台. (3)由题意:240200(10)2040X X +-≥,1X ∴≥,又2.5X ≤,X ∴为1,2.当1X =时,购买资金为:121109102⨯+⨯=(万元) 当2X =时,购买资金为:122108104⨯+⨯=(万元)∴为了节约资金,应选购A 型设备1台,B 型设备9台28. 解:(1)填表依题意得:. 解得:200x = . (2) w 与x 之间的函数关系为:29200w x =+.C DA 200吨 0吨 B40吨260吨依题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩,,,.,∴40≤x ≤240在29200w x =+中,∵2>0, ∴w 随x 的增大而增大, 表一: 故当x =40时,总运费最小,此时调运方案为如右表一. (3)由题意知(2)9200w m x =-+C D A0吨200吨B 240吨 60吨∴0<m <2时,( 表二:m =2时,在40≤x ≤240的前提下调运方案的总运费不变; 2<m <15时,x =240总运费最小,其调运方案如右表二 . 29. 解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥ ···························· 3分解得:1133x ≥ ······························ 5分 由于x 是车的数量,应为整数,所以x 的最小值为14. ············· 7分 答:至少需要14台B 型车. ························· 8分 30. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:31. 解:()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 解不等式1,得x ≤3 解不等式2,得x >1- 把解集在数轴上表示为:∴原不等式组的解集是—1<x ≤3· 32. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:33. 解:解()2532x x +≤+,得1x ≥-,解213x x -,得3x .所以,原不等式组的解集是13x -≤.34. 解;设该小学有x 个班,则奥运福娃共有(10x+5)套. 由题意,得 解之,得146.3x << ∵x 只能整数,∴x=5,此时10x+5=55 答:该小学有5个班,共有奥运福娃55套35.解:由(1)得x>2(2)得x>3所以不等式组的解集为x>336. 解:解不等式①,得 3≤x .………………………………………2分 解不等式②,得 244->+x x , 即 2->x . …4分 ∴原不等式组的解集为32≤<-x . …………………………6分 37. 解:2x +1-1≤-x +92x +x ≤9 3x ≤9 x ≤338. 解:(1)1308,1320;(2)设该单位需要印刷资料x 份,当2000x ≤时,甲印刷厂的费用是600+0.3x ,乙印刷厂的费用是600+0.3x ,两厂的费用相同;当2000<3000x ≤时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,乙印刷厂的费用是600+0.3x ,甲厂的费用较低;当>3000x 时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,。
不等式(组)一.选择题1.(2015•江苏南昌,第8题3分)不等式组x x ì-?ïíï-<9î11023的解集是 . 答案:解析: 由112x -≤0得x ≤2 ,由-3x <9得x >-3,∴不等式组的解集是-3<x ≤2. 2、(2015·湖南省常德市,第3题3分)不等式组1011x x +>⎧⎨-⎩≤的解集是:A 、2x ≤B 、1x >-C 、1x -<≤2D 、无解 【解答与分析】这是一元一次不等式组的解法:答案为C3.(2015·湖南省衡阳市,第6题3分)不等式组的解集在数轴上表示为( ).A .B .C .D .4.(2015•江苏南京,第11题3分)不等式组的解集是 ___________ .【答案】﹣1<x <1.考点:解一元一次不等式组.5.(2015湖南岳阳第4题3分)一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1 B.﹣2<x≤1C.﹣2≤x<1 D.﹣2≤x≤1考点:在数轴上表示不等式的解集..分析:根据不等式解集的表示方法即可判断.解答:解:该不等式组的解集是:﹣2≤x<1.故选C.点评:本题考查了不等式组的解集的表示,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.6.(2015湖南邵阳第8题3分)不等式组的整数解的个数是()A.3 B.5 C.7 D.无数个考点:一元一次不等式组的整数解..分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:,解①得:x>﹣2,解②得:x≤3.则不等式组的解集是:﹣2<x≤3.则整数解是:﹣1,0,1,2,3共5个.故选B.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(2015•福建泉州第3题3分)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B.C.D.解:解不等式x+2≤0,得x≤﹣2.表示在数轴上为:.故选:D.8.(2015•广东梅州,第7题4分)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在考点:一元一次不等式组的整数解.分析:先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x的整数解即可.解答:解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故选A.点评:此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.(2015•广东佛山,第6题3分)不等式组的解集是()A.x>1 B.x<2 C.1≤x≤2D. 1<x<2考点:解一元一次不等式组.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.解答:解:∵解不等式①得:x<2,解不等式②得:x>1,∴不等式组的解集为1<x<2,故选D.点评:本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.10. (2015•四川南充,第6题3分)若m>n,下列不等式不一定成立的是()(A)m+2>n+2 (B)2m>2n(C)(D)【答案】D考点:不等式的应用.11. (2015•浙江嘉兴,第8题4分)一元一次不等式2(x+1)≥4的解在数轴上表示为(▲)考点:在数轴上表示不等式的解集;解一元一次不等式..分析:首先根据解一元一次不等式的方法,求出不等式2(x+1)≥4的解集,然后根据在数轴上表示不等式的解集的方法,把不等式2(x+1)≥4的解集在数轴上表示出来即可.解答:解:由2(x+1)≥4,可得x+1≥2,解得x ≥1,所以一元一次不等式2(x +1)≥4的解在数轴上表示为:.故选:A .点评:(1)此题主要考查了在数轴上表示不等式的解集的方法,要熟练掌握,解答此题的关键是要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.(2)此题还考查了解一元一次不等式的方法,要熟练掌握,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.13. (2015•四川省宜宾市,第9题,3分) 一元一次不等式组⎩⎨⎧x +2≥05x –1>0的解集是15x >14. (2015•浙江省台州市,第11题)不等式240x -≥的解集是15. (2015•四川乐山,第4题3分)下列说法不一定成立的是( ) A .若,则 B .若,则C .若,则D .若,则【答案】C .考点:不等式的性质.16.(2015·深圳,第7题 分)解不等式12-≥x x ,并把解集在数轴上表示( )【答案】B【解析】解不等式,得:1x ≥-,故选B 。
2015年江苏泰州中考数学真题卷第一部分 选择题(共18分)一、选择题(本大题共有5小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.31-的绝对值是( ) A.-3 B.31 C.31- D.3【考查内容】绝对值的定义. 【答案】B【解析】根据绝对值的定义,可得选B.2.下列 4 个数:()0229π37, , ,其中无理数是( )A.9B.722C.πD.()3【考查内容】有理数和无理数的定义. 【答案】C【解析】根据9=3,22=3.3337…,π,()3=1,π为无理数,所以可得选C.3.描述一组数据离散程度的统计量是( )A.平均数B.众数C.中位数D.方差 【考查内容】有关统计的考察. 【答案】D【解析】根据平均数,众数,中位数,方差的作用,可得选D. 4.一个几何体的表面展开图如图所示,则这个几何体是( )第4题图A.四棱锥B.四棱柱C.三棱锥D.三棱柱【考查内容】空间几何体的考察. 【答案】A【解析】根据几何体的表面展开图可知该几何体为四棱锥,故选A.5.如图,在平面直角坐标系xOy 中,△A B C '''由△ABC 绕点P 旋转得到,则点P 的坐标为( )第5题图A.( 0,1)B.( 1,-1)C.(0,-1)D.(1,0) 【考查内容】图形的变换. 【答案】B【解析】旋转中心点P 应位于AA '、BB '、CC '的垂直平分线的交点上,BB '的垂直平分线是x =1,所以P 的横坐标为1,在x =1上找一点使PA PA '=、PC PC '=,可得P 的坐标为(1,-1).6.如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是 ( )第6题图A.1对B.2对C.3对D.4对 【考查内容】全等三角形. 【答案】D【解析】由题可知△AOE ≌△COE ()SAS ,△COD ≌△BOD ()SAS ,△ACD ≌△ABD ()SAS , △ACO ≌△ABO ()SAS第二部分 非选择题(共132分)二、 填空题7.12-=_____.【考查内容】数的运算. 【答案】12【解析】12-=12. 8.我市2014年固定资产投资约为220 000 000 000元,将220 000 000 000用科学记数法表示为___________.【考查内容】科学记数法. 【答案】2.21110⨯【解析】根据科学记数法得220 000 000 000=2.21110⨯. 9.计算:21218-等于__________. 【考查内容】根式的运算. 【答案】22【解析】原式=32222-=.10.如图,直线 1l ∥2l ,∠α=∠β,∠1=40°,则∠2=_____________°.第10题图【考查内容】平行线的性质.【答案】140 【解析】第10题图由题可知直线 1l ∥2l ,∠α=∠β,∠1=40°,所以∠1+∠2=180°,故∠2=140°.分别过α∠和β∠的顶点作平行于1l 的直线,13,45,67∠=∠∠=∠∠=∠,又因为αβ∠=∠, 所以36∠=∠,∴1740∠=∠=,∴21807140∠=-∠= 11.圆心角为120° ,半径为6cm 的扇形面积为__________cm 2. 【考查内容】扇形面积的考查. 【答案】12π【解析】由扇形的面积公式21 2S r α==212π6=23⋅⨯12π(cm 2). 12.如图,⊙O 的内接四边形ABCD 中,∠A =115°,则∠BOD 等于__________°.第12题图 【考查内容】圆周角和圆心角. 【答案】130【解析】因为∠A +∠BCD =180°且∠A =115°,所以∠BCD =65°,∠BOD =2∠BCD =130°. 13.事件A 发生的概率为201,大量重复做这种试验,事件A 平均每100次发生的次数是__________. 【考查内容】概率. 【答案】5次【解析】由事件A 发生的概率为201,所以事件A 平均每100次发生的次数是201⨯100=5次.14.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为_________.第14题图 【考查内容】相似三角形. 【答案】5【解析】由∠BAD =∠C ,∠ABD =∠CBA 所以△CBA ∽ △ABD ,所以AB BDCB BA=所以9CB = 又因为BD =4,故CD =CB -BD =5.15.点()1,1y a -、()2,1y a +在反比例函数()0>=k xky 的图像上,若21y y <,则a 的范围是 .【考查内容】反比例函数的性质. 【答案】11a -<< 【解析】由反比例函数()0>=k xky ,则图像在一,三象限,且每一支内单调递减,11a a +>-,若存在12y y <,则要使1010a a -<⎧⎨+>⎩,即11a -<<.16.如图, 矩形ABCD 中,AB =8,BC =6,P 为AD 上一点, 将△ABP 沿BP 翻折至△EBP , PE 与CD 相交于点O ,且OE=OD ,则AP 的长为__________.第16题图 【考查内容】全等三角形,相似三角形的考察. 【答案】245【解析】如图所示,DC 与BE 交与点Q .由题AB =8,BC =6,设OD=OE=a ,DP=b,由题将△ABP 沿BP 翻折至△EBP ,故∠ODP =∠OEQ =90°,P A=PE=6-PD =6-b ,在△ODP 与△OEQ 中,DOP EOQ OD OEODP OEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,所以()DPO EQO ASA △≌△,故DP EQ b ==,由勾股定理得,OP=OQ==OQE 和△BQC 中,根据对顶角相等,OQE BQC ∠=∠根据矩形性质,90OEQ BCQ ∠=∠=︒,所以△OQE ∽△BQC 根据相似三角形的性质,OE BCQE Q=,所以6BC QE bCQ OE a⋅==.而根据边的等量关系,AD=P A+PD=OP+OE+PD6a b +=①,且CD=OD+OQ+CQ=68b a a =②.由②-①得62b b a -=通分化简得2,6a b a =-将其b266a a a +=-,化简得()2264,a a a =--解得369164a ==,于是2665a b a ==-,所以P A =6-PD =245. 三、解答题17.(1)解不等式组:⎪⎩⎪⎨⎧-<+>-132121x xx【考查内容】 不等式组【解】12 13 1 2x x x ->⎧⎪⎨+<-⎪⎩①②,先解不等式①1x <-.再解不等式② 8x <-. 所以不等式组得解为8x <-. (2)计算:⎪⎭⎫⎝⎛--+÷--252423a a a a .【考查内容】多项式的运算【解】原式=()2322245a a a a --⎛⎫⨯ ⎪---⎝⎭=()()31233a a a ⎡⎤-⨯⎢⎥+-⎣⎦=()123a -+.18.已知:关于x 的方程01222=-++m mx x . (1)不解方程:判断方程根的情况; (2)若方程有一个根为3,求m 的值. 【考查内容】一元二次方程【解】(1)22=44440m m ∆-+=>,∴方程有两个不相等的实数根.(2)3x =为根,29610m m ∴++-=,2680m m ++=,()()24m m ++=0,122,4m m ∴=-=-.19.为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查.图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项,根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数;(2)该市 2012 年抽取的学生中,参加体育类与理财类社团的学生共有多少人? (3)该市 2014 年共有 50000 名学生,请你估计该市2014年参加社团的学生人数. 每年抽取的学生中参加社团的男、女生 2012年抽取的学生中参加各类社团人数折线统计图 学生情况扇形统计图图① 图② 第19题图【考查内容】统计【解】(1)360°⨯20%=72°,答:圆心角α的度数72°.(2)(300+200)⨯(30%+10%)=200(人), 答:参加体育类与理财类社团的学生共有200人. (3)50000⨯5506002000+=2875(人),答:参加社团的学生人数为2875人.20.一只不透明袋子中装有1个红球、2个黄球,这些球除颜色外都相同.小明搅匀后从中意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球.用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率. 【解】树状图如下:第20题图 P =19, 答:摸出的球都是红球的概率为19. 21.(本题满分10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件, 并以每件120元的价格销售了400件.商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标? 【考查内容】方程.【解】设降价x 元,则 400⨯120+100(120-x )=500⨯80⨯(1+45%) 解得x =20答:每件衬衫降价20元.22.已知二次函数n mx x y ++=2的图像经过点()1,3-P ,对称轴是经过()0,1-且平行于y 轴的直线.(1)求m 、n 的值;(2)如图,一次函数b kx y +=的图像经过点P ,与x 轴相交于点A ,与二次函数的图像相交于另一点B ,点B 在点P 的右侧,5:1:=PB PA , 求一次函数的表达式.第22题图 【考查内容】一元二次方程与一次函数. 【解】①2y x mx n =++的对称轴为1x =-,121m∴-=-⨯,2m ∴=. 22y x x n ∴=++,1=96n ∴-+,2n =-.②222y x x ∴=+-,作PC ⊥x 轴于C ,BD ⊥x 轴于D ,PC BD ∴∥ , APC ABD ∴△∽△,16PC AP BD AB ∴==, 1PC =,6BD ∴=, 6B y ∴=, 2226x x ∴+-=,()()240x x -+=,122,4x x ∴==-(舍去),y kx b =+过(-3,1),(2,6),1=362k b k b -+⎧∴⎨=+⎩ , 14k b =⎧∴⎨=⎩. ∴一次函数的表达式 4.y x =+23.如图,某仓储中心有一斜坡AB ,其坡度为2:1=i ,顶部A 处的高AC 为4m ,B 、C 在同一水平地面上.(1)求斜坡AB 的水平宽度BC ;(2)矩形DEFG 为长方形货柜的侧面图,其中DE =2.5m ,EF =2m.将该货柜沿斜坡向上运送,当BF =3.5m 时,求点D 离地面的高.(236.25≈,结果精确到0.1m )第23题图 【考查内容】相似三角形 【解】(1)12AB ACi BC==, AC =4, 8BC ∴=.故斜坡AB 的水平宽度BC 为8m.(2)延长DG 交BC 于M ,作DN ⊥BC 于N 交AB 于H , DM AB ⊥, ∠ACB =90°, 90MGB ACB ∴=︒∠=∠,B B ∠=∠,BGM BCA ∴△∽△, BG BCGM AC∴=, ∵AC =4, BC =8, BG =3.5+2.5=6, ∴GM =3,∵DE =EF=2 ∴DM =5,由DMN BAC ∴△∽△得DN =25. ∴点D 离地面的高为5.24.如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,过点D 作DF ⊥AC 于点F . (1)试说明DF 是⊙O 的切线; (2)若 AC=3AE ,求C tan .第24题图【考查内容】圆的有关问题.【解】(1)连接OD ,,AB AC OB OD ==,1=B ∴∠∠,B C ∠=∠,1=C ∴∠∠,OD AC ∴∥,DF AC ⊥,OD DF ∴⊥,∴DF 为⊙O 切线(2)连接AD,DE ,,E B B C ∠=∠∠=∠,E C ∴∠=∠,CD DE ∴=,又DF CE ⊥,∴F 为CE 的中点.3AC AE =,设AE =m ,∴AC =3m ,∴CE=4m ,∵F 为CE 的中点.∴CF=2m , ∴AF =m ,∵AB 为直径,∴AD BC ⊥,DF AC ⊥,223m AD AF AC ∴=⋅=,∴3m AD =,6m AD =,32tan ==.26C 25.如图,正方形ABCD 的边长为8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH 是正方形;(2)判断直线EG 是否经过一个定点,并说明理由;(3)求四边形EFGH 面积的最小值.第25题图【考查内容】正方形的判定动点问题.【解】(1)证明:∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB=BC=CD=DA ,∵AE=BF=CG=DH .∴BE=CF=DG=AH ,∴△AEH ≌△BFE ≌△CGF ≌△DHG ,∴EH=EF=FG=GH ,∠1=∠2, ∴四边形EFGH 是菱形.13=90∠+∠︒,∠1=∠2,23=90∴∠+∠︒,90HEF ∴∠=︒.∵四边形EFGH 是菱形.∴四边形EFGH 是正方形.(2)连接BD,EG ,∵BE ∥DG 且BE =DG ,∴四边形BGDE 是平行四边形.∴BD,EG 互相平分交于O ,而O 为正方形的中心.∴EG 必过正方形中心O .(3)设AE=BF=CG=DH=x , ∴BE=CF=DG=AH =8-x , ∴()1=64482EFGH S x x -⨯-四边形=264162x x -+=()22832x x -+=()22432x -+. 所以当x =4时,四边形EFGH 面积的最小为32.26.已知一次函数42-=x y 的图像与x 轴、y 轴分别相交于点A 、B ,点P 在该函数图像上, P 到x 轴、y 轴的距离分别为1d 、2d .(1)当P 为线段AB 的中点时,求21d d +的值;(2)直接写出21d d +的范围,并求当321=+d d 时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使421=+ad d (a 为常数), 求a 的值.备用图 第26题图【考查内容】一次函数的有关问题.【解】(1)()()20 0.4A B -,,∴()12P -,,12=3d d +.(2)① 12d d +≥2.②设(),24P m m -,∴12=24d d m m ++-.当02x ≤≤时,12=423d d m m ++-=,∴()111,2m P =∴.当2m > 时,12=423d d m m +-+=.∴2772,333m P ⎛⎫=∴ ⎪⎝⎭. 当0m <时,不存在. 综上所述:()11,2P , 272,33P ⎛⎫ ⎪⎝⎭. (3)设(),24P m m -,∴1=24d m -,2=d m ,∵P 在线段AB 上,∴02m ≤≤, ∴1=42d m -,2=d m ,∵12=4d ad +,∴424am m +-= , ∴()20a m -=,∵在线段AB 上存在无数个P 点 ∴ 2.a =。
2015年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-12【难度】★【考点分析】本题考查相反数的概念,中考第一题的常考题型,难度很小。
【解析】给2 添上一个负号即可,故选C。
2.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.7【难度】★【考点分析】考查众数的概念,是中考必考题型,难度很小。
【解析】众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,故选B。
3.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×105【难度】★【考点分析】考查科学记数法,是中考必考题型,难度很小。
【解析】科学记数法的表示结果应满足:a⨯10n(1≤ a <10)的要求,C,D 形式不满足,排除,通过数值大小(移小数点位置)可得A 正确,故选A。
4.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2【难度】★☆【考点分析】考察实数运算与估算大小,实数估算大小往年中考较少涉及,但难度并不大。
江苏省13市2015年中考数学试题分类解析汇编(20专题)专题20:压轴题江苏泰州鸣午数学工作室 编辑1. (2015年江苏连云港3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是【 】A. 第24天的销售量为200件B. 第10天销售一件产品的利润是15元C. 第12天与第30天这两天的日销售利润相等D. 第30天的日销售利润是750元 【答案】C .【考点】一次函数的应用;待定系数法的应用;直线上点的坐标与方程的关系;分类思想的应用. 【分析】根据函数图象分别各选项进行分析判断:A 、根据图①可得第24天的销售量为200件,故正确.B .设当0≤t ≤20,一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系为z kx b =+,把(0,25),(20,5)代入得:25120525b k k b b ==-⎧⎧⇒⎨⎨+==⎩⎩,∴25z x =-+.当x =10时,102515z =-+=. 故正确.C .当0≤t ≤24时,设产品日销售量y (单位:件)与时间t (单位;天)的函数关系为11y k t b =+,把(0,100),(24,200)代入得:1111125100624200100b k k b b ⎧==⎧⎪⇒⎨⎨+=⎩⎪=⎩,∴251006y x =+, 当t =12时,y =150,122513z =-+=,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元).而750≠1950,故C 错误.D .第30天的日销售利润为;150×5=750(元),故正确. 故选C .2. (2015年江苏南京2分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为【 】A.133 B. 92 C. 4133D. 25 【答案】A.【考点】矩形的性质;切线的性质;正方形的判定和性质;切线长定理;勾股定理;方程思想的应用. 【分析】如答图,连接,,OE OF OG ,则根据矩形和切线的性质知,四边形,AEOF FOGB 都是正方形. ∵AB =4,∴2AE AF BF BG ====. ∵AD =5,∴3DE DN ==.设GM=NM=x ,则3,3CM BC BG GM x DM DN NM x =--=-=+=+ .在Rt CDM ∆中,由勾股定理得:222DM CD CM =+,即()()222343 x x +=+-,解得,43x =. ∴133DM =. 故选A.3. (2015年江苏苏州3分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为【 】A .4kmB .()22+kmC .22kmD .()42-km 【答案】B .【考点】解直角三角形的应用(方向角问题);矩形的判定和性质;等腰直角三角形的判定和性质. 【分析】如答图,过点B 作BE ⊥AC 交AC 于点E ,过点E 作EF ⊥CD 交CD 于点F ,则根据题意,四边形BDEF 是矩形,△ABE 、△EFC 和△ADC 都是等腰直角三角形, ∵AB =2,∴DF=BF= AB =2,22AE =. ∵∠EBC =∠BCE =22.5°,∴CE =BE =2. ∴22CE CF ==.∴22CD DF CF =+=+(km ). ∴船C 离海岸线l 的距离为()22+ km . 故选B .4. (2015年江苏泰州3分)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是【 】A. 1对B. 2对C. 3对D. 4对 【答案】D.【考点】等腰三角形的性质;线段垂直平分线的性质;全等三角形的判定. 【分析】∵AB =AC ,D 是BC 的中点,∴根据等腰三角形三线合一的性质,易得,,ADB ADC ODB ODC AOB AOC ∆∆∆∆∆∆ ≌≌≌. ∵EF 是AC 的垂直平分线,∴根据线段垂直平分线上的点到线段两端的距离相等的性质,易得AOE COE ∆∆≌. 综上所述,图中全等的三角形的对数是4对. 故选D.5. (2015年江苏无锡3分)如图,Rt △ABC 中,∠ACB =90º,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为【 】A.35 B. 45 C. 23D. 32【答案】B .【考点】翻折变换(折叠问题);折叠的性质;等腰直角三角形的判定和性质;勾股定理.【分析】根据折叠的性质可知34CD AC B C BC ACE DCE BCF B CF CE AB =='==∠=∠∠=∠'⊥,,,,,∴431B D DCE B CF ACE BCF '=-=∠+∠'=∠+∠,.∵90ACB ∠=︒,∴45ECF ∠=︒. ∴ECF V 是等腰直角三角形. ∴45EF CE EFC =∠=︒,. ∴135BFC B FC ∠=∠'=︒. ∴90B FD ∠'=︒. ∵1122ABC S AC BC AB CE =⋅⋅=⋅⋅V ,∴AC BC AB CE ⋅=⋅. 在Rt ABC V 中,根据勾股定理,得A B=5,∴123455CE CE ⋅=⋅⇒=.∴125EF CE ==. 在Rt AEC V 中,根据勾股定理,得2295AE AC CE =-=,∴95ED AE ==.∴35DF EF ED =-=.在Rt B FD 'V 中,根据勾股定理,得222234155B F B D DF ⎛⎫'='-=-= ⎪⎝⎭.故选B .6. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0k x b --的解集为【 】A. <2xB. >2xC. <5xD. >5x【答案】C.【考点】直线的平移;不等式的图象解法;数形结合思想的应用.【分析】如答图,将函数y kx b =-的图像向右平移3 个单位得到函数()3y k x b =--的图象,由图象可知,当<5x 时,函数()3y k x b =--的图象在x 轴上方,即()3>0y k x b =--. ∴关于x 的不等式()3>0k x b --的解集为<5x . 故选C.7. (2015年江苏盐城3分)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为【 】A. B. C. D.【答案】B.【考点】单动点问题;函数图象的分析;正方形的性质;三角形的面积;分类思想和数形结合思想的应用. 【分析】根据题意,可知△ABP 的面积S 随着时间t 变化的函数图像分为五段:当点P 从A →D 时,△ABP 的面积S 是t 的一次函数;当点P 从D →E 时,△ABP 的面积S 不随t 的变化而变化,图象是平行于t 轴的一线段; 当点P 从E →F 时,△ABP 的面积S 是t 的一次函数;当点P 从F →G 时,△ABP 的面积S 不随t 的变化而变化,图象是平行于t 轴的一线段; 当点P 从G →B 时,△ABP 的面积S 是t 的一次函数. 故选B.8. (2015年江苏扬州3分)已知x =2是不等式(5)(32)0x ax a --+≤的解,且x =1不是这个不等式的解,则实数a 的取值范围是【 】A. 1a >B. 2a ≤C. 12a <≤D. 12a ≤≤ 【答案】C.【考点】不等式的解;解一元一次不等式组.【分析】∵x =2是不等式(5)(32)0x ax a --+≤的解,且x =1不是这个不等式的解,∴(25)(232)0212(15)(32)>0>1a a a a a a a --+≤≤⎧⎧⇒⇒<≤⎨⎨--+⎩⎩. 故选C.9. (2015年江苏常州2分)将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【 】A.833cm 2 B.8 cm 2 C. 1633cm 2 D. 16cm 2 【答案】B .【考点】翻折变换(折叠问题);等腰直角三角形的性质.. 【分析】如答图,当AC ⊥AB 时,三角形面积最小,∵∠BA C=90°,∠ACB =45°,∴AB =AC =4cm. ∴S △ABC =12×4×4=8cm 2. 故选B .10. (2015年江苏淮安3分)如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F ,若32=BC AB ,DE =4,则EF 的长是【 】A.38 B. 320 C. 6 D. 10 【答案】C.【考点】平行线分线段成比例的性质. 【分析】∵l 1∥l 2∥l 3,∴DE ABEF BC=. ∵23AB BC =,DE =4,∴4263EF EF =⇒=. 故选C.11. (2015年江苏南通3分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为【 】A. 2.5B. 2.8C. 3D. 3.2 【答案】B.【考点】圆周角定理;勾股定理;相似三角形的判定和性质. 【分析】如答图,连接BD 、CD ,∵AB 为⊙O 的直径,∴∠ADB =90°. ∴22226511BD AB AD =-=-=.∵弦AD 平分∠BAC ,∴CD =BD =11. ∴∠CBD =∠DAB .在△ABD 和△BED 中,∵∠BAD =∠EBD ,∠ADB =∠BDE ,∴△ABD ∽△BED . ∴DE DBDB AD =,即11115511DE DE =⇒=. ∴115 2.85AE AB DE =-=-=. 故选B.12. (2015年江苏宿迁3分)在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数2y x=的图象上,若△P AB 为直角三角形,则满足条件的点P 的个数为【 】 A. 2个 B. 4个 C. 5个 D. 6个 【答案】D .【考点】反比例函数图象上点的坐标特征;圆周角定理;分类思想和数形结合思想的应用. 【分析】如答图,若△P AB 为直角三角形,分三种情况:①当∠P AB =90°时,P 点的横坐标为﹣3,此时P 点有1个; ②当∠PBA =90°时,P 点的横坐标为3,此时P 点有1个; ③当∠APB =90°,以点O 为圆心AB 长为直径的圆与2y x=的图象交于4点,此时P 点有4个. 综上所述,满足条件的P 点有6个. 故选D .13. (2015年江苏镇江3分)如图,坐标原点O 为矩形ABCD 的对称中心,顶点A 的坐标为(1,t ),AB ∥x 轴,矩形A B C D ''''与矩形ABCD 是位似图形,点O 为位似中心,点A ′,B ′分别是点A ,B 的对应点,A B k AB''=.已知关于x ,y 的二元一次方程2134mnx y n x y +=+⎧⎨+=⎩(m ,n 是实数)无解,在以m ,n 为坐标(记为(m ,n ))的所有的点中,若有且只有一个点落在矩形A B C D ''''的边上,则k t ⋅的值等于【 】A.34 B. 1 C. 43 D. 32【答案】D .【考点】位似变换;二元一次方程组的解;坐标与图形性质;反比例函数的性质;曲线上点的坐标与方程的关系.【分析】∵坐标原点O 为矩形ABCD 的对称中心,顶点A 的坐标为(1,t ),∴点C 的坐标为()1t -,-.∵矩形A B C D ''''与矩形ABCD 是位似图形,A B k AB''=, ∴点A ′的坐标为()k kt ,,点C ′的坐标为()k kt -,-.∵关于x ,y 的二元一次方程2134mnx y n x y +=+⎧⎨+=⎩(m ,n 是实数)无解,∴由()323mn x n -=-得mn =3,且32n ≠,即3n m=(m ≠2). ∵以m ,n 为坐标(记为(m ,n ))的所有的点中,有且只有一个点落在矩形A B C D ''''的边上, ∴反比例函数3n m=的图象只经过点A ′或C ′. 而根据反比例函数的对称性,反比例函数3n m =的图象同时经过点A ′或C ′,只有在32,2A ⎛⎫' ⎪⎝⎭,32,2C ⎛⎫'-- ⎪⎝⎭ 时反比例函数3n m =的图象只经过点C ′.∴3322kt kt =-⇒=-. 故选D .1. (2015年江苏连云港3分)如图,在△ABC 中,∠BAC =60°,∠ABC =90°,直线l 1∥l 2∥l 3,l 1与l 2之间距离是1,l 2与l 3之间距离是2,且l 1,l 2,l 3分别经过点A ,B ,C ,则边AC的长为 ▲ .【答案】2213. 【考点】平行线的性质;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理. 【分析】如答图,过点B 作EF ⊥l 2,交l 1于E ,交l 3于F ,∵∠BAC =60°,∠ABC =90°,∴3BCtan BAC AB∠==. ∵直线l 1∥l 2∥l 3,∴EF ⊥l 1,EF ⊥l 3. ∴∠AEB =∠BFC =90°. ∵∠ABC =90°,∴∠EAB =90°﹣∠ABE =∠FBC . ∴△BFC ∽△AEB ,∴3FC BCEB AB==. ∵EB =1,∴FC =3.在Rt △BF C 中,()2222237BC BF FC =+=+=.在Rt △ABC 中,7221332BCAC sin BAC===∠. 2. (2015年江苏南京2分)如图,过原点O 的直线与反比例函数y 1,y 2的图象在第一象限内分别交于点A 、B ,且A 为OB 的中点,若函数11y x=,则y 2与x 的函数表达式是 ▲ .【答案】24y x=. 【考点】反比例函数的图象和性质;曲线上点的坐标与方程的关系;待定系数法的应用. 【分析】设y 2与x 的函数表达式是2k y x=,∵点B 在反比例函数y 2的图象上,∴可设,k B b b ⎛⎫⎪⎝⎭.∵A 为OB 的中点,∴,22b k A b ⎛⎫⎪⎝⎭.∵点A 在反比例函数11y x =的图象上,∴122k bb =,解得4k =. ∴y 2与x 的函数表达式是24y x=. 3. (2015年江苏苏州3分)如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ .【答案】16.【考点】代数式的几何意义;矩形的性质;直角三角形斜边上中线的性质;勾股定理. 【分析】∵四边形ABCD 为矩形,AB =x ,AD =y ,∴DC =x ,BC =y .∵在Rt BDE ∆中,点F 是斜边BE 的中点,DF =4,∴BF = DF =4. ∴在Rt DCF ∆中,222DC CF DF +=,即()22244x y +-=. ∴()22416x y +-=.4. (2015年江苏泰州3分)如图, 矩形ABCD 中,AB =8,BC =6,P 为AD 上一点, 将△ABP 沿BP 翻折至△EBP , PE 与CD 相交于点O ,且OE =OD ,则AP 的长为 ▲ .【答案】245. 【考点】翻折变换(折叠问题);矩形的性质;折叠对称的性质;勾股定理,全等三角形的判定和性质;方程思想的应用.【分析】如答图,∵四边形ABCD 是矩形,∴90,6,8D A C AD BC CD AB ∠=∠=∠=︒==== . 根据折叠对称的性质,得ABP EBP ∆∆≌, ∴,90,8EP AP E A BE AB =∠=∠=︒== .在ODP ∆和OEG ∆中,∵D E OD OE DOP EOG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ODP ∆≌()OEG ASA ∆.∴,OP OG PG GE == . ∴DG EP =.设AP EP x ==,则6,PD GE x DG x ==-= ,∴()8,862CG x BG x x =-=--=+ . 在Rt BCG ∆中,根据勾股定理,得222BC CG BG +=,即()()222682x x +-=+.解得245x =. ∴AP 的长为245. 5. (2015年江苏无锡2分)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 ▲ 元. 【答案】838或910.【考点】函数模型的选择与应用;函数思想和分类思想的应用.【分析】由题意知:小红付款单独付款480元,实际标价为480或480×0.8=600元,小红母亲单独付款520元,实际标价为520×0.8=650元,如果一次购买标价480+650=1130元的商品应付款800×0.8+(1130﹣800)×0.6=838元; 如果一次购买标价600+650=1250元的商品应付款800×0.8+(1250﹣800)×0.6=910元. ∴答案为:838或910.6. (2015年江苏徐州3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径 ▲ . 【答案】1.【考点】圆锥和扇形的计算。
江苏省13市2015年中考数学试题分类解析汇编专题19:综合型问题1. (2015年江苏连云港3分)如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为()34- ,,顶点C 在x 轴的负半轴上,函数()<0ky xx =的图象经过顶点B ,则k 的值为【 】A. 12-B. 27-C. 32-D. 36-【答案】 C .【考点】菱形的性质;勾股定理;曲线上点的坐标与方程的关系.【分析】根据点A 的坐标以及勾股定理、菱形的性质求出点B 的坐标,然后利用待定系数法求出k 的值:如答图,过点A 作AD CO ⊥于点D ,∵A 的坐标为()34- ,,∴3,4OD AD == . ∴在Rt AOD ∆中,根据勾股定理,得5OA =.∵菱形OABC 的顶点A 的坐标为()34- ,,顶点C 在x 轴的负半轴上,∴点B 的坐标为()84- ,. ∵函数()<0ky x x=的图象经过顶点B ,∴4328k k =⇒=-.故选C .2. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0k x b --的解集为【 】A. <2xB. >2xC. <5xD. >5x 【答案】C.【考点】直线的平移;不等式的图象解法;数形结合思想的应用.【分析】如答图,将函数y kx b =-的图像向右平移3 个单位得到函数()3y k x b =--的图象,由图象可知,当<5x 时,函数()3y k x b =--的图象在x 轴上方,即()3>0y k x b =--. ∴关于x 的不等式()3>0k x b --的解集为<5x . 故选C.3. (2015年江苏南通3分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为【 】A. 2.5B. 2.8C. 3D. 3.2 【答案】B.【考点】圆周角定理;勾股定理;相似三角形的判定和性质. 【分析】如答图,连接BD 、CD ,∵AB 为⊙O 的直径,∴∠ADB =90°.∴BD ==∵弦AD 平分∠BAC ,∴CD =BD ∴∠CBD =∠DAB .在△ABD 和△BED 中,∵∠BAD =∠EBD ,∠ADB =∠BDE ,∴△ABD ∽△BED . ∴DE DBDB AD =1155DE =⇒=. ∴115 2.85AE AB DE =-=-=. 故选B.4. (2015年江苏镇江3分)如图,坐标原点O 为矩形ABCD 的对称中心,顶点A 的坐标为(1,t ),AB ∥x 轴,矩形A B C D ''''与矩形ABCD 是位似图形,点O 为位似中心,点A ′,B ′分别是点A ,B 的对应点,A B k AB ''=.已知关于x ,y 的二元一次方程2134mnx y n x y +=+⎧⎨+=⎩(m ,n 是实数)无解,在以m ,n 为坐标(记为(m ,n ))的所有的点中,若有且只有一个点落在矩形A B C D ''''的边上,则k t ⋅的值等于【 】A.34 B. C. 43 D. 32【答案】D .【考点】位似变换;二元一次方程组的解;坐标与图形性质;反比例函数的性质;曲线上点的坐标与方程的关系.【分析】∵坐标原点O 为矩形ABCD 的对称中心,顶点A 的坐标为(1,t ),∴点C 的坐标为()1t -,-.∵矩形A B C D ''''与矩形ABCD 是位似图形,A B k AB''=, ∴点A ′的坐标为()k kt ,,点C ′的坐标为()k kt -,-.∵关于x ,y 的二元一次方程2134mnx y n x y +=+⎧⎨+=⎩(m ,n 是实数)无解,∴由()323mn x n -=-得mn =3,且32n ≠,即3n m =(m ≠2).∵以m ,n 为坐标(记为(m ,n ))的所有的点中,有且只有一个点落在矩形A B C D ''''的边上, ∴反比例函数3n m=的图象只经过点A ′或C ′.而根据反比例函数的对称性,反比例函数3n m =的图象同时经过点A ′或C ′,只有在32,2A ⎛⎫' ⎪⎝⎭,32,2C ⎛⎫'-- ⎪⎝⎭ 时反比例函数3n m =的图象只经过点C ′.∴3322kt kt =-⇒=-. 故选D .1. (2015年江苏苏州3分)如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ .【答案】16.【考点】代数式的几何意义;矩形的性质;直角三角形斜边上中线的性质;勾股定理. 【分析】∵四边形ABCD 为矩形,AB =x ,AD =y ,∴DC =x ,BC =y .∵在Rt BDE ∆中,点F 是斜边BE 的中点,DF =4,∴BF = DF =4. ∴在Rt DCF ∆中,222DC CF DF +=,即()22244x y +-=. ∴()22416x y +-=.2. (2015年江苏泰州3分)点()1,1y a -、()2,1y a +在反比例函数()0>=k xky 的图像上,若21y y <,则a 的范围是 【答案】1<<1a -.【考点】曲线上点的坐标与方程的关系;不等式的性质;分类思想的应用. 【分析】∵点()11,a y -、()21,a y +在反比例函数()0ky k x=>的图像上,∴22,11k k y y a a ==-+ . ∵12y y <,∴()()200111111k k k k ka a a a a a <⇒-<⇒<-+-+-+. ∵0k >,∴1>01<0a a -⎧⎨+⎩或1<01>0a a -⎧⎨+⎩.解1>01<0a a -⎧⎨+⎩得>1<1a a ⎧⎨-⎩,无解;解1<01>0a a -⎧⎨+⎩得<11<<1>1a a a ⎧⇒-⎨-⎩.∴a 的范围是1<<1a -.3. (2015年江苏扬州3分)如图,已知△ABC 的三边长为a b c 、、,且<<a b c ,若平行于三角形一边的直线将△ABC 的周长分成相等的两部分,设图中的小三角形①、②、③的面积分别为123s s s 、、,则123s s s 、、的大小关系是 ▲ (用“<”号连接).【答案】132<<s s s .【考点】阅读理解型问题;代数几何综合问题;图形的分割;平行的性质;相似三角形的判定和性质;不等式的性质.【分析】设△ABC 的周长为m ,面积为S ,如答图,设,AD x AE y == ,则,BD c x CE b y =-=- . ∵平行于三角形一边的直线将△ABC 的周长分成相等的两部分, ∴AD AE BD CE BC +=++,即x y c x b y a +=-+-+. ∴()1122x y a b c m +=++=. ∵DC ∥BC ,∴ADE ABC ∆∆∽.∴21s AD S AB ⎛⎫= ⎪⎝⎭且()122m AD AE AD AE x y mAB AC AB AC c b b c b c ++=====++++.()2mb c +.()2m a b =+()2ma c +. ∵<<abc ,∴()()()0<<<<<<222m m ma b a c b c b c a c b c +++⇒⇒+++∴132<<s s s .4. (2015年江苏常州2分)如图,在⊙O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 ▲ .. 【考点】全等三角形的判定和性质;勾股定理;圆心角、弧、弦的关系;圆周角定理;锐角三角函数定义;特殊角的三角函数值;方程思想的应用.【分析】如答图,过点C 分别作CE ⊥AB 于点E ,CF ⊥AD 于点F ,则∠E =∠CFD =∠CFA =90°,∵点C 为弧BD 的中点,∴»»BCCD =.∴∠BAC =∠DAC ,BC =CD . ∵CE ⊥AB ,CF ⊥AD ,∴CE =CF .∵A 、B 、C 、D 四点共圆,∴∠D =∠CBE .在△CBE 和△CDF 中,∵CBE D E CFD CE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CBE ≌△CDF (AAS ).∴BE =DF .在△AEC 和△AFC 中,∵E AFC EAC FAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△AFC (AAS ).∴AE =AF .设BE =DF =x ,∵AB =3,AD =5,∴AE =AF =x +3,∴5=x +3+x ,解得:x =1,即AE =4. ∵∠BAD =60°,∴∠EAC=30°.∴04cos cos60AE AC EAC ====∠5. (2015年江苏南通3分)关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a 的取值范围是 ▲ . 【答案】9<<24a --.【考点】一元二次方程与二次函数的关系;一元二次方程根的判别式;二次函数的性质;分类思想和数形结合思想的应用.【分析】∵关于x 的一元二次方程2310ax x --=的两个不相等的实数根,∴()()2009>94>341>04a a a a a ≠⎧≠⎧⎪⎪⇒⇒-⎨⎨-∆=--⋅⋅-⎪⎪⎩⎩且0a ≠. 设231y ax x =--∵实数根都在﹣1和0之间, ∴当a >0时,如答图1,由图可知, 当0x =时,>0y ;但0011y =--=-,矛盾, ∴此种情况不存在. 当a <0时,如答图2,由图可知, 当1x =-时,<0y ,即31<0<2a a +-⇒-. 综上所述,a 的取值范围是9<<24a --.6. (2015年江苏宿迁3分)如图,在平面直角坐标系中,点P 的坐标为(0,4),直线334y x =-与x 轴、y 轴分别交于点A ,B ,点M 是直线AB 上的一个动点,则PM 长的最小值为 ▲ .【答案】285. 【考点】单动点问题;直线上点的坐标与方程的关系;垂线段最短的性质;勾股定理;相似三角形的判定和性质.【分析】根据垂线段最短得出PM ⊥AB 时线段PM 最短,分别求出PB 、OB 、OA 、AB 的长度,利用△PBM ∽△ABO ,即可求出答案如答图,过点P 作PM ⊥AB ,则:∠PMB =90°, 当PM ⊥AB 时,P M 最短, ∵直线334y x =-与x 轴、y 轴分别交于点A ,B , ∴点A 的坐标为(4,0),点B 的坐标为(0,﹣3). 在Rt △AOB 中,∵AO =4,BO =3,∴根据勾股定理,得AB=5.∵∠BMP =∠AOB =90°,∠ABO =∠PBM , ∴△PBM ∽△ABO . ∴PB PM AB AO =,即:4354PM+=,解得285PM =. 7. (2015年江苏宿迁3分)当x =m 或x =n (m ≠n )时,代数式223x x -+的值相等,则x =m +n 时,代数式223x x -+的值为 ▲ . 【答案】3.【考点】二次函数的性质;求代数式的值;整体思想的应用. 【分析】设223y x x =-+,∵当x =m 或x =n (m ≠n )时,代数式223x x -+的值相等, ∴抛物线223y x x =-+的对称轴2212m nx -+=-=⨯. ∴2m n +=.∴当2x m n =+=时,222322233x x -+=-⨯+=.8. (2015年江苏镇江2分)如图,AB 是⊙O 的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,若1BD ,则∠ACD = ▲ °.【答案】112.5.【考点】切线的性质;勾股定理;等腰直角三角形的判定和性质..【分析】如答图,连接OC .∵DC 是⊙O 的切线,∴OC⊥DC .∵1BD ,OA=OB=OC=1,∴OD∴1CD ==. ∴OC=CD .∴∠DOC=45°.∵OA=OC,∴∠OAC=∠OCA . ∴∠OCA=12∠DOC=22.5°. ∴∠ACD=∠OCA+∠OCD=22.5°+90°=112.5°.9. (2015年江苏镇江2分)写一个你喜欢的实数m 的值 ▲ ,使得事件“对于二次函数()21132y x m x =--+,当x <﹣3时,y 随x 的增大而减小”成为随机事件.【答案】﹣3(答案不唯一).【考点】开放型;随机事件;二次函数的性质. 【分析】二次函数()21132y x m x =--+的对称轴为()11122m y m --=-=-⨯, ∵当x <﹣3时,y 随x 的增大而减小,∴1<3m --,解得<2m -. ∴m <﹣2的任意实数即可,如m =﹣3(答案不唯一).1. (2015年江苏连云港10分)已知如图,在平面直角坐标系xOy中,直线y =-x 轴、y 轴分别交于A ,B 两点,P 是直线AB 上一动点,⊙P 的半径为1. (1)判断原点O 与⊙P 的位置关系,并说明理由; (2)当⊙P 过点B 时,求⊙P 被y 轴所截得的劣弧的长; (3)当⊙P 与x 轴相切时,求出切点的坐标.【答案】解:(1)原点O 在⊙P 外.理由如下:∵直线y =-x 轴、y 轴分别交于A ,B 两点,∴点()(200A B - ,,,. 在Rt △OAB中,∵OA tan OBA OB ∠=== ∴∠OBA =30°,如答图1,过点O 作OH ⊥AB 于点H , 在Rt △OBH中,OH OB sin OBA =⋅∠=1,∴原点O 在⊙P 外.(2)如答图2,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB =PC ,∴∠PCB =∠OBA =30°.∴⊙P 被y 轴所截的劣弧所对的圆心角为:180°﹣30°﹣30°=120°.∴弧长为:120121803ππ⋅⋅=. 同理:当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为:23π. ∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧的长为:23π. (3)如答图3,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,∵PD ⊥x 轴,∴PD ∥y 轴. ∴∠APD =∠ABO =30°.∴在Rt △DAP 中,130AD DP tan DPA tan =⋅∠=⨯︒=,∴2OD OA AD =-=,∴此时点D 的坐标为:(2,0).当⊙P 与x 轴相切时,且位于x 轴上方时,根据对称性可以求得此时切点的坐标为:(2+0).综上所述,当⊙P 与x 轴相切时,切点的坐标为:(23-,0)或(23+,0). 【考点】圆和一次函数的的综合题;单动点问题;直线上点的坐标与方程的关系;锐角三角函数定义;特殊角的三角函数值;点与圆的位置关系的判定;扇形弧长的计算;直线与圆相切的性质;分类思想的应用.【分析】(1)作辅助线“过点O 作OH ⊥AB 于点H ”,由直线y -x 轴、y 轴分别交于A ,B 两点,可求得点A 、B 的坐标,从而根据锐角三角函数定义和特殊角的三角函数值求得∠OBA =30°,进而应用三角函数可求得OH 的长,继而根据点与圆的位置关系的判定求得结论.(2)分点P 在y 轴右侧和点P 在y 轴左侧两种情况讨论:求得⊙P 被y 轴所截的劣弧所对的圆心角,则可求得弧长.(3)分⊙P 位于x 轴下方和⊙P 位于x 轴上方两种情况讨论即可.2. (2015年江苏苏州8分)如图,已知函数ky x=(x >0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E . (1)若AC =32OD ,求a 、b 的值; (2)若BC ∥AE ,求BC 的长.【答案】解:(1)∵点B (2,2)在函数k y x =(x >0)的图象上,∴44,k y x== . ∵BD ⊥y 轴,∴点D 的坐标为(0,2),2OD =. ∵AC ⊥x 轴,32AC OD =,∵3AC =,即点A 的横坐标为3. ∵点A 在函数4y x =(x >0)的图象上,∴点A 的坐标为4,33⎛⎫ ⎪⎝⎭. ∵一次函数y=ax +b 的图像经过点A 、D ,∴4332a b b ⎧+=⎪⎨⎪=⎩,解得342a b ⎧=⎪⎨⎪=⎩. (2)设点A 的坐标为4,m m ⎛⎫ ⎪⎝⎭ ,则点C 的坐标为(),0m .∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 是平行四边形. ∴CE=BD=2. ∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt AFD ∆中,42tan AF m ADF DF m -∠==;在Rt ACE ∆中,4tan 2AC mAEC EC ∠== ∴4422m m m -=,解得1m =. ∴点C 的坐标为()1,0,BC = 【考点】反比例函数和一次函数综合题;曲线上点的坐标与方程的关系;平行四边形的判定和性质;锐角三角函数定义;勾股定理;方程思想的应用.【分析】(1)根据点在曲线上点的坐标满足方程的关系,由函数ky x=(x >0)的图像经过点A 、B ,求出点A 、D 的坐标,进而由一次函数y=ax +b 的图像经过点A 、D ,求出a 、b 的值.(2)设点A 的坐标为4,m m ⎛⎫ ⎪⎝⎭,则点C 的坐标为(),0m ,根据∠ADF =∠AEC 和42tan m ADF m -∠=、4tan 2m AEC ∠=,从而4422m m m -=,解之即可求解.3. (2015年江苏苏州10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.【答案】解:(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD =∠DAC .∵∠E =∠BAD ,∴∠E =∠DAC .∵BE ∥AD ,∴∠E =∠EDA . ∴∠DAC =∠EDA . ∴ED ∥AC .(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴22241640S S -+=,解得212S =. ∵233ABC S BC BD CD CD S CD CD CD ∆+====,∴2332ABC S S ∆==. 【考点】圆与相似三角形的综合题;平行的判定和性质;圆周角定理;相似三角形的判定和性质;同高三角形面积的性质;解一元二次方程.【分析】(1)一方面,由AD 是△ABC 的角平分线得到∠BAD =∠DAC ,由圆周角定理得到∠E =∠BAD ,从而∠E =∠DAC ;另一方面,由BE ∥AD 得到∠E =∠EDA ,因此∠DAC =∠EDA ,根据内错角相等两直线平行的判定是出结论.(2)由△EBD ∽△ADC 和相似比2BDk DC ==得到124S S =,代入2121640S S -+=求出212S =,根据同高三角形面积的性质求出23ABCS S ∆=,从而得出结果. 4. (2015年江苏泰州10分)如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,过点D 作DF ⊥AC 于点F . (1)试说明DF 是⊙O 的切线; (2)若 AC =3AE ,求C tan .【答案】解:(1)如答图,连接OD ,∵AB =AC ,OB =OD ,∴,B C ODB B ∠=∠∠=∠ . ∴ODB C ∠=∠.∴OD ∥AC . ∵DF ⊥AC ,∴DF ⊥OD . ∴DF 是⊙O 的切线. (2)如答图,连接,AD ED ,∵,E B B C ∠=∠∠=∠ ,∴E C ∠=∠.∴CD DE =. ∵DF ⊥AC ,∴CE CF =.∵AC =3AE ,∴可设AE k =,则3AC k =.∴4,2,CE k CF EF k AF k ==== . ∵AB 为⊙O 的直径,∴AD ⊥BC .又∵DF ⊥AC ,∴223AD AF AC k =⋅=.∴AD =.∴CD =.∴tan2AD C CD ===. 【考点】等腰三角形的性质;平行的判定和性质;切线的判定;圆周角定理;射影定理;勾股定理;锐角三角函数定义.【分析】(1)作辅助线“连接OD ”,构造等腰三角形和平行线,由等腰三角形等边对等角的性质,平行的判定和性质证明DF ⊥OD 即可得出结论.(2)作辅助线“连接,AD ED ”,构造直角三角形,设AE k =,在Rt ADC ∆中应用射影定理求得AD =(没学射影定理的用相似可得),应用勾股定理求得CD =,从而根据正切函数定义求解即可.5. (2015年江苏无锡8分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n (n ≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 ▲ (请直接写出结果). 【答案】解:(1)画树状图如下:∵共有9种等可能的结果,其中符合要求的结果有3种, ∴P(第2次传球后球回到甲手里)=3193=. (2)21n n- 【考点】列表法或树状图法;概率;探索规律题(数字的变化类)..【分析】(1)画树状图或列表,根据图表,可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结果,可得答案.(2)根据第一步传的总结果是n ,第二步传的总结果是2n ,第三步传的总结果是3n ,传给甲的结果是()1n n -,根据概率的意义,第三次传球后球回到甲手里的概率是()2211n n n n n--=. 6. (2015年江苏无锡10分)已知:平面直角坐标系中,四边形OABC 的顶点分别为O (0,0)、A (5,0)、B (m ,2)、C (m -5,2).(1)问:是否存在这样的m ,使得在边BC 上总存在点P ,使∠OPA =90º?若存在,求出m 的取值范围,若不存在,请说明理由;(2)当∠AOC 与∠OAB 的平分线的交点Q 在边BC 上时,求m 的值. 【答案】解:(1)存在.∵()()()()0050252O A B m C m - ,、,、,、,,∴OA =BC =5,BC ∥OA .如答图1,以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,则∠OEA =∠OFA =90°,过点D 作DG ⊥EF 于G ,连接DE ,则DE =OD =2.5,DG =2,EG =GF ,∴ 1.5EG ==.∴E (1,2),F (4,2). 由541m m -≤⎧⎨≥⎩解得,19m ≤≤,∴当19m ≤≤时,边BC 上总存在这样的点P ,使∠OPA =90°.(2)如答图2,∵BC =OA =5,BC ∥OA ,∴四边形OABC 是平行四边形. ∴OC ∥AB . ∴∠AOC +∠OAB =180°.∵OQ 平分∠AOC ,AQ 平分∠OAB , ∴∠AOQ =12∠AOC ,∠OAQ =12∠OAB . ∴∠AOQ +∠OAQ =90°. ∴∠AQO =90°.以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,则∠OEA =∠OFA =90°, ∴点Q 只能是点E 或点F . 当Q 在F 点时,∵OF 、AF 分别是∠AOC 与∠OAB 的平分线,BC ∥OA ,∴∠CFO =∠FOA =∠FOC ,∠BFA =∠FAO =∠FAB . ∴CF =OC ,BF =AB . 而OC =AB ,∴CF =BF ,即F 是BC 的中点. 而F 点为 (4,2),∴此时m 的值为6.5. 当Q 在E 点时,同理可求得此时m 的值为3.5. 综上所述,m 的值为3.5或6.5.【考点】圆的综合题;垂径定理;圆周角定理;平行四边形的判定和性质;坐标与图形性质;勾股定理;分类思想的应用.【分析】(1)由四边形四个点的坐标易得OA =BC =5,BC ∥OA ,以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,根据圆周角定理得∠OEA =∠OFA =90°,如图1,作DG ⊥EF 于G ,连DE ,则DE =OD =2.5,DG =2,根据垂径定理得EG =GF ,利用勾股定理可计算出EG =1.5,于是得到E (1,2),F (4,2),即点P 在E 点和F 点时,满足条件,此时541m m -≤⎧⎨≥⎩,即1≤m ≤9时,边BC 上总存在这样的点P ,使∠OPA =90°;(2)如图2,先判断四边形OABC 是平行四边形,再利用平行线的性质和角平分线定义可得到∠AQO =90°,以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,则∠OEA =∠OFA =90°,于是得到点Q 只能是点E 或点F ,当Q 在F 点时,证明F 是BC 的中点.而F 点为 (4,2),得到m 的值为6.5;当Q 在E 点时,同理可求得m 的值为3.5.7. (2015年江苏徐州8分)如图,在矩形OABC 中,OA =3,OC =5,分别以OA 、OC 所在直线为x 轴、y 轴,建立平面直角坐标系,D 是边CB 上的一个动点(不与C 、B 重合),反比例函数()>0ky k x=的图像经过点D 且与边BA 交于点E ,连接DE .(1)连接OE ,若△EOA 的面积为2,则k = ▲ ; (2)连接CA 、DE 与CA 是否平行?请说明理由;(3)是否存在点D ,使得点B 关于DE 的对称点在OC 上?若存在,求出点D 的坐标;若不存在,请说明理由.【答案】解:(1)4.(2)平行,理由如下:如答图1,连接AC , 设()(),5,3,D a E b , ∵()(),5,3,D a E b 在()>0ky k x=上, ∴5533k k a a k k b b ⎧⎧==⎪⎪⎪⎪⇒⎨⎨⎪⎪==⎪⎪⎩⎩.∵BC =OA =3,AB =O C =5,∴BD =3-5k ,BE =5-3k . ∴3335,5553kBC BD k AB BE -===- .∴BC BD AB BE =,即BC AB BD BE =. ∴DE ∥AC . (3)存在.假设存在点D 满足条件.设,5,3,53k k D E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 则CD =5k ,BD =3-5k ,AE =3k ,BE =5-3k. 如答图2,过点E 作EF ⊥OC ,垂足为F , 易证△B 'CD ∽△EFB ',∴'''B E B F B D CD =,即5'3355k B F k k -=-.∴'3k B F =. ∴2'''55333k k kCB OC B F OF OC B F AE =--=--=--=-. 在Rt △B 'CD 中,CB '= 253k -,CD =5k ,B 'D =BD =3-5k,由勾股定理得,CB '²+CD ²= B 'D ²,∴222253355k k k ⎛⎫⎛⎫⎛⎫-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,整理得2101233600k k -+=.解得,122415,52k k == (不合题意,舍去).∴24,525D ⎛⎫⎪⎝⎭. ∴满足条件的点D 存在,D 的坐标为24,525⎛⎫⎪⎝⎭. 【考点】反比例函数综合题;单动和轴对称问题; 曲线上点的坐标与方程的关系;平行的判定;相似三角形的判定和性质;勾股定理;方程思想的应用. 【分析】(1)设3,3k E ⎛⎫ ⎪⎝⎭,则OA =3, AE =3k . ∵△EOA 的面积为2,∴132423kk ⋅⋅=⇒=. (2)设()(),5,3,D a E b ,由()(),5,3,D a E b 在k y x =上,得到,5,3,53k k D E ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,从而求得BC BD AB BE =,即BC ABBD BE=,进而证得DE ∥AC . (3)设,5,3,53k k D E ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,作辅助线“过点E 作EF ⊥OC ,垂足为F ”,由△B 'CD ∽△EFB '得到'''B E B F B D CD =而求得'3kB F =,从而在Rt △B 'CD 中,应用勾股定理列方程求解即可. 8. (2015年江苏盐城10分)如图,在平面直角坐标系xOy 中,已知正比例函数34y x =与一次函数7y x =-+的图像交于点A . (1)求点A 的坐标;(2)设x 轴上一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交34y x =和7y x =-+的图像于点B 、C ,连接OC ,若BC =75OA ,求△OBC 的面积.【答案】解:(1)根据题意,得347y xy x ⎧=⎪⎨⎪=-+⎩,解得43x y =⎧⎨=⎩, ∴点A 的坐标为(4,3).(2)如答图,过A 点作AD ⊥x 轴于点D ,∵点A 的坐标为(4,3), ∴根据勾股定理,得OA =5. ∵BC ⊥x 轴,P (a ,0),BC 交34y x =和7y x =-+的图像于点B 、C ,∴()3,,74B a a C a a ⎛⎫-+ ⎪⎝⎭ 、.∵BC 位于点A 的右侧,∴()374BC a a =--+. 又∵BC =75OA =7,∴()3774a a --+=,解得,8a =.∴11872822OBC S BC OP ∆=⋅=⨯⨯=. 【考点】一次函数综合题;直线上点的坐标与方程关系;勾股定理;方程思想的应用. 【分析】(1)根据点在直线上点的坐标满足方程的关系;联立34y x =和7y x =-+即可求得点A 的坐标. (2)一方面,作辅助线“过A 点作AD ⊥x 轴于点D ”构造直角三角形,应用勾股定理求出OA =5,从而由BC =75OA 求出的BC 长;另一方面,由B 、C 的纵坐标之差列关于a 的方程()3774a a --+=,解之即得BC 边上的高OP 的长, 进而根据三角形面积公式求得△OBC 的面积.9. (2015年江苏扬州10分)平面直角坐标系中,点(),P x y 的横坐标x 的绝对值表示为x ,纵坐标y 的绝对值表示为y ,我们把点),(y x P 的横坐标与纵坐标的绝对值之和叫做点(),P x y 的勾股值,记为:P ⎡⎦,即P x y ⎡⎦=+.(其中的“+”是四则运算中的加法)(1)求点()1,3A - ,)2,2B的勾股值A ⎡⎦、B ⎡⎦;(2)点M 在反比例函数3y x=的图像上,且4M ⎡⎦=,求点M 的坐标; (3)求满足条件3N ⎡⎦=的所有点N 围成的图形的面积.【答案】解:(1)∵()1,3A - ,)2,2B,∴134A ⎡⎦=-+=,22224B ⎡⎦+=+=.(2)∵点M 在反比例函数3y x =的图像上,∴可设3,M m m ⎛⎫ ⎪⎝⎭ .∵4M ⎡⎦=,∴34m m+=. 若0m >,则34m m +=,解得121.3m m == .∴()1,3M 或()3,1M . 若0m <,则34m m--=,解得121.3m m =-=- .∴()1,3M - -或()3,1M - -.综上所述,点M 的坐标为()1,3 或()3,1 或()1,3- -或()3,1- -. (3)设(),N x y ,∵3N ⎡⎦=,∴3x y +=.若0,0x y ≥≥ ,则3x y +=,即3y x =-+. 若0,0x y ≥< ,则3x y -=,即3y x =-.若0,0x y <≥ ,则3x y -+=,即3y x =+. 若0,0x y << ,则3x y --=,即3y x =--.∴满足条件3N ⎡⎦=的所有点N 围成的图形是正方形,如答图. ∴满足条件3N ⎡⎦=的所有点N 围成的图形的面积为18.【考点】新定义和阅读理解型问题;点的坐标;曲线上点的坐标与方程的关系;分类思想和数形结合思想的应用.【分析】(1)直接根据定义求解即可.(2)设3,M m m ⎛⎫ ⎪⎝⎭ ,根据4M ⎡⎦=得到34m m +=,分0m >和0m <求解即可. (3)设(),N x y ,根据3N ⎡⎦=得到3x y +=,由,x y 负分类即可求解.10. (2015年江苏常州10分)如图,反比例函数k y x =的图象与一次函数14y x =的图象交于点A 、B ,点B 的横坐标是4.点P 是第一象限内反比例函数图象上的动点,且在直线AB 的上方.(1)若点P 的坐标是(1,4),直接写出k 的值和△PAB 的面积;(2)设直线PA 、PB 与x 轴分别交于点M 、N ,求证:△PMN 是等腰三角形;(3)设点Q 是反比例函数图象上位于P 、B 之间的动点(与点P 、B 不重合),连接AQ 、BQ ,比较∠PAQ 与∠PBQ 的大小,并说明理由.【答案】解:(1)415PAB k S ==V ,.(2)证明:如答图2,过点P 作PH ⊥x 轴于点H ,设直线PB 的解析式为y ax b =+,把点P (1,4)、B (4,1)代入y ax b =+,得441a b a b +=⎧⎨+=⎩,解得:15a b =-⎧⎨=⎩, ∴直线P B 的解析式为5y x =-+.当y =0时,50x -+=,∴x =5,点N (5,0). 同理可得M (﹣3,0),∴()134514MH NH =--==-=,. ∴MH =NH . ∴PH 垂直平分MN . ∴PM =PN . ∴△PMN 是等腰三角形. (3)∠PAQ =∠P BQ .理由如下:如答图3,过点Q 作QT ⊥x 轴于T ,设AQ 交x 轴于D ,QB 的延长线交x 轴于E ,可设点4Q c c ⎛⎫⎪⎝⎭ ,,直线AQ 的解析式为y px q =+,则 414p q cp q c -+=-⎧⎪⎨+=⎪⎩,解得:141p cq c ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AQ 的解析式为141y x c c=+-. 当y =0时,1410x c c+-=,解得:4x c =-, ∴D (4c -,0). 同理可得E (4c +,0),∴()4444DT c c ET c c =--==+-=,.∴DT =ET . ∴QT 垂直平分DE ,∴QD =QE . ∴∠QDE =∠QED . ∵∠MDA =∠QDE ,∴∠MDA =∠QED . ∵PM =PN ,∴∠PMN =∠PNM .∵∠PAQ =∠PMN ﹣∠MDA ,∠PBQ =∠NBE =∠PNM ﹣∠QED , ∴∠PAQ =∠PBQ .【考点】反比例函数和一次函数综合题;单动点问题;待定系数法的应用;曲线上点的坐标与方程的关系;三角形的外角性质;线段垂直平分线的性质;等腰三角形的判定和性质.【分析】(1)如答图1,过点A 作AR ⊥y 轴于R ,过点P 作PS ⊥y 轴于S ,连接PO ,设A P 与y 轴交于点C ,把x =4代入14y x =,得到点B 的坐标为(4,1), 把点B (4,1)代入ky x=,得k =4.解方程组144y x y x ⎧=⎪⎪⎨⎪=⎪⎩,得到点A 的坐标为(﹣4,﹣1),则点A 与点B 关于原点对称,∴OA =OB . ∴AOP BOP S S =V V . ∴2PAB AOP S S =V V . 设直线AP 的解析式为y mx n =+,把点A (﹣4,﹣1)、P (1,4)代入y mx n =+, 求得直线AP 的解析式为3y x =+, 则点C 的坐标(0,3),OC =3,∴111115343122222AOP AOC POC S S S OC AR OC PS =+=⋅+⋅=⨯⨯+⨯⨯=V V V . ∴215PAB AOP S S ==V V .(2)作辅助线“过点P 作PH ⊥x 轴于点H ”,用待定系数法求出直线PB 的解析式,从而得到点N 的坐标,同理可得到点M 的坐标,进而得到MH =NH ,根据垂直平分线的性质可得PM =PN ,即△PMN 是等腰三角形;(3)作辅助线“过点Q 作QT ⊥x 轴于T ,设AQ 交x 轴于D ,QB 的延长线交x 轴于E ”,设点Q 为4c c ⎛⎫⎪⎝⎭,,运用待定系数法求出直线AQ 的解析式,即可得到点D 的坐标为(4c -,0),同理可得E (4c +,0),从而得到DT =ET ,根据垂直平分线的性质可得QD =QE ,则有∠QDE =∠QED .然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ =∠PBQ .11. (2015年江苏南通13分)已知抛物线2221y x mx m m =-++-(m 是常数)的顶点为P ,直线1l y x =-:. (1)求证:点P 在直线l 上;(2)当m =﹣3时,抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,与直线l 的另一个交点为Q ,M 是x 轴下方抛物线上的一点,∠ACM =∠PAQ (如图),求点M 的坐标;(3)若以抛物线和直线l 的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m 的值.【答案】解:(1)证明:∵()222211y x mx m m x m m =-++-=-+-,∴点P 的坐标为(m ,m ﹣1), ∵当x =m 时,y =x ﹣1=m ﹣1, ∴点P 在直线l 上.(2)当m =﹣3时,抛物线解析式为265y x x =++,当y =0时,2650x x ++=,解得x 1=﹣1,x 2=﹣5,则A (﹣5,0). 当x =0时,2655y x x =++=,则C (0,5).联立方程组2165y x y x x =-⎧⎨=++⎩,解得34x y =-⎧⎨=-⎩或23x y =-⎧⎨=-⎩, ∴P (﹣3,﹣4),Q (﹣2,﹣3).如答图,过点M 作ME ⊥y 轴于E ,过点P 作PF ⊥x 轴于F ,过点Q 作QG ⊥x 轴于G ,∵OA =OC =5,∴△OAC 为等腰直角三角形. ∴∠ACO =45°. ∴∠MCE =45°﹣∠ACM . ∵QG =3,OG =2,∴AG =OA ﹣OG =3=QG . ∴△AQG 为等腰直角三角形. ∴∠QAG =45°.∴()90904545APF PAF PAQ PAQ ∠=︒-∠=︒-∠+︒=︒-∠. ∵∠ACM =∠PAQ ,∴∠APF =∠MCE . ∴Rt △CME ∽Rt △PAF . ∴ME CEAF PF=. 设()265M x x x ++,,则()225656ME x CE x x x x =-=-++=--,.∴2624x x x ---=,整理得240x x +=,解得x 1=0(舍去),x 2=﹣4, ∴点M 的坐标为(﹣4,﹣3).(3)m 的值为0 【考点】二次函数综合题;曲线上点的坐标与方程的关系;等腰直角三角形的判定和性质;相似三角形的判定和性质;勾股定理;分类思想和方程思想的应用..【分析】(1)利用配方法求得点P 的坐标,然后根据一次函数图象上点的坐标特征判断点P 在直线l 上.(2)当m =﹣3时,抛物线解析式为265y x x =++,根据抛物线与x 轴的交点问题求出A (﹣5,0),易得C (0,5),通过解方程组2165y x y x x =-⎧⎨=++⎩得P (﹣3,﹣4),Q (﹣2,﹣3),如图,作ME ⊥y 轴于E ,PF ⊥x 轴于F ,QG ⊥x 轴于G ,证明Rt △CME ∽Rt △PAF ,利用相似得ME CEAF PF=,设()265M x x x ++,,则2624x x x---=,解之即可求得点M 的坐标. (3)解方程组22121y x y x mx m m =-⎧⎨=-++-⎩得1x m y m =⎧⎨=-⎩或1x m y m =+⎧⎨=⎩, ∴P (m ,m ﹣1),Q (m +1,m ).∴()()222112PQ m m m m =+-+-+=,()22221221OQ m m m m =++=++,()22221221OP m m m m =+-=-+.当PQ =OQ 时,22212m m ++=,解得121122m m --==;当PQ =OP 时,22212m m -+=,解得12m m ==; 当OP =OQ 时,22221221m m m m ++=-+,解得m =0.综上所述,m 的值为0.12. (2015年江苏宿迁10分)如图,在平面直角坐标系中,正方形ABCD 和正方形DEFG 的边长分别为2a ,2b ,点A ,D ,G 在y 轴上,坐标原点O 为AD 的中点,抛物线2y mx =过C ,F 两点,连接FD 并延长交抛物线于点M .(1)若a =1,求m 和b 的值; (2)求ba的值; (3)判断以FM 为直径的圆与AB 所在直线的位置关系,并说明理由.【答案】解:(1)∵a =1,∴正方形ABCD 的边长为2,∵坐标原点O 为AD 的中点,∴C (2,1). ∵抛物线2y mx =过C 点,∴1=4m ,解得14m =. ∴抛物线解析式为214y x =,将F (2b ,2b +1)代入214y x =,得()212124b b +=,解得1b =.∴14m =,1b =(2)∵正方形ABCD 的边长为2a ,坐标原点O 为AD 的中点,∴C (2a ,a ).∵抛物线2y mx =过C 点,∴24a m a =⋅,解得14m a=. ∴抛物线解析式为214y x a=.将F (2b ,2b +1)代入214y x a =,得()212124b b a+=,解得(1b a =±(负值舍去).∴1ba=. (3)以FM 为直径的圆与AB 所在直线相切.理由如下:∵D (0,a ),∴可设直线FD 的解析式为y kx a =+.由(2)1ba=+得()23F a a ,,代入y kx a =+得k =1.∴直线FD 的解析式为y x a =+.联立214y x a y x a =+⎧⎪⎨=⎪⎩,解得23x a y a ⎧=-⎪⎨=-⎪⎩或23x a y a ⎧=+⎪⎨=+⎪⎩.∴M点坐标为()23a a ,. ∴以FM 为直径的圆的圆心O '的坐标为(2a ,3a ). 如答图,过点O '作O H AB '⊥于点H ,∴O '到直线AB (y a =-)的距离34O H a a a '=--=(). ∵以FM 为直径的圆的半径4r O F a ='.∴O H r '=.∴以FM 为直径的圆与AB 所在直线相切.【考点】二次函数综合题;待定系数法的应用;曲线上点的坐标与方程的关系;正方形的性质;直线与圆满的位置关系的判定;勾股定理;数形结合思想和方程思想的应用.【分析】(1)由a =1,根据正方形的性质及已知条件得出C (2,1).将C 点坐标代入2y mx =,求出14m =,则抛物线解析式为214y x =,再将F (2b ,2b +1)代入214y x =,即可求出b 的值. (2)由正方形ABCD 的边长为2a ,坐标原点O 为AD 的中点,得出C (2a ,a ).将C 点坐标代入2y mx =,求出14m a =,则抛物线解析式为214y x a =,再将F (2b ,2b +a )代入214y x a=,整理,把a 看作常数,利用求根公式得出(1b a =±(负值舍去),从而得到1ba=+.(3)先利用待定系数法求出直线FD 的解析式为y xa =+,再求出M ()23a a- ,,又()23F a a ++ ,,利用中点坐标公式得到以FM 为直径的圆的圆心O ′的坐标为(2a ,3a ),再求出O ′到直线AB (y a =-)的距离O H '的值,以FM 为直径的圆的半径r 的值,由O H '=r ,根据直线与圆的位置关系可得以FM 为直径的圆与AB 所在直线相切.13. (2015年江苏镇江6分)如图,点()3M m -,是一次函数1y x =+与反比例函数()0ky k x=≠的图象的一个交点.(1)求反比例函数表达式;(2)点P 是x 轴正半轴上的一个动点,设OP =a (a ≠2),过点P 作垂直于x 轴的直线,分别交一次函数,反比例函数的图象于点A ,B ,过OP 的中点Q 作x 轴的垂线,交反比例函数的图象于点C ,△ABC ′与△ABC 关于直线AB 对称.①当a =4时,求△ABC ′的面积;②当a 的值为 ▲ 时,△AMC 与△AMC ′的面积相等.【答案】解:(1)把()3M m -,代入1y x =+,则2m =-,∴()32M --,. 把()32M --,代入ky x=,得k =6, ∴反比例函数解析式是:6y x =.(2)①如答图1,连接CC ′交AB 于点D ,则AB 垂直平分CC ′.当a =4时,A (4,5),B (4,1.5),则AB =3.5. ∵点Q 为OP 的中点,∴Q (2,0). ∴C (2,3),则D (4,3).∴CD =2. ∴113.52 3.522ABC S AB CD =⋅=⨯⨯=V . ②3.【考点】反比例函数和一次函数综合题;单动点和轴对称问题;曲线上点的坐标与方程的关系;轴对称的性质;全等三角形的判定和性质;数形结合思想和方程思想的应用..【分析】(1)由一次函数解析式可得点M 的坐标为(﹣3,﹣2),然后把点M 的坐标代入反比例函数解析式,求得k 的值,可得反比例函数表达式.(2)①作辅助线“连接CC ′交AB 于点D ”,由轴对称的性质,可知AB 垂直平分OC ′,当a =4时,利用函数解析式可分别求出点A 、B 、C 、D 的坐标,于是可得AB 和CD 的长度,即可求得△ABC 的面积.②如答图2,分别过点C 、C ′作1y x =+的垂线垂足分别 为点E 、F ,∵△AMC 与△AMC ′的面积相等,∴CE = C ′F .又∵AC = AC ′,∴△AEC 与△AFC ′(HL ).∴CAE C AF ∠=∠'. ∵E 、A 、F 共线,∴C 、A 、C ′共线.∵OP =a ,点A 在1y x =+上,∴(),1A a a + . ∴,12a C a ⎛⎫+ ⎪⎝⎭.∵点C 在6y x=上,∴612a a +=,整理,得2120a a +-=,解得3a =或4a =-(舍去).∴3a =.14. (2015年江苏镇江10分)如图,二次函数()20y ax bx c a =++≠的图象经过点(0,3),且当x =1时,y 有最小值2.(1)求a ,b ,c 的值;(2)设二次函数()()222y k x ax bx c =+-++(k 为实数),它的图象的顶点为D . ①当k =1时,求二次函数()()222y k x ax bx c =+-++的图象与x 轴的交点坐标;②请在二次函数2y ax bx c =++与()()222y k x ax bx c =+-++的图象上各找出一个点M ,N ,不论k 取何值,这两个点始终关于x 轴对称,直接写出点M ,N 的坐标(点M 在点N 的上方);③过点M 的一次函数34y x t =-+的图象与二次函数2y ax bx c =++的图象交于另一点P ,当k 为何值时,点D 在∠NMP 的平分线上?。
【答案】解:原式= 2212425xxxx【考点】整式的混合运算.【分析】利用完全平方公式和单项式乘多项式法那么展开,再合并得出答案即可.6.〔2021 年XXXX5分〕计算: 121a1aa.【答案】解:原式= a1a1aa1a1a1.【考点】分式的化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.7.〔2021 年XXXX8分〕先化简,再求值:11a2a13a1,其中a4.【答案】解:原式=223a1a11aa3a2a13a1a1a1aa1.当a4时,原式=34441 .【考点】分式的化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.然后代入a4求值.aa118.〔2021 年XXXX4分〕化简:2a1a1a1【答案】解:原式=aa11aa11a1a1a1a1a1aa1.【考点】分式的化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.9.〔2021 年XXXX6分〕先化简,再求值: 2x1x2x,其中x=2.【答案】解:原式22122221xxxxx,当x=2时,原式=8+1=9.【考点】整式的混合运算〔化简求值〕.【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法那么计算,去括号合并得到最简结果,把x的值代入计算即可求出值.218y02510.〔2021 年XXXX8分〕先化简个合.适.的数作为x的值,代入求值.00 11x12xx2x44,再从1、2、3三个数中选一【答案】解:原式=2x21x1x1x22x2x2x2x1x2.取x3代入,得,原式=321.【考点】分式的化简求值;分式有意义的条件.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.然后取使分式分母和除式不为0的x代入求值.【2:21·0·1·3】11.〔2021 年XXXX4分〕化简: 121a1a12a.【答案】解:原式=a1a1a1a1a11aa1. a12aa12a2【考点】分式的混合运算.【分析】先算括号中的加法通分,再算乘法约分即可.。
2015年江苏省常州市中考数学试卷一、选择题(每小题2分,共16分)1.(2分)(2015•潜江)﹣3的绝对值是()A .3 B.﹣3 C.D.2.(2分)(2015•常州)要使分式有意义,则x的取值范围是()A .x>2 B.x<2 C.x≠﹣2 D.x ≠23.(2分)(2015•常州)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A .B.C.D.4.(2分)(2015•常州)如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°5.(2分)(2015•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB6.(2分)(2015•常州)已知a=,b=,c=,则下列大小关系正确的是()A .a>b>c B.c>b>a C.b>a>c D.a>c>b7.(2分)(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A .m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣18.(2分)(2015•常州)将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A .cm2B.8cm2C.cm2D.16cm2二、填空题(每小题2分,共20分)9.(2分)(2015•常州)计算(π﹣1)0+2﹣1=.10.(2分)(2015•常州)太阳半径约为696 000千米,数字696 000用科学记数法表示为.11.(2分)(2015•常州)分解因式:2x2﹣2y2=.12.(2分)(2015•常州)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是.13.(2分)(2015•常州)如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.14.(2分)(2015•常州)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.15.(2分)(2015•常州)二次函数y=﹣x2+2x﹣3图象的顶点坐标是.16.(2分)(2015•常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m 是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.17.(2分)(2015•常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2;12=5+7;6=3+3;14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+518=5+13=7+11;…通过这组等式,你发现的规律是(请用文字语言表达).18.(2分)(2015•常州)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.三、解答题(共10小题,共84分)19.(6分)(2015•常州)先化简,再求值:(x+1)2﹣x(2﹣x),其中x=2.20.(8分)(2015•常州)解方程和不等式组:(1);(2).21.(8分)(2015•常州)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.22.(8分)(2015•常州)甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.23.(8分)(2015•常州)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.24.(8分)(2015•常州)已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?25.(8分)(2015•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.26.(10分)(2015•常州)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.理由:连接AH,EH.∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽.∴,即DH2=AD×DE.又∵DE=DC∴DH2=,即正方形DFGH与矩形ABCD等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).27.(10分)(2015•常州)如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.(1)写出点A的坐标;(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求的值.28.(10分)(2015•常州)如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.2015年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)(2015•潜江)﹣3的绝对值是()A .3 B.﹣3 C.D.考点:绝对值.分析:根据一个负数的绝对值等于它的相反数得出.解答:解:|﹣3|=﹣(﹣3)=3.故选:A.点评:考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2分)(2015•常州)要使分式有意义,则x的取值范围是()A .x>2 B.x<2 C.x≠﹣2 D.x≠2考点:分式有意义的条件.专题:计算题.分析:根据分式有意义得到分母不为0,即可求出x的范围.解答:解:要使分式有意义,须有x﹣2≠0,即x≠2,故选D.点评:此题考查了分式有意义的条件,分式有意义的条件为:分母不为0.3.(2分)(2015•常州)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A .B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.点评:本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(2分)(2015•常州)如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A .70°B.60°C.50°D.40°考点:平行线的性质;垂线.专题:计算题.分析:由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数.解答:解:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选C.点评:此题考查了平行线的性质,以及垂线,熟练掌握平行线的性质是解本题的关键.5.(2分)(2015•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A .AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB考点:平行四边形的性质.分析:根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.6.(2分)(2015•常州)已知a=,b=,c=,则下列大小关系正确的是()A .a>b>c B.c>b>a C.b>a>c D.a>c>b考点:实数大小比较.专题:计算题.分析:将a,b,c变形后,根据分母大的反而小比较大小即可.解答:解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选A.点评:此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.7.(2分)(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A .m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1考点:二次函数的性质.分析:根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.解答:解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,∴﹣≤1,解得m≥﹣1.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的增减性,熟记性质并列出不等式是解题的关键.8.(2分)(2015•常州)将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A .cm2B.8cm2C.cm2D.16cm2考点:翻折变换(折叠问题).分析:当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.解答:解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×4×4=8cm2.故选:B.点评:本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.二、填空题(每小题2分,共20分)9.(2分)(2015•常州)计算(π﹣1)0+2﹣1=1.考点:负整数指数幂.分析:分别根据零指数幂,负整数指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.解答:解:(π﹣1)0+2﹣1=1+=1.故答案为:1.点评:本题主要考查了零指数幂,负整数指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.10.(2分)(2015•常州)太阳半径约为696 000千米,数字696 000用科学记数法表示为6.96×105.考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中696 000有6位整数,n=6解答:解:696000=6.96×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2分)(2015•常州)分解因式:2x2﹣2y2=2(x+y)(x﹣y).考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解答:解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y).故答案为:2(x+y)(x﹣y).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(2分)(2015•常州)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是27π.考点:扇形面积的计算.分析:利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积.解答:解:设扇形的半径为r.则=6π,解得r=9,∴扇形的面积==27π.故答案为:27π.点评:此题主要考查了扇形面积求法,用到的知识点为:扇形的弧长公式l=;扇形的面积公式S=.13.(2分)(2015•常州)如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是6.考点:相似三角形的判定与性质.分析:由平行可得对应线段成比例,即AD:AB=DE:BC,再把数值代入可求得BC.解答:解:∵DE∥BC,∴,∵AD:DB=1:2,DE=2,∴,解得BC=6.故答案为:6.点评:本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段是解题的关键.14.(2分)(2015•常州)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.考点:一元一次方程的解.专题:计算题.分析:把x=2代入方程计算即可求出a的值.解答:解:把x=2代入方程得:3a=a+2,解得:a=.故答案为:.点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.(2分)(2015•常州)二次函数y=﹣x2+2x﹣3图象的顶点坐标是(1,﹣2).考点:二次函数的性质.分析:此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.解答:解:∵y=﹣x2+2x﹣3=﹣(x2﹣2x+1)﹣2=﹣(x﹣1)2﹣2,故顶点的坐标是(1,﹣2).故答案为(1,﹣2).点评:本题考查了二次函数的性质,求抛物线的顶点坐标有两种方法①公式法,②配方法.16.(2分)(2015•常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m 是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是(400,800).考点:勾股定理的应用;坐标确定位置;全等三角形的应用.分析:根据题意结合全等三角形的判定与性质得出△AOD≌△ACB(SAS),进而得出C,A,D也在一条直线上,求出CD的长即可得出C点坐标.解答:解:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中∵,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).点评:此题主要考查了全等三角形的判定与性质以及勾股定理,得出C,A,D也在一条直线上是解题关键.17.(2分)(2015•常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2;12=5+7;6=3+3;14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+518=5+13=7+11;…通过这组等式,你发现的规律是所有大于2的偶数都可以写成两个素数之和(请用文字语言表达).考点:规律型:数字的变化类.分析:根据以上等式得出规律进行解答即可.解答:解:此规律用文字语言表达为:所有大于2的偶数都可以写成两个素数之和,故答案为:所有大于2的偶数都可以写成两个素数之和点评:此题考查规律问题,关键是根据几个等式寻找规律再用文字表达即可.18.(2分)(2015•常州)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.考点:全等三角形的判定与性质;勾股定理;圆心角、弧、弦的关系;圆周角定理.分析:过C作CE⊥AB于E,CF⊥AD于F,得出∠E=∠CFD=∠CFA=90°,推出=,求出∠BAC=∠DAC,BC=CD,求出CE=CF,根据圆内接四边形性质求出∠D=∠CBE,证△CBE≌△CDF,推出BE=DF,证△AEC≌△AFC,推出AE=AF,设BE=DF=x,得出5=x+3+x,求出x,解直角三角形求出即可.解答:解:过C作CE⊥AB于E,CF⊥AD于F,则∠E=∠CFD=∠CFA=90°,∵点C为弧BD的中点,∴=,∴∠BAC=∠DAC,BC=CD,∵CE⊥AB,CF⊥AD,∴CE=CF,∵A、B、C、D四点共圆,∴∠D=∠CB E,在△CBE和△CDF中∴△CBE≌△CDF,∴BE=DF,在△AEC和△AFC中∴△AEC≌△AFC,∴AE=AF,设BE=DF=x,∵AB=3,AD=5,∴AE=AF=x+ 3,∴5=x+3+x,解得:x=1,即AE=4,∴AC==,故答案为:.点评:本题考查了圆心角、弧、弦之间的关系,圆内接四边形性质,解直角三角形,全等三角形的性质和判定的应用,能正确作出辅助线是解此题的关键,综合性比较强,难度适中.三、解答题(共10小题,共84分)19.(6分)(2015•常州)先化简,再求值:(x+1)2﹣x(2﹣x),其中x=2.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.解答:解:原式=x2+2x+1﹣2x+x2=2x2+1,当x=2时,原式=8+1=9.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)(2015•常州)解方程和不等式组:(1);(2).考点:解分式方程;解一元一次不等式组.专题:计算题.分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可求出解集.解答:解:(1)去分母得:x=6x﹣2+1,解得:x=,经检验x=是分式方程的解;(2),由①得:x>﹣2,由②得:x<3,则不等式组的解集为﹣2<x<3.点评:此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.(8分)(2015•常州)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.考点:频数(率)分布直方图;扇形统计图;加分析:(1)利用0.5小时的人数为:100人,所占比例为:20%,即可求出样本容量;(2)利用样本容量乘以1.5小时的百分数,即可求出1.5小时的人数,画图即可;(3)计算出该市中小学生一天中阳光体育运动的平均时间即可.解答:解:(1)由题意可得:0.5小时的人数为:100人,所占比例为:20%,∴本次调查共抽样了500名学生;(2)1.5小时的人数为:500×2.4=120(人)如图所示:意得:,即该市中小学生一天中阳光体育运动的平均时间约1小时.点评:此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.22.(8分)(2015•常州)甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.考点:列表法与树状图法.专题:计算题.分析:(1)画树状图得出所有等可能的情况数,找出甲第一个出场的情况数,即可求出所求的概率;(2)找出甲比乙先出场的情况数,即可求出所求的概率.解答:解:(1)画树状图如下:所有等可能的情况有6种,其中甲第一个出场的情况有2种,则P(甲第一个出场)==;(2)甲比乙先出场的情况有3种,则P(甲比乙先出场)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(2015•常州)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.考点:全等三角形的判定与性质;等边三角形的性质;平行四边形的性质.分析:(1)由平行四边形的性质得出∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,由等边三角形的性质得出BE=BC,DF=CD,∠EBC=∠CDF=60°,证出∠ABE=∠FDA,AB=DF,BE=AD,根据SAS证明△ABE≌△FDA,得出对应边相等即可;(2)由全等三角形的性质得出∠AEB=∠FAD,求出∠AEB+∠BAE=60°,得出∠FAD+∠BAE=60°,即可得出∠EAF的度数.解答:(1)证明:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,∵△BCE和△CDF都是正三角形,∴BE=BC,DF=CD,∠EBC=∠CDF=60°,∴∠ABE=∠FDA,AB=DF,BE=AD,在△ABE和△FDA中,,∴△ABE≌△FDA(SAS),∴AE=AF;(2)解:∵△ABE≌△FDA,∴∠AEB=∠FAD,∵∠ABE=60°+60°=120°,∴∠AEB+∠BAE=60°,∴∠FAD+∠BAE=60°,∴∠EAF=120°﹣60°=60°.点评:本题考查了平行四边形的性质、等边三角形的性质、全等三角形的判定与性质;熟练掌形和等边三角形的性质,证明三角形全等是解决问题的关键.24.(8分)(2015•常州)已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?考点:一次函数的应用.分析:(1)根据题意,不超过3公里计费为m元,由图示可知光明中学和市图书馆相距2公里,可由此得出m,由出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.当x>3时,由收费与路程之间的关系就可以求出结论;(2)分别计算小张所剩钱数和返程所需钱数,即解答:解:(1)∵由图示可知光明中学和市图书馆相距2公里,付费9元,∴m=9,∵从市图书馆乘出租车去光明电影院,路程5公里,付费12.6元,∴(5﹣3)n+9=12.6,解得:n=1.8.∴车费y(元)与路程x(公里)(x>3)之间的函数关系式为:y=1.8(x﹣3)+9=1.8x+3.6(x>3).(2)小张剩下坐车的钱数为:75﹣15﹣25﹣9﹣12.6=13.4(元),乘出租车从光明电影院返回光明中学的费用:1.8×7+3.6=16.2(元)∵13.4<16.2,故小张剩下的现金不够乘出租车从光明电影院返回光明中学.点评:本题考查了分段函数,一次函数的解析式,由一次含数的解析式求自变量和函数值,解答时求出函数的解析式是关键25.(8分)(2015•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.考点:勾股定理;含30度角的直角三角形;等腰直角三角形.分析:(1)在四边形ABCD中,由∠A=∠C=45°,∠ADB=∠ABC=105°,得∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,求得AE,利用锐角三角函数得BE,得AB;(2)设DE=x,利用(1)的某些结论,特殊角的三角函数和勾股定理,表示AB,CD,得结果.解答:解:(1)过A点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF== x,∴BF===,∴CF=,∵AB=AE+B E=,CD=DF+CF= x,AB+CD=2+2,∴AB=+1点评:本题考查了勾股定理、等腰直角三角形的判定和性质、含有30°角的直角三角形的性质,解题的关键是作辅助线DE、BF,构造直角三角形,求出相应角的度数.26.(10分)(2015•常州)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.理由:连接AH,EH.∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽△HDE.∴,即DH2=AD×DE.又∵DE=DC∴DH2=AD×DC,即正方形DFGH与矩形ABCD等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的矩形(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).考点:相似形综合题.分析:(1)首先根据相似三角形的判定方法,可得△ADH∽△HDE;然后根据等量代换,可得DH2=AD×DC,据此判断即可.(2)首先把平行四边形ABCD转化为等积的矩形ADMN,然后延长AD到E,使DE=DM,以AE为直径作半圆.延长MD交半圆于点H,以DH 为边作正方形DFGH,则正方形DFGH与矩形ABMN等积,所以正方形DFGH与平行四边形ABCD等积,据此解答即可.(3)首先以三角形的底为矩形的长,以三角形的高的一半为矩形的宽,将△ABC转化为等积的矩形MBCD;然后延长MD到E,使DE=DC,以ME为直径作半圆.延长CD交半圆于点H,则DH 即为与△ABC等积的正方形的一条边.(4)首先根据AG∥EH,判断出AG=2EH,然后根据CF=2DF,可得CF•EH=DF•AG,据此判断出S△CEF=S△ADF,S△CDI=S△AEI,所以S△BCE=S四边形ABCD,即△BCE与四边形ABCD等积,据此解答即可.解答:解:(1)如图①,连接AH,EH,,∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°,∴∠HAD+∠AHD=90°,∴∠AHD=∠HED,∴△ADH∽△HDE.∴,即DH2=AD×DE .又∵DE=DC,∴DH2=AD×DC,即正方形DFGH与矩形ABCD等积.(2)如图②,延长AD到E,使DE=DM,连接AH,EH,,∵矩形ADMN的长和宽分别等于平行四边形ABCD的底和高,∴矩形ADMN的面积等于平行四边形ABCD的面积,∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠∴∠HAD+∠AHD=90°,∴∠AHD=∠HED,∴△ADH∽△HDE.∴,即DH2=AD×DE .又∵DE=DM,∴DH2=AD×DM,即正方形DFGH与矩形ABMN等积,∴正方形DFGH与平行四边形ABCD等积.(3)如图③,延长MD到E,使DE=DC,连接MH,EH,,∵矩形MDBC的长等于△ABC的底,矩形等于△ABC的高的一半,∴矩形MDBC的面积等于△ABC的面积,∵ME为直径,∴∠MHE=90°,∴∠HME+∠HEM=90°.∵DH⊥ME,∴∠MDH=∠EDH=90°,∴∠HMD+∠MHD=90°,∴∠MHD=∠HED,∴△MDH∽△HDE.∴,即DH2=MD×D E.又∵DE=DC,∴DH2=MD×DC,∴DH即为与△ABC等积的正方形的一条边.(4)如图④,延长BA、CD 交于点F,作AG⊥CF于点G,EH⊥CF 于点H,,△BCE与四边形ABCD等积,理由如下:∵AG∥EH,∴,∴AG=2EH,又∵CF=2DF,∴CF•EH=DF•AG,∴S△CEF=S△ADF,∴S△CDI=S△AEI,∴S△BCE=S四,边形ABCD即△BCE与四边形ABCD等积.故答案为:△HDE、AD×DC、矩形.点评:(1)此题主要考查了相似形综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数的应用,要熟练掌握.(2)此题还考查了矩形、三角形的面积的求法,以及对等积转化的理解,要熟练掌握.27.(10分)(2015•常州)如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.(1)写出点A的坐标;(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求的值.考点:圆的综合题.分析:(1)将y=0代入y=﹣x+4,求得x的值,从而得到点A的坐标;(2)首先根。
专题4:不等式(组)问题1. (2015年江苏连云港3分)已知关于x 的方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是【 】A. 1<3k B. 1>3k - C. 1<3k 且0k ≠ D. 1>3k -且0k ≠ 【答案】A .【考点】一元二次方程根的判别式;解一元一次不等式.【分析】根据一元二次方程有两个不相等的实数根,得到根的判别式大于0,即可求出k 的范围:∵方程2230x x k -+=有两个不相等的实数根, ∴1412>0<3k k =-⇒V . 故选A .2. (2015年江苏苏州3分)若()2m =-,则有【 】 A .0<m <1 B .-1<m <0 C .-2<m <-1 D .-3<m <-2 【答案】C .【考点】实数的运算,估计无理数的大小.【分析】∵()22m =⨯-=∴1<2<41<<22<<1⇒⇒--. ∴2<<1m --. 故选C .3. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0k x b --的解集为【 】A. <2xB. >2xC. <5xD. >5x 【答案】C.【考点】直线的平移;不等式的图象解法;数形结合思想的应用.【分析】如答图,将函数y kx b =-的图像向右平移3 个单位得到函数()3y k x b =--的图象,由图象可知,当<5x 时,函数()3y k x b =--的图象在x 轴上方,即()3>0y k x b =--. ∴关于x 的不等式()3>0k x b --的解集为<5x . 故选C.4. (2015年江苏扬州3分)已知x =2是不等式(5)(32)0x ax a --+≤的解,且x =1不是这个不等式的解,则实数a 的取值范围是【 】A. 1a >B. 2a ≤C. 12a <≤D. 12a ≤≤ 【答案】C.【考点】不等式的解;解一元一次不等式组.【分析】∵x =2是不等式(5)(32)0x ax a --+≤的解,且x =1不是这个不等式的解,∴(25)(232)0212(15)(32)>0>1a a a a a a a --+≤≤⎧⎧⇒⇒<≤⎨⎨--+⎩⎩. 故选C.5. (2015年江苏常州2分)已知a b c =,则下列大小关系正确的是【 】 A. >>a b c B. >>c b a C. >>b a c D. >>a c b 【答案】A .【考点】实数大小比较.【分析】<>>.>>.∵a b c ==,∴>>a b c .故选A .6. (2015年江苏常州2分)已知二次函数()211y x m x =+-+,当x >1时,y 随x 的增大而增大,而m 的取值范围是【 】A. 1m =-B. 3m =C. 1m ≤-D. 1m ≥- 【答案】D .【考点】二次函数的性质;解一元一次不等式.. 【分析】抛物线()211y x m x =+-+的对称轴为直线12m x -=-, ∵当x >1时,y 的值随x 值的增大而增大,∴1112m m --≤⇒≥-. 故选D .7. (2015年江苏淮安3分)不等式012>-x 的解集是【 】A. 21>x B. 21<x C. 21->x D. 21-<x 【答案】A.【考点】解一元一次不等式.【分析】按步骤求解即可:1210212x x x ->⇒>⇒>.故选A. 8. (2015年江苏南通3分)关于x 的不等式>0x b -恰有两个负整数解,则b 的取值范围是【 】A. 3<<2b --B. 3<2b -≤-C. 32b -≤≤-D. 3<2b -≤- 【答案】D .【考点】一元一次不等式的整数解. 【分析】解不等式>0x b -,得:>x b ,∵不等式的负整数解只有两个负整数解,即只有﹣1,﹣2, ∴3<2b -≤-. 故选D .1. (2015年江苏南京2分)不等式211213x x +>-⎧⎨+<⎩的解集是 ▲ .【答案】11x -<<.【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,2111112131x x x x x +>->-⎧⎧⇒⇒-<<⎨⎨+<<⎩⎩. 2. (2015年江苏泰州3分)点()1,1y a -、()2,1y a +在反比例函数()0>=k xky 的图像上,若21y y <,则a 的范围是 【答案】1<<1a -.【考点】曲线上点的坐标与方程的关系;不等式的性质;分类思想的应用. 【分析】∵点()11,a y -、()21,a y +在反比例函数()0k y k x=>的图像上,∴22,11k ky y a a ==-+ . ∵12y y <,∴()()200111111k k k k ka a a a a a <⇒-<⇒<-+-+-+. ∵0k >,∴1>01<0a a -⎧⎨+⎩或1<01>0a a -⎧⎨+⎩.解1>01<0a a -⎧⎨+⎩得>1<1a a ⎧⎨-⎩,无解;解1<01>0a a -⎧⎨+⎩得<11<<1>1a a a ⎧⇒-⎨-⎩. ∴a 的范围是1<<1a -.3. (2015年江苏扬州3分)如图,已知△ABC 的三边长为a b c 、、,且<<a b c ,若平行于三角形一边的直线l 将△ABC 的周长分成相等的两部分,设图中的小三角形①、②、③的面积分别为123s s s 、、,则123s s s 、、的大小关系是 ▲ (用“<”号连接).【答案】132<<s s s .【考点】阅读理解型问题;代数几何综合问题;图形的分割;平行的性质;相似三角形的判定和性质;不等式的性质. 【分析】设△ABC 的周长为m ,面积为S ,如答图,设,AD x AE y == ,则,BD c x CE b y =-=- .∵平行于三角形一边的直线l 将△ABC 的周长分成相等的两部分,∴AD AE BD CE BC +=++,即x y c x b y a +=-+-+.∴()1122x y a b c m +=++=. ∵DC ∥BC ,∴ADE ABC ∆∆∽.∴21s AD S AB ⎛⎫= ⎪⎝⎭且()122m AD AE AD AE x y mAB AC AB AC c b b c b c ++=====++++.()2mb c =+.()2m a b =+()2ma c =+. ∵<<abc ,∴()()()0<<<<<<222m m ma b a c b c b c a c b c +++⇒⇒+++∴132<<s s s .4. (2015年江苏宿迁3分)关于x 的不等式组21>3>1x a x +⎧⎨-⎩的解集为1<x <3,则a 的值为 ▲ .【答案】4.【考点】解一元一次不等式组. 【分析】解不等式21>3x +得:x >1,解不等式>1a x -得:x <a ﹣1,∵不等式组21>3>1x a x +⎧⎨-⎩的解集为1<x <3,∴a ﹣1=3,解得a=4.5. (2015年江苏镇江2分)数轴上实数b 的对应点的位置如图所示,比较大小:112b + ▲ 0.【答案】>.【考点】实数大小比较;实数与数轴;不等式的性质.【分析】∵如图所示,b >﹣2,∴12b >﹣1. ∴112b +>0.6. (2015年江苏镇江2分)关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 ▲ . 【答案】a >0.【考点】一元二次方程根的判别式;解一元一次不等式. 【分析】∵方程20x a +=没有实数根,∴△=﹣4a <0,解得:a >0.1. (2015年江苏连云港6分)解不等式组:()21>51>42x x x +⎧⎪⎨+-⎪⎩.【答案】解:()21>51>42 x x x +⎧⎪⎨+-⎪⎩①②,解不等式①得:x >2, 解不等式②得:x <3, ∴不等式组的解集是2<x <3.【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).2. (2015年江苏南京7分)解不等式2(1)132x x +-≥+,并把它的解集在数轴上表示出来.【答案】解:去括号,得22132x x +-≥+, 移项,得23221x x -≥-+, 合并同类项,得1x -≥, 系数化为1,得1x ≤-.这个不等式的解集在数轴上表示如答图所示:【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】按去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式.不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3. (2015年江苏苏州5分)解不等式组:()12315x x x +≥⎧⎪⎨-+⎪⎩>【答案】解:由12x +≥解得1x ≥,由()315x x -+>解得4x >, ∴原不等式组的解为4x >.【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).4. (2015年江苏泰州3分)解不等式组:⎪⎩⎪⎨⎧-<+>-132121x xx .【答案】解:解12x x ->得<1x ,解1312x +<-得<8x -, ∴原不等式组的解为<8x -.【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解). 5. (2015年江苏无锡4分)解不等式:()2320x --≤; 【答案】解:(1)去括号,得:2620x --≤,移项,得:262x ≤+, 合并同类项,得:28x ≤, 两边同除以2,得:4x ≤, ∴原不等式的解为:4x ≤.【考点】解一元一次不等式.【分析】先去括号,再移项、合并同类项,不等式两边同除以2,即可得出不等式的解集.6. (2015年江苏无锡8分)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A 产品.甲车间用每箱原材料可生产出A 产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A 产品比甲车间少2千克,但耗水量是甲车间的一半.已知A 产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w 最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)【答案】解:设甲车间用x 箱原材料生产A 产品,则乙车间用()60x -箱原材料生产A 产品.由题意得()4260200x x +-≤,解得40x ≤.()30[121060]8060542605012 600w x x x x x =+-⨯-+-=+⎡⎤⎣⎦()﹣,∵50>0,∴w 随x 的增大而增大.∴当x =40时,w 取得最大值,为14 600元.答:甲车间用40箱原材料生产A 产品,乙车间用20箱原材料生产A 产品,可使工厂所获利润最大,最大利润为14 600元.【考点】一次函数的应用;一元一次不等式的应用.【分析】设甲车间用x 箱原材料生产A 产品,则乙车间用()60x -箱原材料生产A 产品,根据题意列出不等式,确定x 的取值范围,列出5012 600w x =+,利用一次函数的性质,即可解答. 7. (2015年江苏徐州5分)解不等式组:1>22<41x x x -⎧⎨+-⎩.【答案】解:解1>2x -得>3x ,解2<41x x +-得>1x , ∴原不等式组的解为>3x .【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).8. (2015年江苏盐城4分)解不等式:2343x x ⎛⎫-<+ ⎪⎝⎭.【答案】解:去括号,得324x x -<+,移项,得342x x -<+, 合并同类项,得26x <, 化x 的系数为1,得3x <, ∴不等式的解为3x <.【考点】解一元一次不等式.【分析】按去括号、移项、合并同类项、化x 的系数为1的顺序解一元一次不等式.9. (2015年江苏扬州8分)解不等式组3415122x x x x ≥-⎧⎪⎨->-⎪⎩,并把它的解集在数轴上表示出来.【答案】解:解341x x ≥-得1x ≤,解5122x x ->-得1x >-, ∴原不等式组的解为1<1x -≤,把它的解集在数轴上表示出来如下:【考点】解一元一次不等式组;在数轴上表示不等式组的解集.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个. 在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10. (2015年江苏常州8分)解不等式组:24>012>5x x +⎧⎨--⎩.【答案】解:24>012>5x x +⎧⎨--⎩①②,由①得:x >﹣2, 由②得:x <3,∴不等式组的解集为﹣2<x <3.【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).11. (2015年江苏淮安10分)小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变)。