(新)高一上学期第一次月考数学试题
- 格式:docx
- 大小:170.41 KB
- 文档页数:9
2023-2024学年河南省高一上册第一次月考数学试题一、单选题1.已知集合{}220A x x x =-≤,{}1,0,3B =-,则()R A B ⋂=ð()A .∅B .{}0,1C .{}1,0,3-D .{}1,3-【正确答案】D【分析】先由一元二次不等式的解法求得集合A ,再由集合的补集和交集运算可求得答案.【详解】因为{}{}22002A x x x x x =-≤=≤≤,所以{R |0A x x =<ð或}2x >,又{}1,0,3B =-,所以(){}1,3R A B ⋂=-ð,故选:D .2.已知函数()f x =()()3y f x f x =+-的定义域是()A .[-5,4]B .[-2,7]C .[-2,1]D .[1,4]【正确答案】D【分析】由函数解析式可得2820x x +-≥,解不等式可得24x -≤≤,再由24234x x -≤≤⎧⎨-≤-≤⎩即可求解.【详解】由()f x =2820x x +-≥,解得24x -≤≤,所以函数()()3y f x f x =+-的定义域满足24234x x -≤≤⎧⎨-≤-≤⎩,解得14x ≤≤,所以函数的定义域为[1,4].故选:D 3.不等式3112x x-≥-的解集是()A .3{|2}4x x ≤≤B .3{|2}4x x ≤<C .{>2x x 或3}4x ≤D .3{|}4x x ≥【正确答案】B【分析】把原不等式的右边移项到左边,通分计算后,然后转化为()()432020x x x ⎧--⎨-≠⎩,求出不等式组的解集即为原不等式的解集.【详解】解:不等式3112x x --可转化为31102x x ---,即4302x x --,即4302x x --,所以不等式等价于()()432020x x x ⎧--⎨-≠⎩,解得:324x <,所以原不等式的解集是3{|2}4x x <.故选:B .4.命题“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式是()A .∀x ∈R ,∃n ∈N+,有n<2x+1B .∀x ∈R ,∀n ∈N+,有n<2x+1C .∃x ∈R ,∃n ∈N+,使n<2x+1D .∃x ∈R ,∀n ∈N+,使n<2x+1【正确答案】D【分析】根据全称命题、特称命题的否定表述:条件中的∀→∃、∃→∀,然后把结论否定,即可确定答案【详解】条件中的∀→∃、∃→∀,把结论否定∴“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式为“∃x ∈R ,∀n ∈N+,使n<2x+1”故选:D本题考查了全称命题、特称命题的否定形式,其原则是将原命题条件中的∀→∃、∃→∀且否定原结论5.已知12a b ≤-≤,24a b ≤+≤,则32a b -的取值范围是()A .3,92⎡⎤⎢⎥⎣⎦B .5,82⎡⎤⎢⎥⎣⎦C .5,92⎡⎤⎢⎥⎣⎦D .7,72⎡⎤⎢⎥⎣⎦【正确答案】D【分析】令32()()a b m a b n a b -=-++求,m n ,再利用不等式的性质求32a b -的取值范围.【详解】令32()()()()a b m a b n a b m n a n m b -=-++=++-,∴32m n n m +=⎧⎨-=-⎩,即51,22m n ==,∴55()5,121()222a b a b ≤-≤≤+≤,故73272a b ≤-≤.故选:D6.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,16AB =,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC (或边CB )于点Q ,设AP x =,APQ △的面积为y ,则y 与x 之间的函数图象大致是()A .B .C .D .【正确答案】D【分析】首先过点C 作CD AB ⊥于点D ,由ABC 中,90ACB ∠= ,30A ∠= ,可求得B ∠的度数与AD 的长度,再分别从当012AD ≤≤与当1216x <≤时,去分析求解即可求得y 与x 之间的函数关系式,进一步选出图象.【详解】过点C 作CD AB ⊥于点D ,因为90ACB ∠= ,30A ∠= ,16AB =,所以60B ∠= ,142BD BC ==,12AD AB BD =-=.如图1,当012AD ≤≤时,AP x =,tan 30PQ AP x =⋅ ,所以21236y x x x ==,如图2:当1216x <≤时,16BP AB AP x =-=-,所以)tan 6016PQ BP x =⋅=-,所以)211622y x x x =-=-+,故选:D此题考查了动点问题,注意掌握含30 直角三角形的性质与二次函数的性质;注意掌握分类讨论的思想.属于中档题.7.已知函数221111x xf x x --⎛⎫= ⎪++⎝⎭,则()f x 的解析式为()A .()()2211x f x x x =≠-+B .()()2211xf x x x =-≠-+C .()()211xf x x x =≠-+D .()()211xf x x x =-≠-+【正确答案】A 【分析】令11x t x -=+,则11tx t-=+,代入已知解析式可得()f t 的表达式,再将t 换成x 即可求解.【详解】令11x t x -=+,则11tx t-=+,所以()()222112111111t t t f t t t t t -⎛⎫- ⎪+⎝⎭==≠-+-⎛⎫+ ⎪+⎝⎭,所以()()2211xf x x x=≠-+,故选:A.8.已知0x >,0y >,且2121x y+=+,若2231x y m m +>--恒成立,则实数m 的取值范围是()A .1m ≤-或4m ≥B .4m ≤-或m 1≥C .14-<<mD .41m -<<【正确答案】C 由2121x y +=+得121y x=+,利用基本不等式求出2x y +的最小值,再将不等式恒成立转化为最值,解不等式可得结果.【详解】由2121x y +=+得212(1)y x x y ++=+,所以12x xy +=,所以121y x=+,所以121x y x x +=++13≥=,当且仅当1,1x y ==时,等号成立,所以()min 23x y +=,所以2231x y m m +>--恒成立,可化为2331m m >--,即2340m m --<,解得14-<<m .故选:C结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;二、多选题9.有以下判断,其中是正确判断的有().A .()xf x x =与()1,01,0x g x x ≥⎧=⎨-<⎩表示同一函数B .函数()22122x f x x =+++的最小值为2C .函数()y f x =的图象与直线1x =的交点最多有1个D .若()1f x x x =--,则112f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭【正确答案】CD【分析】根据函数的定义域可判断A 的正误,根据基本不等式可判断B 的正误,根据函数的定义可判断C 的正误,根据函数解析式计算对应的函数值可判断D 的正误.【详解】对于A ,()xf x x=的定义域为()(),00,∞-+∞U ,而()1,01,0x g x x ≥⎧=⎨-<⎩的定义域为R ,两个函数的定义域不同,故两者不是同一函数.对于B ,由基本不等式可得()221222f x x x =++≥+,但221x +=无解,故前者等号不成立,故()2f x >,故B 错误.对于C ,由函数定义可得函数()y f x =的图象与直线1x =的交点最多有1个,故C 正确.对于D ,()1012f f f ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,故D 正确.故选:CD.10.下面命题正确的是()A .“3x >”是“5x >"的必要不充分条件B .“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件C .“1x ≠”是“2430x x -+≠”的必要不充分条件D .设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的充分不必要条件【正确答案】ABC【分析】利用充分条件,必要条件的定义逐项判断作答.【详解】对于A ,3x >不能推出5x >,而5x >,必有3x >,“3x >”是“5x >"的必要不充分条件,A 正确;对于B ,若0ac <,一元二次方程20ax bx c ++=判别式240b ac ∆=->,方程有二根12,x x ,120cx x a=<,即12,x x 一正一负,反之,一元二次方程20ax bx c ++=有一正一负两个实根12,x x ,则120cx x a=<,有0ac <,所以“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件,B 正确;对于C ,当1x ≠时,若3x =,有2430x x -+=,当2430x x -+≠时,1x ≠且3x ≠,因此“1x ≠”是“2430x x -+≠”的必要不充分条件,C 正确;对于D ,,R x y ∈,若4x y +≥,取1,4x y ==,显然“2x ≥且2y ≥”不成立,而2x ≥且2y ≥,必有4x y +≥,设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的必要不充分条件,D 不正确.故选:ABC11.函数()1,Q0,Qx D x x ∈⎧=⎨∉⎩被称为狄利克雷函数,则下列结论成立的是()A .函数()D x 的值域为[]0,1B .若()01D x =,则()011D x +=C .若()()120D x D x -=,则12x x -∈Q D .x ∃∈R ,(1D x =【正确答案】BD【分析】求得函数()D x 的值域判断选项A ;推理证明判断选项B ;举反例否定选项C ;举例证明x ∃∈R ,(1D x =.判断选项D.【详解】选项A :函数()D x 的值域为{}0,1.判断错误;选项B :若()01D x =,则0Q x ∈,01Q x +∈,则()011D x +=.判断正确;选项C :()()2ππ000D D -=-=,但2ππ=πQ -∉.判断错误;选项D :当x =时,((()01D x D D ===.则x ∃∈R ,(1D x =.判断正确.故选:BD12.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下面正确的是()A .224a b -≤B .214a b+≥C .若不等式20x ax b +-<的解集为()12,x x ,则120x x >D .若不等式2x ax b c ++<的解集为()12,x x ,且124x x -=,则4c =【正确答案】ABD【分析】根据集合{}20,0x x ax b a ++=>子集的个数列方程,求得,a b 的关系式,对A ,利用二次函数性质可判断;对B ,利用基本不等式可判断;对CD ,利用不等式的解集及韦达定理可判断.【详解】由于集合{}20,0x x ax b a ++=>有且仅有两个子集,所以2240,4a b a b ∆=-==,由于0a >,所以0b >.A ,()22224244a b b b b -=-=--+≤,当2,b a ==时等号成立,故A 正确.B ,21144a b b b +=+≥=,当且仅当114,,2b b a b ===时等号成立,故B 正确.C ,不等式20x ax b +-<的解集为()12,x x ,120x x b =-<,故C 错误.D ,不等式2x ax b c ++<的解集为()12,x x ,即不等式20x ax b c ++-<的解集为()12,x x ,且124x x -=,则1212,x x a x x b c +=-=-,则()()22212121244416x x x x x x a b c c -=+-=--==,4c ∴=,故D 正确,故选:ABD三、填空题13.已知21,0()2,0x x f x x x ⎧+≥=⎨-<⎩,求()1f f -=⎡⎤⎣⎦________.【正确答案】5【分析】先求()1f -,再根据()1f -值代入对应解析式得()1.f f ⎡⎤-⎣⎦【详解】因为()()1212,f -=-⨯-=所以()[]1241 5.f f f ⎡⎤-==+=⎣⎦求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现(())f f a 的形式时,应从内到外依次求值.14.已知正实数a 、b 满足131a b+=,则()()12a b ++的最小值是___________.【正确答案】13+13+【分析】由已知可得出3ba b =-且3b >,化简代数式()()12a b ++,利用基本不等式可求得结果.【详解】因为正实数a 、b 满足131a b +=,则03b a b =>-,由0b >可得3b >,所以,()()()()()()32312122222333b b a b b b b b b b +⎛⎫⎛⎫++=++=++=++⎪ ⎪---⎝⎭⎝⎭()()()33515222313131333b b b b b -+=++=-++≥+=+--当且仅当62b =时,等号成立.因此,()()12a b ++的最小值是13+.故答案为.13+15.对于[]1,1a ∈-,()2210x a x a +-+->恒成立的x 取值________.【正确答案】()(),02,-∞+∞ 【分析】设()()()2221121f a x a x a x a x x =+-+-=-+-+关于a 的一次函数,只需()()1010f f ⎧>⎪⎨->⎪⎩即可求解.【详解】令()()()2221121f a x a x a x a x x =+-+-=-+-+,因为对于[]11a ∈-,,不等式()2210x a x a +-+->恒成立,所以()()1010f f ⎧>⎪⎨->⎪⎩即220320x x x x ⎧->⎨-+>⎩解得:0x <或2x >.故答案为.()()02-∞⋃+∞,,方法点睛:求不等式恒成立问题的方法(1)分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.(2)数形结合法结合函数图象将问题转化为函数图象的对称轴、区间端点的函数值或函数图象的位置关系(相对于x 轴)求解.此外,若涉及的不等式转化为一元二次不等式,可结合相应一元二次方程根的分布解决问题.(3)主参换位法把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解,一般情况下条件给出谁的范围,就看成关于谁的函数,利用函数的单调性求解.16.若函数2()2f x x x =+,()2(0)g x ax a =+>,对于1x ∀∈[]1,2-,[]21,2x ∃∈-,使12()()g x f x =,则a 的取值范围是_____________.【正确答案】(]0,3【分析】由题意可知函数()g x 在区间[]1,2-的值域是函数()f x 在区间[]1,2-的值域的子集,转化为子集问题求a 的取值范围.【详解】()()20g x ax a =+>在定义域上是单调递增函数,所以函数在区间[]1,2-的值域是[]2,22a a -+函数()22f x x x =+在区间[]1,2-是单调递增函数,所以函数()f x 的值域是[]1,8-,由题意可知[][]2,221,8a a -+⊆-,所以21228a a -≥-⎧⎨+≤⎩,解得.3a ≤故答案为.(]0,3本题考查双变量等式中任意,存在问题求参数的取值范围,重点考查函数的值域,转化与化归的思想,属于中档题型.四、解答题17.已知{|13}A x x =-<≤,{|13}B x m x m =≤<+(1)若1m =时,求A B ⋃;(2)若R B A ⊆ð,求实数m 的取值范围.【正确答案】(1)(1,4)A B =-U ;(2)()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ .(1)利用集合的并集定义代入计算即可;(2)求出集合R A ð,利用集合包含关系,分类讨论B =∅和B ≠∅两种情况,列出关于m 的不等式,求解可得答案.【详解】(1)当1m =时,{|14}B x x =≤<,则{|14}A B x x ⋃=-<<即(1,4)A B =-U .(2){|1R A x x =≤-ð或}(]()3,13,x >=-∞-⋃+∞,由R B A ⊆ð,可分以下两种情况:①当B =∅时,13m m ≥+,解得:12m ≤-②当B ≠∅时,利用数轴表示集合,如图由图可知13131m m m <+⎧⎨+≤-⎩或133m m m <+⎧⎨>⎩,解得3m >;综上所述,实数m 的取值范围是:12m ≤-或3m >,即()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ 易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.18.(1)已知a b c <<,且0a b c ++=,证明:a a a c b c<--.(2213a a a a ---(3)a ≥【正确答案】(1)证明见解析;(2)证明见解析【分析】(1)利用不等式的性质证明即可;(2)a 3a -<1a -2a -,对不等式两边同时平方后只需证明()3a a -<()()12a a --.【详解】证明:(1)由a b c <<,且0a b c ++=,所以0a <,且0,a cbc -<-<所以()()0a c b c -->,所以()()a c a c b c -<--()()b c a c b c ---,即1b c -<1a c -;所以a b c ->a a c -,即a a c -<a b c-.(2213a a a a ---,(3)a ≥a 3a -<1-a 2a -,即证(3)(3)(1)(2)2(1)(2)a a a a a a a a +-+--+-+--()3a a -<()()12a a --即证(3)(1)(2)a a a a -<--;即证02<,显然成立;213a a a a ---19.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.【正确答案】(1)a =﹣1,b =2(2)见解析【分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【详解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b a a a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0,即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-;当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.20.(1)求函数()3f x x 在区间[]2,4上的值域.(2)已知二次函数2()1(R)f x x mx m m =-+-∈.函数在区间[]1,1-上的最小值记为()g m ,求()g m 的值域;【正确答案】(1)12,4⎤-⎦;(2)(]0-∞,【分析】(1)t =,可得函数()22()36318g t t tt t =--=+-,讨论其值域即可求解;(2)分类讨论二次函数的对称轴与给定区间[]1,1-的关系,分别表示出函数的最小值,表示为分段函数形式,作出图象即可求解.【详解】(1)函数()3f x x =,t =,则26x t =-∵[]2,4x ∈2t ≤≤那么函数()f x 转化为()22()36318g t t t t t =--=+-其对称轴16t =-,2t ≤≤时()g t 单调递增,∴()(2)g g t g ≤≤,12()4g t -≤≤-,故得()f x的值域为12,4⎤--⎦.(2)2()1f x x mx m =-+-,二次函数对称轴为2m x =,开口向上①若12m <-,即2m <-,此时函数()f x 在区间[]1,1-上单调递增,所以最小值()(1)2g m f m =-=.②若112m -≤≤,即22m -≤≤,此时当2m x =时,函数()f x 最小,最小值2()124m m g m f m ⎛⎫==-+- ⎪⎝⎭.③若12m >,即m>2,此时函数()f x 在区间[]1,1-上单调递减,所以最小值()(1)0g m f ==.综上22,2()1,2240,2m m m g m m m m <-⎧⎪⎪=-+--≤≤⎨⎪>⎪⎩,作出分段函数的图像如下,所以当2m <-时,()(,4);g m ∈-∞-当22m -≤≤时,[]4,0;g(m)∈-当m>2时,()0g m =,综上知()g m 的值域为(]0.,-∞21.今年,我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且()2101001000,040100007018450,40x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2023年的利润()W x (万元)关于年产量x (千部)的函数关系式;(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩(2)2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元【分析】(1)根据已知条件求得分段函数()W x 的解析式.(2)结合二次函数的性质、基本不等式求得()W x 的最大值以及此时的产量.【详解】(1)当040x <<时,()()22700101001000250106001250W x x x x x x =-++-=-+-;当40x ≥时,()100001000070070184502508200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭;∴()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)若040x <<,()()210307750W x x =--+,当30x =时,()max 7750W x =万元;若40x ≥,()10000820082008000W x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当10000x x=即100x =时,()max 8000W x =万元.答:2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元.22.已知()11282,0,11f x f x x x x x ⎛⎫+=+-≠≠ ⎪-⎝⎭,(1)求()f x 的解析式;(2)已知()()()22,22g x mx mx g x x f x m =--<-+在()1,3上有解,求m 的取值范围.【正确答案】(1)1()2f x x=+,0,1x x ≠≠;(2)3m <.【分析】(1)根据给定条件,用11,1x x x--依次替换x ,再消元求解作答.(2)由(1)结合已知,变形不等式,分离参数构造函数,求出函数在()1,3的最大值作答.【详解】(1)0,1x x ≠≠,11()2()821f x f x x x +=+--,用11x-替换x 得:11()2912()1x f f x x x x -+=-+--,则有1114()4()8222(9)1011x f x f x x x x x x x --=+---+=-+---,用1x x-替换x 得:1112()2()82(1)711x f f x x x x x x x -+=+--=++--,于是得99()18f x x =+,则1()2f x x=+,所以()f x 的解析式为1()2f x x=+,0,1x x ≠≠.(2)(1,3)x ∈,2221()()22(2)22g x x f x m mx mx x m x-<-+⇔--+<-+,即22(2)22m x x x x -+<++,于是得22222x x m x x ++<-+,令2222(),132x x h x x x x ++=<<-+,依题意,(1,3)x ∈,()m h x <有解,当(1,3)x ∈时,222223()22323()22222222[()][()]23333x x x x h x x x x x x x -++-==+=+-+-+-+--++322316219(2333x x =+≤+-++-,当且仅当1629233x x -=-,即2x =时取等号,因此当2x =时,max ()(2)3h x h ==,则3m <,所以m 的取值范围是3m <.。
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
高一数学 第一次月考试卷班级______姓名________ 命题教师——一、选择题(本题12小题,每题5分,共60分)1、函数1y x=+ D ) A. [)4,-+∞ B .()()4,00,-+∞ C .()4,-+∞ D. [)()4,00,-+∞2、若集合{}{}21,02,A x x B x x =-<<=<<则集合A B 等于(D )A 、{}11x x -<<B 、{}21x x -<<C 、{}22x x -<<D 、{}01x x <<3、若集合{}2228x A x Z +=∈<≤,{}220B x R x x =∈->,则()R A C B 所含的元素个数为( C )A 、0B 、1C 、2D 、34、函数1()f x x x=-的图像关于( C )。
A. y 轴对称 B .直线y x =-对称 C .坐标原点对称 D.直线y x =对称5、已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (D) A.2 B.1 C.0 D.-26、若)(x f 是偶函数,其定义域为),(+∞-∞,且在[)+∞,0上是减函数,则)23(-f 与)252(2++a a f 的大小关系是 ( C ) A 、)252()23(2++>-a a f f B 、)252()23(2++<-a a f f C 、)252()23(2++≥-a a f f D 、)252()23(2++≤-a a f f 7、若)(x f ,)(x g 都是奇函数,且2)()()(++=x bg x af x F 在),0(+∞上有最大值8,则)(x F 在)0,(-∞上有 ( D )A 、最小值8-B 、最大值8-C 、最小值6-D 、最小值4-8、设253()5a =,352()5b =,252()5c =,则,,a b c 的大小关系是 ( A ) A 、a c b >> B 、a b c >> C 、c a b >> D 、b c a >>9、函数1()(0,1)x f x a a a +=>≠的值域为[)1,+∞,则(4)f -与(1)f 的关系是( A )A 、(4)(1)f f ->B 、(4)(1)f f -=C 、(4)(1)f f -<D 、不能确定10、若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范( B )A. 3(,3)2 B. 3,32⎡⎤⎢⎥⎣⎦ C. (]0,3 D. 3,32⎡⎫⎪⎢⎣⎭11、已知[]1,1-∈x 时,02)(2>+-=a ax x x f 恒成立,则实数a 的取值范围是( A ) A.(0,2) B.),(∞+2 C. ),(∞+0 D.(0,4) 12、奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( D ) A 、2- B 、1- C 、0 D 、1二、填空题(本题共4小题,每题5分,共20分)13、设集合{}{}21,1,3,2,4,A B a a =-=++{}3A B =,则实数a 的值为_1____ 。
高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
2023-2024学年陕西省高一上册第一次月考(10月)数学试题一、单选题1.已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A B ⋂=ðA .}{1,5,7B .}{3,5,7C .}{1,3,9D .}{1,2,3【正确答案】A【详解】试题分析:N A B ⋂ð为在集合A 但不在集合B 中的元素构成的集合,因此{1,5,7}N A B ⋂=ð集合的交并补运算2.函数11y x =+的定义域为()A .{}1x x >-B .{}1x x ≥C .{}0x x ≥D .{|1x x ≤且1}x ≠-【正确答案】B【分析】根据偶次根式下的被开方数为非负数、分式分母不等于零列不等式组,解不等式组求得函数的定义域.【详解】要使函数11y x =+有意义,则10110x x x -≥⎧⇒≥⎨+≠⎩,所以函数的定义域为{}1x x ≥.故选:B3.设集合{|03}A x N x =∈<的真子集个数为()A .16B .8C .7D .4【正确答案】C【分析】首先判断集合A 的元素个数,再求真子集个数.【详解】{}0,1,2A =,所以集合A 的真子集个数是3217-=.故选:C4.已知函数()y f x =的对应关系如下表所示,函数()y g x =的图象是如图所示的曲线ABC ,则()2f g ⎡⎤⎣⎦的值为()x 123()f x 23A .3B .0C .1D .2【正确答案】D【分析】根据图象可得()21g =,进而根据表格得()12f =.【详解】由题图可知()21g =,由题表可知()12f =,故()22f g =⎡⎤⎣⎦.故选:D .5.设集合{|04},{|02}A x x B y y =≤≤=≤≤,则下列对应f 中不能构成A 到B 的映射的是A .1:2f x y x →=B .:2f x y x →=+C .:f x y →=D .:|2|f x y x →=-【正确答案】B【详解】根据映射定义,1:2f x y x →=,:f x y →=,:2f x y x →=-中的对应f 中均能构成A 到B 的映射,而对于:2f x y x →=+,当4x =,6y =,而6B ∉,不能构成A 到B 的映射,选B.6.设集合{}41,Z M x x n n ==+∈,{}21,Z N x x n n ==+∈,则()A .MN B .N M C .M N∈D .N M∈【正确答案】A【分析】根据集合M 和N 中的元素的特征,结合集合间的关系,即可得解.【详解】对集合M ,其集合中的元素为4的整数倍加1,对集合N ,其集合中的元素为2的整数倍加1,4的整数倍加1必为2的整数倍加1,反之则不成立,即M 中的元素必为N 中的元素,而N 中的元素不一定为M 中的元素,故M 为N 的真子集,即M N ,故选:A7.设函数()221,12,1x x f x x x x ⎧-≤=⎨+->⎩,则()12f f ⎛⎫⎪ ⎪⎝⎭的值为A .1516B .2716-C .89D .18【正确答案】A【详解】因为1x >时,2()2,f x x x =+-所以211(2)2224,(2)4f f =+-==;又1x ≤时,2()1f x x =-,所以211115(()1().(2)4416f f f ==-=故选A.本题考查分段函数的意义,函数值的运算.8.下列各组函数()f x 和()g x 的图象相同的是()A .()f x x =,()2g x =B .()2f x x =,()()21g x x =+C .()1f x =,()0g x x=D .()f x x =,()()()00x x g x xx ⎧≥⎪=⎨-<⎪⎩【正确答案】D【分析】若两个函数图象相同则是相等函数,分别求每个选项中两个函数的定义域和对应关系,即可判断是否为相同函数,进而可得正确选项.【详解】对于A 中,函数()f x x =的定义域为R ,()2g x x ==的定义域为[)0,+∞,所以定义域不同,不是相同的函数,图象不同;对于B 中,()2f x x =,()()21g x x =+的对应关系不同,所以不是相同的函数,两个函数图象不同;对于C 中,函数()1f x =的定义域为R ,与()01g x x ==的定义域为{|0}x x ≠,所以定义域不同,所以不是相同的函数,两个函数图象不同;对于D 中,函数(),0,0x x f x x x x ≥⎧==⎨-<⎩与(),0,0x x g x x x ≥⎧=⎨-<⎩的定义域相同,对应关系也相同,所以是相同的函数,两个函数图象相同;故选:D.9.如果函数()()2212f x x a x =+-+在区间(],4∞-上单调递减,那么实数a 的取值范围是()A .3a ≤-B .3a ≥-C .5a ≤D .5a ≥【正确答案】A【分析】根据二次函数的单调性列式可求出结果.【详解】因为函数()()2212f x x a x =+-+在区间(],4∞-上单调递减,所以(1)4a --≥,解得3a ≤-.故选:A10.若函数()1f x +的定义域为[]1,15-,则函数()2f xg x =A .[]1,4B .(]1,4C .⎡⎣D .(【正确答案】B先计算()f x 的定义域为[]0,16,得到201610x x ⎧≤≤⎨->⎩,计算得到答案.【详解】设1x t +=,则()()1f x f t +=.由()1f x +的定义域为[]1,15-知115x -≤≤,0116x ∴≤+≤,即016t ≤≤()y f t ∴=的定义域为[]0,16,∴要使函数()2f xg x =201610x x ⎧≤≤⎨->⎩,即441x x -≤≤⎧⎨>⎩,解得14x <≤,故选:B .本题考查了函数的定义域,意在考查学生的计算能力.11.设P ,Q 是两个非空集合,定义(){},,P Q a b a P b Q ⨯=∈∈,若{}3,4,5P =,{}4,5,6,7Q =,则P Q ⨯中元素的个数是()A .3B .4C .12D .16【正确答案】C【分析】根据集合新定义,利用列举法写出集合的元素即可得答案.【详解】因为定义(){},,P Q a b a P b Q ⨯=∈∈,且{}3,4,5P =,{}4,5,6,7Q =,所以()()()()()()()()()()()(){}3,4,3,5,3,6,3,7,4,4,4,5,4,6,4,7,5,4,5,5,5,6,5,7P Q ⨯=,P Q ⨯中元素的个数是12,故选:C.12.已知函数(3)5,1()2,1a x x f x a x x-+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是()A .(0,3)B .(0,3]C .(0,2)D .(0,2]【正确答案】D【分析】直接由两段函数分别为减函数以及端点值的大小关系解不等式组即可.【详解】由函数是(-∞,+∞)上的减函数可得()3020352a a a a ⎧-<⎪>⎨⎪-+≥⎩解得02a <≤.故选:D.二、填空题13.已知集合A ={x|125x-∈N ,x ∈N },则用列举法表示为__________________.【正确答案】{}1,2,3,4A =【分析】由题设集合A ={x|125x -∈N ,x ∈N },可通过对x 赋值,找出使得125x-∈N ,x ∈N 成立的所有x 的值,用列举法写出答案.【详解】由题意A ={x|125x-∈N ,x ∈N }∴x 的值可以为1,2,3,4,故答案为A={1,2,3,4}.考查学生会用列举法表示集合,会利用列举法讨论x 的取值得到所有满足集合的元素.做此类题时,应注意把所有满足集合的元素写全且不能相等.14.已知()123f x x +=+,则()3f =______;【正确答案】7【分析】由13x +=,求出x ,然后代入()123f x x +=+中可求得结果.【详解】由13x +=,得2x =,所以()212237f +=⨯+=,即()37f =,故715.已知集合11,2A ⎧⎫=-⎨⎬⎩⎭,{}10B x mx =-=,若A B A ⋃=,则所有实数m 组成的集合是______;【正确答案】{}1,0,2-【分析】由A B A ⋃=可得B A ⊆,然后分0m =和0m ≠两种情况求解即可.【详解】因为A B A ⋃=,所以B A ⊆,当0m =时,B =∅,满足B A ⊆,当0m ≠时,则{}110B x mx x x m ⎧⎫=-===⎨⎬⎩⎭,因为B A ⊆,11,2A ⎧⎫=-⎨⎬⎩⎭,所以11m =-或112m =,得1m =-或2m =,综上,所有实数m 组成的集合是{}1,0,2-,故{}1,0,2-16.定义在[]22-,上的函数()f x 满足()()()12120x x f x f x --<⎡⎤⎣⎦,12x x ≠,若()()1f m f m -<,则m 的取值范围是______.【正确答案】11,2⎡⎫-⎪⎢⎣⎭【分析】由题意可得函数在[]22-,上单调递减,然后根据函数的单调性解不等式即可.【详解】因为定义在[]22-,上的函数()f x 满足()()()12120x x f x f x --<⎡⎤⎣⎦,12x x ≠,所以()f x 在[]22-,上单调递减,所以由()()1f m f m -<,得212221m m m m-≤-≤⎧⎪-≤≤⎨⎪->⎩,解得112m -≤<,即m 的取值范围是11,2⎡⎫-⎪⎢⎣⎭,故11,2⎡⎫-⎪⎢⎣⎭三、解答题17.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.【正确答案】01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】根据集合相等的定义,结合集合元素的互异性,通过解方程组进行求解即可.【详解】∵A =B ,∴集合A 与集合B 中的元素相同∴22x x y y =⎧⎨=⎩或22x y y x⎧=⎨=⎩,解得x ,y 的值为00x y =⎧⎨=⎩或01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩,验证得,当x =0,y =0时,A ={2,0,0}这与集合元素的互异性相矛盾,舍去.∴x ,y 的取值为01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩本题考查了已知两集合相等求参数取值问题,考查了数学运算能力.18.已知函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩(1)求((2))f f -的值;(2)若3()2f a =,求a .【正确答案】(1)2;(2)2,2±,34-.【分析】(1)根据函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩,先求得(2)f -,再求((2))f f -的值.(2)根据3()2f a =,分1a >,11a -≤≤,1a <-讨论求解.【详解】(1)因为函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩,所以()(2)2231f -=⨯-+=-()2((2))(1)112f f f -=-+==-(2)当1a >时,1312a +=,解得2a =;当11a -≤≤时,2312a +=,解得2a =±当1a <-时,3232a +=,解得34a =-;综上:a 的值为:2,34-.本题主要考查分段函数求值和已知函数值求参数,还考查了分类讨论的思想和运算求解的能力,属于中档题.19.已知集合{}|22A x a x a =-≤≤+,{|1B x x =≤或}4x ≥.(1)当3a =时,求A B ⋂;A B ⋃;(2)若A B ⋂=∅,求实数a 的取值范围.【正确答案】(1){|11A B x x ⋂=-≤≤或45}x ≤≤;A B ⋃=R ;(2)(),1-∞.【分析】(1)直接求A B ⋂和A B ⋃;(2)对集合A 分A =∅和A ≠∅两种情况讨论分析得解.【详解】(1)当3a =时,{}|15A x x =-≤≤,{|1B x x =≤或}4x ≥,∴{|11A B x x ⋂=-≤≤或45}x ≤≤,A B ⋃=R .(2)若A =∅,此时22a a ->+,∴a<0,满足A B ⋂=∅,当A ≠∅时,0a ≥.{}|22A x a x a =-≤≤+,∵A B ⋂=∅,∴21{24a a ->+<,∴01a ≤<.综上可知,实数a 的取值范围是(,1)-∞.本题主要考查集合的运算,考查集合的运算结果求参数的取值范围,意在考查学生对这些知识的理解掌握水平.20.已知()f x 是定义在(0,)+∞上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1.(1)求证:(8)3f =;(2)求不等式()(2)3f x f x -->的解集.【正确答案】(1)证明见解析;(2)1627x <<.【分析】(1)根据()21f =,结合f (xy )=f (x )+f (y ),利用赋值法即可求得()8f ,则问题得证;(2)等价转化不等式,利用函数单调性,即可求得不等式解集.【详解】(1)由题意得(8)(42)(4)(2)(22)(2)3(2)3f f f f f f f =⨯=+=⨯+==(2)原不等式可化为()(2)(8)(8(2))f x f x f f x >-+=-由函数()f x 是(0,)+∞上的增函数得8(2)0x x >->,解得1627x <<.故不等式()(2)3f x f x -->的解集为162,7骣琪琪桫.本题考查抽象函数函数值的求解,以及利用函数单调性解不等式,属综合基础题.21.已知集合{|210}P x x =-,{|11}Q x m x m =-+.(1)求集合P R ð;(2)若P Q ⊆,求实数m 的取值范围;(3)若P Q Q ⋂=,求实数m 的取值范围.【正确答案】(1){|2x x <-或10}x >;(2)9m ≥;(3)3m ≤.【分析】(1)由补集定义得结论;(2)由包含关系得不等式组,求解可得;(3)由P Q Q ⋂=,则Q P ⊆,然后分类讨论:按Q =∅和Q ≠∅分类.【详解】(1)因为{|210}P x x =-≤≤,所以R {|2P x x =<-ð或10}x >;(2)因为P Q ⊆,所以12110m m -≤-⎧⎨+≥⎩,解得9m ≥;(3)P Q Q ⋂=,则Q P ⊆,若11m m ->+即0m <,则Q =∅,满足题意;若0m ≥,则Q ≠∅,由题意12110m m -≥-⎧⎨+≤⎩,解得03m ≤≤,综上,3m ≤.22.设函数1()1ax f x x -=+,其中a ∈R .(1)若1a =,()f x 的定义域为区间[]0,3,求()f x 的最大值和最小值;(2)若()f x 的定义域为区间(0,+∞),求a 的取值范围,使()f x 在定义域内是单调减函数.【正确答案】(1)max min 1(),()12f x f x ==-(2)1a <-【详解】1()1ax f x x -=+=(1)11a x a x +--+=a -11a x ++,设x 1,x 2∈R ,则f (x 1)-f (x 2)=211111a a x x ++-++=1212(1)()(1)(1)a x x x x +-++.(1)当a =1时,设0≤x 1<x 2≤3,则f (x 1)-f (x 2)=12122()(1)(1)x x x x -++.又x 1-x 2<0,x 1+1>0,x 2+1>0,所以f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2),所以f (x)在[0,3]上是增函数,所以f (x)max =f (3)=1-24=12;f (x)min =f (0)=1-21=-1.(2)设x 1>x 2>0,则x 1-x 2>0,x 1+1>0,x 2+1>0要f (x)在(0,+∞)上是减函数,只要f (x 1)-f (x 2)<0而f (x 1)-f (x 2)=1212(1)()(1)(1)a x x x x +-++,所以当a +1<0即a <-1时,有f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),所以当a<-1时,f(x)在定义域(0,+∞)上是单调减函数.。
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共8小题,共32.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,1},B={x|ax=1},若A∩B=B,则a的取值集合为( )A. {1}B. {−1}C. {−1,1}D. {−1,0,1}2. 下列存在量词命题是假命题的是( )A. 存在x∈Q,使2x−x3=0B. 存在x∈R,使x2+x+1=0C. 有的素数是偶数D. 有的有理数没有倒数3. 定义集合A,B的一种运算:A⊗B={x|x=a2−b,a∈A,b∈B},若A={−1,0},B={1,2},则A⊗B 中的元素个数为( )A. 1B. 2C. 3D. 44. 已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+xyz|xyz|的值所组成的集合是M,则下列判断正确的是( )A. 4∈MB. 2∈MC. 0∉MD. −4∉M5. 一批救灾物资随26辆汽车从某市以vkm/h的速度送达灾区,已知运送的路线长400km,为了安全起见,两辆汽车的间距不得小于(v20)2km,那么这批物资全部到达灾区最少需要时间( )A. 5 hB. 10 hC. 15 hD. 20 h6. 已知集合A={x|ax2−(a+1)x+1<0},B={x|x2−3x−4<0},且A∩B=A,则实数a的取值范围是( )A. a≤14B. 0<a≤14C. a≥14D. 14≤a<1或a>17. 如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+ c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8. 某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是( )A. 6B. 5C. 7D. 8二、多选题(本大题共4小题,共16.0分。
重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。
高一上学期第一次月考数学试卷(时间:120分钟 总分:150分)一.选择题:(本大题共10小题;每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.集合{1,2,3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个 2.图中的阴影表示的集合中是( )A .BC A u ⋂ B .A C B u ⋂ C .)(B A C u ⋂D .)(B A C u ⋃ ={2,0,3. 以下五个写法中:①{0}∈{0,1,2};②⊆∅{1,2};③{0,1,2}1};④∅∈0;⑤A A =∅⋂,正确的个数有( )A .1个B .2个C .3个D .4个 4.下列从集合A 到集合B 的对应f 是映射的是( )A B A B B A BA B C D 5.函数5||4--=x x y 的定义域为( )A .}5|{±≠x xB .}4|{≥x xC .}54|{<<x xD .}554|{><≤x x x 或6.若函数()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩,则)3(-f 的值为( )A .5B .-1C .-7D .2 7.已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数为………………………………………………………( ) A . 1 B .0 C .1或0 D . 1或2 8.给出函数)(),(x g x f 如下表,则f 〔g (x )〕的值域为( )A.{4,2}B.{1,3}C. {1,2,3,4}D. 以上情况都有可能9.设集合}|{,}21|{a x x B x x A <=<≤-=,若A ∩B ≠∅,则a 的取值范围是( )A .1-≥aB .2>aC .1->aD .21≤<-a10.设}4,3,2,1{=I , A 与B 是I 的子集, 若A ∩B =}3,1{,则称(A ,B )为一个“理想配集”.那么符合此条件的“理x1 2 3 4 1 3 3x 1 2 3 4 f(x) 4 3 2 1 ABU1 2 3 4 3 5 1 2 3 4 5 6 a b c d1 2 3 43 4 5 1 2想配集”的个数是 (规定(A ,B )与(B ,A )是两个不同的“理想配集”) A. 4 B. 8 C. 9 D. 16 二.填空题(本大题共5个小题,每小题4分,共20分)11.已知集合{}12|),(-==x y y x A ,}3|),{(+==x y y x B 则A B =12.若函数1)1(2-=+x x f ,则)2(f =_____ __ _____13.若函数)(x f 的定义域为[-1,2],则函数)23(x f -的定义域是 14.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是____ __15.对于函数()y f x =,定义域为]2,2[-=D ,以下命题正确的是(只要求写出命题的序号) ①若(1)(1),(2)(2)f f f f -=-=,则()y f x =是D 上的偶函数;②若对于]2,2[-∈x ,都有0)()(=+-x f x f ,则()y f x =是D 上的奇函数; ③若函数)(x f y =在D 上具有单调性且)1()0(f f >则()y f x =是D 上的递减函数; ④若(1)(0)(1)(2)f f f f -<<<,则()y f x =是D 上的递增函数。
高一上学期第一次月考数学试题一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}{}{}1,2,3,4,5,6,7,1,2,3,4,5,3,4,5,6,7U P Q ===,则()U P C Q ⋃=( )A.{}1,2B.{}3,4,5C.{}1,2,6,7D.{}1,2,3,4,52.下列各组函数是相同函数的一组是( )A.()()242,2x f x x g x x -=+=- ;B.()()()01,1f x x g x =-=; C.()()2,f x x g x x ==;D.()()32,2f x x g x x x =-=-.3. 函数2,1()1,1x x f x x x ⎧<=⎨-≥⎩则((4))f f -的值为( )A .15B .16C .5-D .15-4. 下列对应是集合A 到集合B 的映射的是 ( ) A. ,,:|3|A N B N f x x ++==→-B. {}{}:A B f ==平面内的圆,平面内的矩形,每一个圆对应它的内接矩形C. 1{02},{|06},:2A xB y y f x y x =≤≤=≤≤→= D. {0,1},{1,0,1},:A B f A ==-中的数开平方 5. 下列函数在区间(0,1)上是增函数的是( )A. ||y x =B. 32y x =-C. 12y x=+ D. 243y x x =-+6. 已知函数2()f x x bx c =-++的图象的对称轴为直线2x =,则( ) A. (0)(1)(3)f f f << B. (3)(1)(0)f f f <<C. (3)(1)(0)f f f <=D. (0)(1)(3)f f f <=7. 已知函数(1)f x +的定义域为(2,1)--,则函数()f x 的定义域为( )A. 3(,1)2-- B. (1,0)- C.(3,2)-- D. 3(2,)2-- 8. 函数()21f x x x =++的值域是( )A. [0,)+∞B. 1[,)2-+∞C. [0,)+∞ D [1,)+∞9. 已知函数2()2f x x x =+-,则函数()f x 在区间[1,1)-上( ) A.最大值为0,最小值为94- B.最大值为0,最小值为2-C.最大值为0,无最小值D.无最大值,最小值为94-10. 若集合{|12},{|}A x x B x x a =<<=>,满足A B ⊆,则实数a 的取值范围是( )A. 1a ≤B. 1a <C. 1a ≥D 2a ≤11.函数0(23)()332x f x x x+=++-的定义域是( )A. 3[3,]2-B. 333[3,)(,)222--⋃-C. 3[3,)2-D. 333[3,)(,]222--⋃-12. 函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( ).A .3a =-B .3a <C .3a ≤-D .3a ≥-二、填空题: 本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上。
高一上学期第一次月考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、填空题(题型注释)1.已知幂函数()y f x =的图象过⎛ ⎝,则(9)f =____________.【答案】13【解析】试题分析:设幂函数()y f x x α==,因为图象过⎛⎝2α=,所以12α=-,从而12()f x x-=,因此121(9)93f -==. 考点:幂函数的图象与性质.2.设函数()()()3 10()(5) 10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则(5)f =____________. 【答案】8【解析】 试题分析:依分段函数的定义,得(5)((55))f f f =+((10))(103)(7)f f f f ==-=((75))((12))f f f f =+=(123)(9)((95))((14))(143)f f f f f f f =-==+==-(11)1138f ==-=,即(5)8f =.考点:分段函数求函数值.3.集合2{|60}A x x x =+-=,{|10}B x ax =+=,若B A ⊆,则实数a 的集合是____________. 【答案】110,,23⎧⎫-⎨⎬⎩⎭【解析】试题分析:化简{3,2}A =-,因为B A ⊆,所以B =∅或{3}B =-或{2}B =,从而0a =或13a =或12a =-,实数a 的集合是110,,23⎧⎫-⎨⎬⎩⎭,不要忘了空集. 考点:集合之间的关系.4.已知1y =与函数2()||f x x x a =-+的图象有两个交点,则实数a 的取值范围是_________.【答案】{|1a a <或5}4a = 【解析】试题分析:1y =与函数2()||f x x x a =-+的图象有两个交点,转化为方程2||1x x a -+=有两个相异实根,即2||1x x a -=-有两个相异实根,进而转化为1y a =-与函数2()||g x x x =-的图象有两个交点,作()g x 的图象(如图),则10a ->或114a -=-,即1a <或54a =.考点:函数与方程及数形结合思想.5.设P 是一个数集,且至少含有两个数,若对任意,a b R ∈,都有a b +、a b -,ab 、aP b∈(除数0b ≠),则称P 是一个数域.例如有理数集Q 是数域;数集{}F a Q=+∈也是数域.有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q M ⊆,则数集M 必为数域;④数域必为无限集;⑤存在无穷多个数域.其中正确的命题的序号是_______.(把你认为正确的命题的序号填填上) 【答案】①④⑤ 【解析】试题分析:因为0a a -=,1aa=,故①正确;任意两个整数相除,商不一定都是整数,故②错误;若M Q =U ,则M 就不是数域,故③错误;因为N 必为任意一个数域的子集,故数域必为无限集,故④正确;例如在数域{}F a Q =+∈换成其它的任意一个无理数,得到的集合F 都是数域,所以存在无穷多个数域,故⑤正确.综上正确的有①④⑤.考点:对及时定义的概念的理解和运用.二、解答题(题型注释)6.(本题满分12分)已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅ ,求实数a 的取值范围.【答案】{12a a ≤-或}2a ≥.【解析】试题分析:因为A B =∅ ,则实数a 的取值必须满足两个集合没有公共元素,这就会得到关于实数a 的不等式从而求出实数a 的取值范围,但不要忘了A =∅的情形,以及端点是否可带等号,否则就会出错. 试题解析:A B =∅(1)当A =∅时,有2112a a a +≤-⇒≤-; (2)当A ≠∅时,有2112a a a +>-⇒>-; 又A B =∅ ,则有210a +≤或11a -≥12a ⇒≤-或2a ≥,122a ∴-<≤-或2a ≥ 综上所述:实数a 的取值范围是{12a a ≤-或}2a ≥. 考点:集合的运算. 7.(本题满分12分,每小题6分)(1)已知()f x 是一次函数,且满足:3(1)2(1)217f x f x x +--=+,求()f x 的解析式; (2)已知()f x 满足:3(1)2(1)2f x f x x -+-=,求()f x 的解析式. 【答案】(1)()27f x x =+;(2)2()25f x x =+. 【解析】试题分析:函数解析式的求法主要有三种:一、待定系数法:若已知函数类型,则可先设函数解析式,然后根据已知条件确定其系数;二、换元法:对于复合函数,求其外函数时,可考虑用换元法;三、函数方程法:即将所求函数作为未知数,建立关于函数作为未知数的方程组,通过解方程组,得到函数的解析式,通常变量以相反数或倒数形式出现,或函数具有奇偶性时,可以考虑用此方法.此处问题(1)可用待定系数法;问题(2)可用换元法和解方程组法.试题解析:(1)设一次函数()f x kx b =+(0k ≠),则3(1)2(1)3[(1)]2[(1)]5217f x f x k x b k x b kx k b x +--=++--+=++=+,因此有2k =且517k b +=,即有2,7k b ==,所以()27f x x =+;(2)设1x t -=,则1x t =+,代入3(1)2(1)2f x f x x -+-=,则3()2()22f t f t t +-=+,再用t -去替换上式中的t ,又有3()2()22f t f t t -+=-+,接下来解方程组3()2()223()2()22f t f t t f t f t t +-=+⎧⎨-+=-+⎩,得2()25f t t =+,所以2()25f x x =+. 考点:函数解析式的求法.8.(本题满分12分)若函数()y f x =对任意的,x y ∈R ,恒有(+)=()+()f x y f x f y .当0x >时,恒有()0f x <.(1)判断函数()f x 的奇偶性,并证明你的结论; (2)判断函数()f x 的单调性,并证明你的结论; (3)若(2)1f =,解不等式2()2()40f x f x -++<.【答案】(1)()f x 为奇函数,证明详见解析;(2)()f x 为(,)-∞+∞上的减函数,证明详见解析;(3)解集为:{|24}x x -<<.【解析】 试题分析:(1)抽象函数奇偶性的判断更要紧扣定义,用好,x y 所取的特殊值,及它们之间的特殊关系,如,x y 取一些特殊值0,1±,y x =±,y x =±等,问题往往就有所突破;(2)抽象函数单调性的判断也要紧扣定义,用好已知条件中的不等关系;(3)解抽象不等式主要是运用抽象函数本身的单调性,这里是运用(2)得出的结论来解题. 试题解析:(1)令0x y ==,可知(00)(0)(0)f f f +=+,解得(0)0f =又0(0)()()()f f x x f x f x ==-+=-+,移项,()=()f x f x --,所以()f x 为奇函数; (2)设12,x x R ∈,且12x x <,则210x x ->,由已知条件知21()0f x x -<,从而212121()()()()()0f x x f x f x f x f x -=+-=-<,即21()()f x f x <,对照定义知:()f x 为(,)-∞+∞上的减函数;(3)由已知条件知222()2()4()2()4(2)(28)f x f x f x f x f f x x -++=-++=-++,又(0)0f =,所以原不等式2()2()40f x f x -++<可化为2(28)(0)f x x f -++<,又因为()f x 为(,)-∞+∞上的减函数,所以2280x x -++>,解得24x -<<,即原不等式的解集为:{|24}x x -<<.考点:抽象函数性质的研究及运用.9.(本题满分13分)二次函数()f x 的图像顶点为(1,16)A ,且图象在x 轴上截得线段长为8. (1)求函数()f x 的解析式; (2)令()(22)()g x a x f x =--①若函数()g x 在[0,2]x ∈上是单调增函数,求实数a 的取值范围; ②求函数()g x 在[0,2]x ∈的最小值.【答案】(1)2()215f x x x =-++;(2)①{|0}a a ≤,②2min 411(2)g()15 (02)15 (0)a a x a a a -->⎧⎪--≤≤⎨⎪-<⎩.【解析】试题分析:(1)求二次函数的解析式可用待定系数法,关键是要建立关于系数,,a b c 的三个方程,这里依据条件不难得到,若运用二次函数的顶点式,则显得更方便;(2)二次函数的单调性以对称轴为界,一边增,一边减,因此单调区间必须在对称轴的一侧;(3)二次函数在给定区间上的最值的研究,一定要掌握好分类讨论思想的运用,即按对称轴与给定区间的相对关系,分轴在区间的左、中、右三种情况进行讨论.试题解析:(1)由条件设二次函数22()(1)16216f x a x ax ax a =-+=-++(0a ≠), 设设()0f x =的两根为12,x x ,且12x x <,因为图象在x 轴上截得线段长为8,由韦达定理2()215f x x x =-++;(2)①∵2()215f x x x =-++,∴2()(22)()215g x a x f x x ax =--=--,而函数()g x 在[0,2]x ∈上是单调增函数,∴对称轴x a =在[0,2]的左侧,∴0a ≤.所以实数a 的取值范围是{|0}a a ≤.②2()215g x x ax =--,[0,2]x ∈,对称轴x a =, 当2a >时,min ()(2)4415411g x g a a ==--=--, 当0a <时,min ()(0)15g x g ==-,当02a ≤≤时,222min ()()21515g x g a a a a ==--=--.综上所述:2min 411(2)g()15 (02)15 (0)a a x a a a -->⎧⎪--≤≤⎨⎪-<⎩.考点:二次函数的综合运用.10.(本题满分13分)设二次函数2()f x ax bx c =++在区间[2,2]-上的最大值,最小值分别为,M m .集合{|()}A x f x x ==(1)若{1,2}A =,且(0)2f =,求M 和m 的值;(2)若{1}A =,且1a ≥,记()g a M m =+,求()g a 的最小值. 【答案】(1)10,1M m ==;(2)min 31()(1)4g a g ==. 【解析】试题分析:(1)求M 和m 的值,首先必须求出二次函数()f x 的解析式,即求出系数,,a b c 的值,然后再求在给定区间上的最值;(2)首先求出含字母a 的二次函数的解析式,然后对照动对称轴与所给区间的关系,求出在给定区间上的最值,接下来得到()g a 的表达式,由单调性得()g a 的最小值.试题解析:(1)由(0)2f =,可知2c =.又{1,2}A =,故1,2是方程2(1)20ax b x +-+=的两个实根,∴11222b a a -⎧+=⎪⎪⎨⎪=⎪⎩,解得1,2a b ==-,∴22()22(1)1f x x x x =-+=-+,[2,2]x ∈- 当1x =时,min ()(1)1f x f ==,即1m =;当2x =-时,max ()(2)10f x f =-=,即10M = (2)由题意知,方程2(1)0ax b x c +-+=有两相等实根1x =∴1111b aca-⎧+=⎪⎪⎨⎪=⎪⎩,即12b a c a =-⎧⎨=⎩ ∴2()(12)f x ax a x a =+-+,[2,2]x ∈- 其对称轴方程为211122a x a a -==-,又1a ≥,故111,122a ⎡⎫-∈⎪⎢⎣⎭∴(2)92M f a =-=-,211124a m f a a -⎛⎫==- ⎪⎝⎭. ∴1()914g a M m a a=+=--,又()g a 在区间[)1,+∞上为单调增函数, ∴当1a =时,min31()(1)4g a g ==.考点:二次函数的综合运用.11.(本题满分13分)已知()f x 是定义在[1,1]-上的奇函数,且(1)1f =,若,[1,1]m n ∈-,0m n +≠时,有()()0f m f n m n+>+成立.(1)判断()f x 在[1,1]-上的单调性,并证明你的结论;(2)解不等式1121f x f x ⎛⎫⎛⎫+< ⎪ ⎪-⎝⎭⎝⎭; (3)若2()21f x t at ≤-+对所有的[1,1]x ∈-,[1,1]a ∈-恒成立,求实数t 的取值范围. 【答案】(1)()f x 在[1,1]-上为增函数,证明详见解析;(2)解集为:3{|1}2x x -≤<-;(3){|2t t ≤-或0t =或2}t ≥.【解析】试题分析:(1)抽象函数的单调性应紧扣定义,从条件出发,若能了解一些函数单调性的等价定义:如12,x x I ∈且12x x ≠,()f x 为区间I 上的增(减)函数⇔1212()[()()]0x x f x f x -->(0)<1212()()0f x f x x x -⇔>-(0<),则判断更快捷些;(2)利用(1)的单调性结论解题,但不要忘记定义域;(3)恒成立求参数范围,常用的方法有:一、分离参数;二、数形结合;三、变更主元;四、等价转化.这里可先运用参数分离,然后用变更主元法,求实数t 的取值范围. 试题解析:(1)任取1211x x -≤<≤,则1212121212()()()()()()()()f x f x f x f x f x f x x x x x +--=+-=-+-Q 1211x x -≤<≤,12()0x x ∴+-≠,由已知1212()()0()f x f x x x +->+-,又120x x -<12()()0f x f x ∴-<,即12()()f x f x <,所以()f x 在[1,1]-上为增函数;(2)Q ()f x 在[1,1]-上为增函数,故有111211111121x x x x ⎧-≤+≤⎪⎪⎪-≤≤⎨-⎪⎪+<⎪-⎩,由此解得312x -≤<-,所以原不等式的解集为:3{|1}2x x -≤<-. (3)由(1)可知:()f x 在[1,1]-上为增函数,且(1)1f =,故对于[1,1]x ∈-,恒有()1f x ≤. 所以要使2()21f x t at ≤-+,对所有[1,1]x ∈-,[1,1]a ∈-恒成立,即要2211t at -+≥成立,故220t at -≥成立.设2()2g a t at =-,即对[1,1]a ∈-,()0g a ≥恒成立,则只需22(1)20(1)20g t t g t t ⎧-=+≥⎪⎨=-≥⎪⎩,解得2t ≤-或0t =或2t ≥,所以实数t 的取值范围为:{|2t t ≤-或0t =或2}t ≥.考点:函数的综合应用及恒成立含参数问题的研究.三、选择题12.已知全集{}1,2,3,4,5U =,集合{}1,3,4A =,集合{}2,4B =,则()U C A B = ( ) A.{}2,4,5 B.{}1,3,4 C.{}1,2,4 D.{}2,3,4,5 【答案】A 【解析】试题分析:(){2,5}{2,4}{2,4,5}U C A B == ,故选择A. 考点:集合的运算.13.设全集U 是实数集R ,{}2>=x x M ,{}0342>--=x x xN ,则图中阴影部分所表示的集合是( )A.{|21}x x -≤<B.{|22}x x -≤≤C.{|12}x x <≤D.{|2}x x < 【答案】C 【解析】试题分析:首先化简集合{|2M x x =<-或2}x >,{|13}N x x =<<,图中阴影部分所表示的集合是(){|22}{|13}U C M N x x x x =-≤≤<<I I {|12}x x =<≤,选择C. 考点:集合的图形表示及运算.14.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能是一条直线;③0n =时,函数ny x =的图象是一条直线;④幂函数ny x =,当0n >时是增函数;⑤幂函数ny x =,当0n <时,在第一象限内函数值随x 值的增大而减小.⑥幂函数的图象不可能在第四象限;其中正确的是( )A. ③⑤⑥B. ⑤⑥C. ②③⑥D. ①②③④ 【答案】B 【解析】试题分析:幂函数ny x =,只有当0n >时,则其图象才都经过点(1,1)和点(0,0),故①错误;幂函数ny x =,当1n =时,则其图象就是一条直线,故②错误;幂函数ny x =,当0n =时,则其图象是1y =这条直线上去除(0,1)点后的剩余部分,故③错误;根据幂函数的性质可知:只有⑤⑥是正确的. 考点:幂函数的图象和性质.15.设函数()f x 是奇函数,在(0,)+∞内是增函数,有(3)0f -=,则()0xf x <的解集是( )A.{|30x x -<<或3}x >B. {|3x x <-或03}x <<C.{|3x x <-或3}x >D.{|30x x -<<或03}x << 【答案】D 【解析】试题分析:函数()f x 是奇函数,在(0,)+∞内是增函数,又(3)0f -=,可知:在(0,)+∞内也是增函数,且(3)0f =,对于不等式()0xf x <,当0x >时,必有()0f x <,此时03x <<;当0x <时,必有()0f x >,此时30x -<<,综合得不等式()0xf x <的解集为{|30x x -<<或03}x <<,故选择D. 考点:函数性质的综合应用.16.设()f x ,()g x 都是定义在R 上奇函数,且()3()5()2F x f x g x =++,若(5)5F =-,则(5)F -等于( )A.9B.7C.7-D.3- 【答案】A 【解析】试题分析:由(5)3(5)5(5)25F f g =++=-,得3(5)5(5)7f g +=-,从而(5)3(5)5(5)23(5)5(5)2F f g f g -=-+-+=--+[3(5)5(5)]2(7)29f g =-++=--+=,故选择A.考点:函数的奇偶性.17.已知(1)f x +=,则(21)f x -的定义域为( ) A.1,12⎛⎤⎥⎝⎦ B.13,22⎡⎫⎪⎢⎣⎭ C.31,2⎡⎫⎪⎢⎣⎭ D.13,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】试题分析:函数(1)f x +=有意义,则必须满足210x -≥,即11x -≤≤,从而012x ≤+≤,所以函数()f x 的定义域为[0,2],那么(21)f x -的应满足0212x ≤-≤,由此1322x ≤≤,故(21)f x -的定义域选择D. 考点:复合函数的定义域.18.已知映射:f A B →,其中A B R ==,对应法则2:2f y x x =-+,对应实数k B ∈,在集合A 中不存在原像,则k 取值范围是( )A.(),1-∞B.(],1-∞C.[)1,+∞D.()1,+∞【答案】D【解析】试题分析:首先由2221(1)y x x x =-+=--,可知当x R ∈时,此函数的值域为(,1]-∞,所以对应实数k B ∈,在集合A 中不存在原像,则(,1]k ∉-∞,从而有(1,)k ∈+∞,故选择D.考点:映射的定义及二次函数的值域.19.已知函数()y f x =是定义在R 上的奇函数,当0x <时,()2f x x =+,那么不等式2()10f x -<的解集是( ) A.{502x x ⎫<<⎬⎭ B.{3|2x x <-或502x ⎫≤<⎬⎭C. {}302x x -<≤D. 3|02x x ⎧-<<⎨⎩或502x ⎫<<⎬⎭ 【答案】B【解析】试题分析:由函数()y f x =是定义在R 上的奇函数,当0x <时,()2f x x =+,则当0x >时,有0x -<,则()2f x x -=-+,又函数()y f x =为定义在R 上的奇函数,所以()()2f x f x x =--=-,即 2 (0)()0 (0)2 (0)x x f x x x x +<⎧⎪==⎨⎪->⎩,因此不等式2()10f x -<等价于:02(2)10x x <⎧⎨+-<⎩或02010x =⎧⎨⨯-<⎩或02(2)10x x >⎧⎨--<⎩,解得32x <-或0x =或502x <<,故不等式2()10f x -<的解集应选择B.考点:函数的奇偶性及函数的解析式.20.已知函数()()221 1 (0)()2 (0)b x b x f x x b x x -+->⎧⎪=⎨-+-≤⎪⎩是(,)-∞+∞上的增函数,则实数b 的范围是( )A.[]1,2B.1,22⎛⎤ ⎥⎝⎦C.(]1,2D.()1,2【答案】A【解析】试题分析:()f x 在(,)-∞+∞上为增函数,首先分段函数的每段都要是增函数,则需满足210202b b ->⎧⎪⎨-≥⎪⎩,即122b <≤,其次,还需满足在0x =时,2(21)010(2)0b b b -⨯+-≥-+-⨯,即1b ≥,综上实数b 的范围是12b ≤≤,故选择A. 考点:分段函数的单调性.21.已知()f x 是定义在R 上的偶函数,且当0x >时,2()1x f x x -=+,若对任意实数1,22t ⎡⎤∈⎢⎥⎣⎦,都有()(1)0f t a f t +-->恒成立,则实数a 的取值范围是( ) A.()(),30,-∞-+∞ B.()1,0-C.()0,1D.()(),12,-∞+∞【答案】A【解析】试题分析:当0x >时,23()111x f x x x -==-++,由此可知()f x 在(0,)+∞为增函数,又()f x 是定义在R 上的偶函数,所以()f x 在(,0)-∞为减函数,且它的图象关于y 轴对称. 若对任意实数1,22t ⎡⎤∈⎢⎥⎣⎦,都有()(1)0f t a f t +-->恒成立,即()(1)f t a f t +>-恒成立,即对任意实数1,22t ⎡⎤∈⎢⎥⎣⎦,|||1|t a t +>-恒成立,两边平方得:2(22)10a t a ++->,问题转化为:对任意实数1,22t ⎡⎤∈⎢⎥⎣⎦,都有2(22)10a t a ++->恒成立,此时只需满足221(22)102(22)210a a a a ⎧+⨯+->⎪⎨⎪+⨯+->⎩,解得3a <-或0a >,故选择A. 考点:函数性质的综合应用.。
八中2024年高一上第一次月考数学一、选择题(共8小题,满分40分,每小题5分)1.(5分)已知集合,则图中阴影部分表示的集合为()A. B. C.D.2.(5分)下列各式正确的个数是()①;②;③;④A.2B.3C.4D.53.(5分)命题“,有”的否定是( )A. B.C.D.4.(5分)下列命题中正确的是( )A.若,则B.若,则C.若,则D.若且,则5.(5分)已知条件,则使得条件成立的一个充分不必要条件是( )A.B.C.或 D.6.(5分)已知集合,若为单元素集合时,则( )A. B.{}{}{}2,3,4,5,7,2,3,3,5,7U A B ==={}2,3,5,7{}2,3,4{}2{}2,3,4,7{}00={}{}0,1,22,1,0⊆{}0,1,2∅⊆{}(){}0,10,1=x ∀∈R 2210x x ++≥2,210x x x ∃∈++≥R 2,210x x x ∃∈++<R 2,210x x x ∀∈++>R 2,210x x x ∀∈++<R a b >22ac bc >a b >22a b >0,0a b m >>>b m ba m a+<+a b >0ab >11a b<1:1p x<p 1x <-1x ≥0x <1x >0x ≠(){}(){}2,1,,1,,A x y y x B x y x my m A B C ==-==+∈⋂=R ∣∣C 12m =2m =C.或D.或7.(5分)我国经典数学名著《九章算术》中有这样的一道题:今有出钱五百七十六,买竹七十八,欲其大小率之,向各几何?其意是:今有人出钱576,买竹子78根,拟分大、小两种竹子为单位进行计算,每根大竹子比小竹子贵1钱,问买大、小竹子各多少根?每根竹子单价各是多少钱?则在这个问题中大竹子每根的单价可能为( )A.6钱B.7钱C.8钱D.9钱8.(5分)对于集合,定义且.若,且,以下说法正确的是()A.若在横线上填写“”则C 的真子集有个B.若在横线上填写“”则C 中元素个数大于250C.若在横线上填写“\”则C 的非空真子集有个D.若在横线上填写“”则中元素的个数为13个二、多选题(共3小题,满分18分,每小题6分)9.(6分)已知集合,若,则的可能取值为()A.B.0C.1D.210.(6分)已知实数满足,则( )A. B.C. D.11.(6分)已知,且,则( )A.的最大值为B.的最大值是2C.的最小值是18D.的最小值是三、填空题(共3小题,满分15分,每小题5分)0m=12m =0m =2m =,A B {A B xx A =∈∣‚}x B ∉{}65,,{37A x x n n B y y m ==+∈==+N ∣∣},{__m C x x A B ∈=∈N ∣1000}x <⋂1221-⋃15322-⋃N ðC N ð{}{}21,2,,1,2A a B a ==+B A ⊆a 1-,x y 16,23x y <<<<39x y <+<13x y -<-<218xy <<1621xy <<-0,0a b >>32a b +=ab 13113a b+2219a b+12a b a b+++212.(5分)已知集合,写出一个满足的集合:__________.13.(5分)已知命题是假命题,则实数的取值范围是__________.14.(5分)已知关于的不等式的解集为,则的取值范围为__________.四、解答题(共5小题,满分77分)15.(13分)已知集合或.(1)当时,求;(2)若,且“是”“的充分不必要条件,求实数的取值范围.16.(15分)已知函数.(1)若对于任意,不等式恒成立,求实数的取值范围;(2)当时,解关于的不等式.17.(15分)(1)已知满足,是否存在正实数,使得?若存在,求出的值;若不存在,请说明理由.(2)已知,比较与的大小并说明理由;(3)利用(2)的结论解决下面问题:已知均为正数,且,求的最大值.18.(17分)某工厂生产某种产品,其生产的总成本(万元)与年产量(吨)之间的函数关系可近似地表示为.已知此工厂的年产量最小为150吨,最大为250吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求出最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品全部售出,则年产量为多少吨时,可以获得最大利润?并求出最大利润.19.(17分)已知正整数集合,对任意,定义,若存在正整数,使得对任意,都有,则称集合具有性质.记是集合中的最大值.(1)判断集合和集合是否具有性质,直接写出结论;{}0,1,2A ={}1,0,1,2,3A B ⋃=-B =[]2:1,2,20p x x x a ∃∈--≤a x ()20,,ax bx c a b c ++>∈R ()4,1-29c a b++{}22,{1A xa x a B x x =-+=∣∣………4}x …3a =A B ⋂0a >"x A ∈R x B ∈ða ()22h x ax ax =++x ∈R ()1h x >-a 0a <x ()()14h x a x <-+,x y 4x y +=,x y 5xy =,x y ,,,a b c d ∈R ()()2222a bcd ++2()ac bd +,m n 225m n +=2m n +y x 21204000010y x x =-+()1212(,,,}2,,0n n S a a a n n a a a =⋯∈<<<⋯<N …,i j a a S ∈()11,i j i j d a a a a =-k (),i j i j a a S a a ∈≠()21,i j d a a k…S k F ()d S (){},,i j i j d a a a a S ∈∣{}1,2,3A ={}4,6B =3F(2)若集合具有性质,求证:;(3)若集合具有性质,求的最大值.S 4F ()116n d S -…S k F n八中2024年高一上第一次月考数学答案一、选择题(共8小题,满分40分,每小题5分)1.【解答】解:集合,则图中阴影部分表示的集合为:.故选:C.2.【解答】A 3.【解答】B 4.【解答】D 5.【解答】A6.【解答】解:因为集合,若为单元素集合,则方程组只有唯一解,所以,整理可得,当时,方程变为,此时,符合题意;当时,,所以或.故选:C.7.【解答】解:设买大竹子根、小竹子为,小竹子每根钱,则大竹子每根钱,由题意可得:,整理得,由,得,解得,由题意,可得则.在这个问题中大竹子每根的单价可能为钱.故选:C.{}{}{}2,3,4,5,7,2,3,3,5,7U A B ===(){}{}{}U 2,32,42A B ⋂=⋂=ð(){}(){}2,1,,1,,A x y y x B x y x my m A B C ==-==+∈⋂=R ∣∣C 211y x x my ⎧=-⎨=+⎩2(1)1y my =+-()22210m y m y +-=0m =00y y -=⇒=1x =0m ≠221Δ(21)4002m m m =--⨯=⇒=0m =12m =x 78x -y 1y +()()781576x y x y -++=78576,57678x y x y +=∴=-078x ……5767805767878y y -⎧⎨-⎩ (8396)1313y ……,x ∈N ,y ∈N 7y =∴718+=8.【解答】解:,集合中的元素被3除余2;,集合中的元素被3除余1,选项A :A 错误;选项B :,得,集合中有166个元素,,得,集合中有331个元素,因此C 中有497个元素,B 正确;选项C :C 中有166个元素,非空真子集有个,C 错误;选项D :,即,所以,其中元素有331个,D 错误.故选:B.二、多选题(共3小题,满分18分,每小题6分)9.【解答】解:由集合,得到或,解得:或,而时,不合题意,舍去,则实数的可能取值为2或0.故选:BD.10.【解答】解:因为,则,故A 、C 正确;由题,故B 错误;,则,故D 正确.故选:ACD.11.【解答】解:因为,且,所以,所以,当且仅当时等号成立,则A 正确;由题意可得,当且仅当时等号成立,则B 正确;因为,所以,当且仅当时等号成立,则正确;()653212x n n =+=++A ()37321y m m =+=++B ,A B ⋂=∅651000n +<51656n <A 371000m +<331m <B 16622-x A B ∈⋃N ðx B ∈N ðC B =N ð{}{}21,2,,1,2,A a B a B A ==+⊆22aa =+22a +=1a =-2,0a a ==1a =-a 16,23x y <<<<39,218x y xy <+<<<32y -<-<-24,x y -<-<112y <-<11121y <<-16,21xy <<-0,0a b >>32a b +=2≤13ab ≤31a b ==()111111313222323232b a a b a b a b a b ⎛⎫⎛⎫⎛⎫+=++=++≥⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31a b ==13ab ≤2219618a b ab+≥≥31a b ==C对于D ,由,得,,当且仅当,当,矛盾,故等号取不到,故错误.故选:ABC.三、填空题(共3小题,满分15分,每小题5分)12.【解答】解:根据题意,只要是满足的集合即可,所以.故答案为:(答案不唯一).13.【解答】解:由题意,命题是真命题,所以故答案为:.14.【解答】解:关于的不等式的解集为,所以,且和1是关于的方程的两实数根,由根与系数的关系知,,解得,所以,因为,所以即故答案为:.四、解答题(共5小题,满分77分)15.【解答】解:(1)当时,集合,或,0230a b a >⎧⎨=->⎩203a <<()()111123222222222322a b a a a a a b a a a a++=++-=+-=+--≥-++---()1222a a =--2a =223>D {}{}1,31,0,1,2,3B -⊆⊆-{}1,3B =-{}1,3-[]2:1,2,20p x x x a ⌝∀∈-->()2min21a x x<-=-1a <-x ()20,,ax bx c a b c ++>∈R ()4,1-0a <4-x 20ax bx c ++=144b ac a ⎧-=-⎪⎪⎨⎪-=⎪⎩3,4b a c a ==-2291699434c a a a b a a a ++==+++0a <()9464a a ⎛⎫-+-≥= ⎪⎝⎭296c a b+≤-+(],6∞--3a ={}{}2215A xa x a x x =-+=-∣∣…………{1B x x =∣…4}x …或(2)若,且”是“”的充分不必要条件,,⫋,则解得.故的取值范围是:.16.【解答】解:(1)由题意可得,对于任意恒成立,当时,得显然符合题意;当时,得,解得,综上,实数的取值范围是.(2)原不等式转化为,即.又,不等式可化为,若,即时,得或,即解集为;若,即时,得,即解集为;若,即时,得或,即解集为.17.【解答】解:(1)因为,所以,故不存在正实数,使得.(2){11A B x x ∴⋂=-∣……45};x ……0a >"x A ∈R x B ∈ð{}()220,{14}R A x a x a a B x x =-+>=<<∣∣……ðA ∴R B ð21240a a a ->⎧⎪+<⎨⎪>⎩01a <<a ()0,1230ax ax ++>x ∈R 0a =30,>0a ≠2Δ120a a a >⎧⎨=-<⎩012a <<a [)0,12()22120ax a x +--<()()120ax x -+<0a <()120x x a ⎛⎫-+> ⎪⎝⎭12a <-102a -<<1x a <2x >-12x x x a ⎧⎫<>-⎨⎬⎩⎭或12a =-12a =-2x ≠-{}2xx ≠-∣12a >-12a <-2x <-1x a >12x x x a ⎧⎫<->⎨⎬⎩⎭或4x y +=…4xy …,x y 5xy =()()22222()a bcd ac bd ++-+()2222222222222a c a d b c b d a c abcd b d =+++-++22222a d b c abcd=+-(3)所以的最大值为518.【解答】解:(1)由题意可得,生产每吨产品的平均成本为,又因为,当且仅当,即时,等号成立,所以年产量为200吨时,平均成本最低为20万元;(2)设利润为,则,又因为,所以当时,.即年产量为220吨时,最大利润为840万元.19.【解答】解:(1)集合,则,.故集合具有性质;,故集合不具有性质.(2)证明:因为,所以,故,2()ad bc =-0≥()()22221(2)2125,25m n m n m n +≤++=+≤2m n +[]400020,150,25010y x x x x=+-∈400020202010x x +-≥-=400010x x=200x =()W x ()22124204000(220)8401010x W x x x x ⎛⎫=--+=--+ ⎪⎝⎭150250x ……220x =max ()840W x ={}1,2,3A =()()12211111,,1229d a a d a a ==-=…()()()()1331233211211111,,,,,13393269d a a d a a d a a d a a ==-===-=……A 3F {}()()122111114,6,,,46129B d b b d b b ===-=<B 3F ()1212(,,,}2,,0n n S a a a n n a a a =⋯∈<<<⋯<N …121110n a a a >>⋯>>()max 111,i j nd a a a a =-即因为集合具有性质,所以,.(3)因为集合具有性质,则,,故,又,故,即,所以,当为偶数时,当且仅当,即时等号成立,当为奇数时,等号不成立,,故,即,所以;综上所述:,故的最大值为.()111,nd S a a =-S 4F ()1,16i j d a a …()11223111111111111116161616n n n n d S a a a a a a a a --=-=-+-+⋯+-++⋯+=…S k F ()*121,,1,,i j i d a a a a i i k∈N ………()211211*********,i n i n i n i i i i n n n i d a a a a a a a a a a a a k+++--=-=-=-+-+⋯+-…21i n i a k->i a i …11i a i <*21,n ii i k->∈N ()22224i n i n k i n i +-⎛⎫>-=⎪⎝⎭…n i n i =-2n i =n ()2max1[]4n i n i --=2214n k ->2241n k <+21n k <-21n k -…n 21k -。
2024-2025学年高一上第一次月考数学试卷(9月份)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x∈N|1<x<6},B={x|4﹣x>0},则A∩B=()A.{2,3,4}B.{2,3}C.{2}D.{3}2.(5分)下列说法正确的是()A.∅∈{0}B.0⊆N C.D.{﹣1}⊆Z3.(5分)命题“∀x∈(0,1),x3<x2”的否定是()A.∀x∈(0,1),x3>x2B.∀x∉(0,1),x3≥x2C.∃x0∈(0,1),D.∃x0∉(0,1),4.(5分)“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)若集合A={x|2mx﹣3>0,m∈R},其中2∈A且1∉A,则实数m的取值范围是()A.B.C.D.6.(5分)满足集合{1,2}⫋M⊆{1,2,3,4,5}的集合M的个数是()A.6B.7C.8D.157.(5分)设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a<1}B.{a|a≤1}C.{a|a>2}D.{a|a≥2}8.(5分)已知集合A={1,2},B={0,2},若定义集合运算:A*B={z|z=xy,x∈A,y∈B},则集合A*B 的所有元素之和为()A.6B.3C.2D.0二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,有选错的得0分,部分选对的得部分分。
(多选)9.(6分)已知命题p:x2﹣4x+3<0,那么命题p成立的一个充分不必要条件是()A.x≤1B.1<x<2C.x≥3D.2<x<3(多选)10.(6分)集合A={x|ax2﹣x+a=0}只有一个元素,则实数a的取值可以是()A.0B.C.1D.(多选)11.(6分)设S是实数集R的一个非空子集,如果对于任意的a,b∈S(a与b可以相等,也可以不相等),都有a+b∈S且a﹣b∈S,则称S是“和谐集”,则下列命题中为真命题的是()A.存在一个集合S,它既是“和谐集”,又是有限集B.集合{x|x=3k,k∈Z}是“和谐集”C.若S1,S2都是“和谐集”,则S1∩S2≠∅D.对任意两个不同的“和谐集”S1,S2,总有S1∪S2=R三、填空题:本题共3小题,每小题5分,共15分。
武汉高一年级第一次月考(数学)(答案在最后)第Ⅰ卷一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}43A x x =∈-≤≤Z ,{}13B x x =∈+<N ,则A B = ()A.{}0,1 B.{}0,1,2 C.{}1,2 D.{}1【答案】A 【解析】【分析】化简集合,根据交集运算求解.【详解】根据题意,得{}{}=4,3,2,1,0,1,2,30,1A B ----=,,所以{}0,1A B = ,故选:A.2.设{}{}2712|0,0|2A x x x B x ax =-+==-=,若A B B = ,求实数a 组成的集合的子集个数有()A.2B.3C.4D.8【答案】D 【解析】【分析】先解方程得集合A ,再根据A B B = 得B A ⊆,根据包含关系求实数a ,根据子集的定义确定实数a 的取值组成的集合的子集的个数.【详解】{}{}271203,4|A x x x =-+==因为A B B = ,所以B A ⊆,因此B =∅或{}3B =或{}4B =,当B =∅时,=0a ,当{}3B =时,23a =,当{}4B =时,12a =,实数a 的取值组成的集合为210,,32⎧⎫⎨⎬⎩⎭,其子集有∅,{}0,23⎧⎫⎨⎬⎩⎭,12⎧⎫⎨⎬⎩⎭,20,3⎧⎫⎨⎬⎩⎭,10,2⎧⎫⎨⎬⎩⎭,21,32⎧⎫⎨⎬⎩⎭,210,,32⎧⎫⎨⎬⎩⎭,共8个,故选:D .3.下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“2,10x R x ∀∈+<”是全称量词命题;③命题“2,210x R x x ∃∈++≤”的否定为“2,210x R x x ∀∈++≤”;④命题“a b >是22ac bc >的必要条件”是真命题;A.0 B.1C.2D.3【答案】C 【解析】【分析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“2R 10x x ∀∈+<,”是全称量词命题;故②正确;对于③:命题2:R,210p x x x ∃∈++≤,则2:R,210p x x x ⌝∀∈++>,故③错误;对于④:22ac bc >可以推出a b >,所以a b >是22ac bc >的必要条件,故④正确;所以正确的命题为②④,故选:C4.“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”,利用二次函数的性质,求得实数m 的取值范围,结合充分、必要条件的判定方法,即可求解.【详解】由题意,命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”可得命题“x ∀∈R ,2(1)2(1)30m x m x -+-+>是真命题”当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件,故选:B.【点睛】理解全称命题与存在性命题的含义时求解本题的关键,此类问题求解的策略是“等价转化”,把存在性命题为假命题转化为全称命题为真命题,结合二次函数的性质求得参数的取值范围,再根据充分、必要条件的判定方法,进行判定.5.已知()f x =+,则函数(1)()1f xg x x +=-的定义域是()A.[2,1)(1,2]-⋃B.[0,1)(1,4]U C.[0,1)(1,2]⋃ D.[1,1)(1,3]-⋃【答案】A 【解析】【分析】先求出()f x 的定义域,结合分式函数分母不为零求出()g x 的定义域.【详解】()f x = ,10330x x x +≥⎧∴∴≤≤⎨-≥⎩,-1,()f x ∴的定义域为[]1,3x ∈-.又(1)()1f x g x x +=- ,1132210x x x -≤+≤⎧∴∴-≤≤⎨-≠⎩,且1x ≠.(1)()1f xg x x +∴=-的定义域是[2,1)(1,2]-⋃.故选:A6.已知0a >,0b >,且12111a b+=++,那么a b +的最小值为()A.1-B.2C.1+ D.4【答案】C 【解析】【分析】由题意可得()1211211a b a b a b ⎛⎫+=++++-⎪++⎝⎭,再由基本不等式求解即可求出答案.【详解】因为0a >,0b >,12111a b+=++,则()1211211211a b a b a b a b ⎛⎫+=+++-=++++- ++⎝⎭()2113211a b b a ++=++-++()21111111a b ba ++=++≥+=+++.当且仅当()2111112111a b b a a b⎧++=⎪⎪++⎨⎪+=⎪++⎩即2a b ⎧=⎪⎨⎪=⎩时取等.故选:C .7.若两个正实数x ,y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的取值范围是()A.{14}mm -≤≤∣ B.{0mm <∣或3}m >C .{41}mm -<<∣ D.{1mm <-∣或4}m >【答案】D 【解析】【分析】首先不等式转化为2min34y m m x ⎛⎫->+⎪⎝⎭,再利用基本不等式求最值,即可求解.【详解】若不等式234y x m m +<-有解,则2min 34y m m x ⎛⎫->+ ⎪⎝⎭,因为141x y +=,0,0x y >>,所以144224444y y x y x x x y y x ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当44x y y x =,即4y x =时,等号成立,4y x +的最小值为4,所以234m m ->,解得:4m >或1m <-,所以实数m 的取值范围是{1m m <-或4}m >.故选:D8.已知函数222,2,()366,2,x ax x f x x a x x ⎧--≤⎪=⎨+->⎪⎩若()f x 的最小值为(2)f ,则实数a 的取值范围为()A.[2,5]B.[2,)+∞C.[2,6]D.(,5]-∞【答案】A 【解析】【分析】分别求解分段函数在每一段定义区间内的最小值,结合函数在整体定义域内的最小值得到关于a 的不等式组,解不等式组得到a 的取值范围.【详解】当2x >时,3666126x a a a x +-≥=-,当且仅当6x =时,等号成立,即当2x >时,函数()f x 的最小值为126a -;当2x ≤时,2()22f x x ax =--,要使得函数()f x 的最小值为(2)f ,则满足2,(2)24126,a f a a ≥⎧⎨=-≤-⎩解得25a ≤≤.故选:A .二、多选题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错的得0分)9.下列函数在区间(2,)+∞上单调递增的是()A.1y x x=+B.1y x x =-C.14y x=- D.y =【答案】AB 【解析】【分析】求函数的单调区间,首先要确定函数的定义域,若存在定义域之外的元素,则不符合条件;对其他选项可根据特殊函数的单调性得出.【详解】由“对勾”函数的单调性可知,函数1y x x=+在(2,)+∞单调递增,A 正确;由y x =在(2,)+∞单调递增,1y x =在(2,)+∞单调递减,知1y x x=-在(2,)+∞单调递增,B 正确;函数14y x=-在4x =处无定义,因此不可能在(2,)+∞单调递增,C 错误;函数y =的定义域为(,1][3,)-∞⋃+∞,因此在(2,3)上没有定义,故不可能在(2,)+∞单调递增,D 错误.故选:AB.10.已知函数()221f x x x =++在区间[],6a a +上的最小值为9,则a 可能的取值为()A.2B.1C.12D.10-【答案】AD 【解析】【分析】根据二次函数的对称轴和开口方向进行分类讨论,即可求解.【详解】因为函数()221f x x x =++的对称轴为=1x -,开口向上,又因为函数()221f x x x =++在区间[],6a a +上的最小值为9,当16a a ≤-≤+,即71a -≤≤-时,函数()221f x x x =++的最小值为min ()(1)0f x f =-=与题干不符,所以此时不成立;当1a >-时,函数()221f x x x =++在区间[],6a a +上单调递增,所以2min ()()219f x f a a a ==++=,解得:2a =或4a =-,因为1a >-,所以2a =;当61a +<-,也即7a <-时,函数()221f x x x =++在区间[],6a a +上单调递减,所以2min ()(6)14499f x f a a a =+=++=,解得:10a =-或4a =-,因为7a <-,所以10a =-;综上:实数a 可能的取值2或10-,故选:AD .11.若0,0a b >>,且4a b +=,则下列不等式恒成立的是()A.228a b +≤B.114ab ≤ C.≤ D.111a b+≤【答案】C 【解析】【分析】利用重要不等式的合理变形可得()()2222a b a b +≥+,即可知A 错误;由基本不等式和不等式性质即可计算B 错误;由()22a b +≥即可求得C 正确;根据不等式中“1”的妙用即可得出111a b+≥,即D 错误.【详解】对于A ,由222a b ab +≥可得()()2222222a bab ab a b +≥++=+,又4a b +=,所以()()222216a ba b +≥+=,即228a b +≥,当且仅当2a b ==时等号成立,故A 错误;对于B ,由4a b +=可得4a b +=≥,即04<≤ab ,所以114ab ≥,当且仅当2a b ==时等号成立,即B 错误;对于C ,由a b +≥可得()22a b a b +≥++=,所以可得28≥+,即≤,当且仅当2a b ==时等号成立,即C 正确;对于D ,易知()11111111121444a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,即111a b +≥;当且仅当2a b ==时等号成立,可得D 错误;故选:C12.公元3世纪末,古希腊亚历山大时期的一位几何学家帕普斯发现了一个半圆模型(如图所示),以线段AB 为直径作半圆ADB ,CD AB ⊥,垂足为C ,以AB 的中点O 为圆心,OC 为半径再作半圆,过O 作OE OD ⊥,交半圆于E ,连接ED ,设BC a =,,(0)AC b a b =<<,则下列不等式一定正确的是().A.2a b+< B.2a b+<C.b >D.2a b+>【答案】AD 【解析】【分析】先结合图象,利用垂直关系和相似关系得到大圆半径2a b R +=,小圆半径2b ar -=,AD =,BD ==,再通过线段大小判断选项正误即可.【详解】因为AB 是圆O 的直径,则90ADB DAB DBA ∠=︒=∠+∠,因为CD AB ⊥,则=90ACD ∠︒,所以90DAB ADC ∠+∠=︒,故DBA ADC ∠=∠,易有ADC DBC ,故AC DCCD BC=,即2CD AC BC ab =⋅=,大圆半径2a b R +=,小圆半径22a b b ar a +-=-=,90ACD ∠=︒ ,222AC CD AD ∴+=,故AD ==,同理BD ==.选项A 中,,显然当0a b <<时AOD ∠是钝角,在AD 上可截取DM DO =,故OD AD <,即大圆半径R OD AD =<,故2a b+<,正确;选项B 中,当60BOD ∠=︒时,大圆半径R OD OB BD ===,有2a b+=选项C 中,Rt BCD △中,BD =,而AC b =,因为,AC BD 大小关系无法确定,故错误;选项D 中,大圆半径2a b R OD +==,小圆半径2b ar OC -==,=OD >2a b+>,故正确.故选:AD.【点睛】本题解题关键在于将选项中出现的数式均与图中线段长度对应相等,才能通过线段的长短比较反馈到数式的大小关系,突破难点.第Ⅱ卷三、填空题(本题共4小题,每小题5分,共20分)13.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合{}1,2A =-,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____.【答案】10,,22⎧⎫⎨⎬⎩⎭【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=-时,解得2a =,当,A B 集合有公共元素2=时,解得12a =,故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭.故答案为:10,,22⎧⎫⎨⎬⎩⎭14.一家物流公司计划建立仓库储存货物,经过市场了解到下列信息:每月的土地占地费1y (单位:万元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:万元)与x 成正比.若在距离车站10km 处建立仓库,则1y 与2y 分别为4万元和16万元.则当两项费用之和最小时x =______(单位:km ).【答案】5【解析】【分析】由已知可设:11k y x=,22y k x =,根据题意求出1k 、2k 的值,再利用基本不等式可求出12y y +的最小值及其对应的x 值,即可得出结论.【详解】由已知可设:11k y x=,22y k x =,且这两个函数图象分别过点()10,4、()10,16,得110440k =⨯=,2168105k ==,从而140y x=,()2805xy x =>,故12408165x y y x +=+≥=,当且仅当4085x x =时,即5x =时等号成立.因此,当5x =时,两项费用之和最小.故答案为:5.15.函数()f x 是定义在()0,∞+上的增函数,若对于任意正实数,x y ,恒有()()()f xy f x f y =+,且()31f =,则不等式()()82f x f x +-<的解集是_______.【答案】()8,9【解析】【分析】根据抽象函数的关系将不等式进行转化,利用赋值法将不等式进行转化结合函数单调性即可得到结论.【详解】()()()f xy f x f y =+ ,(3)f 1=,22(3)(3)(3)(33)(9)f f f f f ∴==+=⨯=,则不等式()(8)2f x f x +-<等价为(8)[](9)f x x f <-,函数()f x 在定义域(0,)+∞上为增函数,∴不等式等价为080(8)9x x x x >⎧⎪->⎨⎪-<⎩,即0819x x x >⎧⎪>⎨⎪-<<⎩,解得89x <<,∴不等式的解集为(8,9),故答案为:()8,9.16.已知1:123x p --≤,22:210q x x m -+-≤,若p ⌝是q ⌝的必要不充分条件,则实数m 的取值范围是______.【答案】(][),99,-∞-⋃+∞【解析】【分析】先分别求出命题p 和命题q 为真命题时表示的集合,即可求出p ⌝和q ⌝表示的集合,根据必要不充分条件所表示的集合间关系即可求出.【详解】对于命题p ,由1123x --≤可解出210x -≤≤,则p ⌝表示的集合为{2x x <-或}10x >,设为A ,对于命题q ,22210x x m -+-≤,则()()110x m x m 轾轾---+£臌臌,设q ⌝表示的集合为B , p ⌝是q ⌝的必要不充分条件,B∴A ,当0m >时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m -≤≤+,则{1B x x m =<-或}1x m >+,12110m m -≤-⎧∴⎨+≥⎩,解得9m ≥;当0m =时,{}1B x x =≠,不满足题意;当0m <时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m +≤≤-,则{1B x x m =<+或}1x m >-,12110m m +≤-⎧∴⎨-≥⎩,解得9m ≤-,综上,m 的取值范围是(][),99,-∞-⋃+∞.故答案为:(][),99,-∞-⋃+∞.【点睛】本题考查命题间关系的集合表示,以及根据集合关系求参数范围,属于中档题.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知集合{0A x x =<或{}2},32x B x a x a >=≤≤-.(1)若A B = R ,求实数a 的取值范围;(2)若B A ⊆R ð,求实数a 的取值范围.【答案】(1)(],0-∞(2)12a ≥【解析】【分析】(1)根据集合的并集运算即可列不等式求解,(2)根据包含关系列不等式求解.【小问1详解】因为{0A x x =<或{}2},32,,x B x a x a A B >=≤≤-⋃=R 所以320322a a a a -≥⎧⎪≤⎨⎪-≥⎩,解得0a ≤,所以实数a 的取值范围是(],0-∞.【小问2详解】{0A x x =<或{}2},02x A x x >=≤≤R ð,由B A ⊆R ð得当B =∅时,32-<a a ,解得1a >;当B ≠∅时,32a a -≥,即1a ≤,要使B A ⊆,则0322a a ≥⎧⎨-≤⎩,得112a ≤≤.综上,12a ≥.18.已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >(1b >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y +=时,有222x y k k +≥++恒成立,求k 的取值范围.【答案】(1)1a =,2b =(2)[]3,2-【解析】【分析】(1)方法一:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+=的两个实数根且0a >,利用韦达定理求解;方法二:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+>的两个实数根且0a >,将1代入2320ax x -+=求解.(2)易得121x y+=,再利用“1”的代换,利用基本不等式求解.【小问1详解】解:方法一:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+=的两个实数根且0a >,所以3121b a b a ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得12a b =⎧⎨=⎩方法二:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+>的两个实数根且0a >,由1是2320ax x -+=的根,有3201a a -+=⇒=,将1a =代入2320ax x -+>,得23201x x x -+>→<或2x >,∴2b =;【小问2详解】由(1)知12a b =⎧⎨=⎩,于是有121x y +=,故()12422448y x x y x y x y x y ⎛⎫+=++=++>+ ⎪⎝⎭,当且仅当24x y =⎧⎨=⎩时,等号成立,依题意有()2min 22x y k k +≥++,即282k k ≥++,得26032k k k +-≤→-≤≤,所以k 的取值范围为[]3,2-.19.已知函数()212f x x x =+.(1)试判断函数()f x 在区间(]0,1上的单调性,并用函数单调性定义证明;(2)若(]0,1x ∃∈,使()2f x m <+成立,求实数m 的范围.【答案】(1)单调递减;证明见解析(2)()1,+∞【解析】【分析】(1)运用定义法结合函数单调性即可;(2)将能成立问题转化为最值问题,结合单调性求解最值.【小问1详解】()212f x x x=+在区间(]0,1上单调递减,证明如下:设1201x x <<≤,则()()()()2212121212222212121122x x f x f x x x x x x x x x ⎛⎫--=-+-=-- ⎪⎝⎭()()12121222221212121122x x x x x x x x x x x x ⎡⎤⎛⎫⎛⎫+=--=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦∵1201x x <<≤,∴120x x -<,21211x x >,21211x x >,∴2212121120x x x x ⎛⎫-+< ⎪⎝⎭,∴()()120f x f x ->所以,()212f x x x =+在区间(]0,1上单调递减.【小问2详解】由(1)可知()f x 在(]0,1上单调递减,所以,当1x =时,()f x 取得最小值,即()min ()13f x f ==,又(]0,1x ∃∈,使()2f x m <+成立,∴只需min ()2f x m <+成立,即32m <+,解得1m <.故实数m 的范围为()1,+∞.20.已知函数()21ax b f x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式并判断()f x 在()1,1-上的单调性(不必证明);(2)解不等式()()10f x f x -+<.【答案】(1)()21x f x x=+,在(1,1)-上单调递增(2)1(0,)2【解析】【分析】(1)根据奇函数的性质,以及代入条件,即可求解,并判断函数的单调性;(3)根据函数是奇函数,以及函数的单调性,即可求解不等式.【小问1详解】由题意可得()001225f f ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,解得01b a =⎧⎨=⎩所以()21x f x x =+,经检验满足()()f x f x -=-,设1211x x -<<<,()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以120x x -<,1210x x ->,221210,10x x +>+>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间()1,1-单调递增;【小问2详解】(1)()0f x f x -+< ,(1)()()f x f x f x ∴-<-=-,()f x 是定义在(1,1)-上的增函数,∴111111x x x x -<-<⎧⎪-<<⎨⎪-<-⎩,得102x <<,所以不等式的解集为1(0,)2.21.2022年某企业整合资金投入研发高科技产品,并面向全球发布了首批17项科技创新重大技术需求榜单,吸引清华大学、北京大学等60余家高校院所参与,实现企业创新需求与国内知名科技创新团队的精准对接,最终该公司产品研发部决定将某项高新技术应用到某高科技产品的生产中,计划该技术全年需投入固定成本6200万元,每生产x 千件该产品,需另投入成本()F x 万元,且()210100,060810090121980,60x x x F x x x x ⎧+<<⎪=⎨+-≥⎪⎩,假设该产品对外销售单价定为每件0.9万元,且全年内生产的该产品当年能全部售完.(1)求出全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)试求该企业全年产量为多少千件时,所获利润最大,并求出最大利润.【答案】(1)()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)该企业全年产量为90千件时,所获利润最大为15600万元【解析】【分析】(1)利用分段函数即可求得全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)利用二次函数求值域和均值定理求值域即可求得该企业全年产量为90千件时,所获利润最大为15600万元.【小问1详解】当060x <<时,()()22900101006200108006200G x x x x x x =-+-=-+-,当60x ≥时,()8100810090090121980620015780G x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,所以()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩.【小问2详解】若060x <<,则()()210409800G x x =--+,当40x =时,()max 9800G x =;若60x ≥,()8100157801578015600G x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当8100x x=,即90x =时,等号成立,此时()max 15600G x =.因为156009800>,所以该企业全年产量为90千件时,所获利润最大为15600万元.22.在以下三个条件中任选一个,补充在下面问题中,并解答此题.①()()()f x y f x f y +=+,()24f =.当0x >时,()0f x >;②()()()2f x y f x f y +=+-,()15f =.当0x >时,()2f x >;③()()()f x y f x f y +=⋅,()22f =.且x ∀∈R ,()0f x >;当0x >时,()1f x >.问题;对任意,x y ∈R ,()f x 均满足___________.(填序号)(1)判断并证明()f x 的单调性;(2)求不等式()148f a +≤的解集.注;如果选择多个条件分别解答,按第一个解答计分.【答案】(1)增函数(2)答案见解析【解析】【分析】(1)根据单调性的定义法,证明单调性即可;(2)根据单调性,列出相应的不等式,解不等式方程可得答案.【小问1详解】若选①:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()0f x x ->.由()()()f x y f x f y +=+得()()()f x y f x f y +-=,所以,2121()()()0f x f x f x x -=->,所以,21()()f x f x >,所以()f x 在(,)-∞+∞上是增函数;若选②:设12,(,)x x ∈-∞+∞,且12x x <.则210x x ->,所以21()2f x x ->.由()()()2+=+-f x y f x f y 得()()()2f x y f x f y +-=-,所以2121()()()20f x f x f x x -=-->,所以21()()f x f x >,所以f (x )在(,)-∞+∞上是增函数;若选③:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()1f x x ->.由()()()f x y f x f y +=⋅得()()()f x y f y f x +=,2211()()1()f x f x x f x =->,又1()0>f x ,所以2()f x >1()f x ,所以函数()f x 为R 上的增函数;【小问2详解】若选①:由(2)4f =得(4)(2)(2)8f f f =+=,所以,(14)8f a +≤可化为(14)(4)f a f +≤,根据()f x 的单调性,得144a +≤,解得34a ≤,所以不等式(14)8f a +≤的解集为3,4⎛⎤-∞ ⎥⎝⎦.若选②:令1x y ==,则(2)2(1)28f f =-=,所以(14)8f a +≤可化为(14)(2)f a f +≤,根据()f x 的单调性,得142a +≤,解得14a ≤,所以不等式(14)8f a +≤的解集为1,4⎛⎤-∞ ⎥⎝⎦.若选③:由(2)2f =得(4)(2)(2)4f f f =⋅=,(6)(4)(2)8f f f =⋅=,所以(14)8f a +≤可化为(14)(6)f a f +≤,根据()f x 的单调性,得146a +≤,解得54a ≤,所以不等式(14)8f a +≤的解集为5,4⎛⎤-∞ ⎥⎝⎦.。
高一数学学期第一次月考试卷(附答案)选择题1. 下列哪一个选项不是数学中常用的数集?A. 自然数集B. 实数集C. 正整数集D. 有理数集答案:C2. 若集合A = {1, 2, 3},集合B = {2, 3, 4},则A ∩ B = ?A. {2, 3}B. {1, 2, 3}C. {2, 3, 4}D. {4}答案:A3. 简化:$3 \times a \times 5$答案:$15a$填空题1. 若 $\frac{5}{6} x - \frac{1}{4} = \frac{3}{5} x - \frac{1}{2}$,则x = ?答案:$\frac{9}{20}$2. 若函数 $f(x) = ax^2 + bx - c$ 的图像开口朝上,且在x = 2处有最小值-3,则a = ?, b = ?, c = ?答案:a = 1, b = -8, c = -13解答题1. 解方程 $\frac{3}{5} (2x - 1) = \frac{1}{3} (4 - x)$解答:首先两边同时乘以15消去分数,得到:$9(2x - 1) = 5(4 - x)$ 进行分配和合并:$18x - 9 = 20 - 5x$移项:$23x = 29$最后得到解答:$x = \frac{29}{23}$2. 若正方形ABCD的边长为3cm,点E为AB边的中点,连线DE与BC交于点F,求线段DF的长度。
解答:由于ABCD是正方形,所以AD平行于BC。
由于E是AB边上的中点,所以AE = EB = 1.5cm。
由三角形相似性质可知,$\frac{AE}{AD} = \frac{DF}{DC}$。
将已知值代入,得到:$\frac{1.5}{3} = \frac{DF}{3}$化简得到:$DF = 1.5$cm以上为高一数学学期第一次月考试卷及答案。
高一上学期第一次月考数学试卷(附带答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(本题共8小题,共40分,每小题只有一个正确选项。
)1.直线√3x -y +2=0的倾斜角是( )A.150°B.120°C.60°D.30°2.过点P (﹣2,m )和Q (m ,4)的直线斜率等于1,那么m 的值等于( )A.1或3B.1C.4D.1或43.直线l 经过直线x -2y+4=0和直线x + y -2=0的交点,且与直线x+3y+5=0垂直,则直线l 的方程为( )A.3x -y+2=0B.3x+y+2=0C.x -3y+2=0D.x+3y+2=04.已知直线l 1:mx+y -1=0,l 2:(4m -3)x+my -1=0,若l 1⊥l 2,则实数m 的值为( )A.0B.12C.2D.0或125.对于圆C :x 2+y 2-4x+1=0,下列说法正确的是( )A.点4(1,﹣1)在圆C 的内部B.圆C 的圆心为(﹣2,0)C.圆C 的半径为3D.圆C 与直线y=3相切6.在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -y -1=0相切的圆的标准方程为( )A.(x -1)2+y 2=4B.(x -1)2+y 2=1C.x 2+(y -1)2=√2D.x 2+(y -1)2=27.已知直线l 1:x+2y+t 2=0,l 2:2x+4y+2t -3=0,则当l 1与l 2间的距离最短时,求实数t 的值为( )A.1B.12C.13D.28.已知点A(2,﹣3),B(﹣3,﹣2),若直线l:mx+y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A.[﹣34,4]B.[15,+∞)C.(﹣∞,﹣34]∪[4,+∞)D.[﹣4,34]二.多选题.(每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,错选的得0分。
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知全集U=Z,集合A={−1,2,3},B={3,4},则(∁U A)∩B=( )A. {4}B. {3}C. {1,2}D. ⌀2. 已知a,b,c,d∈R,则下列不等式中恒成立的是( )A. 若a>b,c>d,则ac>bdB. 若a>b,则ac2>bc2C. 若a>b>0,则(a−b)c>0D. 若a>b,则a−c>b−c3. 已知集合A={x|(x−2)(x+1)≤0},B={−2,0,1},则A∩B中元素的个数为( )A. 0B. 1C. 2D. 34. 已知p:0<x<2,q:−1<x<3,则p是q的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题正确的是( )A. 若数列{a n}、{b n}的极限都存在,且c n=a n bn (b n≠0),则数列{cn}的极限存在B. 若数列{a n}、{b n}的极限都不存在,则数列{a n+b n}的极限也不存在C. 若数列{a n+b n}、{a n−b n}的极限都存在,则数列{a n}、{b n}的极限也都存在D. 设S n=a1+a2+⋯+a n,若数列{a n}的极限存在,则数列{S n}的极限也存在6. 设全集U=R,集合A={x|x2−2x−3<0},B={x|x−2≥0},则图中阴影部分所表示的集合为( )A. {x|x≤−1或x≥3}B. {x|x<2或x≥3}C. {x|x≤2}D. {x|x≤−1}7. 设集合A={1,2,3,4},B={3,4,5},全集U=A∪B,则集合∁U(A∩B)的元素个数为( )A. 1个B. 2个C. 3个D. 4个8. 若集合A={−1,1},B={x|mx=2},且B⊆A,则实数m的值( )A. −2B. 2C. 2或−2D. 2或−2或09. 若P=√a+√a+7,Q=√a+3+√a+4(a≥0),则P,Q的大小关系是( )A. P>QB. P=QC. P<QD. 由a的取值确定10. 已知正实数a,b,满足a+2b=1,则1a +2b的最小值为( )A. 8B. 9C. 10D. 1111. 已知实数a,b,c,若a>b,则下列不等式成立的是( )A. 1a >1bB. a2>b2C. ac2+1>bc2+1D. a|c|>b|c|12. 若集合A={−1,1},B={x|x+m=0},且A∪B=A,则m的值为( )A. 1B. −1C. 1或−1D. 1或−1或0第II卷(非选择题)二、填空题(本大题共8小题,共32.0分)13. 已知集合A={x|0<x<4},集合B={x|x<a},若A⊆B,则实数a的取值范围是______.14. 已知x>1,函数y=x+4x−1的最小值为______.15. 已知集合A={−1,2,4},B={0,2,6},则A∩B=______ .16. 已知集合A={m+2,2m2+m},若3∈A,则m的值为______.17. 若集合{a,ba,1}={a2,a+b,0},则a2021+b2021=______.18. 不等式的解集为。
高一上学期第一次月考数学试题
数学试题共 4页,满分 150 分,考试时间 120分钟。
注意事项:
1. 答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2. 答选择题时,必须使用 2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦擦干净后,再选涂其他答案标号。
3. 答非选择题时,必须使用 0.5 毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4. 所有题目必须在答题卡上作答,在试题卷上答题无效。
一、选择题 (本大题共 12 小题,每小题 5分,共 60分)
1.已知全集 U {0,1,2,3,4} ,集合 A {1,2,3} , B {2,4} , 则 ( U A) B 为
⑥ {0} ,其中正确的个数为
A .{1,2,4}
B . {2,3,4}
C . {0,2,4}
D .{0,2,3,4} 2.如果 A={x| x
1} ,那么
A . 0 A
B
.{0} A
. {0} A
3. 下列六个关系式:① a,b b,a
② a,b
b,a ③{0} ④ 0 {0} {0}
A.6 个
B.5
C. 4 个
D. 少于 4 个
4. 已知 A
x| x 2
x|mx
0 ,且 A ∪B=A,则 m 的取值范围为 A. 1
3
B.
0, 1
,
3
C. 0,3,
1 D.
2
1,
1
3, 2
6. 下列图象中不能作为函数图象的是(
x 2 1 x 1
7.设函数 f (x) 2
,则 f ( f(3)) ( )
x1
x
1 2 13 A .
B . 3
C .
D .
5
3
9
8. 下列各式中成立的是 ( )
1
m 7 7 7
A . ( ) n m 7
n B
.12 ( 3) 4 3 3 C. 4 x 3
y 3 (x y) 4
D . 3 9 3 3
cx 3
9.函数 f (x) ,(x ) 满足 f[ f (x)] x,则常数 c 等于(
)
2x 3 2
A. 3
B. 3
C. 3或 3
D. 5或 3
10. 下列函数中 ,既是奇函数又是增函数的为
2 A . y x 1 B . y
x 2
11.已知函数 f x x 5 ax 3
二、填空题(本大题共 4 小题,每小题 5分,共 20分) 13.已知集合 A (x, y) | y 2x 1 , B {(x, y)| y x 3} 则 A B = .
14. 若 f 1 1 ,则
f x .
x x 1
32
15.若 f x 是偶函数,其定义域为 R 且在 0, 上是减函数, 则 f 与 f a 2 a 1 的
A.-26
B.-18
C.-10
D.10
( )
C .
1 y
D . y x|x|
x
f 2 10 ,那么 f 2 等于( )
12. 若函数 y x 2 2a 1 x 1 在 ,2 上是减函数,则实数 a 的取值范围是 ( )
A. [ 2, )
B. (
33
32
] C. [
23
) D. (
bx 8 ,且
4 大小关系是.16.已知定义在实数集 R 上的偶函数 f(x) 在区间 0, 上是单调增函数,若
f 1 f 2x 1 ,则 x 的取值范围是 三、解答题(本大题共 6 小题,共 70 分,解答应写出
文字说明,证明过程或演算步骤)
17.(本小题 12 分)全集 U=R ,若集合 A x|3 x 10 , B x|2 x 7 ,则
(1)求 A B ,A B , (C U A) (C U B);
(2)若集合 C={x|x a} ,A C ,求a 的取值范围 .
1 1 1
18. (本小题 12分)(1) 4x 4( 3x 4y 3) 19.(本小题 12 分)有甲,乙两家健身中心,两家设备和服务都相当,但收费方式不同.甲 中心每小时5元;乙中心按月计费,一个月中 30 小时以内(含 30 小时) 90 元,超过 30 小
时的部分每小时 2 元.某人准备下个月从这两家中选择一家进行健身活动, 其活动时间不少
于 15 小时,也不超过 40 小时。
(1) 设在甲中心健身 x (15 x 40)小时的收费为 f ( x)元,在乙中心健身活动 x 小时的收 费为 g(x)元。
试求 f (x)和 g(x); 2)问:选择哪家比较合算?为什么?
20.(本小题 12分)已知函数 f (x)是定义在 R 上的偶函数,且当 x ≤0时,f(x) x 2 2x . (1) 现已画出函数 f (x)在 y 轴左侧的图像,如图所示,请补出完整函数 f ( x)的图像,
并根据图像写出函数 f (x) 的增区间;
(2) 写出函数 f (x) 的解析式和值域 ;
(3) 若方程 f (x)
- m=0有四个解,求 m 的范围 .
12 ( 6x 2 y 3)
1
(2) 0.027 3
27 2
一切事无法追求完美,唯有追求尽力而为。
这样心无压力,出来的结果反而会更好。
看人生峰高处,唯有磨难多正果。
5
21. (本小题 12 分)已知二次函数 f x ax 2 bx ( a,b 为常数,且 a 0 ),满足条件 f 1 x f 1
x ,且方程 f x x 有等根.
(1) 求 f x 的解析式;
(2) 当 x 1,2 时,求 f x 的值域;
(3) 若 F x f x f x ,试判断 F x 的奇偶性,并证明你的结论 .
ax b 1
2 22. (本小题 12分)函数 f x 2 是定义在 1,1 上的奇函数,且 f .
1 x
2 2
5
( 1)确定函数 f x 的解析式;
( 2)用定义证明 f x 在 1,1 上是增函数; (3)解不等式 f x 1 f x 0
.
22.
一切事无法追求完美,唯有追求尽力而为。
这样心无压力,出来的结果反而会更好。
参考答案
一、选择题
1—5:CDCC ;D 6— 10:BDDBD ;11—12:AB
三、解答题 17. 解:(1) A B 3,7 ; A
B
2,10 ; (C U A) (C U B) ( ,3) [10, )
(2){a|a 3}.
18.(1)2xy(1/3) (2)
-45
90,15 x 30 19.解:(1) f (x) 5x , 15 x 40
g(x) ;
30 2x,30 x 40
(2)当 5x=90 时, x=18,
即当 15 x 18 时,
f (x) g(x) ;当 x 18时, f (x) g(x) ;
当18 x 40时, f (x) g(x); ∴当 15 x 18 时,选甲家比较合算;当 当 18 x 40 时,选乙家比较合算.
20.(1) 函数图像如右图所示:
(3) -1<m<0,.
2)解析式为:
2
f(x) x
2 2x,x 0 ,值域为: y| y 1 . x 2 2x,x 0
f ( x)的递增区间是 ( 1,0) ,
(1,
).
x 18 时,两家一样合算;
21. 解: (1) ∵ f 1 x f 1 x ,∴ b 2a
1, 又方程 f x x 有等根 ax 2
b 1 x 0 有等根,
∴ △ = b
12
0 b 1
a
1
,
2
∴ f x
1 x
2
x .
2
22. 解:(1)由已知 f
x
f 0 0
,
即 ax 2
b
是定义在 1,1 上的奇函数, 1
x 2
0b
10
0, b
0.
又
1
2
2
5
,
即
1 a
2
1 2
1 2
,
a 1.
5
2
fx
1
x 2.
x
2)证明:对于任意的
x 1,x 2
1,1 ,且 x 1 x 2 ,
则
f x 1 f x 2
x 1
1 x 1
2 1 x 2
2
x 2
x 1 1 2 x 2 2 x 2 1 x 1 22 1 x 1 1 x 2
x 1 x 2 x 1x 2 x 2 2 x 1 x 1 1 1 2 x 2 x 1 1 x 2 1 x 1x 2
2 x 1
1 x 2
2 1
x
1 x 2
1
x 1 x 2 0, 1 x 12 1 x 22 0 ,
x 1x 2 1, 1 x 1x 2
f x 2
,即
f x
1
1 x 2
3)由已知及(
2) 知, f x 是奇函数且在
1,1 f x 1 fx 0 f x 1 f x f
1 x1 1 0x2
1 x 1
1 x 1 0
x x 1
x
1 x
∴函数
在 1,1 上是增函
数
0,1
上递增, x 1 f x
1 2
∴不等式的解集为。