高一数学对数与函数知识点
- 格式:docx
- 大小:37.62 KB
- 文档页数:4
高中数学对数的知识点总结一、对数的定义1. 对数的概念对数是指数的逆运算。
设a为正实数且a≠1,a的正实数b的对数写作logₐb,读作“以a为底b的对数”。
其中a称为底数,b称为真数。
即logₐb=c,是等价的关系式a^c=b。
例如,log₂8=3,即等式2^3=8成立。
2. 对数的性质(1)底数为1时,b=1,a=1,log₁1=0;即logₐa=0。
(2)底数为正数时,即a>0,且a≠1时⒈对于任意正数b,1≠b,底数相等时,对数相等,即a>0,a≠1时,logₐb=logₐc,当且仅当b=c。
即对于任意正数b,0<a≠1,等式a^x=b的解是唯一的。
⒉对于任意正数a,b,c,当a>0,a≠1时,loga(b*c)=loga(b)+loga(c)。
⒊对于任意正数a,b,c,当a>0,a≠1时,loga(b/c)=loga(b)-loga(c)。
⒋对于任意正数a,b,当a>0,a≠1时,loga(b^c)=c*loga(b),其中c是常数。
3. 对数的求值对数的求值即是用对数的性质,把对数的计算用其它运算替代。
4. 对数的应用对数是一个非常重要和常见的概念,在数学中有着广泛的应用。
在科学、工程、经济和社会等领域中,对数都有着重要的作用。
例如在地震、声音、强度、音乐、语言学和政治领域等,都用到对数。
二、对数的基本概念1. 对数方程的解法对数方程的解法是通过对数的性质来解对数方程。
分为以下几种类型:(1)把一个对数方程转化为同底数的对数方程,通过对数的定义和性质,解方程找到x的值。
(2)两个底数不同的对数方程,通过换底公式进行计算,转换成相同底数的对数方程。
2. 对数不等式的解法对数不等式的解法是把对数引入不等式组成的方程中,然后进一步思考分析,解不等式。
对数不等式常见的类型有以下几种:(1)把对数不等式分解为多个对数方程,然后再求解。
3. 对数方程组的解法对数方程组的解法是将多个对数方程组合成一个方程,然后根据对数的性质和方程组的解法,求解出方程组的解集。
高一必修一对数函数知识点对数函数是高中数学中的一个重要内容,它涉及到了指数函数和对数函数的关系。
对数函数的学习对于高中数学学习的深入理解和能力的发展非常重要。
本文将为大家介绍高一必修一对数函数的主要知识点,并通过示例来加深理解。
一、对数函数的定义和性质1. 对数函数的定义:对数函数y=loga(x)定义为y=a^x,其中a>0且a≠1。
其中,a称为底数,x称为指数,y称为对数。
2. 对数函数的性质:- 当x>0时,对数函数y=loga(x)是严格单调递增函数。
- 当0<a<1时,对数函数关于x轴对称。
- 当a>1时,对数函数关于y轴对称。
二、对数函数的图像和性质1. 对数函数的图像:对数函数的图像随着底数a的不同而变化,当底数a>1时,对数函数的图像呈现上升的指数形状;当0<a<1时,对数函数的图像呈现下降的指数形状。
2. 对数函数的常用性质:- 对数函数的定义域为(0, +∞),值域为(-∞, +∞)。
- 对数函数的图像经过点(1, 0),即loga(1) = 0。
- 对数函数在x=1时取到最小值,即loga(1) = 0。
- 对数函数在x→+∞时,值趋近于正无穷;在x→0+时,值趋近于负无穷。
三、对数函数的基本性质1. 对数函数的指数运算:- loga(xy) = loga(x) + loga(y)- loga(x/y) = loga(x) - loga(y)- loga(x^p) = p·loga(x)2. 对数函数的换底公式:- loga(x) = logb(x) / logb(a)四、对数方程和对数不等式1. 对数方程的求解:- 求解对数方程时,需要根据对数函数的性质来进行等式变形和求解。
2. 对数不等式的求解:- 求解对数不等式时,需要根据对数函数的性质来确定不等式的取值范围。
五、常用对数的计算常用对数是以10为底的对数,用logx表示。
数学高一log知识点在高中数学学科中,对于log(对数)的学习是非常重要的,它是数学中的一个重要概念,有广泛的应用。
在高一阶段,我们将深入学习log的相关知识点,本文将为大家介绍数学高一log知识点的相关内容。
一、对数的定义和性质1. 定义:对数是用以指出一个数与另外一个数的乘积相等的指数的运算。
设a、b为正数,a ≠ 1,b > 0,则称满足等式a^x = b 的x为以a为底b的对数,记作logₐb。
2. 常用性质:a) logₐa = 1,即一个数以自身为底的对数等于1;b) logₐ1 = 0,即一个数以底为1的对数等于0;c) logₐx = -logₓa,对数的底变换公式;d) logₐmn = logₐm + logₐn,对数相乘的性质;e) logₐ(m/n) = logₐm - logₐn,对数相除的性质。
二、 log的运算法则1. 指数与对数的互化a) 对数互化为指数:对于等式a^x = b,两边取以a为底的对数,即可得x = logₐb;b) 指数互化为对数:对于等式x = logₐb,两边取底为a的指数,即可得a^x = b。
2. 对数的换底公式a) 如果已知logₐb,要将其换底为logₓb,则可以运用换底公式logₐb = logₓb / logₓa来计算;b) 换底公式的推导过程:假设logₓb = m,即x^m = b,两边同时取以a为底的对数,得到logₐ(x^m) = logₐb,再利用乘法性质得(logₓa) (logₐx) = logₓb,进一步化简即可推导得到换底公式。
3. log的乘方和开方运算a) logₐm^k = k logₐm;b) logₐ√b = 1/2 logₐb。
三、对数方程与不等式1. 对数方程的解法a) 将对数方程转化为指数方程进行求解;b) 运用对数运算法则,将方程化简为形式简单的等式,并解得未知数的值。
2. 对数不等式的解法a) 将对数不等式转化为指数不等式进行求解;b) 利用对数的单调性,将不等式不等式化简为形式简单的等式,并得到未知数的取值范围。
高一对数部分知识点一、对数的概念对数是数学中的一个概念,它描述的是一个数在某个底数下的指数。
对数的定义可以表示为:设正数a、b(a≠1),若满足a的x次方等于b,那么x就是以a为底b的对数,记作x=logₐb。
二、对数运算法则1.【换底公式】设a、b、c为正数且a≠1,则logₐb=logc₈logₐc。
2.【乘法公式】设a、b、m为正数且a≠1,则logₐ(mn)=logₐm+logₐn。
3.【除法公式】设a、b、m为正数且a≠1,则logₐ(m/n)=logₐm-logₐn。
4.【幂公式】设a、b、m为正数且a≠1,则logₐb^m=mlogₐb。
5.【对数函数的性质】设a、b为正数且a≠1,n为正整数,则:(1)logₐa=1;(2)logₐ1=0;(3)logₐa=logₐb→a=b;(4)logₐa=1/logaₐ;(5)logab=logab;(6)若a>b>1则logₐa>logₐb。
三、对数的应用对数在各个领域中都有广泛的应用,以下是一些常见的应用:1.科学计数法:当数据过大或过小时,可以用对数来表示,便于计算和理解。
2.测量:在一些测量中,对数的运算可以更好地表达测量结果,例如地震的里氏震级。
3.经济学:对数在经济学中的应用尤为重要,比如描述利率、物价指数等指标变化幅度。
4.音乐学:音乐的音高经常使用以2为底的对数来表示,方便演奏和理解音乐。
四、对数函数与指数函数对数函数是指对数运算的函数形式,指数函数是指指数运算的函数形式。
对数函数和指数函数是互为反函数的关系,它们之间存在以下关系:1.对数函数:y=logₐx,其中x为正数,a为底数,y为对数。
2.指数函数:y=aˣ,其中a为正数且不等于1,x为指数,y为底数。
五、常用对数和自然对数常用对数是指以10为底的对数,自然对数是指以e(自然对数的底数,约等于2.71828)为底的对数。
在计算中,常用对数和自然对数有着重要的作用。
高一对数指数函数知识点在高中数学中,对数和指数函数是重要的数学概念。
它们在各个科学领域中都有广泛的应用。
本文将探讨高一阶段涉及的对数和指数函数的知识点。
一、指数函数指数函数是一种形如f(x) = a^x(a为常数)的函数。
其中,a称为底数。
1.指数函数的性质- 当a>1时,指数函数在整个定义域上是递增的;当0<a<1时,指数函数在整个定义域上是递减的。
- 指数函数在x轴上的图像必过点(0,1)。
2.指数函数的图像与性质- 当底数a<1时,指数函数的图像逐渐接近x轴,但永远不会触及。
- 当底数a=1时,指数函数的图像是一条水平线y=1。
- 当底数a>1时,指数函数的图像在x<0时位于y轴下方,经过点(0,1),在x>0时逐渐远离x轴。
二、对数函数对数函数是指形如f(x) = loga(x)(a为正实数且a≠1)的函数。
1.对数函数与指数函数之间的关系对数函数与指数函数是互逆的。
即,如果y = f(x)是指数函数,那么x = f^(-1)(y) = loga(y)是对数函数。
2.对数函数的性质- 当0<a<1时,对数函数在整个定义域上是递减的;当a>1时,对数函数在整个定义域上是递增的。
- 对数函数在y轴上的图像必过点(1,0)。
3.对数函数的图像与性质- 当底数a>1时,对数函数的图像从负无穷趋近于y轴,经过点(1,0),在x>1时逐渐远离y轴。
- 当底数0<a<1时,对数函数的图像在x>0时位于y轴上方,在x<1时逐渐向y轴靠近。
三、指数方程与对数方程指数方程和对数方程是数学问题中常见的类型。
在解决这些问题时,需要应用指数函数和对数函数的性质。
1.指数方程指数方程是指形如a^x = b(a、b为常数)的方程。
解这种方程时,可将两边同时取以底数为a的对数,然后运用对数函数的性质。
举个例子,解方程2^x = 8:取以底数为2的对数,得到x = log2(8) = 3。
高中数学重点知识总结对数函数及对数函数图象性质一、对数函数的概念一般地,函数log a y x =(0a >且1a ≠),叫做对数函数,其中x 是自变量,定义域是()0,+∞。
二、对数函数的图象三、对数函数图象的性质1.图象都过定点()0,1。
定义域:()0,+∞,值域:R 。
2.01a <<时,为定义域上的减函数;.1a >时,为定义域上的增函数。
3.底数越大,在直线1x =的右侧越靠近x 轴,即“底大图低”。
四、对数函数图象的对称性由图象可得,底数互为倒数的两个对数函数的图象关于x 轴对称。
五、反函数1.互为反函数的两个函数的定义域和值域正好互换。
2.底数相同的指数函数和对数函数互为反函数。
如3x y =与3log y x =互为反函数。
3.互为反函数的两个函数的图象关于直线y x =对称。
六、指、对、幂函数的增长快慢比较任给三个单调增的指数函数、对数函数、幂函数,总存在一点0x ,使得0x x >时下面两种情况同时成立。
(1)函数值的大小关系:指数>幂函数>对数函数。
(2)函数值的增长速率:指数>幂函数>对数函数。
七、高中阶段常见的考查方式1.求对数函数在某区间上的单调性、最值、值域。
2.求对数函数的复合函数的定义域、值域、单调区间、奇偶性等。
3.根据几个对数函数的图象判断底的大小关系。
4.根据对数函数的底,判断对应的函数图象。
5.跟据对数式值的正负找不等式关系。
如:若log 0a b >,则1,1a b >>或01,01a b <<<<。
若log 0a b <,则1,01a b ><<或01,1a b <<>。
6.给出对数函数简单变形或与其他函数复合后的解析式,选大致图象选项,或 判断奇偶性。
7.构造对数函数比较两个实数的大小,或判断两个实数的正负。
高一数学必修一对数知识点一、什么是对数对数是数学中一个很重要的概念,它与指数运算密切相关。
对数通常用来表示通过指数运算得到的结果。
在数学中,我们以log为符号,表示对数。
这里的底数通常是10,因此常用的对数就是以10为底的对数,简称为常用对数。
常用对数的符号是lg。
例如,如果我们有一个等式10^2=100,我们可以用对数来表达为:lg100=2。
这里的2就是这个数的对数。
二、对数的特性对数有一些特性,掌握这些特性可以更好地理解和应用对数。
1. 对数相加等于两个数相乘的对数:log(ab)=loga+logb。
这个特性称为对数的乘法法则。
2. 对数相减等于两个数相除的对数:log(a/b)=loga-logb。
这个特性称为对数的除法法则。
3. 底数为10的对数称为常用对数,它的特点是对数值与所表示的数的数量级相等。
4. 任何数的对数都必须大于0,即对数的底数必须大于1。
三、对数的应用1. 对数在科学计算中经常使用,尤其是当数据的数量级很大或很小时。
例如,天文学家用对数来表示星星的亮度等级,地震学家用对数来表示地震的震级等。
2. 对数在解决指数方程和指数不等式时非常有用。
通过运用对数的性质,我们可以将指数方程转化为对数方程,进而求解。
3. 对数还可以用于解决百分数和利率的问题。
当我们需要计算复利时,可以使用对数来简化计算过程。
四、对数的计算方法1. 利用对数的乘法法则和除法法则,我们可以将任意一个数转化为以某个底数为底的对数。
2. 计算对数时,可以利用科学计算器上的对数函数。
通常,对数函数的按键上标有log或lg的符号。
3. 当底数不是10时,我们可以利用换底公式来计算对数。
换底公式是loga(b)=logc(b)/logc(a),其中c可以是任意不等于1的数。
五、对数的常见错误1. 计算对数时,一定要记得给出底数,否则对数没有意义。
2. 在使用对数进行计算时,一定要保证输入的数值大于0,否则计算结果将出错。
对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。
函数对数知识点总结高中一、函数1.1 函数的概念函数是数学中的基本概念之一。
函数是一个对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
在数学上,函数通常表示为f(x),其中x为自变量,f(x)为因变量。
函数通常用一个公式或者一张图来表示。
1.2 函数的性质函数有以下几个重要的性质:(1)定义域:函数的定义域是指函数的自变量可以取到的值的范围。
(2)值域:函数的值域是指函数的因变量可以取到的值的范围。
(3)单调性:函数在定义域内的函数值随着自变量的增加而增加或者减少。
(4)奇偶性:函数的奇偶性是指函数图像关于原点对称或者关于y轴对称的性质。
(5)周期性:函数的周期性是指函数在一定的区间内,具有重复性的性质。
1.3 函数的图像函数的图像是函数的一种图形表示。
通过函数的图像,我们可以直观地了解函数的性质,比如函数的单调性、奇偶性、周期性等。
在高中数学中,我们常常研究一次函数、二次函数、三次函数、绝对值函数、反比例函数等函数的图像。
1.4 函数的计算函数的计算包括函数的运算和函数值的计算。
函数的运算包括函数的加减乘除、函数的复合运算等。
函数值的计算是指给定自变量的值,求对应的因变量的值。
1.5 函数的应用函数在数学中的应用非常广泛,比如微积分、概率论、统计学等。
在物理学、化学、经济学、生物学等领域中,函数也有着广泛的应用,比如描述物体的运动、化学反应的速度、经济增长的模型等。
因此,深入理解函数的性质和应用,对于学生来说是非常重要的。
二、对数2.1 对数的概念对数是数学中的一种运算,它是指数运算的逆运算。
在数学上,对数的表示为log。
对数的底数通常为10,自然对数的底数为e。
对数是描述一个数用于指数形式表示的方式。
2.2 对数的性质对数有以下几个重要的性质:(1)底数为1的对数是0:log1a=0(2)底数为10的对数叫做常用对数:log10a(3)底数为e的对数叫做自然对数:logea(4)对数的运算法则:logab=logac+logcb,logab=logac-logcb,logab=c*logac(5)对数函数的图像:对数函数的图像是一条拐点在原点,开口向上的曲线。
对数函数及其性质1.对数函数:一般地,把函数y=log a x(a>0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.为了更全面、更深刻的理解对数函数的概念,还应从以下三个方面理解: (1)定义域:因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)底数:对数函数的底数a >0且a ≠1;(3)形式上的严格性:和指数函数一样,在对数函数的定义表达式y=log a x (a >0且a ≠1)中,log a x前面的系数必须是1,底数为大于0且不等于1的常数.对数的真数仅有自变量x ,否则不是对数函数.例如y=log a(x-1),y=2log a x ,y=log a x+21等函数是由对数函数变化而得到的,但不是对数函数. 指数函数和对数函数对照表名称 指数函数 对数函数一般形式 y=a x(a >0且a ≠1)y=log a x(a >0且a ≠1)定义域 R (0,+∞)值域(0,+∞)R函数值 变化 情况当1a >时,1010010x xx a x a x a x ⎧>>⎪==⎨⎪<<<⎩,,,,, 当01a <<时,0101010x xx a x a x a x ⎧<<>⎪==⎨⎪><⎩,,,, 当1a >时,log 01log 01log 001a a a x x x x x x >>⎧⎪==⎨⎪<<<⎩,,,,,;当01a <<时,log 01log 01log 00 1.a a ax x x x x x <>⎧⎪==⎨⎪><<⎩,,,,,单调性当a >1时,y=a x是增函数;当0<a <1时,y=a x是减函数.当a >1时,y=log a x是增函数;当0<a <1时,y=log a x是减函数.图象y=a x(a >0且a ≠1)的图象与y=log a x(a >0且a ≠1)的图象关于直线y=x 对称.当a >1时, 当0<a <1时,补充 性质 当a >1时,图象向上越靠近y 轴,底数越大;0<a <1时,图象向上越靠近y 轴,底数越小.当a >1时,图象向右越靠近x 轴,底数越大; 当0<a <1时,图象向右越靠近x 轴,底数越小.3.反函数:一般地,式子y=f(x)表示y是自变量x的函数,设它的定义域为A,值域为C. 我们从式子y=f(x)中解出x,得到式子x=φ(y).如果对于y在C中的任何一个值,通过式子x=φ(y),x在A中都有唯一确定的值和它对应,那么式子x=φ(y) 就表示x是自变量y的函数。
高一数学有关必修一对数函数知识点高一数学必修1对数函数知识点一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。
底数则要大于0且不为1对数的运算性质当a0且a1时,M0,N0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n)=nlog(a)(M)(nR)(4)换底公式:log(A)M=log(b)M/log(b)A (b0且b1)对数与指数之间的关系当a0且a1时,a^x=N x=㏒(a)N常用简略表达方式(1)常用对数:lg(b)=log(10)(b)(2)自然对数:ln(b)=log(e)(b)(3)log(a)+(b)=log(a)(b)e=2.718281828... 通常情况下只取e=2.71828 对数函数的定义对数函数的一般形式为y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。
因此指数函数里对于a的规定(a0且a1),同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
定义域:(0,+)值域:实数集R定点:函数图像恒过定点(1,0)。
单调性:a1时,在定义域上为单调增函数,并且上凸;01时,在定义域上为单调减函数,并且下凹。
1时,在定义域上为单调奇偶性:非奇非偶函数周期性:不是周期函数零点:x=1知识拓展:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。
德国的史提非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。
对数及对数函数一.知识梳理 (一).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是ba = N ,那么数b 称以a 为底N 的对数,记作log a N = b 其中a 称对数的底,N 称真数。
1)以10为底的对数称常用对数,N 10log 记作N lg ;2)以无理数)71828.2( =e e 为底的对数称自然对数,log e N ,记作N ln ;3)指数式与对数式的互化 ba = N ⇔log a N =b ②基本性质:1)真数N 为正数(负数和零无对数);2)log 10a =;3)1log =a a ;4)对数恒等式:N a Na =log 。
③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=;3)∈=n M n M a na (log log R )。
④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a ;2)b mnb a na m log log =。
(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2三.【例1】比较下列各组数的大小:(1)3log 2与()23log 3x x -+(2) 1.1log 0.7与 1.2log 0.7(3)32log 3与56log 5【变式训练1】比较大小:4.0lg 4.0log 4.0log 4.0log 3211.0【变式训练2】已知01a <<,log log 0a a m n <<,则( ).A 1n m << .B 1m n << .C 1m n << .D 1n m <<【例2】下列指数式与对数式互化不正确的一组是 ( ) A 、0lg11100==与 B 、3131log 31272731-==-与 C 、39921log 213==与 D 、5515log 15==与【变式训练1】.若()125log -=-x,则x 的值为 ( )A 、25-B 、25+C 、2525+-或D 、52- 【变式训练2】.若()log lg ,x ______x ==20则【变式训练3】=-+7log 3log 49log 212121 。
高一数学对数函数知识点一、对数函数的基本概念对数函数是数学中的一种基本函数,它与指数函数有着密切的关系。
在高一数学的学习中,对数函数的概念、性质和应用是重要的知识点。
对数函数可以定义为:如果a^b=c(其中a>0,且a≠1,b和c为实数),那么数b就称为以a为底c的对数,记作b=log_a c。
二、对数的运算法则对数的运算法则是解决对数问题的基础。
以下是几个基本的对数运算法则:1. 乘法变加法:log_a (xy) = log_a x + log_a y2. 除法变减法:log_a (x/y) = log_a x - log_a y3. 幂的对数:log_a (x^b) = b * log_a x4. 对数的换底公式:log_a x = log_c x / log_c a,其中c为新的底数。
掌握这些运算法则对于解决复杂的对数问题至关重要。
三、常用对数函数在高中数学中,最常用的对数函数是自然对数和常用对数。
1. 自然对数:以e(约等于2.71828)为底的对数称为自然对数,记作ln x。
自然对数在数学、物理和工程等领域有着广泛的应用。
2. 常用对数:以10为底的对数称为常用对数,记作log x。
常用对数在科学计数法中经常被使用。
四、对数函数的图像和性质对数函数的图像和性质是理解对数函数行为的关键。
对数函数y=log_a x具有以下性质:1. 函数图像总是通过点(1,0),因为任何底数的0次幂都等于1。
2. 对数函数是单调递增的,这意味着随着x的增加,y也会增加。
3. 当x>0时,函数有定义;当x<=0时,函数无定义。
4. 对数函数的图像是一条在y轴右侧的曲线,永远不会与x轴相交。
五、对数函数的应用对数函数在实际问题中有许多应用,例如:1. 复利计算:在金融领域,对数函数可以用来计算连续复利。
2. 地震强度:地震的强度常常用对数来表示,因为地震能量的增加与震级不是线性关系。
3. pH值计算:在化学中,pH值是衡量溶液酸碱度的指标,它是基于对数的计算。
高一数学必修一对数知识点对数是数学中的一个重要概念,广泛应用于各个领域。
在高一数学必修一课程中,掌握对数的相关知识点对于学习和解题都非常关键。
本文将介绍高一数学必修一中与对数相关的几个重要知识点。
一、对数的定义和性质对数是指数运算的逆运算,用于描述指数运算中的幂次关系。
设a和b是正实数且a≠1,若a^x=b,则称x是以a为底b的对数,记作x=log_a b。
对数的性质包括对数的定义、对数的唯一性和对数的计算规则。
二、常用对数和自然对数常用对数以10为底,通常记作lgx或logx,其中x是正实数。
自然对数以常数e(自然对数的底)为底,通常记作lnx,其中x是正实数。
常用对数和自然对数在科学和工程计算中经常使用,掌握其使用方法和性质对于解题和应用都具有重要意义。
三、对数函数与指数函数的性质对数函数和指数函数是互为反函数的函数。
指数函数y=a^x (a>0,a≠1)是底为a的对数函数y=log_a x的反函数,反之亦然。
对数函数和指数函数的图像具有一些特殊的性质,如对数函数的图像在直线y=x上对称。
四、对数方程和对数不等式对数方程是指形如log_a f(x)=b的方程,其中a是正实数,a≠1;f(x)是一个关于x的已知函数,b是常数。
对数不等式是指形如log_a f(x)<b或log_a f(x)>b的不等式,其中a是正实数,a≠1;f(x)是一个关于x的已知函数,b是常数。
解对数方程和对数不等式需要运用对数的性质和计算规则。
五、指数函数与对数函数的应用指数函数和对数函数在实际问题中具有广泛的应用。
例如,指数函数可以用于描述金融领域中的复利计算,对数函数可以用于描述物理学中的衰减和增长现象。
掌握指数函数和对数函数的应用方法,能够帮助我们更好地理解和解决实际问题。
以上就是高一数学必修一中与对数相关的几个重要知识点的简要介绍。
对数作为数学的一个重要概念,在不同领域都具有广泛的应用价值。
通过学习和掌握这些知识点,我们能够更好地理解数学中的对数运算,并能够灵活地运用于实际问题中。
高一数学上册知识点整理:对数函数、反比例函数一、对数函数1. 对数函数的定义对数函数是指形如 y = log_a(x) 的函数,其中 a 是一个正实数且不等于 1,x 是正实数。
a 被称为对数函数的底数,x 被称为对数函数的真数,y 被称为对数函数的对数。
2. 对数函数的性质•当 x > 1 时,对数函数是递增函数,即随着 x 的增大,对数函数的值也增大。
•当 0 < x < 1 时,对数函数是递减函数,即随着 x 的增大,对数函数的值减小。
•对数函数的图像为一个由左至右递增或递减的曲线,且经过点 (1,0)。
•对数函数的定义域为正实数集,值域为实数集。
3. 常见对数函数的性质•log_a(1) = 0,对数函数的底数 a 的对数为 1 的对数为 0。
•log_a(a) = 1,任何数以自身为底的对数都等于 1。
•log_a(x * y) = log_a(x) + log_a(y),对数函数中的乘法转换为加法。
•log_a(x / y) = log_a(x) - log_a(y),对数函数中的除法转换为减法。
•log_a(x^p) = p * log_a(x),对数函数中的指数转换为系数。
二、反比例函数1. 反比例函数的定义反比例函数是指形如 y = k/x 的函数,其中 k 为非零常数。
反比例函数的图像是一个双曲线。
2. 反比例函数的性质•反比例函数的定义域为除了 x = 0 的所有实数,值域也为除了 y = 0 的所有实数。
•当 x > 0 时,反比例函数是递减函数,即随着 x 的增大,反比例函数的值减小。
•当 x < 0 时,反比例函数是递增函数,即随着 x 的减小,反比例函数的值增大。
•反比例函数的图像有两个渐进线:y = 0 和 x = 0。
•反比例函数的最小值为 k,当 x 趋近于无穷大或负无穷大时,函数的值趋近于零。
3. 反比例函数的应用•反比例函数常用于描述两个物体之间的关系,如材料的密度与体积之间的关系等。
对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log a =log a M -log a N .NM ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =(a >0,a ≠1,b >0,b ≠1,N >0).bN a a log log 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是?2.若f-1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.3.已知f (x )的定义域为[0,1],则函数y =f [log(3-x )]的定21义域是__________.4.若log x =z ,则x 、y 、z 之间满足7y A.y 7=x z B.y =x 7z C.y =7x zD.y =z x5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.B.C. D.422241217.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 (x=-2非解)A.B.-C.2D.-221218.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB9.设f-1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 2310.方程lg x +lg (x +3)=1的解x =___________________.典型例题【例1】 已知函数f (x )=则f (2+log 23)的值为⎪⎩⎪⎨⎧<+≥,4),1(,4,21(x x f x xA.B.C.D.3161121241【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.【例3】已知f (x )=log [3-(x -1)2],求f (x )的值域及单31调区间.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.【例7】 在f 1(x )=x ,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log x 四2121个函数中,x 1>x 2>1时,能使[f (x 1)+f (x 2)]<f ()成21221x x 立的函数是A.f 1(x )=x(平方作差比较)B.f 2(x )21=x 2C.f3(x)=2xD.f4(x)=log x12探究创新1.若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?2.已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f -1(x)图象上的点.(1)求实数k的值及函数f-1(x)的解析式;(2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求m实数m的取值范围.。
高一数学对数与函数知识点
一、对数的基本概念
对数是数学中一种重要的运算符号,经常用于解决指数运算中
的问题。
在高一数学中,对数是一个重要的知识点。
它的基本概
念就是要通过对数运算,将一个指数问题转化为一个普通算术问题。
在数学中,以a为底的b的对数,记为logₐb,其中a称为底数,b称为真数。
对数运算可以看作是指数运算的逆运算,即logₐb=c,等价于aᶜ=b。
二、对数的运算规则
对数运算有一些特定的规则,通过这些规则可以简化对数运算,使得计算更加方便。
以下是一些常见的对数运算规则:
1.对数与指数的关系:logₐa=x,等价于a^x=a。
2.乘法规则:logₐ(M*N)=logₐM+logₐN。
3.除法规则:logₐ(M/N)=logₐM-logₐN。
4.幂的规则:logₐ(M^p)=p*logₐM。
5.换底公式:logₐb=logₓb/logₓa,其中a、b、x为正数,且a ≠ 1。
通过这些运算规则,可以在计算过程中将复杂的对数运算转化
为简单的算术运算,提高计算的效率。
三、指数函数与对数函数
指数函数是指以一个正数a(a>0且a≠1)为底的函数y=a^x。
对
数函数是指数函数的逆运算,其中y=logₐx。
在高一数学中,学生
会学习指数函数和对数函数的定义、性质、图像等内容。
指数函数和对数函数都是非常重要的函数,它们在数学中有广
泛的应用。
例如在金融、物理、化学等领域,指数函数和对数函
数经常用于描述增长、衰减、半衰期等现象。
四、指数函数与对数函数的性质
指数函数和对数函数有一些重要的性质,这些性质在高一数学
中也是需要掌握的知识点。
以下是一些常见的性质:
1.指数函数的图像:当a>1时,指数函数的图像呈现上升趋势;当0<a<1时,指数函数的图像呈现下降趋势。
2.对数函数的图像:对数函数的图像是指数函数图像的镜像。
3.指数函数的性质:指数函数的定义域为实数集,值域为正数集。
当a>1时,指数函数是增函数;当0<a<1时,指数函数是减
函数。
4.对数函数的性质:对数函数的定义域为正数集,值域为实数集。
对数函数是增函数。
根据指数函数和对数函数的性质,我们可以对函数的图像、增
减性进行分析,从而更好地理解和应用这两类函数。
五、常用数学公式与应用
在实际应用中,指数函数和对数函数都有一些常用的数学公式,通过掌握这些公式,可以更好地解决实际问题。
以下是一些常见
的数学公式与应用:
1.复利计算公式:设本金为P,年利率为r,存款年数为n,则
复利计算公式为A=P(1+r)^n,其中A表示最终本息和,可以通过
这个公式计算存款的未来价值。
2.半衰期公式:半衰期是一种衡量某种物质衰减的参数,设原
有物质的量为A₀,经过t时间后剩余物质的量为A,半衰期为T,则半衰期公式为A=A₀(1/2)^(t/T)。
3.指数增长与衰减:指数函数常用于描述增长或衰减的情况。
例如在人口增长、病毒传播、投资增长等方面,指数函数可以非
常好地描述这些现象的规律。
通过掌握这些数学公式,并结合实际问题进行应用,可以培养
学生的数学建模能力和解决问题的能力。
总结:
在高一数学课程中,对数与函数是一个重要的知识点。
通过掌
握对数的基本概念与运算规则,以及指数函数和对数函数的定义
与性质,可以更好地理解和应用这些数学知识。
同时,通过学习
和掌握常用的数学公式与应用,可以将数学知识与实际问题相结合,提高解决问题的能力。
因此,对数与函数的学习对学生的数
学素养和综合能力的提升具有重要的作用。