纯弯曲正应力分布规律实验
- 格式:doc
- 大小:208.50 KB
- 文档页数:3
实验七 纯弯梁正应力分布电测实验实验内容一 纯弯梁正应力分布电测实验一、实验目的1、用电测法测定矩形截面梁在纯弯曲时的正应力的大小及其分布规律,并与理论值作比较。
2、初步掌握电测方法。
二、实验设备1、弯曲梁实验装置一台(见图7.2)2、YJ-4501A 静态数字电阻应变仪一台3、温度补偿片三、实验原理及方法试件选用矩形截面,荷载及测量点的布置如图7.1。
梁的材料为钢,其弹性模量a G E Ρ=210,转动实验装置上的加载手轮,可使梁受到如图7.1的荷载,梁的中段为纯弯曲段,荷载作用于纵向对称平面内,而且在弹性极限内进行实验,故为弹性范围内平面弯曲问题。
梁的正应力公式为y I M Z=σ式中:M --纯弯曲段梁截面上的弯矩Z I --横截面对中性轴的惯性矩y --截面上测点至中性轴的距离。
为了测量梁纯弯曲时横截面上应力分布规律,在梁的纯弯曲段沿梁的侧面各点沿轴线方向粘贴应变片,其分布如图(图7.1)应变片1#粘贴在中性层上,应变片2#、3#、应变片4#和应变片6#、7#分别粘贴在距离中性层为、和上下表面。
此外,在梁的上表面沿横向粘贴应变片8#,如果测得纯梁弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式4/h 8/3h εσE =,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,可得出测量误差。
式中:ε—各测量点的线应变E —材料的弹性模量 σ--相应各测点正应力若由实验,测得的应变片7#和8#的应变7ε和8ε满足μεε=78,则证明 验采用等增量加载的方法测量应力的实验值及计算理论值,计算时均应以弯矩增量及应变增量的平均值代入。
4#图7.1图中:, mm c 150=mm h 40=mm b 20= , mm l 620= 1#--8#所示应变片粘贴位置及方向。
四、实验步骤1、检查梁是否安放稳妥2、把梁上的应变片接在静态电阻应变仪的A 、B 接线柱上。
公共温度补偿片接在0通道接线柱B 、C 上。
验证纯弯曲梁正应力分布规律纯弯曲梁是一种特殊的结构,由于其受力形式特殊,正应力分布也有其独特的规律。
本文将以此为题,深入探讨纯弯曲梁的正应力分布规律。
1、正应力分布式的推导首先,我们需要了解纯弯曲梁受力的形式。
纯弯曲梁是在外力作用下只产生弯曲形变而无拉伸和压缩的一种结构,其受力形式类似于杠杆。
根据材料力学原理,我们可以得出梁在受力时的弯曲矩和曲率半径的关系式:M = EI/R其中,M为弯曲矩,E为弹性模量,I为截面惯性矩,R为曲率半径。
然后,我们根据简单的力学原理,可以得到梁截面任意一点的切线与弯曲轴的夹角是该点处的弯曲半径R所对应的圆心角,也就是tanθ = y’/R,其中y’为该点的偏移量。
接着,我们可以得到梁截面任意一点的正应力分布式:σ = My/I = E(y/R)其中,y为该点的偏移量,σ为该点处的正应力。
2、正应力分布规律的解读由上述分布式可知,梁上不同点处的正应力与该点的偏移量成正比,这意味着梁截面越远离弯曲轴,其正应力就越大。
与此同时,正应力的分布形式也随着梁的形状和受力方式的改变而不同。
当梁为矩形截面时,正应力的分布形式是一个抛物线,最大值出现在截面中心。
当梁为圆形截面时,正应力的分布形式是一个线性分布式,越靠近圆心,正应力越小,越靠近边缘,正应力越大。
当梁为非对称截面时,正应力的分布形式是一个扭曲的线性分布式,同样也是越靠近截面中心,正应力越小,越靠近边缘,正应力越大。
此外,当梁在变形时,不同位置的正应力也会发生变化,造成整个梁的正应力分布形式的改变。
3、实际应用中的意义纯弯曲梁正应力分布规律的掌握对于工程设计和材料选择具有重要的意义。
在工程设计中,根据不同的受力形式和梁截面的形状,可以预测梁上不同位置的正应力大小,从而选择合适的材料进行制作,或者调整梁的截面尺寸和形状,以确保整个梁的正应力分布均匀,避免梁出现弯曲破坏。
此外,正应力分布规律的掌握也对于材料科学的研究具有意义。
纯-弯曲梁的正应力实验本实验旨在研究弯曲梁在受力时的正应力分布情况,通过实验数据的测量及分析,探讨影响梁正应力分布的因素,并对梁的强度进行评估。
1. 实验原理1.1 弯曲梁正应力分析弯曲梁是一种常用的结构元件,例如桥梁、楼层结构等,她受到外力的作用会发生弯曲形变,产生正应力和剪应力。
弯曲梁的正应力是沿着截面法向的应力,在梁的顶部为拉应力,底部为压应力。
正应力的计算公式如下:$$\sigma = \frac{My}{I}$$其中,$\sigma$为正应力,$M$为弯矩,$y$为受力点到截面重心的距离,$I$为截面惯性矩。
弯曲梁正应力的分布情况受到多种因素的影响,主要包括:① 梁材料的弹性模量:弹性模量越大,弯曲梁的刚度越大,相同外力作用下,梁的形变和正应力都会相应减小。
② 梁截面形状和尺寸:梁截面的惯性矩影响正应力的大小和分布情况。
截面抗弯性能越强,正应力越小。
③ 受力位置和方向:受力位置和作用方向是影响正应力大小和分布情况的重要因素。
不同位置和方向的外力作用会导致不同的正应力分布规律。
2. 实验设备和方法本实验采用的主要设备有:弯曲梁试验机、电子天平、千分尺等。
2.2 实验步骤1. 准备弯曲梁样品,将其加工成常用的矩形截面和半圆形截面,分别测量其截面形状和尺寸。
2. 调整弯曲梁试验机,设置好取样位置和取样方式。
3. 将弯曲梁放入试验机,设置试验参数,包括荷重大小、位移速率等。
4. 开始试验,记录每个荷载下的跨中挠度和荷载大小,并计算出弯矩大小。
5. 在试验过程中,用电子天平测量梁的重量,并用千分尺对梁的跨中直径和截面高度进行测量,计算出截面惯性矩。
6. 根据测量数据,计算出每个荷载下的正应力,并绘制出正应力分布图。
3. 结果分析3.1 实验数据记录本实验用常见的矩形和半圆形弯曲梁进行了试验,记录了不同工况下的荷载和跨中挠度等数据。
根据数据计算得出弯矩以及正应力等数据,具体数据结果如下表:1. 矩形截面弯曲梁(1)弯曲梁在起始荷载下出现了微小的振动,但并未发生失稳。
梁的纯弯曲正应力实验报告一、实验目的。
本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。
二、实验原理。
梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。
在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。
根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。
三、实验装置和仪器。
本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。
其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。
四、实验步骤。
1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。
五、实验数据处理和分析。
通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。
通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。
六、实验结论。
通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。
因此,本实验取得了预期的实验目的。
七、实验总结。
本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。
希望通过本次实验,能够对大家有所帮助。
八、参考文献。
[1] 《材料力学实验指导书》。
[2] 《材料力学实验讲义》。
以上为梁的纯弯曲正应力实验报告,谢谢阅读。
纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。
3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。
二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。
4、温度补偿块一块。
三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。
用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。
根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
由上式可知,沿横截面高度正应力按线性规律变化。
实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。
当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。
为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。
此外,在梁的上表面和下表面也粘贴了应变片。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε式中E是梁所用材料的弹性模量。
实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。
??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。
30yp 应力分布曲线20 10 0 10 -20 -30应力b七、思考题1•为什么要把温度补偿片贴在与构件相同的材料上 ?答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补 偿片贴在与构件相同的材料上,来消除温度带来的应变。
2•影响实验结果的主要因素是什么?答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。
一、 实验目的和要求:1)2)用电测法测定纯弯曲梁受弯曲时(或 )截面各点的正应力值,与理论计算值进行比较。
了解电阻应变仪的基本原理和操作方法二、 实验设备CM-1C 型静态电阻应变仪,纯弯曲梁实验装置三、 弯曲梁简图:—0理 亠b 宝J/2 J/2| / [11 I 丄丄. ___ JULlllx|图5-1 已知:、 、、、c h 『6、I : 200GPa(或)截面处粘贴七片电阻片,即 R1、R2、R3、R4、R5、R6、在梁的纯弯曲段内R7。
R4贴在中性层处,实验时依次测出1、2、3、4、5、6、7点的应变,计算 出应力。
四、测量电桥原理 构件的应变值一般均很小,所以,应变片电阻变化率也很小,需用专门仪器进行 测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其测量电路为惠斯顿电 桥,如图所示。
如图所示,电桥四个桥臂的电阻分别为 R1、R2、R3和R4,在设A 、C 端接电源,B 、D 端为输出端W-1ABL22fn/2A、B和B、C以上为全桥测量的读数,如果是半桥测量,则读数为半桥测量是将应变片R3和R4放入仪器内部,R1和R2测量片接入电桥,接入组成半桥测量。
五、理论和实验计算理论计算、扰I?实验值计算:AO _D二4JiD 门电桥,当构件受力后,设上述应变片感受到的应变分别为[、2、3、4相应的电阻改变量分别为、、和,应变仪的读数为d 4 U 1 2 34KU4 U 1 2KU:3.5bh2M cl 4 (JWZ l/.6bh3> 2.6M c2 1Z、d半所谓上式代表电桥的输出电压与各臂电阻改变量的一般关系。
纯弯曲正应力分布规律实验数据一、实验介绍本次实验旨在研究纯弯曲情况下的正应力分布规律,通过测量和分析实验数据,探究不同材料和不同截面形状的试件在纯弯曲条件下的应力分布情况,为工程设计提供参考。
二、实验原理1. 纯弯曲概念纯弯曲是指杆件在外力作用下只发生弯曲变形而不发生拉伸或压缩变形的情况。
在纯弯曲状态下,杆件内部产生的应力是沿截面法线方向分布的。
2. 弹性模量弹性模量是材料抵抗变形能力的一个物理量,表示单位应力作用下单位长度物体产生的相对变形。
它是描述材料刚度大小的重要参数。
3. 截面惯性矩截面惯性矩是描述截面形状对于扭转刚度影响大小的一个物理量。
它越大,则说明该截面形状对于扭转刚度影响越小。
4. 应力公式在纯弯曲情况下,试件内部产生的正应力可以通过以下公式计算:σ = M*y/I其中,σ为正应力,M为弯矩,y为距离中心轴线的距离,I为截面惯性矩。
三、实验步骤1. 制备试件:根据实验要求制备不同材料和不同截面形状的试件。
2. 安装测力传感器:将测力传感器安装在试件上,用以测量试件受到的弯曲力和弯矩。
3. 进行弯曲试验:在实验机上进行弯曲试验,并记录下每个角度下试件受到的弯矩和变形量数据。
4. 计算应力分布:根据公式计算出每个角度下试件内部产生的正应力,并绘制出应力分布图。
5. 数据分析:对实验数据进行分析,探究不同材料和不同截面形状对于应力分布规律的影响。
四、实验数据与结果以下是本次实验得到的部分数据和结果:1. 材料为钢板,截面形状为圆形:弹性模量E = 2.1×10^11 Pa截面惯性矩I = πr^4/4其中r为半径。
通过计算得到该试件在不同角度下产生的正应力分布图如下:(插入图片)从图中可以看出,在圆形截面试件的弯曲过程中,试件内部产生的正应力沿截面法线方向分布,且最大值出现在距离中心轴线最远的位置。
此外,正应力随着距离中心轴线的距离增加而逐渐减小。
2. 材料为铝合金,截面形状为矩形:弹性模量E = 7.0×10^10 Pa截面惯性矩I = bh^3/12其中b为宽度,h为高度。
纯弯曲梁的正应力实验报告纯弯曲梁的正应力实验报告引言:纯弯曲梁是一种常见的结构形式,它在工程中广泛应用于桥梁、建筑物以及机械设备等领域。
了解纯弯曲梁的正应力分布规律对于工程设计和结构安全至关重要。
本实验旨在通过实验方法测量纯弯曲梁的正应力分布,并对实验结果进行分析和讨论。
实验原理:纯弯曲梁在受力时,其截面上的纵向纤维会发生伸长或压缩,从而产生正应力和剪应力。
根据弯曲梁的理论,当弯矩作用于梁上时,梁截面上的正应力与截面距离中性轴的距离成正比。
实验步骤:1. 实验准备:选择一根长度适中的纯弯曲梁,清理梁的表面,并使用卡尺测量梁的几何参数,如宽度、高度和长度等。
2. 悬挂梁:在实验装置上悬挂梁,并调整悬挂点的位置,使梁能够自由弯曲。
3. 施加载荷:逐渐施加外力,使梁发生弯曲,同时记录外力大小和梁的挠度。
4. 测量应变:在梁的表面粘贴应变片,并使用应变仪测量不同位置的应变值。
5. 计算正应力:根据应变与正应力之间的线性关系,使用应变-应力关系计算不同位置的正应力。
6. 绘制应力分布曲线:将测得的正应力数据绘制成应力分布曲线,并进行分析和讨论。
实验结果与分析:通过实验测量和计算,得到了纯弯曲梁不同位置的正应力值,并绘制了应力分布曲线。
实验结果显示,在纯弯曲梁的中性轴附近,正应力较小;而在梁的顶部和底部,正应力较大。
这符合弯曲梁的理论,即正应力与截面距离中性轴的距离成正比。
进一步分析发现,纯弯曲梁的正应力分布呈现出一种对称性,即梁的上下两侧的正应力大小相等。
这是由于梁在弯曲过程中,上下两侧受到的外力大小和方向相反,从而使得正应力分布对称。
此外,实验结果还显示,纯弯曲梁的正应力在梁的中心位置达到最小值,这是由于中性轴处的纤维受力最小,所以正应力最小。
结论:通过本实验,我们成功测量和分析了纯弯曲梁的正应力分布规律。
实验结果表明,纯弯曲梁的正应力与截面距离中性轴的距离成正比,且呈现对称分布。
这对于工程设计和结构安全具有重要意义,能够帮助工程师更好地预测和评估梁的受力情况。
74实验四 纯弯曲梁正应力实验一、实验目的1、测定矩形截面梁在纯弯曲时的正应力分布规律,并验证弯曲正应力公式的正确性;2、学习多点静态应变测量方法。
二、仪器设备1、纯弯曲梁实验装置;2、YD-88型数字式电阻应变仪;3、游标卡尺。
三、试件制备与实验装置1、试件制备本实验采用金属材料矩形截面梁为实验对象。
为了测量梁横截面上正应力的大小和它沿梁高度的分布规律,在梁的纯弯段某一截面处,中性轴和以其为对称轴的上下1/4点、梁顶、梁底等5个测点沿高度方向均匀粘贴了五片轴向的应变计(如图4-4-1),梁弯曲后,其纵向应变可通过应变仪测定。
图4-4-12、实验装置如图4-4-2和图4-4-3所示,将矩形截面梁安装在纯弯曲梁实验装置上,逆时针转动实验装置前端的加载手轮,梁即产生弯曲变形。
从梁的内力图可以发现:梁的CD 段承受的剪力为0,弯矩为一常数,处于“纯弯曲”状态,且弯矩值M=21P •a ,弯曲正应力公式 σ=z yI ⋅M可变换为σ=y az⋅P ⋅I 2图4-4-2图4-4-37576四、实验原理实验时,通过转动手轮给梁施加载荷,各测点的应变值可由数字式电阻应变仪测量。
根据单向胡克定律即可求得σi 实=E ·εi 实(i=1,2,3,6,7)为了验证弯曲正应力公式σ=z y I ⋅M 或σ=y az⋅P ⋅I 2的正确性,首先要验证两个线性关系,即σ∝y 和σ∝P 是否成立:1、检查每级载荷下实测的应力分布曲线,如果正应力沿梁截面高度的分布是呈直线的,则说明σ∝y 成立;2、由于实验采用增量法加载,且载荷按等量逐级增加。
因此,每增加一级载荷,测量各测点相应的应变一次,并计算其应变增量,如果各测点的应变增量也大致相等,则说明σ∝P 成立。
最后,将实测值与理论值相比较,进一步可验证公式的正确性。
五、实验步骤1、试件准备用游标卡尺测量梁的截面尺寸(一般由实验室老师预先完成),记录其数值大小;将梁正确地放置在实验架上,保证其受力仅发生平面弯曲,注意将传感器下部的加力压杆对准加力点的缺口,然后打开实验架上测力仪背面的电源开关;2、应变仪的准备 a.测量电桥连接:图4-4-4如图4-4-4,为了简化测量电桥的连接,将梁上5个测点的应变计引出导线各取出其中一根并联成一根总的引出导线,并以不同于其他引出导线的颜色区别,所以,测量导线由原来的10根缩减为6根,连接测量电桥时,将颜色相同的具有编号1、2、3、6、7的五根线分别连接在仪器后面板上五个不同通道的A号接线孔内,并将具有特殊颜色的总引出导线连接在仪器后面板上的“公共补偿片BC”位置的B号接线孔内。
实验五 纯弯曲梁的正应力实验一、实验目的1、测定梁在纯弯曲时横截面上正应力大小和分布规律。
2、验证纯弯曲梁的正应力计算公式。
3、测定泊松比μ。
4、测量矩形截面梁在纯弯曲时最大应变值,比较和掌握运用不同组桥方式时提高测量灵敏度的方法。
二、实验设备1、材料力学组合实验台;2、电阻应变测力仪;三、实验原理和方法1、测定弯曲正应力 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力计算公式为M =y zI σ (1)式中:M 为弯矩;I z 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。
由上式可知,在弹性范围内,沿横截面高度,正应力按线性规律变化,其最大正应力产生在上下边缘,为max zMW σ=(2) W z 称为抗弯截面系数。
实验采用1/4桥公共补偿测量方法,加载采用增量法,载荷从100N 开始,每次增加700 N ,测出各点的应变增量ε∆,然后分别取各点应变增量的平均值ε∆实i ,依次求出各点的应力增量σ∆实i =E ε∆实i (3)四、实验步骤1.设计好本实验所需的数据表格;2.测量矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a 及各应变片到中性层的距离y i.3.拟定加载方案。
根据实验要求适当选取初载0100F N =,然后按照步长700N 分级加载,加到最大的载荷max 3600F N =。
4.根据加载方案,调整好实验加载装置。
5.按照实验要求接线(1/4桥),调整好电阻应变仪,检查整个系统是否处于正常工作状态;5.加载。
用均匀慢速加载至初载荷0100F N =,记下各点电阻应变仪得初读数,然后按照步长700F N ∆=分级加载,依次记录各点电阻应变片的应变度数,直到3600N 为止;6.完成全部试验内容后,卸掉载荷,关闭电源,整理所用仪器、设备,清理实验现场,将所有仪器设备复原。
五、实验结果处理1、 基本参数L=670 a=160 y 1=12.5 y 2=25 k=2.18 b=20 h=50 E=206Gpa2、原始数据在不同载荷作用下,六个应变片输出应变读数如表(a )所示。
纯弯曲正应力实验报告一、实验目的1. 掌握纯弯曲正应力的基本原理和实验方法;2. 通过实验数据分析,了解梁在不同弯曲程度下的正应力分布情况;3. 培养实验操作能力,提高数据处理和分析水平。
二、实验原理纯弯曲正应力是指在受力构件的横截面上只有弯矩作用而无轴向力作用的情况下的正应力。
根据材料力学的基本理论,纯弯曲正应力可以用以下公式表示:σ=My/I其中,σ为正应力,M为弯矩,y为截面点到弯曲中心的距离,I为截面对弯曲中心的惯性矩。
三、实验步骤1. 准备实验器材:梁、砝码、测力计、测量尺、支撑架等;2. 将梁放在支撑架上,调整梁的位置,使其一端固定,另一端自由;3. 在梁上放置砝码,施加弯矩;4. 使用测力计测量梁上的作用力,记录数据;5. 使用测量尺测量梁的弯曲程度,记录数据;6. 改变砝码的数量和位置,重复步骤4和5,获取多组数据;7. 将实验数据整理成表格。
四、实验数据分析与结论通过实验数据,我们可以计算出梁在不同弯曲程度下的正应力值。
根据计算结果,我们可以得出以下结论:1. 随着弯矩的增大,梁的正应力值逐渐增大;2. 随着梁的弯曲程度的增加,正应力分布不均匀程度逐渐增大;3. 在实验条件下,纯弯曲正应力的计算公式适用。
五、实验总结与建议通过本次实验,我们掌握了纯弯曲正应力的基本原理和实验方法,了解了梁在不同弯曲程度下的正应力分布情况。
在实验过程中,我们需要注意以下几点:1. 确保梁的放置位置正确,避免支撑架的移动或倾斜对实验结果的影响;2. 在测量梁的弯曲程度时,要选择合适的测量点,避免误差的产生;3. 在计算正应力时,要确保数据的准确性和可靠性。
姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N 为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。
纯弯曲梁正应力实验报告纯弯曲梁正应力实验报告引言:纯弯曲梁正应力实验是结构力学实验中的一项重要内容,通过对纯弯曲梁的加载和变形进行观察和测量,可以研究梁的正应力分布规律,探索材料的力学性质以及结构的强度和稳定性。
本实验旨在通过实际操作和数据分析,深入了解纯弯曲梁的正应力分布特点,并对实验结果进行讨论和总结。
实验目的:1. 了解纯弯曲梁的正应力分布规律;2. 掌握测量和计算纯弯曲梁的正应力的方法;3. 分析实验结果,验证理论计算和实验测量的一致性。
实验原理:纯弯曲梁在受到外力作用时,梁的上表面受到拉应力,下表面受到压应力,而中性轴上则不受应力。
根据梁的几何形状和材料特性,可以通过理论计算得到梁上各点的正应力大小。
实验装置:1. 纯弯曲梁实验台:用于支撑和加载梁;2. 弯曲梁加载装置:用于施加力矩,产生弯曲变形;3. 应变计:用于测量梁上各点的应变;4. 数据采集系统:用于记录和分析实验数据。
实验步骤:1. 将纯弯曲梁固定在实验台上,并调整加载装置,使其施加合适的力矩;2. 在梁上选择若干个测量点,安装应变计,并进行校准;3. 施加力矩后,使用数据采集系统实时记录梁上各点的应变数据;4. 停止加载后,记录应变计的读数,并进行数据处理和分析。
实验结果:通过实验测量和数据处理,得到了纯弯曲梁上各点的应变数据。
根据应变-应力关系,可以计算出相应点的正应力大小。
通过对实验结果的分析,可以得到纯弯曲梁的正应力分布规律,验证理论计算和实验测量的一致性。
讨论与分析:1. 实验结果与理论计算相比,是否存在较大的误差?如果有,可能的原因是什么?2. 实验中是否存在其他因素对结果产生影响?如温度变化、材料非均匀性等。
3. 在实际工程中,纯弯曲梁的正应力分布特点对结构设计和施工有何重要意义?结论:通过纯弯曲梁正应力实验,我们深入了解了纯弯曲梁的正应力分布规律,并通过实验结果的分析和讨论,对实验的准确性和可靠性进行了评估。
实验三纯弯曲梁横截面上正应力的分布规律实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律;2.验证纯弯梁的正应力计算公式;二.实验仪器设备:1.CLDT-C材料力学多功能实验台2. XL2118A/B应力&应变综合参数测试仪3.BLK-1/1t拉压力传感器三、弯曲梁简图:图3-1已知: 、、、、在梁的纯弯曲段内(或)截面处粘贴五片电阻片,即、、、、。
贴在中性层处,实验时依次测出1、2、3、4、5点的应变,计算出应力。
四、测量电桥原理构件的应变值一般均很小,所以,应变片电阻变化率也很小,需用专门仪器进行测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其测量电路为惠斯顿电桥,如图所示。
如图所示,电桥四个桥臂的电阻分别为、、和,在、端接电源,、端为输出端。
设、间的电压降为则经流电阻、的电流分别为,、,所以、两端的电压降分别为,所以、端的输出电压为当电桥输出电压时,称为电桥平衡。
故电桥平衡条件为或设电桥在接上电阻、、和时处于平衡状态,即满足平衡条件。
当上述电阻分别改变、、和时略去高阶微量后可得(当时)上式代表电桥的输出电压与各臂电阻改变量的一般关系。
在进行电测实验时,有时将粘贴在构件上的四个相同规格的应变片同时接入测量电桥,当构件受力后,设上述应变片感受到的应变分别为、、、相应的电阻改变量分别为、、和,应变仪的读数为以上为全桥测量的读数,如果是半桥测量,则读数为所谓半桥测量是将应变片和放入仪器内部,和测量片接入电桥,接入、和、组成半桥测量五、理论和实验计算理论计算、、?、、实验值计算:图3-3。
验证纯弯曲梁正应力分布规律引言在工程设计中,结构工程师需要了解梁的应力分布规律,以确保结构安全性。
纯弯曲梁是一种在受到外力作用时,仅发生弯曲变形,而不发生剪切变形的结构。
验证纯弯曲梁正应力分布规律是了解梁的受力情况的重要步骤。
本文将研究和讨论纯弯曲梁正应力的分布规律。
理论背景纯弯曲梁是一种理想化的结构,在纯弯曲梁中,正应力沿梁的高度是变化的,通过数学公式可以描述。
在一根纯弯曲梁中,梁的底部受拉应力最大,而顶部受压应力最大。
这是因为梁的底部受拉,而顶部受压。
根据欧拉-伯努利梁理论,纯弯曲梁的正应力与梁的受力矩、截面形状和材料性质有关。
正应力分布规律可用公式描述如下:σ=M⋅y I其中,σ为梁的正应力,M为梁的弯矩,y为考虑纵向应变的位置,I为截面形状的惯性矩。
根据这个公式,我们可以看到正应力和弯矩成正比,与y和I有关。
实验步骤为了验证纯弯曲梁的正应力分布规律,我们可以进行实验。
以下是实验的具体步骤:1.准备材料和工具:纯弯曲梁样品、加载装置、测量工具(如应变计、杠杆式测力计等)等。
2.设计实验方案:确定实验使用的梁材料、尺寸和形状,确定实验加载方式和加载范围。
3.制备梁样品:根据设计要求,制备符合要求的梁样品。
4.搭建实验装置:根据实验方案,搭建合适的加载装置,确保加载能够均匀施加在梁上。
5.进行实验:将梁样品放置在加载装置上,施加加载,记录加载力和变形情况。
6.测量应变:使用应变计等测量工具,测量梁在不同位置产生的应变。
7.计算正应力:根据测量的应变数据和公式σ=M⋅yI ,计算得出梁的正应力分布情况。
8.分析结果:根据实验数据和计算结果,得出纯弯曲梁的正应力分布规律。
结果与讨论通过上述实验步骤,我们可以得到纯弯曲梁的正应力分布规律。
根据实验结果,我们可以得出以下结论:1.正应力分布与弯矩呈正比。
当弯矩增大时,正应力也随之增大;当弯矩减小时,正应力也随之减小。
2.正应力分布对纵向应变位置y敏感。
实验三纯弯曲正应力分布规律实验
一、实验目的
1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律并与理论值进行比较;
2.验证纯弯曲梁的正应力计算公式;
3.掌握运用电阻应变仪测量应变的方法。
二、实验仪器和设备
1.多功能组合实验装置一台或弯曲梁试验装置;
2.TS3860型静态数字应变仪一台;
3.纯弯曲实验梁一根;
4.温度补偿块一块;
5.游标卡尺
3-1 多功能组合实验装置 3-2弯曲梁试验装置
1—弯曲梁 2—铸铁架 3—支架 4—加载杆
5—加载螺杆系统 6—载荷传感器 7和8—组成电子秤
三、实验原理和方法
弯曲梁的材料为钢,其弹性模量E=200GN/m2,泊松比μ=0.29。
用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。
根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:
x M y I σ=
(3-2) 式中:M 为弯矩;I x 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。
由上式可知,沿横截面高度正应力按线性规律变化。
实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。
当增加压力ΔP 时,梁的四个受力点处分别增加作用力ΔP /2,如图3-3所示。
为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了7片应变片(见图3-3)(对多功能组合装置:b =18.3mm ;h =38mm ;c =133.5mm ),各应变片的粘贴高度见弯曲梁上各点的标注。
此外,在梁的下表面沿横向粘贴了应变片8#。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式σ=E ε,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
若由实验测得应变片7#和8#的应变ε7,和ε8满足 87||εμε≈ 则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。
图3-3弯曲梁布片图
四、实验步骤
1.检查或测量(弯曲梁试验装置)矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离c ,及各应变片到中性层的距离y i 。
2.检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。
检查应变仪的工作状态是否良好。
然后把梁上的应变片按序号接在应变仪上的各不同通道的接线柱A 、B 上,公共温度补偿片接在接线柱B 、C 上。
相应电桥的接线柱B 需用短接片连接起来,而各接线柱C 之间不必用短接片连接,因其内部本来就是相通的。
因为采用半桥接线法,故应变仪应处于半桥测量状态,应变仪的操作步骤见应变仪的使用说明书。
3.根据梁的材料、尺寸和受力形式,估计实验时的初始载荷P 0(一般按P 0=0.1σS 确定)、最大载荷P max (一般按P max ≤0.7σS 确定)和分级载荷ΔP (一般按加载4~6级考虑)。
对多功能组合实验装置(图3-1):取P 0=20Kg ,ΔP =40Kg , P max =180Kg ,分四次加载。
对弯曲梁实验装置(图3-2),本实验中取P 0=50 Kg ,ΔP =100Kg ,P max =45Kg ,分四次加载。
实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。
4.卸去载荷,应变仪和电子秤复位
五、实验结果的处理
1.算出每增加ΔP 时,各测点处平均应变增量Δε实。
2.算出12 ,23
bh I c P M Z =∆=∆, 3.利用公式理σ∆=z I My ∆算出各测点处的理论应力增量Δσ理。
4.利用公式计算相对误差。
%100_⨯∆∆∆理论实验理论σσσ 5.将各点的Δσ实和∆σ理按相同比例绘在方格纸上,并分别连出横截面正应力实验
分布曲线和理论分布曲线,将二图加以比较验证理论公式。
6.计算ε8/ε7值,若ε8/ε7≈μ,则说明纯弯曲梁为单向应力状态。
实验记录和计算数据表格可参考表3-1、表3-2和表3-3。
六、思考题
1.比较应变片6#和7#的应变值,可得到什么结论?
2.本实验中对应变片的栅长尺寸有无要求?为什么?
3.如试验测得结果与理论计算结果不符合,分析误差原因。