中职数学:幂函数教学教案
- 格式:doc
- 大小:214.00 KB
- 文档页数:4
幂函数教学设计幂函数是初等函数的一种,是指以自然数为指数的函数。
其函数式可以表示为y=x^n,其中x为自变量,n为常数指数,y为函数的值。
以下是五个优秀的幂函数教学设计:1.教学目标:通过本节课的学习,学生将掌握幂函数的概念、性质和图像。
教学过程:(1)导入环节:通过提问引入幂函数的概念,如何用自然数表示指数。
(2)基础知识讲解:介绍幂函数的定义、性质和图像特点。
(3)解答问题:让学生通过例题解答,巩固对幂函数的理解。
(4)实例操作:以实际问题为背景,让学生应用幂函数解决实际问题。
(5)总结归纳:总结幂函数的特点和应用,并提醒学生注意幂函数与其他函数的区别。
2.教学目标:通过本节课的学习,学生将理解幂函数的增减性质和相关应用。
教学过程:(1)导入环节:通过展示两个幂函数的图像,让学生观察并讨论它们的变化趋势。
(2)基础知识讲解:讲解幂函数的增减性质,即正指数的幂函数递增,负指数的幂函数递减。
(3)实例分析:通过实例分析,揭示幂函数增减性质的应用,如求不等式的解等。
(4)实践操作:让学生通过练习题巩固对幂函数增减性质的理解和应用。
(5)拓展讨论:引导学生思考其他函数的增减性质,并与幂函数进行比较。
3.教学目标:通过本节课的学习,学生将学会化简幂函数表达式。
教学过程:(1)导入环节:通过提问引入化简幂函数表达式的概念和意义。
(2)基础知识讲解:介绍幂函数的化简规则和步骤,如指数相加相乘规则等。
(3)解答问题:通过例题解答,让学生掌握幂函数化简的方法和技巧。
(4)实例操练:让学生通过练习题巩固幂函数化简的能力。
(5)拓展应用:引导学生将化简幂函数应用到求导、积分等数学问题中。
4.教学目标:通过本节课的学习,学生将了解幂函数的特殊性质和图像变化规律。
教学过程:(1)导入环节:通过提问引入幂函数的特殊性质,如y=x^0、y=x^1等。
(2)基础知识讲解:介绍幂函数特殊性质的证明和图像变化规律。
(3)实例演示:通过示例演示,展示幂函数图像在特殊情况下的形态和变化特点。
幂函数优秀教案幂函数教学目标】1.知识与技能:1) 理解幂函数的概念,能够画出幂函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像。
2) 根据常见的幂函数图像,理解幂函数图像的变化情况和性质,并能进行简单的应用。
2.过程与方法:1) 通过观察、总结幂函数的性质,培养学生的识图能力和概括能力。
2) 使学生进一步体会数形结合的思想方法。
3.情感态度与价值观:1) 通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的研究兴趣。
2) 利用计算机,了解幂函数图像的变化规律使学生认识到现代技术在数学认识过程中的作用,从而激发学生的研究欲望。
教学重点】从五个具体幂函数中认识幂函数的一些性质。
教学难点】画五个具体幂函数的图像并由图像概括其性质,体会图像的变化规律。
教法】启发、引导教学过程】一、创设情景,引入新课通过观察几个例子的函数模型,引入新课。
二、互动探究,讲解新课1.幂函数的定义:一般地,函数y=x^α叫做幂函数,其中x为自变量,α为常数。
练:判断下列函数是否为幂函数?1) y=x^4 (2) y=2x^2 (3) y=-x^3 (4) y=2.常见幂函数的图像与性质:自主探究]分别作出函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像并观察函数图像,将你发现的结论写在下表内:定义域。
|。
值域。
|。
奇偶性。
|。
单调性。
|。
定点。
|R。
|。
R+。
|。
奇函数。
|。
增函数。
|。
(1,1)。
|R。
|。
R+。
|。
偶函数。
|。
增函数。
|。
(0,0)。
|R。
|。
R。
|。
奇函数。
|。
增函数。
|。
(0,0)。
|R*。
|。
R*。
|。
奇函数。
|。
减函数。
|。
(1,1)。
|R+。
|。
R+。
|。
无奇偶性。
|。
增函数。
|。
(0,0)。
|合作探究]根据上表的内容并结合图像,试总结函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的共同性质。
归纳:1) 函数y=x,y=x^2,y=x^3,y=x^-1和y=x^2的图像都通过点(1,1)。
幂函数教案(第1课时)教学目标:㈠知识和技能1.了解幂函数的概念,会画幂函数,,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2.了解几个常见的幂函数的性质。
㈡过程与方法1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
2.使学生进一步体会数形结合的思想。
㈢情感、态度与价值观1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。
教学重点常见幂函数的概念和性质教学难点幂函数的单调性与幂指数的关系教学过程一、创设情景,引入新课问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?(总结:根据函数的定义可知,这里p是w的函数)问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。
问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。
问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)二、新课讲解(一)幂函数的概念如果设变量为,函数值为,你能根据以上的生活实例得到怎样的一些具体的函数式?这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?幂函数的定义:一般地,我们把形如的函数称为幂函数(power function),其中是自变量,是常数。
4.1.3 幂函数举例一、教材分析幂函数选自新课标职业高中数学基础模块上册第四章实数指数幂的第四课时,是基本初等函数之一,它不仅有着广泛的应用,而且起着承前启后的作用,从教材的整体安排看,学习了幂函数是为了让学生进一步获得比较系统的函数知识和函数研究方法,为今后学习指数函数,对数函数,三角函数打下良好的基础,在初中曾经研究过21,1,x y x xy x y ====三种幂函数,这节内容是对初中有关内容的进一步概括、归纳与发展,是与幂函数有关知识的高度升华,通过本节课的学习,使学生进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合提升。
二、学情分析在知识储备方面,学生学习幂函数之前,在初中已经掌握的一次函数,二次函数,正比例函数,反比例函数几类基本初等函数,并且在第三章接触过函数,已经确立了利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识 ,已初步形成对数学问题的合作探究能力。
由于幂函数的情况比较复杂,学生在对图像共性的归纳概括方面可能遇到困难,在思维水平方面,所授班级是中职学生,学生的数学基础普遍薄弱,学生层次参次不齐,个体差异比较明显,虽然前面学生已经学会用描点列表连线画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。
三、教学设计四、板书设计:五、课后反思学生是教学的主体,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课给学生提供各种参与机会。
为了调动学生学习的积极性,使学生化被动为主动。
本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中归纳出幂函数的模型,在教学重难点上,步步设问、启发学生的思维,通过探究活动,学生讨论,课堂练习的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
数学《幂函数》教案【导语】幂函数是一类特殊的函数,它们都以x为自变量,y为因变量,且y是x的某个非负整数次方的函数(指数函数)。
【预习任务】1.回忆函数概念、函数图像的基本性质;2.了解指数函数与幂函数的区别;3.预习本课幂函数的概念、性质和应用。
【学习目标】1.了解幂函数的基本概念和基本性质;2.掌握幂函数的绘制和变换;3.应用幂函数解决实际问题。
【学习重点】1.幂函数的概念及表达式;2.幂函数的图像及其特征;3.幂函数的应用。
【学习难点】1.幂函数的绘制和变换;2.在实际问题中应用幂函数。
【教学方法】1.理论讲解法;2.示例分析法。
【教学步骤】一、引入新知识教师介绍幂函数的概念和特点,与指数函数的区别,并通过举例进行说明,引起学生兴趣。
二、讲解幂函数的定义和表达式1.定义:y=x^n,其中n为正整数;2.表达式的含义及其特点:表达式中n表示幂指数,当n=1时,即为一次函数;当n>1时,在x>0时为增函数,x<0时为减函数,n<0时为奇函数,n>0时为偶函数。
三、掌握幂函数的图像及其特征1.绘制幂函数y=x^n (n=1,2,3,4)的图像;2.分析幂函数的图像及其特征:幂指数n的大小直接影响曲线的陡峭程度和开口的方向;当n为偶数时,曲线在y轴的正半轴上下对称,当n为奇数时,曲线在原点对称。
四、掌握幂函数的基本变换1.沿x轴方向平移:y=x^n+a (a>0时向上平移,a<0时向下平移);2.纵向伸缩:y=kx^n (k>1时向上伸缩,0<k<1时向下壁缩);3.横向伸缩:y=(x/a)^n (a>1时横向压缩,0<a<1时横向伸展);4.掌握幂函数的基本变换规律。
五、应用幂函数解决实际问题1.通过幂函数解决实际问题;2.对几个幂函数的实例进行讲解。
六、巩固练习练习幂函数的绘制和变换,独立解决实际问题。
【教学反思】本节课主要介绍了幂函数的概念和性质,包括幂函数图像的绘制、基本变换和应用。
幂函数教案一、教学目标1. 理解幂函数的定义和性质,能够正确运用幂函数的相关概念;2. 掌握幂函数的图像、性质以及变化规律;3. 能够解决幂函数相关的实际问题。
二、教学重点1. 幂函数的定义和性质;2. 幂函数的图像及其变化规律;3. 幂函数在实际问题中的应用。
三、教学难点1. 幂函数的概念和性质的理解与运用;2. 幂函数图像的绘制及变化规律的总结;3. 幂函数在实际问题中的应用解决。
四、教学过程1. 幂函数的引入(10分钟)教师通过列举一些实际问题,引导学生思考实际问题中的变化规律,并与幂函数进行对比,引入幂函数的概念。
2. 幂函数的定义和性质(20分钟)教师给出幂函数的定义,并介绍幂函数的性质,如定积分的计算、导数的运算规则等。
学生通过课堂讨论和练习题的完成,掌握幂函数的定义和性质。
3. 幂函数的图像及其变化规律(30分钟)教师通过几个具体的例子,演示绘制幂函数的图像,并引导学生总结幂函数图像的特点、变化规律和性质。
4. 幂函数的应用(20分钟)教师给出一些实际问题,引导学生运用所学的幂函数知识解决实际问题。
学生通过讨论和解决问题,加深对幂函数应用的理解和运用。
5. 综合练习与讨论(20分钟)教师布置一些综合练习题,让学生进行个人或小组讨论,并进行答案讲解和讨论。
通过综合练习,巩固所学知识并提高解题能力。
6. 课堂小结(10分钟)教师对本节课的内容进行小结,并强调学生在课后的复习重点和需要注意的问题。
五、教学辅助用具1. 纸笔,用于绘制幂函数的图像。
2. 幂函数的例题和练习题,用于学生的讨论和练习。
六、教学评价与反思在教学过程中,教师应注重激发学生的学习兴趣,通过引入实际问题,让学生主动思考和运用所学知识解决问题。
在练习环节,应鼓励学生进行个人或小组讨论,培养学生的合作能力和解决问题的能力。
同时,教师在讲解过程中,要注重总结幂函数的性质和变化规律,并将其应用到实际问题中,帮助学生理解和运用幂函数知识。
幂函数教案幂函数教案一. 教学目标:1. 了解幂函数的定义和性质。
2. 掌握幂函数的图像及其平移、缩放和翻折等变换规律。
3. 学会通过观察和分析,对给定的幂函数进行图像绘制。
4. 理解幂函数的增减性、单调性和奇偶性。
5. 能够解决与幂函数相关的实际问题。
二. 教学内容:1. 幂函数的定义和性质。
2. 幂函数的图像及其平移、缩放和翻折等变换规律。
3. 幂函数的增减性、单调性和奇偶性。
4. 实际问题解决。
三. 教学步骤:步骤一:导入新知识通过一个问题引入幂函数的概念,例如:小明家附近有一块广告牌,它上面的字体每年放大或缩小4倍,求第几年后字体的大小会超过原来的10倍。
步骤二:讲解幂函数的定义和性质1. 引导学生回顾指数的概念,理解幂函数的定义。
2. 讲解幂函数的性质,例如幂函数的函数图像都经过点(0,1),幂函数的增长速度由底数决定等。
步骤三:绘制幂函数的图像及变换规律1. 通过绘制几个幂函数的图像来说明幂函数的变化规律。
2. 引导学生发现幂函数的平移、缩放和翻折等变换规律。
3. 练习绘制给定幂函数的图像。
步骤四:讲解幂函数的增减性、单调性和奇偶性1. 引导学生通过观察图像,探讨幂函数的增减性。
2. 引导学生通过观察图像,探讨幂函数的单调性。
3. 引导学生通过观察图像和计算函数值,探讨幂函数的奇偶性。
步骤五:解决实际问题给学生提供一些与幂函数相关的实际问题,让学生运用所学的知识解决问题,例如:一个小球从高处自由下落,第n次落地时的高度是多少?四. 教学方法1. 探究式教学法:通过引导学生观察、分析、绘制图像等方式,让学生主动探索幂函数的性质和规律。
2. 实践教学法:通过解决实际问题的方式,提高学生对所学知识的应用能力。
3. 演示教学法:通过绘制幂函数的图像等示范,让学生更好地理解幂函数的变换规律。
五. 教学资源1. 幂函数的图像和相关实例。
2. 计算器或电脑及相关数学软件。
3. 实际问题解决的练习题。
幂函数教案一、教学目标1. 理解幂函数的基本概念和特点;2. 掌握幂函数的图像、定义域、值域、单调性和奇偶性等性质;3. 学会利用幂函数求解实际问题。
二、教学重点1. 幂函数的定义和基本性质;2. 幂函数图像的绘制;3. 幂函数的应用。
三、教学难点1. 幂函数图像的绘制和分析;2. 幂函数在实际问题中的应用。
四、教学准备1. 教师准备:教案、教材、黑板、彩色粉笔;2. 学生准备:课本、笔记本。
五、教学过程Step 1:导入引入(1)教师出示一道数学问题:“一个物体的温度随时间变化的规律可以表示为:T(t) = a * t^b,其中,a和b为常数。
请问,这种规律描述中的T(t)是哪种函数?”引导学生思考和回答。
(2)教师解释幂函数的定义:“幂函数就是以自变量为底数的幂运算,通常表示为y = ax^b,其中a和b为常数,a不等于0。
”Step 2:讲解幂函数的基本性质(1)教师讲解幂函数的定义域和值域:“幂函数的定义域为实数集,值域为正实数集。
”(2)教师讲解幂函数的单调性:“当b大于0时,幂函数是递增的;当b小于0时,幂函数是递减的;当b等于0时,幂函数是常数函数。
”(3)教师讲解幂函数的奇偶性:“当b为偶数时,幂函数是偶函数;当b为奇数时,幂函数是奇函数。
”Step 3:绘制幂函数的图像(1)教师带领学生绘制y = 2x^2的图像,并让学生观察和分析:图像是开口朝上的抛物线,对称轴是y轴,图像在第一象限递增。
(2)教师带领学生绘制y = 1/3x^3的图像,并让学生观察和分析:图像是开口朝上的抛物线,对称轴是y轴,图像在第一象限递增。
(3)教师带领学生绘制y = -4x^4的图像,并让学生观察和分析:图像是开口朝下的抛物线,对称轴是y轴,图像在第一象限递减。
Step 4:幂函数的应用(1)教师出示一道实际问题:“假设一辆小汽车以恒定的速度在一条笔直的道路上行驶,车辆的里程数与行驶时间的关系可以表示为:M(t) = a * t^3,其中,M(t)表示里程数(单位:公里),t表示时间(单位:小时),a为常数。
《幂函数》教案一.学习目标1.通过实例,了解幂函数的概念、图象和性质.会求幂函数的定义域,会应用幂函数的图象与性质比较数或代数式的大小.2.通过幂函数图象的学习,加深学生对幂函数性质的理解,使学生体会通过观察、分析函数图象来研究函数性质的方法.3.通过引导学生主动参与作图、分析图象的过程,培养学生的探索精神,增强学生对数学图形美的认识,并在研究函数变化的过程中渗透辨证唯物主义的观点.二.重点难点本节的教学重点是幂函数的概念、图象和性质,难点是将函数图象的直观特点上升到理性知识,归纳、概括成函数的性质.三.教学内容1.从学生已经掌握的最简单的函数y x =,2y x =,1y x =出发引入幂函数的定义:一般地,形如()y x R αα=∈的函数称为幂函数,其中α为常数.其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是否为幂函数的重要依据和唯一标准.应当注意并不是任意的一次函数、二次函数都是幂函数,如1y x =+,22y x x =-等都不是幂函数.2.引导学生作出五个具体的幂函数y x =,2y x =,3y x =,1y x =,12y x =的图象:先列出对应值表,再用描点法画图.列出对应值表是描点法画图的关键,列表之后要引导学生耐心地,力求准确地画出图象,教师可以先用实物投影仪有选择地展示学生的作品,然后再用计算机展示各个函数的图象.3.先引导学生通过观察上述五个幂函数的图象,归纳、概括出幂函数在第一象限的性质,再引导学生探索“思考与讨论”中的三个问题,即当α为正偶数、α为正奇数时幂函数的主要性质,以及当1α>与01α<<时图象的区别.要培养学生的看图、析图能力,培养学生的归纳、概括能力,要让学生自主探索,主动学习.4.处理课本例题(1).对例1的分析:①要比较的两个代数式有什么相同点和不同点?答:都是幂的形式,且指数相同,但底数不同.因此我们想通过构造一个幂函数来解决这个问题.②构造一个什么样的幂函数?③要比较的两个代数式与所构造的幂函数有何关系?④利用幂函数在(0,)+∞上的单调性可以比较两个代数式值的大小.(2)对例2的分析:①在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论.②对于幂函数()y x R αα=∈的研究,首先应该分析函数的定义域、值域和奇偶性,由此可以确定图象的位置,即所在的象限.③只需弄清楚幂函数在第一象限的图象,再借助于奇偶函数的图象性质,即可画出整个函数的图象.5.让学生回忆本节收获,然后师生共同完成本节小结,巩固本节学习成果,使学生逐步养成爱总结、善总结、会总结的习惯和能力.。
中职数学:幂函数教学教案一、教学目标1. 让学生理解幂函数的定义和性质。
2. 让学生掌握幂函数的图像和应用。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 幂函数的定义定义:一般地,形如y=x^α(α是常数)的函数,叫做幂函数。
2. 幂函数的性质(1)当α>0时,幂函数在(0,+∞)上单调递增。
(2)当α<0时,幂函数在(0,+∞)上单调递减。
(3)当α=0时,幂函数为常数函数。
(4)当α为正整数时,幂函数的图像是一条曲线。
3. 幂函数的图像通过绘制一些典型的幂函数图像,让学生观察和分析幂函数的性质。
4. 幂函数的应用举例说明幂函数在实际问题中的应用,如物理学、经济学等。
三、教学方法1. 采用讲解、演示、练习、讨论相结合的教学方法。
2. 利用多媒体课件辅助教学,直观展示幂函数的图像和性质。
3. 引导学生通过自主学习、合作交流,发现幂函数的规律。
四、教学步骤1. 引入幂函数的概念,让学生回顾已学的指数函数知识。
2. 讲解幂函数的定义和性质,引导学生理解幂函数的基本特征。
3. 绘制幂函数的图像,让学生观察和分析幂函数的性质。
4. 举例说明幂函数的应用,让学生了解幂函数在实际问题中的重要作用。
5. 布置练习题,让学生巩固所学知识。
五、教学评价1. 课后作业:要求学生完成相关的幂函数练习题,检验对幂函数知识的掌握程度。
2. 课堂问答:教师在课堂上提问,了解学生对幂函数的理解情况。
3. 小组讨论:组织学生进行小组讨论,分享彼此的学习心得和解决问题的方法。
六、教学策略1. 案例分析:通过分析具体案例,让学生了解幂函数在现实生活中的应用,提高学生的学习兴趣和积极性。
2. 问题驱动:提出与幂函数相关的问题,引导学生探究和解决问题,培养学生的独立思考能力。
3. 互助合作:组织学生进行小组讨论,鼓励学生分享自己的观点和思路,提高学生的合作意识和团队精神。
七、教学环境1. 课堂环境:保持教室整洁、安静,营造积极向上的学习氛围。
幂函数优秀教案教案:幂函数一、教学目标:1.理解幂函数的概念及其特点;2.能够画出幂函数图像;3.掌握幂函数的基本性质和运算法则。
二、教学重点:1.幂函数的概念及其特点;2.幂函数的图像;三、教学难点:1.幂函数的性质和运算法则;2.幂函数的应用问题。
四、教学方法:1.课堂讲授法;2.小组合作学习法;3.案例分析法。
五、教学过程:时间内容活动方式教学资源(分钟)1课堂导入1.教师简单介绍幂函数的定义和基本概念,并提出问题,引起学生思考。
幂函数的定义和基本概念2.学生积极回答问题,激发学习兴趣。
10幂函数的定义及其1.学生自愿回答问题,教师进行点拨和引导,帮助学生理解幂函数的定义;幂函数的定义及其特点特点2.教师介绍幂函数的特点:定义域、值域、单调性和奇偶性。
10幂函数图像的1.教师讲解幂函数图像的画法和注意事项;幂函数图像的画法和注意事项画法2.学生跟随教师步骤,画出幂函数的图像。
10幂函数图像的分1.学生分组合作,讨论幂函数图像的特点;幂函数图像的特点析及其特点2.教师引导学生分析幂函数图像的特点,如单调性、奇偶性等。
10幂函数的性质与1.教师讲解幂函数的性质和运算法则;幂函数的性质和运算法则运算法则2.学生积极参与讨论,提出问题,与教师共同探讨幂函数的性质和运算法则。
10幂函数的应用问题1.教师以实例为背景,引导学生解决幂函数的应用问题;幂函数的应用问题2.学生自主思考,带着问题探索解决方法。
10小结与评价1.教师对本节课的内容进行小结,重点强调幂函数图像的特点和性质;无六、教学反思:在本节课中,我采用了多种教学方法和手段,如课堂讲授、小组合作学习和案例分析,以提高学生的学习兴趣和参与度。
通过引入问题、让学生自由讨论等方式,激发了学生的思维,提高了他们对幂函数的理解和运用能力。
同时,通过幂函数的图像,我帮助学生更直观地理解了幂函数的特点和性质。
在下节课中,我将注重培养学生的实际应用能力,希望能够更好地引导学生解决实际问题,提高他们的数学思维水平。
中职数学:幂函数教学教案第一章:幂函数的概念与性质1.1 教学目标了解幂函数的定义及表达形式掌握幂函数的性质及其应用1.2 教学内容幂函数的定义:介绍幂函数的表达形式及参数含义幂函数的性质:单调性、奇偶性、周期性等幂函数的应用:解决实际问题,如物理、化学等领域1.3 教学方法采用讲授法,讲解幂函数的定义、性质及应用利用数学软件或图形计算器,展示幂函数的图像,增强直观感受举例讲解,让学生参与课堂,提高兴趣和积极性1.4 教学重点与难点幂函数的定义及表达形式幂函数的单调性、奇偶性、周期性等性质的判断与应用第二章:幂函数的图像与性质2.1 教学目标学会绘制幂函数的图像掌握幂函数的单调区间、极值等性质2.2 教学内容幂函数图像的绘制方法:利用数学软件或图形计算器幂函数的单调区间:判断函数的增减性幂函数的极值:求解函数的最大值、最小值2.3 教学方法利用数学软件或图形计算器,绘制幂函数的图像,让学生直观感受举例讲解,让学生学会判断幂函数的单调区间、求解极值的方法2.4 教学重点与难点幂函数图像的绘制方法判断幂函数的单调区间、求解极值的方法第三章:幂函数在实际问题中的应用3.1 教学目标学会将幂函数应用于实际问题中提高解决实际问题的能力3.2 教学内容幂函数在物理中的应用:如电学、热学等领域幂函数在化学中的应用:如化学反应速率、溶质浓度等幂函数在其他领域的应用:如经济学、生物学等3.3 教学方法举例讲解,让学生了解幂函数在各个领域的应用让学生分组讨论,寻找其他幂函数在实际问题中的应用3.4 教学重点与难点幂函数在实际问题中的应用方法第四章:幂函数的综合练习4.1 教学目标巩固幂函数的概念、性质及应用提高学生的综合运用能力4.2 教学内容编写具有代表性的练习题,涵盖幂函数的概念、性质及应用分析练习题的解题思路,让学生掌握解题技巧4.3 教学方法布置练习题,让学生独立完成分析练习题,讲解解题思路和方法4.4 教学重点与难点幂函数的综合运用能力第五章:总结与评价5.1 教学目标总结幂函数的学习内容,巩固知识点评价学生的学习效果5.2 教学内容回顾幂函数的概念、性质及应用,总结学习要点对学生的学习情况进行评价,提出改进建议5.3 教学方法让学生自主总结幂函数的学习内容教师点评,总结学习要点,提出改进建议5.4 教学重点与难点幂函数的学习要点的总结第六章:幂函数的扩展与深化6.1 教学目标学习幂函数的特殊情况,如指数函数、对数函数探讨幂函数与其他函数的关系,加深对幂函数的理解6.2 教学内容指数函数与幂函数的关系:探讨指数函数是幂函数的特殊形式对数函数与幂函数的关系:了解对数函数与幂函数的相互转化幂函数与其他函数的关系:如三角函数、反函数等6.3 教学方法对比讲解,让学生了解指数函数、对数函数与幂函数的关系举例讲解,让学生了解幂函数与其他函数的关系6.4 教学重点与难点指数函数与幂函数的关系幂函数与其他函数的关系的探讨第七章:幂函数在工程与科学计算中的应用7.1 教学目标学习幂函数在工程与科学计算中的应用提高学生解决实际问题的能力7.2 教学内容幂函数在工程计算中的应用:如电学、力学等领域幂函数在科学计算中的应用:如天体物理、生物医学等领域举例讲解,让学生了解幂函数在工程与科学计算中的应用让学生分组讨论,寻找其他幂函数在实际问题中的应用7.4 教学重点与难点幂函数在工程与科学计算中的应用方法第八章:幂函数与其它数学概念的联系8.1 教学目标理解幂函数与其他数学概念的联系提高学生的综合运用能力8.2 教学内容幂函数与不等式的关系:学习利用幂函数解决不等式问题幂函数与方程的关系:探讨幂函数与方程的求解方法幂函数与数列的关系:了解幂函数在数列中的应用8.3 教学方法举例讲解,让学生了解幂函数与不等式、方程、数列的关系让学生分组讨论,寻找其他幂函数与其他数学概念的联系8.4 教学重点与难点幂函数与不等式、方程、数列的关系的探讨第九章:幂函数的实验与探究9.1 教学目标培养学生的实验与探究能力加深对幂函数的理解利用数学软件或图形计算器,进行幂函数的实验探讨幂函数的性质,发现幂函数的规律9.3 教学方法引导学生进行实验,让学生观察幂函数的性质让学生分组讨论,总结幂函数的规律9.4 教学重点与难点幂函数实验的设计与分析幂函数规律的发现第十章:总结与评价10.1 教学目标总结幂函数的学习内容,巩固知识点评价学生的学习效果10.2 教学内容回顾幂函数的概念、性质、应用及与其他数学概念的联系,总结学习要点对学生的学习情况进行评价,提出改进建议10.3 教学方法让学生自主总结幂函数的学习内容教师点评,总结学习要点,提出改进建议10.4 教学重点与难点幂函数的学习要点的总结重点解析本文档涵盖的重点知识点包括:幂函数的定义与表达形式、幂函数的性质(单调性、奇偶性、周期性)、幂函数的图像绘制、幂函数在实际问题中的应用、幂函数的特殊情况(指数函数、对数函数)、幂函数与其他函数的关系、幂函数在工程与科学计算中的应用、幂函数与不等式、方程、数列的关系、幂函数的实验与探究。
《幂函数》教案授课班级: 16 高职物流 教 者: 课题: 幂函数课型: 新授课教学目标: ㈠知识目标1. 熟悉幂函数的概念,判别幂函数;2. 根据具体的幂函数图象,描述其定义域,值域,单调性,奇偶性。
㈡能力目标培养学生数形结合能力,合作交流能力,以及应用数学的能力。
㈢情感目标让学生感受到数学来源于生活,应用于生活,并认识到现代信息技术在人们认识世界过程中 的作用 , 激发学生的学习动力。
教学重点: 幂函数的概念辨析,幂函数的图象及性质。
教学用具: 多媒体。
教学过程:教学环节教学任务教学步骤问题设计师生活动探索: 你能列出下列应用问题的函 数解析式吗?每件价格为 1 元的物品, 购买物 y 与个数 x 之间的解析品的金额 式;幻灯片演示问题。
② 正方形面积 y 与边长 x 之间的解学生口答。
( x 为创设情景 导入新课任务一:认识幂函数析式;1.问题引入自变量, y 为因变③ 立方体的体积 y 与棱长 x 之间的一 般 地 , 形 如 x (α ∈ R , α 量)ay 解析式; ≠ 0)的函数叫做幂函数,其中 x 为自变量, α 为常数。
④ 正方形的面积为x 与正方形的边长 y 之间的解析式;⑤ 若物体 x 秒内匀速运动 1 米,运动速度 y 与 x 之间解析式 .教学环节 教学任务 教学步骤 问题设计师生活动 上述函数解析式的结构形式有什么 学生相互讨论, 教 共同特征? (幻灯片 )师引导学生观察。
2.探究特征给出幂函数的定义。
任务一:认识幂函数思考 1: α为什么不能为 0? 一 般 地 , 形 如y x a( α ∈ R , α≠ 0)的函数叫做幂函数,其中 x 为自变量, α 为常数。
例 1: 判断下列函数是否是幂函数: 幻灯片演示题目。
4x1 3⑴ y ⑵ y x学生独立思考, 讨x⑵ y ⑷ y 2论回答,教师巡视3.辨析函数2x引导,及时评价学 1)2x⑸ s 4t⑹ y(x 生的回答。
幂函数教学设计〔共7篇〕第1篇:幂函数教学设计《幂函数》教学设计一、设计构思设计理念注重开展学生的创新意识。
学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。
这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造〞过程。
我们应积极创设条件,让学生体验数学发现和创造的历程,开展他们的创新意识。
注重提高学生数学思维能力。
课堂教学是促进学生数学思维能力开展的主阵地。
问题解决是培养学生思维能力的主要途径。
所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学〞的余味,学生学习的积极性与主动性在教学中便自发生成。
本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。
注重学生多层次的开展。
在问题解决的探究过程中应表达“以人为本〞,充分表达“人人学有价值的数学,人人都能获得必需的数学〞,“不同的人在数学上得到不同的开展〞的教学理念。
有意义的数学学习必须建立在学生的主观愿望和知识经验根底之上,而学生的根底知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到开展。
注重信息技术与数学课程的整合。
高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。
教材分析幂函数是江苏教育出版社普通高中课程标准实验教科书数学第二章第四节的内容。
该教学内容在人教版试验修订本中已被删去。
标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。
故在教学过程及后继学习过程中,应能够让学生体会其实际应用。
《幂函数》教案《幂函数》教案1一、教材分析幂函数是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。
是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。
因而本节课更是一个对学生研究函数的方法和能力的综合提升。
从概念到图象( ),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。
从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。
二、教学目标分析依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:[知识与技能] 使学生了解幂函数的定义,会画常见幂函数的图象,掌握幂函数的图象和性质,初步学会运用幂函数解决问题,进一步体会数形结合的思想。
[过程与方法] 引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;运用性质解决问题时,进一步强化数形结合思想。
[情感、态度与价值观] 通过生活实例引出幂函数概念,使学生体会生活中处处有数学,激发学生的学习兴趣。
通过本节课的学习,使学生进一步加深研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神。
三、重、难点分析[教学重点](1)幂函数的定义与性质;(2)指数α的变化对幂函数y=xα(α∈R)的影响。
从知识体系看,前面有指数函数与对数函数的学习,后面有其他函数的研究,本节课的学习具有承上启下的作用;就知识特点而言,蕴涵丰富的数学思想方法;就能力培养来说,通过学生对幂函数性质的归纳,可培养学生类比、归纳概括能力,运用数学语言交流表达的能力。
2.3幂函数一.教学目标:1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法;(2)体会幂函数的变化规律及蕴含其中的对称性.二.重点、难点重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质5.学法与教具(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质;(2)教学用具:多媒体三.教学过程:引入新知阅读教材P90的具体实例(1)~(5),思考下列问题.(1)它们的对应法则分别是什么?(2)以上问题中的函数有什么共同特征?让学生独立思考后交流,引导学生概括出结论答:1、(1)乘以1 (2)求平方(3)求立方(4)求算术平方根(5)求-1次方=,其中x是自变量,α是2、上述的问题涉及到的函数,都是形如:y xα常数.探究新知1.幂函数的定义=(x∈R)的函数称为幂孙函数,其中x是自变量,α是常一般地,形如y xα数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.2.研究函数的图像(1)y x = (2)12y x = (3)2y x =(4)1y x -= (5)3y x = 一.提问:如何画出以上五个函数图像引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像..23.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x =); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).特别地,当x >1,x >1时,x ∈(0,1),2y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)当∠α<1时,x ∈(0,1),2y x =的图象都在y x =的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴. 例题:1.证明幂函数()[0,]f x =+∞上是增函数证:任取121,[0,),x x x ∈+∞且<2x 则12()()f x f x -=因12x x -<0所以12()()f x f x <,即()[0,]f x =+∞上是增函数.思考:我们知道,若12()()0,1()f x y f x f x =><若得12()()f x f x <,你能否用这种作比的方法来证明()[0,]f x=+∞上是增函数,利用这种方法需要注意些什么?2.利用函数的性质,判断下列两个值的大小(1)11662,3(2)3322(1),(0)x x x+>(3)22244(4),4a--+分析:利用幂函数的单调性来比较大小.5.课堂练习画出23y x=的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性.6.归纳小结:提问方式(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?(2)你能根据函数图象说出有关幂函数的性质吗?作业:P92习题2.3 第2、3 题。
中职数学基础模块上册(人教版)教案:幂函数举例
4.1.2 幂函数举例
【教学目标】
1. 了解幂函数的概念,会求幂函数的定义域,会画简单幂函数的图象.
2. 培养学生用数形结合的方法解决问题.注重培养学生的作图、读图的能力.
3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质.
【教学重点】
幂函数的定义.
【教学难点】
会求幂函数的定义域,会画简单幂函数的图象.
【教学方法】
这节课主要采用启发式和讲练结合的教学方法.
从函数y=x,y=x2,y=1
x等导入,通过观察这类函数的解析式,归纳其共
性,引入幂函数的概念.在例1求函数的定义域中,对于分数指数及负整指数的幂函数要转化为分式或根式的形式,讲解时,注意引导,让学生在解答问题的过程中自己归纳总结规律.函数图象是研究函数性质的有利工具,教师在讲授例2时,可以采用分组的方式,让学生一起合作完成函数的图象,并从本例中找出幂函数的某些性质.
【教学过程】。
2.3幂函数
一.教学目标:
1.知识技能
(1)理解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.
2.过程与方法
类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.
3.情感、态度、价值观
(1)进一步渗透数形结合与类比的思想方法;
(2)体会幂函数的变化规律及蕴含其中的对称性.
二.重点、难点
重点:从五个具体的幂函数中认识的概念和性质
难点:从幂函数的图象中概括其性质
5.学法与教具
(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质;
(2)教学用具:多媒体
三.教学过程:
引入新知
阅读教材P90的具体实例(1)~(5),思考下列问题.
(1)它们的对应法则分别是什么?
(2)以上问题中的函数有什么共同特征?
让学生独立思考后交流,引导学生概括出结论
答:1、(1)乘以1 (2)求平方(3)求立方
(4)求算术平方根(5)求-1次方
=,其中x是自变量,α是
2、上述的问题涉及到的函数,都是形如:y xα
常数.
探究新知
1.幂函数的定义
=(x∈R)的函数称为幂孙函数,其中x是自变量,α是常一般地,形如y xα
数.
如112
3
4
,,y x y x y x -
===等都是幂函数,幂函数与指数函数,对数函数一样,都
是基本初等函数.
2.研究函数的图像
(1)y x = (2)12
y x = (3)2
y x = (4)1
y x -= (5)3
y x =
一.提问:如何画出以上五个函数图像
引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.
.
2
3.幂函数性质
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x =); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).
特别地,当x >1,x >1时,x ∈(0,1),2
y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)
当∠α<1时,x ∈(0,1),2
y x =的图象都在y x =的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)
(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.
在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴. 例题:
1
.证明幂函数()[0,]f x =
+∞上是增函数
证:任取121,[0,),x x x ∈+∞且<2x 则
12()()f x f x -=
因12x x -<0
所以12()()f x f x <
,即()[0,]f x =+∞上是增函数.
思考:
我们知道,若12()
()0,1()
f x y f x f x =><若
得12()()f x f x <,你能否用这种作比的
方法来证明()[0,]
f x=+∞上是增函数,利用这种方法需要注意些什么?
2.利用函数的性质,判断下列两个值的大小
(1)
11
66
2,3(2)
33
22
(1),(0)
x x x
+>(3)
22
244
(4),4
a--
+
分析:利用幂函数的单调性来比较大小.
5.课堂练习
画出
2
3
y x
=的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性.
6.归纳小结:提问方式
(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?
(2)你能根据函数图象说出有关幂函数的性质吗?
作业:P92习题2.3 第2、3 题。