人教版数学《圆》单元测试B卷(含答案 )
- 格式:docx
- 大小:530.25 KB
- 文档页数:8
人教版小学六年级数学第5单元《圆》单元测试卷一、填空题。
1.半径决定圆的(),圆心决定圆的()。
2.画一个周长是18.84 cm的圆,圆内最长的线段是()cm,所画出的圆的面积是()cm2。
3.淘气用一个圆规画一个直径是 6 厘米的圆,圆规针尖的位置是圆的(),圆规两脚之间的距离是()厘米,这个圆的周长是()厘米,面积是()平方厘米。
4.自行车的车轮溶动一周,所行的路程就是车轮的()。
5.一个圆的直径扩大到原来的 3 倍,它的周长扩大到原来的()倍,面积就扩大到原来的()倍。
6.有一个钟面,它的分针长3分米,时针长2分米。
从6时到9时,分针的针尖走过的路程是()分米;时针扫过的面积是()平方分米。
7.已知一个挂钟的时针长度是分针的3,转动一小时后,时针扫过的面积是分4针的()。
8.大圆的半径与小圆的直径相等,那么大小两个圆的周长比是(),它们的面积比是()。
9.画一个圆,圆规两脚间的距离是3cm,那么,这个圆的周长是(),面积是()。
10.一个圆的周长是12.56厘米,它的面积是()。
二、选择题。
1.把一个直径是2cm 的圆分割成两个半圆形后,每个半圆形的周长是( )cm。
A.6.28 B.3.14 C.4.14 D.5.142.圆的()是圆中最长的线段。
A.周长B.直径C.半径3.画圆时,圆规两脚间的距离是圆的()。
A.半径B.直径C.周长4.一个圆的直径由原来的 3 厘米增加到 7 厘米,周长增加了()厘米。
A.6.28 B.12.56 C.25.12 D.50.245.将一个圆形纸片沿着它的直径剪成两半,它的面积和周长()。
A.面积不变周长增加B.面积增加周长不变C.面积周长都不变D.面积周长都增加6.在一个长 5 cm ,宽 3 cm 的长方形中画一个最大的半圆,这个半圆的直径是()。
A.1.5 cm B.3 cm C.5 cm D.6 cm7.一个圆的直径与周长的比是()A.1:2πB.1:πC.2:π8.淘气和笑笑分别在本子上画了一个大圆和小圆,两个圆的圆周率()A.淘气的大B.笑笑的大C.一样大D.无法比较9.用圆规画一个周长是6.28cm的圆,这个圆的半径是()cm。
第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
第5单元圆(单元测试)-2024-2025学年六年级上册数学人教版一、单选题(共5题;共15分)1.(3分)如下图,A是圆心,能判断三角形ABC为等腰三角形的理由是( )。
A.圆内有无数条半径B.直径是半径的2倍C.同一个圆的半径都相等D.圆有无数条对称轴2.(3分)在方格纸中,每一个小正方形边长都是1厘米,如果要在方格纸上画一个半径3厘米的圆,圆心的位置可以是( )。
A.(5,4)B.(3,2)C.(5,2)D.(6,1)3.(3分)一个正方形和一个圆的周长相等,那么它们的面积( )。
A.正方形面积大B.圆面积大C.一样大D.无法比较4.(3分)一个半园圆的半径r厘米,这个半圆的周长是( )厘米。
A.πr B.πr+2r C.πr+r D.2πr+2r5.(3分)在长10cm、宽6cm的长方形中画一个最大的半圆,这个半圆的半径是( )厘米。
A.10B.6C.5D.3二、判断题(共5题;共15分)6.(3分)一个周长是6.28分米的圆形纸,沿直径剪成两个半圆,每个半圆的周长是3.14分米.( )7.(3分)半径是2米的圆,周长和面积相等。
( )8.(3分)圆有无数条对称轴,圆中所有的直径都是它的对称轴。
( )9.(3分)同一个圆中,直径是半径的2倍。
周长是直径的3.14倍。
( )10.(3分)草地上有一个木桩,把一头牛用绳拴在木桩上,若绳子长4米,这头牛最多可以吃到12.56平方米的草。
( )三、填空题(共7题;共20分)11.(2分)用一张长10分米、宽8分米的纸剪一个最大的圆,这个圆的面积是 平方分米。
12.(4分)把一个圆平均分成若干份后,能够拼成一个近似于长方形的图形,这个长方形的长相当于圆周长的 ,宽相当于圆的 。
13.(4分)一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了 厘米,针尖扫的面积是 平方厘米。
14.(2分)在一个直径为20米的圆形草地外围铺一条1米宽的石子路,石子路的面积是 m2。
人教版六年级上册数学《圆》(含答案)六年级上册数学-单元测试5圆1.一个环形,内圆半径是3分米,外圆半径是5分米,这个环形的面积多少?列式正确的是()。
A。
3.14×(5×2-3×2),3.14×52-3.14×32B。
3.14×(5×2-3×2),3.14×(52-32)C。
3.14÷52-3.14×32,3.14×(52-32)正确答案:B。
3.14×(5×2-3×2),3.14×(52-32)2.一个钟表的分针长10cm,从1时走到6时,分针走过了()cm。
A。
31.4.B。
62.8.C。
314正确答案:B。
62.83.阴影部分的面积是()A。
39.25.B。
38.35.C。
38.58.D。
39.48正确答案:B。
38.354.如图2所示,实数部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12mB.18mC.20mD.24m正确答案:C。
20m5.在一个长10厘米、宽4厘米的长方形里画一个最大的圆,这个圆的直径是()A。
10厘米B。
8厘米C。
4厘米正确答案:4厘米6.如图,阴影部分的周长是()cm.A.πB。
2πC。
4πD。
2.5π正确答案:B。
2π7.如图,从A地到B地,可以走路线①,也可以走路线②,(路线①是一个以AB为直径的半圆,路线②是一个分别以AC、CD、DB为直径的半圆组成的路线),则下列说法正确的是()A.走路线①比路线②近B.走路线②比路线①近C.走路线①和路线②一样近正确答案:C。
走路线①和路线②一样近8.一个半圆的半径为r,它的周长为()A.2πr×B.πr+rC.πr+2r正确答案:C。
πr+2r9.连接圆上任意两点的线段,它的长度一定()直径。
六年级上册数学分层训练B卷-第五单元圆(满分:100分,完成时间:60分钟)一、选择题(满分16分)1.1张圆形纸片至少对折()次,才能找到圆心。
A.1 B.2 C.3 D.02.下水道的井盖设计成圆形,主要是因为()。
A.美观B.周长相等C.直径相等,怎么放都掉不下去3.如图,从A到B沿大圆周走比较近,还是沿小圆周走比较近?正确答案是()。
A.沿大圆周走近B.沿小圆周走近C.一样近D.无法判断4.同学们在玩套圈游戏,哪种站法最公平?()A.B.C.5.一个周长是43.96cm的圆,半径增加了5cm,面积增加了()。
A.153.86cm2B.452.16cm2C.298.3cm2D.518.1cm26.下图是一个轴对称图形,长方形的长和宽的比是7∶4,则小圆面积和大圆面积的比是()。
A.3∶4 B.3∶7 C.4∶7 D.9∶167.豆豆家的一个圆形餐桌(如图),桌面面积大约是50平方分米,妈妈要为这个餐桌配一块正方形桌布,把桌面全覆盖上,商店有以下四种规格的桌布,她应该选择边长至少是()的桌布。
A.15厘米B.7分米C.9分米D.12分米8.下图的三个圆环中,内圆和外圆的直径比值相等的是()。
A.(1)和(3)B.(1)和(2)C.(2)和(3)D.以上答案均不对二、填空题(满分16分)9.用圆规画一个周长是50.24cm的圆,圆规两脚间的距离是( )cm,所画圆的面积是( )cm2。
10.用圆规画一个周长是12.56cm的圆,圆规两角的距离是( )cm,这个圆的面积是( )cm2。
11.“五角钱”(猜一数学图形)( );这个图形的周长用字母表示( )。
12.李师傅想把3根横截面直径都是10厘米的圆木用铁丝紧紧地捆绑在一起(如图),捆一圈(接头处不计)至少需铁丝_____厘米。
13.在一个周长是64cm的正方形纸片内,剪一个最大的圆,这个圆的半径是( )cm,这个圆的面积是( )cm2。
14.在一块长5分米、宽4分米的长方形铁板上剪一个最大的圆,这个圆的面积是( )平方分米。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一.选择题(每小题3分,共36分)1.设⊙O的直径为12cm,点A在直线l上,若AO=6cm,则直线l与⊙O的位置关系是()A. 相离B. 相切C. 相交或相切D. 以上都不对2.如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD垂足为E,下列结论不一定成立的是()A. B. C. EO=EB D. EC=ED3.钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A. B. C. D.4.如图,在⊙O中,∠ABC=51°,则∠AOC等于()A. 51°B. 80°C. 90°D. 102°5.已知点I为△ABC的内心,若∠A=40°,则∠BIC=()A. 80°B. 110°C. 130°D. 140°6.如图,⊙O中,弦AB、CD相交于点P,∠A=35°,∠B=40°,则∠APD的大小是()A. 45°B. 55°C. 65°D. 75°7.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A. 32B. 40C. 24D. 308.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A. 60°B. 90°C. 120°D. 150°9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=28°,那么∠C为()A. 28°B. 30°C. 34°D. 35°10.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、BC、BD、AD,若CD平分∠ACB,∠CBA=30°,BC=3,则AD的长为()A. 3B. 6C. 4D. 311.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A. 50°B. 55°C. 65°D. 70°12.如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是()A. 7B. 7C. 10D. 8二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为_____.14.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.当A,B,C,D四点在同一个圆上时,该圆的半径为_____.15.如图,PA、PB、DE切分别切⊙O于点A、B、C,若∠P=50°,则∠DOE=_____°.16.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.17.如图,在⊙O中,P为直径AB上的一点,过点P作弦MN,满足∠NPB=45°,若AP=2cm,BP=6cm,则MN 的长是_____cm.18.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为_____.19.如图,点A、B、C在⊙O上,∠O=44°,则∠C=_____°.20.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.三.解答题(每题10分,共60分)21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=5,AC=12,求⊙O的半径和CE的长.22.如图,四边形ABCD内接于⊙O,∠ABC=60°,BD平分∠ADC.(1)试说明△ABC是等边三角形;(2)若AD=2,DC=4,求四边形ABCD的面积.23.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=58°,求∠BDF的度数.24.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC 切于点D.(1)求证:DE∥OC;(2)若AD=2,DC=3,且AD2=AE•AB,求的值.25.如图,在△ABC中,AB=AC.(1)如图1,若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.①试说明:BD=CD;②判断直线DE与⊙O的位置关系,并说明理由.(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.26.如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.(1)求证:AF=GC;(2)若BD=6,AD=4,求⊙O的半径;(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.参考答案一.选择题(每小题3分,共36分)1.设⊙O的直径为12cm,点A在直线l上,若AO=6cm,则直线l与⊙O的位置关系是()A. 相离B. 相切C. 相交或相切D. 以上都不对【答案】C【解析】【分析】根据直线与圆的位置关系的判定方法,分OA⊥l和圆心O到直线l的距离小于AO两种情况判断即可解答. 【详解】已知⊙O的直径为12cm,则半径为6cm,又已知AO=6cm,所以AO为半径,则A在⊙O上.当AO⊥l时,有1个公共点,即相切.当圆心O到直线l的距离小于AO时,有2个公共点,即相交.故选C.【点睛】本题考查了直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.2.如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD垂足为E,下列结论不一定成立的是()A. B. C. EO=EB D. EC=ED【答案】C【解析】【分析】根据垂径定理解答即可.【详解】∵AB是直径,AB⊥CD,∴,,EC=DE,选项A,B,D正确,不能判断EO=EB,选项C错误.故选C.【点睛】本题考查了垂径定理,熟知垂直于弦的直径平分弦,并且平分弦所对的两条弧是解决问题的关键.3.钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是()cm2.A. B. C. D.【答案】C【解析】【分析】分针1小时(60分钟)转1周,扫过的面积是一个圆的面积,40分钟分针扫过的面积是圆面积的,根据圆的面积公式s=πr2,把数据代入公式进行求解即可.【详解】依题意,得×π×22=π(cm2);答:分针所扫过的面积是πcm2.故选C.【点睛】本题考查了扇形面积的计算和旋转的性质.解答本题的关键是明确分针的尖端40分钟扫过的面积是圆面积的.4.如图,在⊙O中,∠ABC=51°,则∠AOC等于()A. 51°B. 80°C. 90°D. 102°【答案】D【解析】【分析】根据圆周角定理即可解答.【详解】由圆周角定理得,∠AOC=2∠ABC=102°,故选D.【点睛】本题考查了圆周角定理,熟知圆周角定理的内容是解决问题的关键.5.已知点I为△ABC的内心,若∠A=40°,则∠BIC=()A. 80°B. 110°C. 130°D. 140°【答案】B【解析】【分析】根据三角形的内角和定理求得∠ABC+∠ACB=140°,由内心的定义可求得∠IBC+∠ICB=70°,再由三角形的内角和定理即可求得∠BIC的度数.【详解】∵∠A+∠ABC+∠ACB=180°,∠A=40°,∴∠ABC+∠ACB=140°,∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=×140°=70°,∴∠BIC=180°﹣(∠IBC+∠ICB)=110°.故选B.【点睛】本题考查了三角形的内心,熟知三角形的内心是三角形三个角的角平分线的交点是解决问题的关键.6.如图,⊙O中,弦AB、CD相交于点P,∠A=35°,∠B=40°,则∠APD的大小是()A. 45°B. 55°C. 65°D. 75°【答案】D【解析】【分析】根据等弧所对的圆周角相等可知∠B=∠C,故根据三角形的一个外角等于与它不相邻的两个内角和可以求出∠APD的大小.【详解】由于∠C和∠B所对应的弧都是,故∠C=∠B=40°,∴∠APD=∠C+∠A=75°,故答案选D.【点睛】本题主要考查了等弧所对应的圆周角相等以及三角形的外角等于与它不相邻的两个内角之和,灵活应用这些是解答本题的关键.7.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A. 32B. 40C. 24D. 30【答案】A【解析】【分析】取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,即可得△ODE的面积=×△ADE的面积,由此求得△ODE的面积,再由圆内接正八边形ABCDEFGH是由8个与△ODE全等的三角形构成,即可求得正八边形ABCDEFGH的面积.【详解】取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,∴△ODE的面积=×△ADE的面积=×8=4,圆内接正八边形ABCDEFGH是由8个与△ODE全等的三角形构成.则圆内接正八边形ABCDEFGH为8×4=32,故选A.【点睛】本题考查了正多边形和圆的知识,一般的,任何一个正n边形都有一个外接圆,分别经过各顶点的这些半径将这个正n边形分成n个全等的等腰三角形.8.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A. 60°B. 90°C. 120°D. 150°【答案】C【解析】【分析】根据圆内接四边形的性质、圆周角定理即可求得∠A=60°,∠BOD=120°,由此即可求得的度数.【详解】∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的度数为120°故选C.【点睛】本题考查了圆内接四边形的性质及圆周角定理,正确求得∠BOD=120°是解决问题的关键.9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切,切点为D,如果∠A=28°,那么∠C为()A. 28°B. 30°C. 34°D. 35°【答案】C【解析】【分析】连接OD,已知CD与⊙O相切,根据切线的性质定理可得∠ODC=90 °,由OA=OD,根据等腰三角形的性质可得∠A=∠ODA,由三角形外角的性质可得∠COD=∠A+∠ODA=2∠A=56°,由此即可求得∠C=34°.【详解】如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,即∠ODC=90 °,∵OA=OD,∴∠A=∠ODA,∴∠COD=∠A+∠ODA=2∠A=56°,∴∠C=90°﹣56°=34°,故选C.【点睛】本题考查了切线的性质定理、等腰三角形的性质及三角形外角的性质,熟练运用相关知识是解决问题的关键.10.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、BC、BD、AD,若CD平分∠ACB,∠CBA=30°,BC=3,则AD的长为()A. 3B. 6C. 4D. 3【答案】B【解析】【分析】由直径所对的圆周角为直角可得∠ACB=∠ADB=90°,再利用特殊角的三角函数值求出AB的值,再根据等弧所对的弦相等结合勾股定理可得出结果.【详解】∵AB是⊙O的直径, ∴∠ACB=∠ADB=90°, ∵∠CBA=30°,BC=,∴AB==6,∵CD平分∠ACB,∴∠BCD=∠ACD, ∴AD=BD,∴AD=,∴2AD²=72, ∴AD=6.故选B.【点睛】本题考查了圆周角的性质,直径所对的圆周角为直角,在同圆或等圆中,相等的圆周角所对的弧相等,解题的关键是得出AD=BD.11.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A. 50°B. 55°C. 65°D. 70°【答案】B【解析】【分析】连接BD,根据直径所对的圆周角为直角可得∠ABD=90°,即可求得∠ADB=20°,再由圆内接四边形的对角互补可得∠C=110°,因,即可得BC=DC,根据等腰三角形的性质及三角形的内角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【详解】解:连接BD,∵AD是半圆O的直径,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故选B.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、等腰三角形的性质及三角形的内角和定理等知识,熟练运用相关知识是解决问题的关键.12.如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是()A. 7B. 7C. 10D. 8【答案】B【解析】【分析】作点C关于AB的对称点C′,连接C′D交AB于点P,则此时PC+PD最小,为C′D的长,求得C′D的长即可求得PC+PD的最小值.【详解】解:作点C关于AB的对称点C′,连接C′D交AB于点P,则此时PC+PD最小,连接OC,OD,由勾股定理得,OE==3,OF=4,∴EF=EO+OF=7,作C′H⊥DF交DF的延长线于H,则四边形EC′HF为矩形,∴FH=C′E=CE=4,C′H=EF=7,∴DH=DF+FH=7,∴PC+PD=C′D=.故选B.【点睛】本题考查了轴对称-线路最短的问题,确定使PC+PD的值最小时动点P的位置是解题的关键.二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为_____.【答案】.【解析】【分析】先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD的中点,由三角形的面积可求出CM的长;再在Rt△ACM中,根据勾股定理可求出AM的长,然后再由AD=2AM即可得出结论.【详解】∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵且AC=3,BC=4,AB=5,∴在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即解得:∴故答案为:【点睛】考查勾股定理,垂径定理及推论,掌握垂径定理是解题的关键.注意辅助线的作法.14.如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.当A,B,C,D四点在同一个圆上时,该圆的半径为_____.【答案】【解析】【详解】如图,设AC交BD于点E,当A,B,C,D四点在同一个圆上时,∵AB=AD=5,CB=CD,∴AC垂直平分线段BD,AC为圆的直径,设该圆的半径为r,圆心为O.连接OD.∴BE=DE=4,AE==3,在Rt△ODE中,则有r2=(r﹣3)2+42,得r=.故答案为:.【点睛】本题考查了线段垂直平分线的性质、垂径定理及勾股定理,求得BE =4,AE=3是解决问题的关键.15.如图,PA、PB、DE切分别切⊙O于点A、B、C,若∠P=50°,则∠DOE=_____°.【答案】65【解析】【分析】连接OA、OC、OB,根据切线的性质定理可得∠DAO=∠EBO=90°,由是必须的内角和为360°可得∠P+∠AOB=180°,由此求得∠AOB=130°,由切线长定理可得∠AOD=∠DOC,∠COE=∠BOE,从而得∠DOE=∠AOB=65°.【详解】连接OA、OC、OB,∵OA⊥PA,OB⊥PB,OC⊥DE,∴∠DAO=∠EBO=90°,∴∠P+∠AOB=180°,∴∠AOB=180°﹣50°=130°;∵∠AOD=∠DOC,∠COE=∠BOE,∴∠DOE=∠AOB=×130°=65°.故答案为:65.【点睛】本题考查了切线的性质定理及切线长定理,求得∠AOB=130°是解决问题的关键.16.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.【答案】【解析】试题解析:∵直线与x轴、y轴分别交于两点,∴A点的坐标为(4,0),B点的坐标为(0,−3),∴OA=4,OB=3,过C作CM⊥AB于M,连接AC,MC的延长线交C于N,则由三角形面积公式得,圆C上点到直线的最小距离是∴△P AB面积的最小值是故答案为:17.如图,在⊙O中,P为直径AB上的一点,过点P作弦MN,满足∠NPB=45°,若AP=2cm,BP=6cm,则MN 的长是_____cm.【答案】2【解析】【分析】作OH⊥MN于H,连接ON,由已知条件可得OA=OB=ON=4,OP =2,再求得OH=;在Rt△OHN中,利用勾股定理求得NH=,再利用垂径定理即可求得MNN=2cm.【详解】解:作OH⊥MN于H,连接ON,AB=AP+PB=8,∴OA=OB=ON=4,∴OP=OA﹣AP=2,∵∠NPB=45°,∴OH=OP=,在Rt△OHN中,NH=,∵OH⊥MN,∴MN=2HN=2(cm),故答案为:2.【点睛】本题考查了垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解决问题的关键.18.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为_____.【答案】2﹣4【解析】【分析】由∠AFD=90°可得点F的运动轨迹是以AD为直径的⊙O,连接OB,OF,根据勾股定理求得OB=2,由BF≥OB﹣OF即可求得BF的最小值为2﹣4.【详解】如图,∵AE⊥DF,∴∠AFD=90°,∴点F的运动轨迹是以AD为直径的⊙O,连接OB,OF.∵四边形ABCD是矩形,∴∠BAO=90°,∵AB=6,AO=4,∴OB==2,FO=AD=4,∵BF≥OB﹣OF,∴BF的最小值为2﹣4,故答案为2﹣4.【点睛】本题考查了圆周角定理的推论及勾股定理,明确点O、B、F在一条直线上时BF的值最小是解决问题的关键.19.如图,点A、B、C在⊙O上,∠O=44°,则∠C=_____°.【答案】22【解析】【分析】根据圆周角定理即可求解.【详解】由圆周角定理可得:∠C= ∠O=×44°=22°;故答案为:22;【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决本题的关键.20.如图,已知直线y=与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是_____.【答案】5【解析】【分析】求出A、B的坐标,根据勾股定理求出AB,求出点C到AB的距离,即可求出圆C上点到AB的最小距离,根据面积公式求出即可.【详解】∵直线y=x﹣3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,﹣3),3x ﹣4y﹣12=0,即OA=4,OB=3,由勾股定理得:AB=5.过C作CM⊥AB于M,连接AC,则由三角形面积公式得:×AB×CM=×OA×OC+×OA×OB,∴5×CM=4×2+3×4,∴CM=4,∴圆C上点到直线y=x﹣3的最小距离是:4-2=2,∴△P AB面积的最小值是×5×2=5.故答案为:5.【点睛】本题考查了三角形的面积,点到直线的距离公式的应用,解答此题的关键是求出圆上的点到直线AB的最小距离.三.解答题(每题10分,共60分)21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=5,AC=12,求⊙O的半径和CE的长.【答案】(1)证明见解析;(2)CE=.【解析】【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等可证得∠BCE =∠A,又由C是的中点,证得∠DBC =∠A,继而可证得CF﹦BF;(2)由C是的中点和CD=5可求得BC=5,利用勾股定理求得AB=13,即可求得⊙O的半径为6.5;在Rt△ACB中,利用三角形面积的两种表示方法即可求得EC的长.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°.∴∠A+∠ABC=90°.又∵CE⊥AB,∴∠CEB=90°.∴∠BCE+∠ABC=90°.∴∠BCE=∠A,∵C是的中点,∴=.∴∠DBC=∠A,∴∠DBC=∠BCE.∴CF=BF;(2)∵=,CD=5,∴BC=CD=5,∴AB==13,∴⊙O的半径为6.5,∵CE•AB=AC•BC,∴CE===.【点睛】本题考查了圆周角定理、勾股定理及直角三角形的面积求法,熟练运用相关知识是解决本题的关键.22.如图,四边形ABCD内接于⊙O,∠ABC=60°,BD平分∠ADC.(1)试说明△ABC是等边三角形;(2)若AD=2,DC=4,求四边形ABCD的面积.【答案】(1)见解析;(2)四边形ABCD的面积为.【解析】【分析】(1)据已知条件和圆周角定理即可得到结论;(2)过点A作AE⊥CD,过点B作BF⊥AC,得∠AED=90°,∠ADE=60°,∠DAE=30°,DE =1,,CE= 5,从而求出,再求出,即可求出结论.【详解】解:(1)∵ 四边形ABCD内接于⊙O∴∠ABC+∠ADC=180°∵∠ABC=60°,∴∠ADC=120°∵ DB平分∠ADC,∴∠ADB=∠CDB=60°∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°∴∠ABC=∠BCA=∠BAC∴△ABC是等边三角形⑵ 过点A作AE⊥CD,垂足为点E;过点B作BF⊥AC,垂足为点F.∴∠AED=90°∵∠ADC=120°∴∠ADE=60°∴∠DAE=30°∴ DE==1,∵ CD=4∴ CE=CD+DE=1+4=5∴Rt△AEC中,∠AED=90°∴ AC=∵ △ABC是等边三角形∴ AB=BC=AC=∴ AF=FC=∴∴∴ 四边形ABCD的面积=.【点睛】本题考查勾股定理、圆周角定理、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=58°,求∠BDF的度数.【答案】(1)证明见解析;(2)∠BDF=116°.【解析】【分析】(1)连接AD,已知AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ADB=90°,即AD⊥BC;由CD=BD 可得AD垂直平分BC,根据线段垂直平分线的性质可得AB=AC,所以∠B=∠C;根据同弧所对的圆周角相等可得∠B=∠E,由此即可证得∠E=∠C;(2)已知四边形AEDF是⊙O的内接四边形,根据圆内接四边形对角互补可得∠AFD=180°﹣∠E,由邻补角的定义可得∠CFD=180°﹣∠AFD,从而求得∠CFD=∠E=58°,再由∠BDF=∠C+∠CFD即可求得∠BDF的度数.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=58°,又∵∠E=∠C=58°,∴∠BDF=∠C+∠CFD=116°.【点睛】本题考查了圆周角定理及圆内接四边形对角互补的性质,熟知圆周角定理及圆内接四边形对角互补的性质是解决问题的关键.24.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC 切于点D.(1)求证:DE∥OC;(2)若AD=2,DC=3,且AD2=AE•AB,求的值.【答案】(1)证明见解析;(2) .【解析】试题分析:(1)首先连接OD,由在△ABC中,∠B=90°,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,易证得Rt△ODC≌Rt△OBC(HL),然后由等腰三角形与三角形外角的性质,证得∠OED=∠BOC,继而证得DE∥OC;(2)由AD、DC的长可得AC、BC的长,再根据勾股定理即可得AB的长,再根据AD2=AE•AB,从而可得AE的长,继而得到OB的长,问题得以解答.试题解析:(1)连接OD,∵AC切⊙O点D,∴OD⊥AC,∴∠ODC=∠B=90°,在Rt△OCD和Rt△OCB中, ,∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC,∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,∴∠BOC=∠OED,∴DE∥OC;(2)由AD=2,DC=3得:BC=3,AC=5,由勾股定理得AB= =4,又∵AD2=AE·AB,∴AE=1,∴BE=3,OB=BE=,∴=.【点睛】本题考查了切线的性质、全等三角形的判定与性质、勾股定理等.解题的关键是恰当添加辅助线,解题过程中要注意掌握数形结合思想的应用.25.如图,在△ABC中,AB=AC.(1)如图1,若O为AB的中点,以O为圆心,OB为半径作⊙O交BC于点D,过D作DE⊥AC,垂足为E.①试说明:BD=CD;②判断直线DE与⊙O的位置关系,并说明理由.(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.【答案】(1)①证明见解析;②直线DE与⊙O相切,理由见解析;(2)AF=3.【解析】【分析】(1)①连接AD,已知AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ADB=90°,即AD⊥BC;再由等腰三角形三线合一的性质即可证得结论;(2)直线DE与⊙O相切,连接OD,已知AB=AC、OB=OD,根据等腰三角形的性质可得∠ODB=∠B=∠C,即可判定OD∥BC,由DE⊥AC可得DE⊥OD,由此即可判定DE 与⊙O相切;(2)根据已知条件易证四边形ODEF是矩形,即可得OD=EF=4;设AF=x,则AB=AC=x+6,AO =x+2,在Rt△AOF中,利用勾股定理列出方程(x+2)2=x2+42,解方程求得x的值,即可求得AF的长.【详解】(1)①连接AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,AD⊥BC,∴BD=CD;②直线DE与⊙O相切,理由:连接OD,∵AB=AC,OB=OD,∴∠ODB=∠B=∠C,∴OD∥BC,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切;(2)由(1)同理得,DE与⊙O相切,连接OF,∵EF与⊙O相切,DE⊥AC,∴∠ODE=∠OFE=∠EDF=90°,即四边形ODEF是矩形,∴OD=EF=4,设AF=x,则AB=AC=x+6,AO=x+6﹣4=x+2,在Rt△AOF中,(x+2)2=x2+42,解得,x=3,即AF=3.【点睛】本题考查了切线的判定与性质,解决第(2)问构造直角三角形利用勾股定理作为相等关系列方程是解决问题的关键.26.如图,△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,切点分别为D、E、F.连接DF并延长交BC的延长线于点G.(1)求证:AF=GC;(2)若BD=6,AD=4,求⊙O的半径;(3)在(2)的条件下,求图中由弧EF与线段CF、CE围成的阴影部分面积.【答案】(1)详见解析;(2)2;(3)4﹣π.【解析】【分析】(1)连接OD、OE、OF、OA,证明四边形OFCE为正方形,根据正方形的性质得到OF=CF,证明△GFC≌△AOF,根据全等三角形的性质证明结论;(2)根据切线长定理得到BE=BD=6,AF=AD=4,CF=CE,根据勾股定理列出方程,解方程即可;(3)根据正方形的面积公式和扇形面积公式计算.【详解】(1)证明:连接OD、OE、OF、OA,∵⊙O是△ABC的内切圆,切点分别为D、E、F,∴OE⊥BC,OF⊥AC,又∠ACB=90°,OE=OF,∴四边形OFCE为正方形,∴OF=CF,∵AF=AD,OF=OD,∴OA⊥DF,又∠AFD=∠GFC,∴∠G=∠OAF,在△GFC和△AOF中,,∴△GFC≌△AOF(AAS),∴AF=GC;(2)解:由切线长定理得,BE=BD=6,AF=AD=4,CF=CE,则AB=AD+BD=10,由勾股定理得,AC2+BC2=AB2,即(4+CF)2+(6+CE)2=102,解得,CF=2,即⊙O的半径为2;(3)解:图中由弧EF与线段CF、CE围成的阴影部分面积=22﹣=4﹣π.【点睛】本题考查的是三角形的内切圆与内心,扇形面积计算,掌握切线长定理,扇形面积公式,全等三角形的判定和性质是解题的关键.。
人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知与的半径分别为和3,若两圆相交,则两圆的圆心距满足( )A .B .C .D .2.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .73.如图,AB 为O 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )A . 070B . 035C . 030D .20︒4.在同圆中,CD 的度数小于180︒,且2AB CD =,那么弦AB 和弦CD 的大小关系为( )A .AB CD > B .AB CD =C .AB CD < D .无法确定5.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )A .115︒B .105︒C .100︒D .95︒ 6.Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm 长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是1O 2O 2m 5m =1m =5m >15m <<EDC BA( )A .0个B .l 个C .2个D .3个7.在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )A .B .cmC .cmD .cm8.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则ABE 面积的最小值是A .2B .1C .D .9.在圆柱形油槽内装有一些油.截面如图所示,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽度为8分米,圆柱形油槽直径MN 为( ) A .6分米 B .8分米 C .10 分米 D .12 分米10.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=4,则⊙O 的直径等于( )Rt ABC △90C ∠=︒4BC cm =3AC cm =ABC △A 90︒11AB C △B 54π52π5π△22-2A.B. C. D .7 二 、填空题(本大题共5小题,每小题3分,共15分)11.已知1O ⊙与2O ⊙半径的长是方程27120x x -+=的两根,且1212O O =,则1O ⊙与2O ⊙的位置关系是___________.12.在Rt △ABC 中,∠C=90°,AC=3,BC=4,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是 .13.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.14.如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为 cm 2.(结果保留π)15.已知正六边形的边心距为,则它的周长是 .三 、解答题(本大题共7小题,共55分)16.如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;B(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.17.如图⊙O 半径为2,弦BD =,A 为弧BD 的中点,E 为弦AC 的中点,且在BD上。
人教版六年级上册数学第五单元《圆》单元达标测试卷一仔细推敲,选一选。
(将正确答案的字母填在括号里)(每小题2 分,共24 分)1. 下列图形中的∠1 属于圆心角的是( )。
2. [福州鼓楼区]下面各图中,对称轴条数最多的是( )。
3. 右图是一个残破的钟面,用软尺量得其边缘的弧长是9.42 cm,则它所在钟面的面积是( )cm2。
A. 9πB. 18πC. 36πD. 144π4.三位同学观察下图后说出了自己的想法,( )的想法正确。
东东: 研究圆的面积,可以用面积单位去测量。
苗苗: 如果小方格越来越小,那么求出来的小方格的面积就越来越接近圆的面积。
林林: 如果像这样把小方格继续画下去,画到第5 个图时,计算出的面积就等于圆的面积。
A. 东东B. 东东和苗苗C. 苗苗和林林D. 东东、苗苗和林林5.圆周率是圆的周长与直径的比值。
如果下图中线段AB表示一个圆的周长,那么这个圆的直径可能是( )。
A. 线段ABB. 线段ACC. 线段ADD. 线段DE6.如图是一张半径是4 dm 的圆桌,上面铺了一块半径是6 dm 的圆形桌布。
桌布下垂部分的面积是( )dm2。
A. 12.56B. 62.8C. 113.04D. 251.27. 一张圆形纸片的直径是2 dm,将它对折再对折后所形成图形的周长是( )dm。
A. 6.28B. 12.56C. 8.28D. 3.578.下图是明明研究圆的面积计算公式时用的方法,此时近似梯形的上底与下底的和相当于圆的( )。
A. 半径B. 直径C. 周长D. 周长的一半9. 如图,将圆形卡片沿着直尺向右滚动一周,点P 第一次接触直尺的位置最有可能落在点( )。
A. CB. DC. AD. B10. 如图,比较从A 地到B 地的两条路,( )。
A. ①长一些B. ②长一些C. 它们同样长D. 无法确定11.用相同的圆画图,根据前四幅图的规律,想一想图5的阴影部分的面积是( )个圆的面积。
人教版六年级上册数学第五单元《圆》测试卷一.选择题(共6题,共12分)1.如果圆的周长等于正方形的周长,那么圆的面积()正方形的面积。
A.大于B.等于C.小于2.一个半径为3cm的半圆,周长是()。
A.21.84cmB.24.84cmC.15.42cm3.用一条长400厘米的细绳围成以下图形,其中面积最大的是()。
A.正方形B.长方形C.圆4.两个圆的周长不相等,是因为它们的()。
A.圆心位置不同B.半径不同C.圆周率不同5.半圆的面积等于()。
A.圆周长的一半B.圆的面积÷2C.圆周长的一半+直径6.通过圆心并且两端都在圆上的()叫作圆的直径。
A.射线B.线段C.直线二.判断题(共6题,共12分)1.两个圆面积的比,等于它们半径的平方的比。
()2.圆的周长与半径的比值是圆周率。
()3.画圆时,圆规两脚间的距离就是圆的直径。
()4.周长相等的长方形正方形和圆,正方形的面积最大。
()5.半径的长短决定圆的位置。
()6.圆的直径的长度总是半径的2倍。
()三.填空题(共6题,共15分)1.一个直径为4米的半圆,它的周长是()米。
2.看图填空(单位:厘米)。
图1:d=()cm 图2:d=()cm图3:r=()cm 图4:d=()cm3.连接()和()任意一点的线段叫做圆的半径,用字母()表示。
4.三角形、四边形是直线图形,圆是()图形;圆中心的一点叫做(),通过圆心,并且()都在()的线段叫做圆的直径;战国时期《墨经》一书中记载“圜(圆),一中同长也。
”表示圆心到圆上各点的距离都相等,即()都相等。
5.圆的周长是6.28米,则圆的直径是()米,半径是()米。
6.大圆的半径和小圆的直径相等,大圆周长与小圆周长的比是(),小圆面积与大圆面积的比是()。
四.计算题(共1题,共6分)1.求下面图形的周长。
(单位:厘米)(1)(2)五.解答题(共6题,共36分)1.有一个面积为700平方米的圆形草坪,要为它安装自动旋转喷灌装置进行喷灌。
人教版数学《圆》单元测试B 卷
一、单选题
1.要判断命题“有两个角是直角的圆内接四边形是矩形”是假命题,下列图形可作为反例的是( )
A .
B .
C .
D . 2.如图,在ABC 中,BAC ∠的平分线交ABC 的外接圆O 于点,D 连接,BD OD ,
若68,BAC ∠=︒则ODB ∠=( )
A .68
B .65
C .56
D .55
3.已知⊙O 1和⊙O 2相切,⊙O 1的半径为4.5cm ,⊙O 2的半径为2cm ,则O 1O 2的长为( )
A .5cm 或13cm
B .2.5cm
C .6.5cm
D .2.5cm 或6.5cm
4.如图,点A 、B 、C 在半径为3的⊙O 上,当AC=2时,锐角∠ABC 的正弦值为( )
A .12
B .13
C .23
D .25
5.如图,在∆ABC 中, ∠C=90°,分别以A 、B 为圆心,2为半径画圆,则图中阴影部分的面积和为 ( )
A .3π
B .2π C.π D. 6.一条排水管的截面如下图所示,已知排水管的半径OB =5,水面宽AB =8,则截面圆心O 到水面的距离O
C 是( )
A .4
B .5
C .2(1)2y x =+-
D .3
7.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为4cm ,圆心角为60︒,则图中摆盘的面积是( )
A .280cm π
B .240cm π
C .224cm π
D .22cm π
8.如图,魔幻游戏中的小精灵(灰色扇形OAB )的面积为30π,OA 的长度为6,初始位置时OA 与地面垂直,在没有滑动的情况下,将小精灵在平坦的水平地面上沿直线向右滚动至终止位置,此时OB 与地面垂直,则点O 移动的距离是()
2π
3
A .5
π2 B . 5π C .10π D .15π
9.已知PA,PB 是☉O 的切线,C 为圆上不同与A,B 的一点,若∠P=40°,则∠ACB 的度数为
( )
A .70°
B .110°
C .70°或110°
D .不确定 10.如图,在Rt △ABC 中,90ACB ∠=︒,6AC =,10AB =,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ,
A .点P 在⊙O 内
B .点P 在⊙O 上
C .点P 在⊙O 外
D .无法确定
二、填空题 11.一个扇形的圆心角为60°,半径为12cm ,则这个扇形的弧长为__________cm .(结果保留π)
12.用一个圆心角为90°半径为32cm 的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为 cm .
13.如图,CD 是,O 的直径,A 、B 是,O 上的两点,若,B =20°,则,ADC 的度数为 .
14.若一个圆锥的侧面展开图是半径为18cm ,圆心角为240°的扇形,则这个圆锥的底面半径长是__________cm.
15.圆的内接四边形ABCD ,已知95D ∠=, B =__________ .
16.如图,在,O 中,圆心O 在圆周角∠ABC 的内部,若∠ABC=75°,AB=,O 的半径等于2,则BC=_____.
17.如图,AB是,O的直径,点D在,O上,,BOD=130°,AC,OD交,O于点C,连接BC,则,B= 度.
18.一个棱柱有16个顶点,所有侧棱长的和是64cm,则每条侧棱长是_____.
19.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是______.
20.半径为2,圆心角为120的扇形的面积为________(结果保留 ).
三、解答题
21.如图,AB为⊙O的弦,C,D为直线AB上的两点,OC=OD.
(1)尺规作图:过点O作直线AB的垂线,垂足为点P(不写作法,保留作图痕迹);(2)在(1)的条件上,求证:AC=BD.
22.在Rt ABC ∆中,90ACB ο∠=,BE 平分ABC ∠,D 是边AB 上一点,以BD 为直径的⊙O 经过点E ,且交BC 于点F .
(1)求证:AC 是⊙O 的切线;
(2)若12BF =,⊙O 的半径为10,求CE 的长.
23.如图,⊙O 是△ABC 的外接圆,∠A BC =60°,CD 是⊙O 的直径,点P 是CD 延长线上一点,且∠P =∠ACP .
(1)求劣弧AC 所对圆心角的度数.
(2)求证:PA 是⊙O 的切线.
(3)若PD =√5,求⊙O 的面积.
24.如图,△ABC 是等边三角形,D 是BC 边的中点,点E 在AC 的延长线上,且∠CDE =30°.若AD =5,求DE 的长.
25.如图,一个圆锥的高为33cm ,侧面展开图是半圆,求:
(1)圆锥的底面半径r 与母线R 之比;
(2)圆锥的全面积.
26.如图所示,当a ,b 分别为0.38米与0.26米时,求阴影部分的面积.(结果精确到0.001平方米)
27.如图,试表示到点P 的距离等于2.5cm 的点的集合.
28.如图,在Rt ABC △中,90ACB ∠=︒,点D 是AB 的中点,以CD 为直径的⊙O 分别交AC ,BC 于点M ,N ,点E 在AB 上,NE 为⊙O 的切线.
(1)求证:NE AB ⊥;
(2)若⊙O 的半径为5,12AC =,求BN 的长.
29.如图A 、B 是⊙O 上的两点,C 是弧AB 的中点,AC =OB ,求证:四边形OACB 是菱形.
30.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC于点D,过点D作DE∥BC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.
参考答案
1.D
2.C
3.D.
4.B
5.C.
6.D
7.B
8.C
9.C
10.A
11.
12.8
13.70°
14.12
15.85°
16.
17.40.
18.8cm
19.6
20.
21.(1)作图见解析;(2)证明见解析
22.(1)见解析;(2)8.
23.(1)120°;(2)见解析;(3)5π.
24.DE的长为5.
25.详见解析
26.0.034
27.作图见解析. 28.(1)见解析;(2)29.见解析
30.(1)见解析;(2)。