大学物理常用公式(电场磁场 热力学)知识分享
- 格式:doc
- 大小:452.50 KB
- 文档页数:7
磁场电场公式
以下是一些磁场和电场的公式:
磁场公式:
1. 磁场力公式:F=Bqvsinθ,其中B是磁感应强度,q是电荷量,v是速度,θ是速度与磁感应强度的夹角。
2. 安培力公式:F=ILBsinθ,其中I是电流,L是导线长度,B是磁感应强度,θ是导线与磁感应强度的夹角。
3. 洛伦兹力公式:F=qvBsinθ,其中q是电荷量,v是速度,B是磁感应强度,θ是速度与磁感应强度的夹角。
电场公式:
1. 电场力公式:F=qE,其中E是电场强度,q是电荷量。
2. 点电荷电场强度公式:E=kQ/r,其中k是常数,Q是点电荷的电量,r
是点到点电荷的距离。
3. 电势能公式:E=qφ,其中φ是电势。
4. 电势差公式:U=φ-φ',其中φ和φ'分别是两个点的电势。
5. 静电力做功公式:W=qU,其中U是两点之间的电势差。
6. 电容定义式:C=Q/U,其中C是电容,Q是电荷量,U是电压。
7. 欧姆定律:I=U/R,其中I是电流,U是电压,R是电阻。
8. 全电路欧姆定律:ε=I(R+r),其中ε是电源电动势,I是电流,R是外电阻,r是内电阻。
9. 电磁感应公式:E=nΔΦ/Δt,其中E是感应电动势,n是线圈匝数,
ΔΦ/Δt是磁通量的变化率。
第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。
2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。
二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。
Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E v ⊥表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
引言概述:物理公式是大学物理课程中不可或缺的一部分,它们是描述自然现象的数学表达式。
本文将介绍一些大学常用的物理公式,包括力学、热力学、电磁学和光学公式等。
这些公式不仅在学习物理理论和解题中起到重要的作用,而且在工程、科学研究和实际应用中也具有广泛的应用价值。
正文内容:一、力学公式1.1运动学公式1.1.1位移公式s=ut+(1/2)at^21.1.2速度公式v=u+at1.1.3加速度公式a=(vu)/t1.2动力学公式1.2.1牛顿第二定律F=ma1.2.2动能公式Ek=(1/2)mv^21.2.3动量公式p=mv1.3静力学公式1.3.1弹性力公式F=kx1.3.2引力公式F=G(m1m2)/r^21.3.3摩擦力公式Ff=μFn二、热力学公式2.1热传导公式2.1.1热传导方程q=kΔT/L2.1.2热导率公式k=(QL)/(AΔT)2.2热膨胀公式2.2.1线膨胀公式ΔL=αL0ΔT2.2.2体膨胀公式ΔV=βV0ΔT2.3热力学循环公式2.3.1热转化效率公式η=(W_net/Q_h)100%2.3.2卡诺循环效率公式η_C=(T_hT_c)/T_h三、电磁学公式3.1电场公式3.1.1电场强度公式E=F/q3.1.2电势差公式V=W/q3.2磁场公式3.2.1磁场强度公式B=F/(qv)3.2.2磁场感应公式ε=BLv3.3法拉第电磁感应公式3.3.1法拉第电磁感应定律ε=dΦ/dt3.3.2洛伦兹力公式F=q(E+vxB)四、光学公式4.1光速公式4.1.1光速定义c=λf4.1.2光速在介质中的速度v=c/n4.2折射公式4.2.1斯涅尔定律n1sin(θ1)=n2sin(θ2)4.2.2光线传播路径差公式Δx=d(n1)(cot(θ2)cot(θ1))4.3球面镜公式4.3.1球面镜公式1/f=(n1)(1/R11/R2)五、总结本文介绍了大学常用的物理公式,涵盖了力学、热力学、电磁学和光学等方面。
物理电场公式大全电场是物理学中一个重要的概念,用于描述电荷产生的力的作用和电荷间的相互作用。
在电场中,电荷会受到力的作用,而电场的强弱和方向则由电荷的分布决定。
下面将介绍一些常见的电场公式。
1.库仑定律:库仑定律用于描述电荷之间的相互作用力。
对于两个点电荷,它们之间的相互作用力可以通过下面的公式计算:F=k*(q1*q2)/r^2其中,F是作用力,k是电介质常数(k=9×10^9N·m²/C²),q1和q2是两个点电荷的电荷量,r是两个点电荷之间的距离。
2.电场强度:电场强度描述单位正电荷在电场中所受到的力的大小和方向。
电场强度可以由库仑定律导出,公式如下:E=F/q其中,E是电场强度,F是作用力,q是测试电荷的电荷量。
3.均匀电场强度:对于均匀电场,电场强度在空间中是均匀分布的。
对于静电场来说,均匀电场强度的大小与每个电荷的电荷量和电场中的距离无关,可以通过下面的公式计算:E=V/d其中,E是电场强度,V是电势差(或称电压),d是两点之间的距离。
4.电势能:电势能用于描述电荷在电场中的能量状态。
当电荷由一个位置移到另一个位置时,电场会对电荷做功,从而改变电荷的电势能。
电势能可以通过下面的公式计算:U=q*V其中,U是电势能,q是电荷量,V是电势差。
5.电通量:电通量用于描述电场穿过一些面积的大小。
电通量可以通过下面的公式计算:Φ = E * A * cos(θ)其中,Φ是电通量,E是电场强度,A是面积,θ是电场强度与法向量之间的夹角。
6.电场线:电场线是用于可视化电场的方法,可以描述电场强度和方向。
电场线的密度表示电场强度的大小,电场线的方向指示了电场强度的方向。
7.电势差:电势差用于描述电场中电势的变化。
V=U/q其中,V是电势差,U是电势能,q是电荷量。
8.电介质中的电场:当电场中存在电介质时,电介质会改变电场的强度和分布。
电介质中的电场可以通过下面的公式计算:E'=E/κ其中,E'是电介质中的电场强度,E是真空(或空气)中的电场强度,κ是电介质的相对电容率。
大学物理电磁学公式大学物理电磁学是物理学中的一个重要分支,研究电场和磁场以及它们之间的相互作用。
在学习和研究电磁学的过程中,我们经常会接触到一系列重要的公式。
以下是一些常见的大学物理电磁学公式的详细介绍。
1. 库仑定律(Coulomb's Law):库仑定律描述了两个点电荷之间相互作用力的大小和方向。
它的数学表达式为:F = k * |q1 * q2| / r²其中,F为两个电荷所受的力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
2. 电场强度(Electric Field Intensity):电场强度描述了电荷在某一点周围的电场的强弱。
对于一个点电荷,其电场强度的数学表达式为:E = k * |q| / r²其中,E为电场强度,k为库仑常数,q为电荷的大小,r为点电荷到被测点之间的距离。
3. 电势能(Electric Potential Energy):电势能描述了电荷由于存在于电场中而具有的能量。
对于一个点电荷,其电势能的数学表达式为:U = k * |q1 * q2| / r其中,U为电势能,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
4. 电势差(Electric Potential Difference):电势差描述了电场中两个点之间的电势能的差异。
对于两个点电荷之间的电势差,其数学表达式为:ΔV = V2 - V1 = -∫(E · dl)其中,ΔV为电势差,V1和V2分别为两个点的电势,E为电场强度,dl为路径元素。
5. 电场线(Electric Field Lines):电场线用于可视化电场的分布情况。
电场线从正电荷流向负电荷,并且密集的电场线表示电场强度较大,稀疏的电场线表示电场强度较小。
6. 电场的高斯定律(Gauss's Law for Electric Fields):电场的高斯定律描述了电场通过一个闭合曲面的总通量与该闭合曲面内的电荷量之间的关系。
第四章 电 场一、常见带电体的场强、电势分布 1)点电荷:2014q E r πε=04q U rπε=2)均匀带电球面(球面半径R )的电场:200()()4r R E qr R r πε≤⎧⎪=⎨>⎪⎩00()4()4qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩3)无限长均匀带电直线(电荷线密度为λ):02E rλπε=,方向:垂直于带电直线。
4)无限长均匀带电圆柱面(电荷线密度为λ): 00()()2r R E r R rλπε≤⎧⎪=⎨>⎪⎩5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。
二、静电场定理 1、高斯定理:0e Sq E dS φε=⋅=∑⎰静电场是有源场。
q ∑指高斯面内所包含电量的代数和;E指高斯面上各处的电场强度,由高斯面内外的全部电荷产生;SE dS ⋅⎰指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理:0lE dl⋅=⎰ 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统:1ni i E E ==∑;连续电荷系统:E dE =⎰2、利用高斯定理求场强 四、求电势的两种方法1、利用电势叠加原理求电势 分离电荷系统:1nii U U==∑;连续电荷系统: U dU =⎰2、利用电势的定义求电势 rU E dl =⋅⎰电势零点五、应用点电荷受力:F qE = 电势差: bab a b aU U U E dr =-=⋅⎰a由a 到b六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E ⊥表表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。
3)导体腔内有电荷+q ,导体电量为Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电荷Q +q 。
大学物理公式总结归纳物理学作为自然科学的一支重要学科,研究物质、能量以及它们之间的相互作用规律。
在学习和应用物理学的过程中,公式是不可或缺的工具。
本文将对大学物理中一些重要的公式进行总结归纳,并介绍它们的应用场景和实际意义。
1. 力学1.1 牛顿第二定律F = ma在这个公式中,F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
这个公式描述了力对物体运动状态的影响,它是经典力学的基础。
1.2 弹力公式F = kx这个公式描述了弹簧对物体施加的力。
F代表弹力,k代表弹簧的劲度系数,x代表弹簧伸长或压缩的距离。
它在弹簧振动、弹簧秤等实际应用中起到了重要作用。
1.3 动量定理FΔt = Δp这个公式描述了物体所受力的变化率与物体动量的变化率之间的关系。
F代表物体所受的力,Δt代表时间间隔,Δp代表物体动量的变化量。
动量定理在撞击碰撞等问题中有广泛应用。
2. 电磁学2.1 库仑定律F = k|q1q2|/r^2这个公式描述了两个电荷之间的力的作用关系。
F代表电荷之间的力,q1、q2分别代表两个电荷的电量,r代表它们之间的距离。
库仑定律是静电学的基本定律,对于电场、电势等问题的研究具有重要意义。
2.2 电流强度公式I = Q/Δt这个公式描述了单位时间内通过导线的电荷量与电流强度的关系。
I 代表电流强度,Q代表单位时间内通过导线的电荷量,Δt代表时间间隔。
电流强度是电路中一个基本的物理量,在电路分析和设计中被广泛应用。
2.3 电磁感应定律ε = -dΦ/dt这个公式描述了磁场变化引起的感应电动势。
ε代表感应电动势,dΦ/dt代表磁通量对时间的变化率。
根据电磁感应定律,电磁感应现象得到解释,并应用于发电机、变压器等设备的设计与实际运用。
3. 热学3.1 热传导公式Q = kAΔT/Δx这个公式描述了物质在热传导过程中的热量传递。
Q代表热量,k代表热导率,A代表传热面积,ΔT代表温度差,Δx代表传热距离。
电场磁场公式
电场和磁场是物理学中两个重要的概念,它们分别描述了电荷和电流所产生的力场。
电场是负责描述电荷间相互作用的力场,而磁场则是描述电流所产生的力场。
电场的公式为库仑定律,它表示了电荷之间的相互作用力。
库仑定律可以用以下公式表示:
F = k * (q1 * q2) / r^2
其中,F表示电荷间的相互作用力,k是库仑常数,q1和q2分别表示两个电荷的电量,r表示两个电荷之间的距离。
磁场的公式则是安培定律,它表示了电流所产生的磁场。
安培定律可以用以下公式表示:
B = μ0 * (I / (2 * π * r))
其中,B表示磁场的强度,μ0是真空中的磁导率,I表示电流的大小,r表示电流所产生的磁场点与电流的距离。
电场和磁场是密切相关的,它们之间存在一种相互作用关系,即洛伦兹力。
洛伦兹力可以用以下公式表示:
F = q * (E + v * B)
其中,F表示洛伦兹力,q表示电荷的电量,E表示电场的强度,v
表示电荷的速度,B表示磁场的强度。
通过电场和磁场的相互作用,我们可以解释许多物理现象,例如电磁感应、电磁波的传播等。
电场和磁场的公式不仅是理论物理学的基础,也是应用物理学中的重要工具。
电场和磁场是物理学中的重要概念,它们之间存在相互作用关系。
电场和磁场的公式可以帮助我们理解电荷和电流所产生的力场,解释许多物理现象。
通过深入研究电场和磁场的公式,我们可以更好地理解电磁学的原理,并应用于实际问题的解决中。
物理高考知识梳理电磁学与热力学基本公式物理高考知识梳理:电磁学与热力学基本公式在物理高考中,电磁学与热力学是非常重要的考点之一。
这两个领域涉及到了很多基本公式,理解和掌握这些公式对于解题至关重要。
下面将对电磁学与热力学的基本公式进行梳理,帮助大家更好地复习和应对考试。
一、电磁学基本公式1. 库仑定律库仑定律描述了电荷间的相互作用,公式为:F = k * |q1 * q2| / r^2其中,F表示电荷间的力,q1和q2分别表示两个电荷的大小,r为它们之间的距离,k为库仑常数。
2. 电场强度公式电场强度描述了电荷对周围空间的影响,公式为:E =F / q其中,E表示电场强度,F表示电荷所受的力,q为电荷的大小。
3. 电势差公式电势差描述了电场中一个点到另一个点电势的变化,公式为:ΔV = W / q其中,ΔV表示电势差,W表示电场力所做的功,q为电荷的大小。
4. 电场能公式电场能描述了电荷在电场中具有的能量,公式为:U = 1/2 * q * V其中,U表示电场能,q表示电荷的大小,V表示电势差。
5. 法拉第电磁感应定律法拉第电磁感应定律描述了磁通量对电动势的产生,公式为:ε = -dΦ / dt其中,ε表示电动势,Φ表示磁通量,t表示时间。
6. 磁场中的洛伦兹力公式磁场中的洛伦兹力描述了带电粒子在磁场中所受到的力,公式为:F = q * (v × B)其中,F表示洛伦兹力,q为电荷的大小,v表示带电粒子的速度,B表示磁场的磁感应强度。
二、热力学基本公式1. 热力学第一定律热力学第一定律描述了热量、功和内能之间的关系,公式为:ΔQ = ΔU + ΔW其中,ΔQ表示系统所吸收的热量,ΔU表示系统的内能变化,ΔW 表示系统所做的功。
2. 熵变公式熵变描述了系统中熵的变化情况,公式为:ΔS = ΔQ / T其中,ΔS表示系统的熵变,ΔQ表示系统所吸收的热量,T表示系统的温度。
3. 热容公式热容描述了物体对热量变化的响应程度,公式为:Q = mcΔT其中,Q表示物体所吸收的热量,m表示物体的质量,c表示物体的比热容,ΔT表示温度变化。
50个常用物理公式1. 运动学公式:- 平均速度:v = (Δx) / (Δt)- 平均加速度:a = (Δv) / (Δt)- 位移与初末速度关系:Δx = (v + v₀) * t / 2- 位移与加速度关系:Δx = v₀* t + (1/2) * a * t²- 末速度与初速度、加速度、位移关系:v² = v₀² + 2a * Δx2. 牛顿运动定律:- 第一定律(惯性定律):物体静止或匀速直线运动,除非受到外力作用。
- 第二定律(牛顿定律):F = ma,力等于物体质量乘以加速度。
- 第三定律(作用-反作用定律):任何作用力都有一个大小相等、方向相反的反作用力。
3. 动能和势能:- 动能:KE = (1/2) * m * v²- 重力势能:PE = m * g * h(其中g 是重力加速度,h 是高度)- 弹性势能:PE = (1/2) * k * x²(其中k 是弹性系数,x 是弹簧变形量)4. 万有引力定律:- F = (G * m₁ * m₁) / r²(其中G 是万有引力常数,m₁和m₁是两个物体的质量,r 是它们之间的距离)5. 浮力:- F = ρ * V * g(其中ρ是液体密度,V 是物体在液体中的体积,g 是重力加速度)6. 压强:- P = F / A(其中F 是受力,A 是力作用的面积)7. 能量守恒定律:- E₀= E₁(系统能量守恒)8. 热力学定律:- 热传导公式:Q = k * A * (ΔT / d)(其中Q 是传热量,k 是热导率,A 是传热面积,ΔT 是温度差,d 是厚度)9. 斯特藩-玻尔兹曼定律:- P = σ * A * T⁴(其中P 是辐射功率,σ是斯特藩-玻尔兹曼常数,A 是发射面积,T 是绝对温度)10. 热容和比热容:- Q = mcΔT(其中Q 是吸收或释放的热量,m 是物体的质量,c 是比热容,ΔT 是温度变化)11. 理想气体状态方程:- PV = nRT(其中P 是气体压强,V 是体积,n 是物质的摩尔数,R 是气体常数,T 是绝对温度)12. 理想气体的升压工作:- W = P(V₁ - V₁)(其中W 是气体的升压功,P 是气体的压强,V₁和V₁分别是末态和初态的体积)13. 声速公式:- v = √(γ * RT)(其中v 是声速,γ是气体的绝热指数,R 是气体常数,T 是绝对温度)14. 压强与速度关系(伯努利定律):- P₁ + (1/2)ρv₁²+ ρgh₁ = P₁ + (1/2)ρv₁²+ ρgh₁(其中P 是压强,ρ是液体密度,v 是速度,g 是重力加速度,h 是高度)15. 光速:- c ≈ 3.00 × 10^8 m/s(真空中的光速)16. 折射定律(斯涅尔定律):- n₁sinθ₁ = n₁sinθ₁(其中n₁和n₁分别是两个介质的折射率,θ₁和θ₁分别是入射角和折射角)17. 焦距公式:- 1/f = 1/v + 1/u(其中f 是焦距,v 是像距,u 是物距)18. 球面镜成像公式:- 1/f = 1/v + 1/u(其中f 是焦距,v 是像距,u 是物距)19. 波长、频率和速度关系:- v = λf(其中v 是波速,λ是波长,f 是频率)20. 光的折射和反射:- θ₁ = θ₁(反射角等于入射角,反射)- n₁sinθ₁ = n₁sinθ₁(折射定律)21. 波的叠加:- 两个波叠加时,波峰和波谷相遇时会发生叠加干涉,波峰与波峰、波谷与波谷相遇时会发生叠加增强。
普通物理学教程——大学物理电磁学公式总结(各种归纳差不多都一样)➢第一章(静止电荷的电场)1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。
2.库仑定律:两个静止的点电荷之间的作用力F ==3.电力叠加原理:F=ΣF i4.电场强度:E=,为静止电荷5.场强叠加原理:E=ΣE i用叠加法求电荷系的静电场:E=(离散型)E=(连续型)6.电通量:Φe=7.高斯定律:=Σq int8.典型静电场:1)均匀带电球面:E=0 (球面内)E=(球面外)2)均匀带电球体:E==(球体内)E=(球体外)3)均匀带电无限长直线:E=,方向垂直于带电直线4)均匀带电无限大平面:E=,方向垂直于带电平面9.电偶极子在电场中受到的力矩:M=p×E➢第三章(电势)1.静电场是保守场:=02.电势差:φ1–φ2=电势:φp=(P0是电势零点)电势叠加原理:φ=Σφi3.点电荷的电势:φ=电荷连续分布的带电体的电势:φ=4.电场强度E与电势φ的关系的微分形式:E=-gradφ=-▽φ=-(i+j+k)电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。
5.电荷在外电场中的电势能:W=qφ移动电荷时电场力做的功:A12=q(φ1–φ2)=W1-W2电偶极子在外电场中的电势能:W=-p•E➢第四章(静电场中的导体)1.导体的静电平衡条件:E int=0,表面外紧邻处Es⊥表面或导体是个等势体。
2.静电平衡的导体上电荷的分布:Q int=0,σ=ε0E3.计算有导体存在时的静电场分布问题的基本依据:高斯定律,电势概念,电荷守恒,导体经典平衡条件。
4.静电屏蔽:金属空壳的外表面上及壳外的电荷在壳内的合场强总为零,因而对壳内无影响。
➢第五章(静电场中的电介质)1.电介质分子的电距:极性分子有固有电距,非极性分子在外电场中产生感生电距。
2.电介质的极化:在外电场中固有电距的取向或感生电距的产生使电介质的表面(或内部)出现束缚电荷。
大学物理电磁学知识点静电场中的知识点:静电场是指电荷分布不变的电场。
其中, XXX是指单位正电荷所受到的力, 其公式为E=F/q。
场强叠加原理指在同一点上受到多个电荷的作用时, 场强等于各个电荷场强的矢量和。
点电荷的场强公式为E=q/(4πεr^2)。
用叠加法求电荷系的电场强度的公式为E=∑Ei, 其中Ei是每个电荷的场强。
高斯定理是指电场线密度与电荷量成正比, 与距离成反比。
公式为E=∫dq/4πεr^2.电势是指单位电荷所具有的势能, 其公式为V=∫E·dl。
对于有限大小的带电体, 取无穷远处为零势点。
电势差的公式为Vb-a=∫E·dl, 电势叠加原理是指电势可以标量叠加。
点电荷的电势公式为V=q/(4πεr), 而电荷连续分布的带电体的电势可以通过电荷密度积分得到。
电荷q在外电场中的电势能的公式为V=q/(4πεr)。
移动电荷时电场力的功公式为w=q(Va-Vb)。
场强与电势的关系为E=-∇V。
导体的静电平衡条件包括内部电场为零和表面法向电场为零。
静电平衡导体上的电荷分布是指电荷只能分布在导体的表面上。
电容的定义为C=q/V, 其中平行板电的电容公式为C=εS/d。
电的并联的公式为C=∑Ci, 而串联的公式为1/C=∑1/Ci。
电的能量公式为We=CV^2/2, 电场能量密度公式为εE^2/2.电动势的定义是指单位电荷通过电源时所获得的能量。
静电场中的电介质知识点包括电介质中的高斯定理、介质中的静电场和电位移矢量。
真空中的稳恒磁场知识点包括毕奥-萨伐定律和磁场叠加原理。
毕奥-萨伐定律是指电流元产生的磁场与电流元、场点的位置和方向有关。
磁场叠加原理是指在同一点上受到多个电流元的作用时, 磁场等于各个电流元磁场的矢量和。
在若干个电流(或电流元)产生的磁场中, 某点的磁感应强度等于每个电流(或电流元)单独存在时在该点所产生的磁感强度的矢量和, 即mathbf{B}=\sum \mathbf{B}_i$$以下是要记住的几种典型电流的磁场分布:1)有限长细直线电流mathbf{B}=\frac{\mu I(\cos \theta_1-\cos \theta_2)}{4\pi a}$$其中, $a$为场点到载流直线的垂直距离, $\theta_1$、$\theta_2$为电流入、出端电流元矢量与它们到场点的矢径间的夹角。
2024年高考物理电场与磁场知识点公式总结范文____年高考物理电场与磁场知识点公式总结
电场知识点与公式总结:
一、电场强度
1. 电场强度公式:
2. 电场强度的应用:
二、库仑定律
1. 库仑定律公式:
2. 库仑定律的应用:
三、电势能
1. 电势能公式:
2. 电势能的应用:
四、电势差
1. 电势差公式:
2. 电势差的应用:
五、电场线
1. 电场线基本规律:
2. 电场线的应用:
六、电场力
1. 电场力公式:
2. 电场力的应用:
磁场知识点与公式总结:
一、比奥-萨伐尔定律
1. 比奥-萨伐尔定律公式:
2. 比奥-萨伐尔定律的应用:
二、安培定律
1. 安培定律公式:
2. 安培定律的应用:
三、洛伦兹力
1. 洛伦兹力公式:
2. 洛伦兹力的应用:
四、磁感应强度
1. 磁感应强度公式:
2. 磁感应强度的应用:
五、磁场线
1. 磁场线基本规律:
2. 磁场线的应用:
六、磁场力
1. 磁场力公式:
2. 磁场力的应用:
综合应用:
以上是____年高考物理电场与磁场知识点的公式总结,希望能对你的学习有所帮助!。
物理电场公式大全1.电场强度公式:电场强度E=F/q其中,E表示电场强度,F表示作用在电荷上的力,q表示电荷大小。
2.核电荷总量公式:Q=n×e其中,Q表示核电荷总量,n表示原子核中质子的个数,e表示基本电荷。
3.电场线密度公式:电场线密度d=Q/A其中,d表示电场线密度,Q表示电荷总量,A表示电场线通过的截面面积。
4.均匀带电线的电场强度公式:E=λ/(2πεr)其中,E表示电场强度,λ表示带电线线密度,ε表示介电常数,r表示距离带电线的直线距离。
5.定向电场强度公式:E=kQ/r^2其中,E表示电场强度,k表示库仑常数,Q表示电荷大小,r表示距离电荷的距离。
6.点电荷产生的电场强度公式:E=kQ/r^2其中,E表示电场强度,k表示库仑常数,Q表示电荷大小,r表示距离电荷的距离。
7.带电导体上表面电场强度公式:E=σ/ε其中,E表示电场强度,σ表示导体表面电荷密度,ε表示介电常数。
8.电场能量公式:W=1/2εE^2其中,W表示电场能量,ε表示介电常数,E表示电场强度。
9.球形带电体电场强度公式:E=kQ/r^2其中,E表示电场强度,k表示库仑常数,Q表示电荷大小,r表示距离球心的距离。
10.静电势能公式:U=kQq/r其中,U表示静电势能,k表示库仑常数,Q和q分别表示两个电荷的电荷大小,r表示两个电荷之间的距离。
11.电势公式:V=kQ/r其中,V表示电势,k表示库仑常数,Q表示电荷大小,r表示距离电荷的距离。
12.电场能密度公式:w=εE^2/2其中,w表示电场能密度,ε表示介电常数,E表示电场强度。
13.矩形带电体电场强度公式:E=σ/(2ε)其中,E表示电场强度,σ表示电荷密度,ε表示介电常数。
14.平行板电容器电场强度公式:E=V/d其中,E表示电场强度,V表示电压,d表示平行板的距离。
15.电位差公式:ΔV=Ed其中,ΔV表示电位差,E表示电场强度,d表示距离。
以上是一些常见的物理电场公式,这些公式可以帮助我们计算电场强度、电荷大小、距离等相关的物理量。
大学物理电磁学公式总结汇总电磁学是物理学中非常重要的一个分支领域,它探讨电和磁之间相互关系的基本规律以及物质对电和磁的响应。
它涉及的公式非常多,因此我们需要对这些公式进行整理和总结,以便更好地掌握电磁学的知识。
1. 库仑定律库仑定律描述了电荷之间的相互作用力。
可以用以下公式表示:F = kQ1Q2 / r^2其中,F表示电荷之间的力;Q1,Q2是电荷的大小;r是两个电荷之间的距离;k是一个常数,通常被称为库仑常数。
2. 高斯定理高斯定理用于计算电荷分布的电场,它表明,如果电荷不均匀地分布在一个封闭的表面上,那么通过这个表面上任意一点的电通量正比于在这个表面内部包含的电荷的数量。
可以用以下公式表示:∫E·dA=Q/ε0其中,E表示电场;dA表示一个微小的面积元素;∫E·dA 表示电通量;Q表示包含在表面内的电荷总量;ε0是真空介电常数。
3. 法拉第定律法拉第定律描述了磁场和电场之间相互作用的基本规律,它表明一个在变化的磁场会产生一个沿着闭合电路方向的电动势。
公式可以表示为:ε = -dΦ/dt其中,ε表示电动势;Φ表示磁通量;t表示时间。
4. 安培定理安培定理描述了电流周围的磁场,它表明,一个带电的物体产生的磁场是其电流周围产生的环路的积分。
可以用以下公式表示:∮B·dL = μ0I其中,B表示磁场;L表示电流周围的环路;μ0是真空磁导率;I表示通过环路的电流。
5. 洛伦兹力洛伦兹力表明电荷在磁场中的受力情况,它可以表示为:F = q(E + v×B)其中,F表示力;q表示电荷;E表示电场强度;v表示电荷运动的速度;B表示磁场强度。
6. 磁通连续性定理磁通连续性定理描述了磁场的流线在连续的条件下不能消失,可以用以下公式表示:∇·B = 0其中,∇表示矢量的梯度;B表示磁场。
7. 矢势公式矢势公式描述了磁场可以表示为一个矢势的旋度,可以用以下公式表示:B = ∇×A其中,B表示磁场;A表示矢势。
电场磁场公式范文电场和磁场是电磁学的两个基本概念。
电场是由电荷周围形成的一种力场,而磁场则是由电流周围形成的一种力场。
它们都具有一定的数学描述,以下将详细介绍电场和磁场的公式,以及它们的物理意义。
1.电场公式:电场是描述电荷之间相互作用的力场。
电荷q1产生的电场E1对另一电荷q2的作用力F12可以通过电场公式计算得到:F12=k*(q1*q2)/r^2其中,k为库仑常数,r为两个电荷之间的距离。
2.磁场公式:磁场是描述电流产生的力场。
根据比奥-萨法定律,电流I1在另一点处产生的磁场B2可以通过磁场公式计算得到:B2=(μ0/4π)*(I1×r1)/r^3其中,μ0为磁常数,r1为电流I1所在的位置到磁场点的位矢,r 为两个位置之间的距离。
3.点电荷在电场中受力当有多个电荷在同一电场中时,每个点电荷都受到其它点电荷产生的电场力的作用。
点电荷q在电场E中受力F可以通过以下公式计算得到:F=q*E4.板电容器的电场如果一个平行板电容器的两个极板之间施加了电压V,那么电场的强度可以通过以下公式计算得到:E=V/d其中,d为两个极板之间的距离。
5.线电荷在磁场中受力当有多个电流通过同一导线时,每个电流都会在磁场中产生力。
在磁场B中,电流I1通过的导线所受的力F可以通过以下公式计算得到:F=I1*(L×B)其中,L为电流通过的导线的长度,×表示矢量叉积。
6.磁感应强度与磁场强度之间的关系磁感应强度B是描述磁场强度的物理量。
磁感应强度B可以通过以下公式计算得到:B=μ*H其中,μ为磁导率,H为磁场强度。
7.长直导线周围的磁场长直导线周围的磁场可以通过以下公式计算得到:B=(μ0*I1)/(2π*r)其中,μ0为磁常数,I1为电流,r为导线到其中一点的距离。
上述是电场和磁场的一些基本公式,它们可以帮助我们理解和计算电磁学的各种现象和问题。
物理电场公式总结物理电场公式总结物理电场公式总结1、两种电荷、电荷守恒定律、元电荷:(e=1、60×10-19C);带电体电荷量等于元电荷的整数倍2、库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9、0×109N m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3、电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4、真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5、匀强电场的`场强E=UAB/d {UAB:AB两点间的电压(V),d:AB 两点在场强方向的距离(m)}6、电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7、电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8、电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9、电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10、电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B 位置时电势能的差值}11、电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12、电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13、平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)。
大学物理常用公式(电场磁场热力学)
第四章 电 场
一、常见带电体的场强、电势分布
1)点电荷:201
4q E r πε=
04q
U r
πε=
2)均匀带电球面(球面半径R )的电场:
2
00
()()4r R E q
r R r πε≤⎧⎪
=⎨>⎪⎩
00()4()4q
r R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩
3)无限长均匀带电直线(电荷线密度为λ):02E r
λ
πε=
,方向:垂直于带电直线。
4)无限长均匀带电圆柱面(电荷线密度为λ): 00()()
2r R E r R r
λ
πε≤⎧⎪
=⎨>⎪⎩
5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。
二、静电场定理
1、高斯定理:0
e S
q E dS φε=
⋅=
∑⎰
静电场是有源场。
q ∑指高斯面内所包含电量的代数和;E
指高斯面上各处的电场强度,由高斯面内外的
全部电荷产生;
S
E dS ⋅⎰
指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理:0l
E dl ⋅=⎰ 静电场是保守场、电场力是保守力,可引入电势能 三、 求场强两种方法
1、利用场强势叠加原理求场强 分离电荷系统:1n
i i E E ==∑;连续电荷系统:
E dE =⎰
2、利用高斯定理求场强 四、求电势的两种方法
1、利用电势叠加原理求电势 分离电荷系统:1
n
i
i U U
==
∑;连续电荷系统: U dU =⎰
2、利用电势的定义求电势
五、应用
电势差:b
U U E -=⋅⎰
a 由a 到
b 电场力做功等于电势能增量的负值六、导体周围的电场
1、静电平衡的充要条件: 1)、导体内的合场强为0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E ⊥表表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。
3)导体腔内有电荷+q ,导体电量为Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电荷Q +q 。
3n ε=
七、电介质与电场
1、在外电场作用下,在外电场作用下,非极性分子电介质分子正、负电荷中心发生相对位
移,产生位移极化; 极性分子电介质分子沿外电场偏转,产生取向极化。
2、—电介质介电常数,r ε—电介质相对介电常数。
3、无介质时的公式将0ε换成ε(或0ε上乘
r ε),即为有电介质时的公式
八、电容
1
3
C
4、电容器的储能
:5、电场的能量密度:21122
e E D E ωε==⋅ 第五章 稳恒磁场
一、常见电流磁场分布
1、载流圆环圆心处磁场:
3(单位长度上匝数1/n d = d :导线直径)
二、磁场定理
1、磁通量:通过某一面元dS 磁通:dS B S d B d m θφcos =⋅=
m S
B dS φ=⋅⎰⎰
2、磁场的高斯定理:通过任意闭合曲面的磁通量为零: 0=⋅⎰⎰S
S d B
稳恒磁
场是无源场
3稳恒磁场是一非保守场
∑内
I
:闭合回路所包围的电流的代数和。
I 的正负:由所取回路的方向按右手定则确
定。
B 指回路上各处的磁感应强度,由回路内外的全部电流产生;环流⎰⋅l
l d B
只与回路
内的电流有关。
三、利用磁场叠加原理求B : ,
i i
B B B dB =
=∑⎰
四、应用
1、洛伦兹力:B v q f ⨯= 当B v
⊥时:粒子在均匀磁场中作匀速圆周运
动:2/mv qvB mv R R qB =→= 2m
T qB
π=
2、安培力:电流元受力: B l Id F d
⨯= 一段载流导线受力:⎰⨯=L
B l Id F
若直导线上的B
处处与导线垂直且相等,则安培力:F IBL =
3磁矩m P
N :线圈匝数;I 为通过线圈的电流强度;S 为线圈的面积;n
为线圈的法向单位矢量
五、磁场中的磁介质
1
2、磁介质安培环路定理: ∑⎰=⋅0I l d H l
H
:磁场强度矢量
μ:介质的磁导率。
r μ:介质的相对磁导率r μμμ0=
3、无介质时的公式将0μ换成μ(或0μ上乘r μ),即为有磁介质时的公式 第六章 变化的电磁场
一、法拉第电磁感应定律: 感应电流:1m
d I R
R dt
ε
Φ=
=-
感应电量:R Idt q m ∆Φ-==
⎰
二、 产生动生电动势的非静电力—洛仑兹力 动生电动势计算:1
三、产生感生电动势的非静电力-感生电场力 四、感生电场的环流:
m l
S d B
E dl dS dt
t Φ∂⋅=-
=-⋅∂⎰
⎰感 感生电场是非保守场。
无势能
感生电场的通量: 0S
E dS ⋅=⎰
感 感生电场是无源场。
感生电场线是闭合曲
线。
五、磁场的能量
1、自感磁能、线圈储存的能量
21W LI = *2、磁场的能量密度
六、麦克斯韦方程的积分形式
d
d S
d H dl I I I dt
Φ⋅=+=+
⎰
磁场由传导电流和(位移电流)变化的电
场激发
位移电流的实质是时变电场,无电荷移动,无焦耳热 第十章 气体动理论及热力学
一、理想气体的状态方程 1
玻尔兹曼常数/A k R N =;气体普适常数R ;阿伏加德罗常数A N ;
气体分
子质量
理想气体内能:
平均速率:
方均根速率:p v v >>
四、热力学第一定律:第一类永动机是不可能制成的。
五、非平衡过程:绝热自由膨胀过程(气体体积增加一倍):熵增加
0Q A ==120E T T ∴∆==
11122122p V p V V V ==
1212p p ∴=
六、理想气体在各种平衡过程:
七、循环过程 1、 循环一次:0=∆E 循环曲线围成图形面积
2、循环效率 1A Q Q Q η==-净放吸
吸
*3八、一切实际过程都是不可逆过程,只能沿着(无序度增加)熵增加的方向进行。
0ds ≥(仅对可逆过程取等号) 可逆过程:无阻力的单摆,无摩擦的准静态过程
九、平均碰撞频率22Z d nv π= d :分子有效直径 平均自由程:
21
2v Z
d n
λπ=
= 第十二章 量子物理
一、光电方程 212m h mv A ν=+,c m
eU mv =22
1,00
hc
h A νλ=
=
二 、德布罗意假设
2;h
mc h p mv ενλ====
德布罗意波长:h
mv λ= 电子0A U
λ=
德布罗意波是一种没有能量转移的概率波。
1927年戴维孙和革末用电子衍
射实验证实实物粒子的波动性。
四、不确定关系:x x P h ∆⋅∆=粒子的坐标和动量不能同时精确确定。
五、2
(,,,)x y z t ψ 就表示粒子在t 时刻在(x,y ,z)处单位体积内出现的概率 波函数的标准化条件:单值、有限、连续。
波函数的归一化:2
1dv ψ=⎰
六、玻尔理论:轨道角动量:2h
L mvr n
n π
=== 跃迁假设:n k h E E ν=- 轨道半径:0
20.531,2,3...n r n A n ==,能级:213.6
1,2,3...n E eV n n
=-=
七、氢原子的量子力学处理:
1、主量子数:12 3...(1)n n =-、、、
角量子数:
0123 (1)
p d
l n s =-、、、、、、
磁量子数:012......l m l =±±±、
、、 自旋磁量子数:s m =±1/2
2、核外电子分布遵从:泡利不相容原理;能量最低原理。