复旦附中高一上期末(2020.1)
- 格式:pdf
- 大小:273.04 KB
- 文档页数:9
上海市复旦大学附属中学2023-2024学年高一上学期期末考试化学试题(A 卷)考生注意:1.试卷满分100分,考试时间90分钟。
2.本考试分设试卷和答题纸。
答题前,务必在答题纸上填涂班级、姓名、学号。
3.选择类试题中,标注“不定项”的试题,每小题有1~2个正确选项;标注“双选”的试题,有2个正确选项;未特别标注的试题,每小题只有1个正确选项。
相对原子质量:H-1 O-16 Na-23 Al-27 S-32 Cl-35.5 Fe-56 Ba-137一、海水中的卤素资源(本题共21分)氯、溴、碘等均可通过开发海洋资源获得,这些元素的单质及其化合物在人类的生产生活中发挥着极为重要的作用。
1. 科学家发现一种新的溴原子,其原子核中含有35个质子和48个中子,写出该核素的化学符号___________。
核电荷数为17的卤素的简单负离子的电子式为___________。
2. 海水中获得的粗盐含有较多的杂质。
为除去粗盐中的、、,向粗盐溶液中依次加入稍过量的NaOH 溶液、___________,过滤后,再向滤液中加入适量___________,再蒸发。
3. 室温下,甲同学配制5%的溶液100g ,乙同学配制的溶液100mL(的溶解度为水),下列说法正确的是A. 所需溶质的质量相同B. 所需仪器均包括100mL 容量瓶C. 所配溶液均为不饱和溶液D. 所配溶液质量相同4. 如图是NaClO 的发生装置。
该装置主要利用了电解饱和食盐水的原理,可实现对海水的消毒和灭藻。
2Ca +2Mg +24SO -NaCl 10.5mol L -⋅NaCl NaCl 36g /100g(1)写出该装置产生NaClO 的化学方程式___________,___________。
(2)海水中含有、、等杂质离子,处理过程中装置的___________极(填电极名称)易产生水垢,其主要成分是和。
若每隔5-10min 将电源正负极反接,可有效地解决结垢问题,请解释其中的原因:___________。
上海市复旦附中2019-2020学年高一上学期期末英语试题(含答案解析)高考真题高考模拟高中联考期中试卷期末考试月考试卷学业水平同步练习上海市复旦附中2019-2020学年高一上学期期末英语试题(含答案解析)1 Fears haunted him those days ______ he ______ down by the scandal.A. that; draggedB. that; would be draggedC. which; had been draggedD. when; would drag【答案解析】 B【详解】考查同位语从句和时态。
句意:那些日子里他一直担心这件丑闻会把他拖下水。
第一空为同位语从句,解释fears的具体内容,从句中不缺少成分,句意完整,故应用that;第二空中,he与drag构成被动关系,且指从过去的某个时间来看,将要发生的动作,应用过去将来时。
故选B。
2 No sooner ______ up the catwalk than the spotlight shone down on her.A. did the model startB. the model had startedC. had the model startedD. the model started【答案解析】 C【详解】考查时态和倒装句。
句意:模特刚走上T台,聚光灯就照在她身上。
no sooner... than...引导的时间状语从句,前面的主句通常用过去完成时,后面的从句通常用一般过去时,当no sooner放于句首时,前面的主句应采用部分倒装,助动词had在主语the model 之前。
故选C项。
3 Madame Curie spent her whole life ______ to ______ the scientific world.A. devoted; exploringB. devoted herself; exploreC. devoting herself; exploreD. being devoted; exploring【答案解析】 D【详解】考查非谓语动词及动词短语辨析。
复旦大学附属中学2023学年第一学期高一年级物理期末考试试卷(A 卷)(考试时间:90分钟:满分:100分)一、单选题(每题只有一个选项正确,每题2分,共24分)1.描述运动物体位置变化的量是()A.路程B.位移C.速度D.速度的变化量2.关于惯性,正确的说法是()A.物体只有在加速或减速时才表现出它的惯性B.物体质量越小,惯性越小C.物体速度越大,惯性越大D.做自由落体运动的物体没有惯性3.如图所示,如果力F 是力F l 和力F 2的合力,则正确的是()A.B.C.D.4.乘坐电梯的人对“加速度变化的快慢”非常敏感,“加速度变化的快慢”的单位是()A.m/sB.2m/s C.3m/s D.22m /s 5.某品牌拉力器的弹簧的劲度系数4000N/m k ,小明左手和右手分别向相反方向各用200N 的水平力拉拉力器,这时拉力器弹簧的伸长量是()A.5cmB.10cmC.0D.20cm6.摩托车沿水平的圆弧弯道以不变的速率转弯,则它()A.受到重力、弹力、摩擦力和向心力的作用B.所受的地面作用力恰好与重力平衡C.所受的合力可能不变D.所受的合力始终变化7.如图为“用DIS研究加速度与力的关系”实验的a F 关系,根据图线分析该实验过程可能存在的问题为()A.所用小车质量过大B.所挂钩码的总质量太大C.导轨与小车间摩擦太大D.没有多次测量取平均值8.四个小球在离地面不同高度同时由静止释放做匀加速直线运动,从开始运动时刻起每隔相同的时间间隔,小球依次碰到地面。
下列各图中,能反映出各小球刚开始运动时相对地面位置的是()A. B.C. D.9.磁铁吸着铁片保持接触面竖直一起自由下落,他们之间()A.有一对作用力和反作用力B.有两对作用力和反作用力C.有三对作用力和反作用力D.有四对作用力和反作用力10.一只可视为质点的蜜蜂沿弯曲轨迹做匀速率运动,蜜蜂在途经A 、B 、C 、D 位置时的速度v 和所受合力F 的大小、方向如图所示,其中可能正确的是()A .A 或CB.B 或DC.A 和CD.B 和D11.细绳拴着一个质量为m 的小球,小球用固定在墙上的水平轻质弹簧支撑,平衡时细绳与竖直方向的夹角为53°,如图所示,已知重力加速度为g ,cos530.6︒=,sin 530.8︒=,那么剪断绳子瞬间,小球的加速度大小为()A.35g B.45g C.43g D.53g 12.如图所示,两个质量相同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则它们的()A.角速度相同B.线速度大小相同C.向心加速度大小相同D.受到的向心力大小相同二、多选题(每题有两个及两个以上选项正确,有错不得分,漏选得部分分。
2022-2023学年高一上物理期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:(1-6题为单选题7-12为多选,每题4分,漏选得2分,错选和不选得零分)1、一辆公共汽车在笔直的水平公路上向前匀速行驶,当司机突然紧急制动使汽车减速时,座椅上的乘客身体将A.向前倾B.向后倾C.向右倾D.向左倾2、在光滑的水平面上,质量分别为m 1和m 2的木块A 和B 之间用轻弹簧相连,在拉力F 的作用下,A 和B 均以加速度大小a 做匀加速直线运动,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度a 1和a 2的大小是( )A.a 1=a 2 = 0B.a 1=a ,a 2=0C.a 1=212m m m a ,a 2=112m m m a D.a 1=a ,a 2=12m m a 3、惯性小的物体( )A.速度一定小B.加速度一定小C.体积一定小D.质量一定小4、一个人站在磅秤上,在他蹲下的过程中,磅秤的示数将( )A.先小于体重后大于体重,最后等于体重B.先大于体重后小于体重,最后等于体重C.先小于体重,后等于体重D.先大于体重,后等于体重5、如图所示,球A 在光滑斜面上,被竖直挡板挡住而处于静止状态,现挡板以底端为轴缓慢转到水平位置的过程中挡板和斜面给小球的弹力F N1、F N2以下说法正确的是( )A.F N1先变小后变大,F N2一直增大B.F N1先变小后变大,F N2一直减小C.F N1先变大后变小,F N2一直增大D.F N1不变,F N2先增大后减小6、水平恒力能使质量为m 1的物体在光滑水平面上产生大小为a 1的加速度,也能使质量为m 2的物体在光滑水平面上产生大小为a 2的加速度,若此水平恒力作用在质量为m 1+m 2的物体上,使其在光滑水平面上产生的加速度为a ,则a 与a 1、a 2的大小关系为( )A.a =a 1+a 2B.1212=+a a a a a C.122=a a a D.122a a a +=7、大小分别是F 1=3N ,F 2=5N 的两个力的合力可能是( )A.1NB.2NC.6ND.9N8、把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着纸带一起运动;若迅速拉动纸带,纸带就会从重物下抽出,这个现象的原因是( )A.在缓缓拉动纸带时,纸带给重物的摩擦力大B.在迅速拉动纸带时,纸带给重物的摩擦力大C.在缓缓拉动纸带时,纸带给重物的冲量大D.在迅速拉动纸带时,纸带给重物的冲量大9、如图所示,在光滑水平面上叠放着A 、B 两物体。
复旦大学附属中学2019-2020学年第一学期高一年级数学期末考试试卷 2020.01时间:120分钟 满分:150分一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1. 函数12log (5)y x =-的定义域为________2. 函数2()1(1)f x x x =+≤-的反函数为_____________________ 3. 已知2log 3a =,试用a 表示9log 12=____________________ 4. 幂函数223()(1)(,)mm f x a x a m --=-∈¥为偶函数,且在(0,)+∞上是减函数,则a m += _______ 5. 函数23log ()y x x =-的递增区间为________________________ 6. 方程22log (95)log (32)2x x-=-+的解为x =________________7. 已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为___________ 8. 若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a > 且1a ≠ )的值域是[)4,+∞ ,则实数a 的取值范围是______9. 已知1()(33)2x xf x -=-的反函数为1()f x -,当[3,5]x ∈-时,函数1()(1)1F x f x -=-+ 的最大值为M ,最小值为m ,则M m +=_______10. 对于函数(),y f x x D =∈,若对任意,,a b c D ∈,(),(),()f a f b f c 都可为某一三角形的三边长,则称()f x 为“三角形函数”。
已知()1x x e t f x e +=+是三角形函数,则实数t 的取值范围是____11. 若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰好有三个实数根,则实数m 的取值范围是_____12. 已知函数2131()1log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()lg(2)()1x g x a x a x =⋅++∈+R ,若对任意的{}12,|,2R x x x x x ∈∈>-,均有12()()f x g x ≤,则实数k 的取值范围是 .二、选择题(本大题共有4题,满分20分,每题5分)13. 若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( ) A 、充分非必要条件 B 、必要非充分条件C 、充要条件 D 、既非充分也非必要条件 14.下列函数中既是偶函数,又在(0,+∞)上单调递增的是( )A 、y=||1x B 、2y x -= C 、2|log |y x = D 、23y x =15.设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意R x ∈, 有()f x M ≤,则M 是函数()f x 的最大值;(2)若存在0R x ∈, 使得对任意R x ∈, 且0x x ≠, 有0()()f x f x <,则0()f x 是函数()f x 的最大值;(3)若存在0R x ∈, 使得对任意R x ∈, 有0()()f x f x ≤,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( ) A 、0个 B 、1个 C 、2个 D 、3个16. 已知函数nx x m x f x ++⋅=22)(,记集合},0)(|{R x x f x A ∈==,集合},0)]([|{R x x f f x B ∈==,若B A =,且都不是空集,则n m +的取值范围是( )A 、[0,4)B 、 [1,4)-C 、[3,5]-D 、[0,7)三、解答题(本大题共有5题,满分76分)17. (本题满分14分,第1小题满分6分,第2小题满分8分)已知函数1()421xx f x a +=-⋅+.(1)若1a =,解方程:()4f x =;(2)若()f x 在[1,1]-上存在零点,求实数a 的取值范围.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数21()log 1axf x x -=-的图像关于原点对称,其中a 为常数. (1)求a 的值; (2)设集合4={|1}7A x x≥-,2={|()log (1)}B x f x x m +-<,若A B ≠∅I ,求实数m 的取值范围.19.(本题满分14分,第1小题满分6分,第2小题满分8分)近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台,其总成本为()P x (万元,其中固定成本为12万元,并且每生产1百台的生产成本为10万元总成本固定成本生产成本销售收入()Q x 万元满足20.522,(016)()224,(16)x x x Q x x ⎧-+≤≤=⎨>⎩,假定该产品产销平衡即生产的产品都能卖掉,根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式利润销售收入总成本; (2)工厂生产多少百台产品时,可使利润最多?20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)若函数f (x )满足:对于其定义域D 内的任何一个自变量 x 0,都有函数值f (x 0)ÎD ,则称函数f (x )在D 上封闭. (1)若下列函数的定义域为 D =(0,1),试判断其中哪些在D 上封闭,并说明理由。
复旦附中高一期末数学试卷一. 填空题1. 函数12log (5)y x =-的定义域为2. 函数2()1f x x =+(1x ≤-)的反函数为3. 已知2log 3a =,试用a 表示9log 12=4. 幂函数223()(1)mm f x a x --=-(,a m ∈N )为偶函数,且在(0,)+∞上是减函数,则a m +=5. 函数23log ()y x x =-的递增区间为6. 方程22log (95)log (32)2x x -=-+的解为x =7. 已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2, 则实数k 的取值范围为8. 若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[4,)+∞,则实数a 的取值 范围是 9. 已知1()(33)2x x f x -=-的反函数为1()f x -,当[3,5]x ∈-时,函数1()(1)1F x f x -=-+ 的最大值为M ,最小值为m ,则M m += 10. 对于函数()y f x =,x D ∈,若对任意,,a b c D ∈,()f a 、()f b 、()f c 都可为某一三角形的三边长,则称()f x 为“三角形函数”,已知()1x x e t f x e +=+是三角形函数,则实数t 的 取值范围是11. 若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰有三个实数根,则实数m 的取值 范围是 12. 已知函数2131()1log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()log(2)1x g x a x x =⋅+++(a ∈R ),若对 任意的12,{|,2}x x x x x ∈∈>-R ,均有12()()f x g x ≤,则实数k 的取值范围是二. 选择题13. 若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14. 下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A. 1||y x = B. 2y x -= C. 2|log |y x = D. 23y x = 15. 设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意x ∈R ,有()f x M ≤,则M 是函数()f x 的最大值;(2)若存在0x ∈R ,使得对任意x ∈R 且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;(3)若存在0x ∈R ,使得对任意x ∈R ,有0()()f x f x ≤,则0()f x 是函数()f x 的最大值; 这些命题中,真命题的个数是( )A. 0个B. 1个C. 2个D. 3个16. 已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( )A. [0,4)B. [1,4)-C. [3,5]-D. [0,7)三. 解答题17. 已知函数1()421x x f x a +=-⋅+.(1)若1a =,解方程:()4f x =;(2)若()f x 在[1,1]-上存在零点,求实数a 的取值范围.18. 已知函数21()log 1ax f x x -=-的图像关于原点对称,其中a 为常数. (1)求a 的值;(2)设集合4{|1}7A x x=≥-,2{|()log (1)}B x f x x m =+-<,若A B ≠∅I ,求实数m 的取值范围.19. 近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,然后改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生成某型号的空气净化器,根据以往的生产销售经验得到下面有关生成销售的统计规律:每生产该型号空气净化器x (百台),其 总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生成成本为10万 元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足:20.522016()22416x x x Q x x ⎧-+≤≤=⎨>⎩,假定该产品销平衡(即生产的产品都能卖掉),根据 上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入—总成本);(2)工厂生产多少百台产品时,可使利润最多?20. 若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由, 1()21f x x =-,2()21x f x =-;(2)若函数5()2x a g x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2) 上封闭?若存在,求出所有a 的值,并给出证明,若不存在,请说明理由;(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且00(())f f x x =,求 证:00()f x x =.21. 已知函数||0()20x x a x f x x +≥⎧=⎨<⎩,其中a ∈R . (1)若1a =-,解不等式1()4f x ≥; (2)设0a >,21()log ()g x f x =,若对任意的1[,2]2t ∈,函数()g x 在区间[,2]t t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=,若关于x 的不等式12(4)()|2|f a f x x a --≤+-在[0,)x ∈+∞上恒成立,求实数a 的取值范围.参考答案一. 填空题1. (,5)-∞2. 2)y x =≥3. 22a a+ 4. 3 5. (1,)+∞ 6. 1 7. (3,0)- 8. (1,2]9. 2 10. 1[,2]2 11. (6,10 12. 3(,]4-∞-二. 选择题13. A 14. D 15. C 16. A三. 解答题17.(1)2log 3x =;(2)5[1,]4a ∈.18.(1)1a =-;(2)2m >. 19.(1)20.51212016()2121016x x x f x x x ⎧-+-≤≤=⎨->⎩;(2)生产12百台,利润最大60万元. 20.(1)1()f x 在D 上不封闭,2()f x 在D 上封闭;(2)2a =;(3)证明略.21.(1)35[2,][,)44x ∈-+∞U ;(2)65a ≥;(3)3,2](3,4)a ∈U .。
2019-2020学年上海市复旦附中高一(上)期末数学试卷一.填空题1.(3分)函数12log (5)y x =-的定义域为 .2.(3分)函数21(1)y x x =+-„的反函数为 . 3.(3分)已知2log 3a =,试用a 表示9log 12= . 4.(3分)幂函数223()(1)(,)m m f x a x a m N --=-∈为偶函数,且在(0,)+∞上是减函数,则a m += .5.(3分)函数23log ()y x x =-的递增区间为 . 6.(3分)方程22log (95)log (32)2x x -=-+的解是 .7.(3分)已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为 .8.(3分)若函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩„且1)a ≠的值域是[4,)+∞,则实数a 的取值范围是 .9.(3分)已知1()(33)2x x f x -=-的反函数为1()f x -,当[3x ∈-,5]时,函数1()(1)1F x f x -=-+的最大值为M ,最小值为m ,则M m += .10.(3分)对于函数()f x ,若对于任意的a ,b ,c R ∈,f (a ),f (b ),f (c )为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x x e t f x e +=+是“可构造三角形函数”,则实数t 的取值范围是 .11.(3分)若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰有三个相异实根,则实数m的取值范围为 .12.(3分)已知函数213,1()1,12x x k x f x log x x ⎧-++⎪=⎨-+>⎪⎩„,2()(2)()1x g x aln x a R x =++∈+,若对任意的1x ,2{|x x x R ∈∈,2}x >-,均有12()()f x g x „,则实数k 的取值范围是 . 二.选择题13.(3分)若命题甲:10x -=,命题乙:20lg x lgx -=,则命题甲是命题乙的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件14.(3分)下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A .1||y x =B .2y x -=C .2|log |y x =D .23y x =15.(3分)设函数()f x 的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x R ∈,有()f x M „,则M 是函数()f x 的最大值; ②若存在0x R ∈,使得对任意x R ∈,且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;③若存在0x R ∈,使得对任意x R ∈,有0()()f x f x „,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( ) A .0B .1C .2D .316.(3分)已知函数2()2x f x m x nx =++g ,记集合{|()0A x f x ==,}x R ∈,集合{|[()]0B x f f x ==,}x R ∈,若A B =,且都不是空集,则m n +的取值范围是( )A .[0,4)B .[1-,4)C .[3-,5]D .[0,7)三.解答题17.已知函数1()421x x f x a +=-+g . (1)若1a =,解方程:()4f x =;(2)若()f x 在[1-,1]上存在零点,求实数a 的取值范围. 18.已知函数21()log 1axf x x -=-的图象关于原点对称,其中a 为常数. (1)求a 的值; (2)设集合4{|1}7A x x=-…,2{|()log (1)}B x f x x m =+-<,若A B ≠∅I ,求实数m 的取值范围.19.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入()Q x (万元)满足20.522(016)()224(16)x x x Q x x ⎧-+=⎨>⎩剟,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多?20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由.1()21f x x =-,2()21x f x =-. (2)若函数5()2x ag x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2)上封闭?若存在,求出所有a 的值,并给出证明:若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增.若0x D ∈且00(())f f x x =,求证:00()f x x =.21.已知函数||0()20x x a x f x x +⎧=⎨<⎩…,其中a R ∈.(1)若1a =-,解不等式1()4f x …;(2)设0a >,21()log ()g x f x=,若对任意的1[2t ∈,2],函数()g x 在区间[t ,2]t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=,若关于x 的不等式12(4)()|2|f a f x x a --+-„在[0x ∈,)+∞上恒成立,求实数a 的取值范围.2019-2020学年上海市复旦附中高一(上)期末数学试卷参考答案与试题解析一.填空题1.(3分)函数12log (5)y x =-的定义域为 (,5)-∞ .【解答】解:由50x ->,得5x <. ∴函数12log (5)y x =-的定义域为(,5)-∞.故答案为:(,5)-∞.2.(3分)函数21(1)y x x =+-„的反函数为2)y x =… . 【解答】解:由21(1)y x x =+-„,得21x y =-,2)x y ∴=…, x ,y互换得:2)y x =…, ∴函数21(1)y x x =+-„的反函数为2)y x =…,故答案为:2)y x =…. 3.(3分)已知2log 3a =,试用a 表示9log 12=22a a+ . 【解答】解:22292212342129232log log log a log log log a++===, 故答案为:22a a+. 4.(3分)幂函数223()(1)(,)m m f x a x a m N --=-∈为偶函数,且在(0,)+∞上是减函数,则a m +=3 .【解答】解:Q 幂函数223()(1)(,)m m f x a x a m N --=-∈,在(0,)+∞上是减函数,11a ∴-=,且2230m m --<, 2a ∴=,13m -<<,又m N ∈Q ,0m ∴=,1,2, 又Q 幂函数()f x 为偶函数,1m ∴=, 3a m ∴+=,故答案为:3.5.(3分)函数23log ()y x x =-的递增区间为 (1,)+∞ .【解答】解:函数23log ()y x x =-的定义域为(-∞,0)(1⋃,)+∞, 令2t x x =-,则3log y t =, 3log y t =Q 为增函数,2t x x =-在(,0)-∞上为减函数;在(1,)+∞为增函数,∴函数23log ()y x x =-的单调递增区间为(1,)+∞,故答案为:(1,)+∞.6.(3分)方程22log (95)log (32)2x x -=-+的解是 1x = . 【解答】解:222log (95)log (32)2log [4(32)]x x x -=-+=-Q ,954(32)x x ∴-=-, 令3x t =,则2430t t -+=, 解得1t =或3t =.由式子有意义可知950320x x ⎧->⎨->⎩,解得3x >t >3t ∴=. 1x ∴=.故答案为:1x =.7.(3分)已知关于x 的方程2240x kx k k +++-=有两个实数根,且一根大于2,一根小于2,则实数k 的取值范围为 (3,0)- .【解答】解:令22()4f x x kx k k =+++-,由题意可得f (2)0<, 即:222240k k k +++-<,整理:230k k +<,解得:30k -<<, 所以实数k 的取值范围为(3,0)-; 故答案为:(3,0)-.8.(3分)若函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩„且1)a ≠的值域是[4,)+∞,则实数a 的取值范围是 (1,2] .【解答】解:由于函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩„且1)a ≠的值域是[4,)+∞, 故当2x „时,满足()64f x x =-….①若1a >,()3log a f x x =+在它的定义域上单调递增,当2x >时,由()3log 4a f x x =+…,log 1a x ∴…,log 21a ∴…,12a ∴<„. ②若01a <<,()3log a f x x =+在它的定义域上单调递减, ()3log 3log 23a a f x x =+<+<,不满足()f x 的值域是[4,)+∞.综上可得,12a <„, 故答案为:(1,2].9.(3分)已知1()(33)2x x f x -=-的反函数为1()f x -,当[3x ∈-,5]时,函数1()(1)1F x f x -=-+的最大值为M ,最小值为m ,则M m += 2 .【解答】解:由题意可得1()(33)()2x x f x f x --=-=-,即函数()f x 在R 上为奇函数,当[3x ∈-,5],令1[4t x =-∈-,4],则1(1)()(33)2t t f x f t --==-为奇函数且单调递增所以反函数1()f t -也是单调递增的奇函数,所以1()()F x f t -=是1()y f t -=向上平行移动1个单位也为单调递增,对称中心(0,1), 由互为反函数的性质可得352M m +=-+=, 故答案为:210.(3分)对于函数()f x ,若对于任意的a ,b ,c R ∈,f (a ),f (b ),f (c )为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x x e tf x e +=+是“可构造三角形函数”,则实数t 的取值范围是 1[2,2] .【解答】解:由题意可得f (a )f +(b )f >(c )对于a ∀,b ,c R ∈都恒成立,由于1()111x x xe t tf x e e +-==+++, ①当10t -=,()1f x =,此时,f (a ),f (b ),f (c )都为1,构成一个等边三角形的三边长, 满足条件.②当10t ->,()f x 在R 上是减函数,1f <(a )11t t <+-=, 同理1f <(b )t <,1f <(c )t <,由f (a )f +(b )f >(c ),可得2t …,解得12t <„. ③当10t -<,()f x 在R 上是增函数,t f <(a )1<, 同理t f <(b )1<,t f <(c )1<,由f (a )f +(b )f >(c ),可得21t …,解得112t >….综上可得,122t 剟,故实数t 的取值范围是1[2,2],故答案为:1[2,2]11.(3分)若关于x 的方程54(4)|5|x x m x x+--=在(0,)+∞内恰有三个相异实根,则实数m的取值范围为 .【解答】解:当x 450x x-…,Q 方程54(4)|5|x x m x x+--=,54(4)(5)x x m x x ∴+--=,即9x m x -+=;m ∴„当0x <<时,450x x -<, Q 方程54(4)|5|x x m x x+--=,54(4)(5)x x m x x∴++-=,即19x m x+=; 196x x+Q …;∴当6m <时,方程19x m x+=无解; 当6m =时,方程19x m x+=有且只有一个解; 当610m <<时,方程19x m x+=在(0,1)上有两个解; 当10m =时,方程19x m x+=的解为1,19;综上所述,实数m的取值范围为.故答案为:. 12.(3分)已知函数213,1()1,12x x k x f x log x x ⎧-++⎪=⎨-+>⎪⎩„,2()(2)()1x g x aln x a R x =++∈+,若对任意的1x ,2{|x x x R ∈∈,2}x >-,均有12()()f x g x „,则实数k 的取值范围是 3(,]4-∞- .【解答】解:对函数()f x ,当1x „时,11()()24max f x f k ==+;当1x >时,1()(1)2max f x f ==-,()f x ∴在(2,)-+∞上的最大值11(){,}42max f x max k =+-;对函数()g x ,函数()g x 若有最小值,则0a =,即2()1xg x x =+, 当(2x ∈-,0)(0⋃,)+∞时,1()1g x x x=+,易知函数1()2min g x =-; 又对任意的1x ,2{|x x x R ∈∈,2}x >-,均有12()()f x g x „, ()()(2)max min f x g x x ∴>-„,即111{,}422max k +--„,∴1142k +-„, ∴34k -„,即实数k 的取值范围为3(,]4-∞-.故答案为:3(,]4-∞-.二.选择题13.(3分)若命题甲:10x -=,命题乙:20lg x lgx -=,则命题甲是命题乙的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件【解答】解:若命题甲:10x -=,命题乙:20lg x lgx -=, ①若命题甲:10x -=,则1x =,22110lg x lgx lg lg -=-=, 则命题甲:10x -=,能推出命题乙:20lg x lgx -=,成立;②若命题乙:20lg x lgx -=,则(1)0lgx lgx -=,所以0lgx =或1lgx =,即1x =或10x =; 命题乙:20lg x lgx -=,不能推出命题甲:10x -=成立, 根据充分条件和必要条件的定义分别进行判断. 命题甲是命题乙的充分非必要条件; 故选:A .14.(3分)下列函数中既是偶函数,又在(0,)+∞上单调递增的是( ) A .1||y x =B .2y x -=C .2|log |y x =D .23y x =【解答】解:A .函数为偶函数,当0x >时,1()f x x=,为减函数,不满足条件. B .函数为偶函数,当0x …时,()f x 为减函数,不满足条件. C .函数的定义域为(0,)+∞,定义域关于原点不对称,为非奇非偶函数,不满足条件.D .函数为偶函数且在区间(0,)+∞上为增函数,满足条件故选:D .15.(3分)设函数()f x 的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x R ∈,有()f x M „,则M 是函数()f x 的最大值; ②若存在0x R ∈,使得对任意x R ∈,且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;③若存在0x R ∈,使得对任意x R ∈,有0()()f x f x „,则0()f x 是函数()f x 的最大值. 这些命题中,真命题的个数是( ) A .0B .1C .2D .3【解答】解:①错.原因:M 不一定是函数值,可能“=”不能取到.因为函数最大值的定义是存在一个函数值大于其它所有的函数值,则此函数值是函数的最大值 所以②③对 故选:C .16.(3分)已知函数2()2x f x m x nx =++g ,记集合{|()0A x f x ==,}x R ∈,集合{|[()]0B x f f x ==,}x R ∈,若A B =,且都不是空集,则m n +的取值范围是( )A .[0,4)B .[1-,4)C .[3-,5]D .[0,7)【解答】解:设1{|()0}{|(())0}x x f x x f f x ∈===, 11()(())0f x f f x ∴==,(0)0f ∴=,即(0)0f m ==, 故0m =; 故2()f x x nx =+,22(())()()0f f x x nx x nx n =+++=, 当0n =时,成立;当0n ≠时,0,n -不是20x nx n ++=的根, 故△240n n =-<, 解得:04n <<; 综上所述,04n m +<…; 故选:A . 三.解答题17.已知函数1()421x x f x a +=-+g . (1)若1a =,解方程:()4f x =;(2)若()f x 在[1-,1]上存在零点,求实数a 的取值范围. 【解答】解:(1)当1a =时,()4221x x f x =-+g .()4f x =Q ,42214x x ∴-+=g , 23x ∴=或21x =-(舍),2log 3x ∴=.(2)当[1x ∈-,1]时,令2x t =,则1[,2]2t ∈, ∴由()0f x =,得2210t at -+=,∴2112t a t t t+==+. Q 1y t t =+在1[,1]2上单调递减,在[1,2]上单调递增, ∴当1x =时,1()2min t t +=;当2x =或12时,15()2max t t +=, ∴52[2,]2a ∈,∴5[1,]4a ∈. 18.已知函数21()log 1ax f x x -=-的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)设集合4{|1}7A x x=-…,2{|()log (1)}B x f x x m =+-<,若A B ≠∅I ,求实数m 的取值范围. 【解答】解:(1)Q 函数21()log 1ax f x x -=-的图象关于原点对称,其中a 为常数. ∴222111()111ax ax x f x log log log x x ax +---==-=----, ∴1111ax x x ax+-=---, 解得1a =±.当1a =时,11111ax x x x --==---,与条件矛盾,舍去. 1a ∴=-; (2)Q 集合4{|1}7A x x=-…解不等式得{|37}A x x =<„. 由(1)知,2221()log (1)log log (1)1x f x x x m x ++-=+-<-; ∴21(1)x log x m>⎧⎨+<⎩,且A B ≠∅I ,解得121m x <<-; 由于A B ≠∅I ,所以213m ->,解得,2m >.故m 的取值范围是(2,)+∞.19.近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入()Q x (万元)满足20.522(016)()224(16)x x x Q x x ⎧-+=⎨>⎩剟,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本);(2)工厂生产多少百台产品时,可使利润最多?【解答】解:(1)由题意得()1210P x x =+,⋯(1分)则20.5221210,016()()()2241210,16x x x x f x Q x P x x x ⎧-+--=-=⎨-->⎩剟 即为20.51212,016()21210,16x x x f x x x ⎧-+-=⋯⎨->⎩剟(4分) (2)当16x >时,函数()f x 递减,即有()(16)21216052f x f <=-=万元6⋯ 分 当016x 剟时,函数2()0.51212f x x x =-+-20.5(12)60x =--+,当12x =时,()f x 有最大值60万元.9⋯ 分所以当工厂生产12百台时,可使利润最大为60万元.10⋯ 分20.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值0()f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数的定义域为(0,1)D =,试判断其中哪些在D 上封闭,并说明理由.1()21f x x =-,2()21x f x =-.(2)若函数5()2x a g x x -=+的定义域为(1,2),是否存在实数a ,使得()g x 在其定义域(1,2)上封闭?若存在,求出所有a 的值,并给出证明:若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增.若0x D ∈且00(())f f x x =,求证:00()f x x =.【解答】解:(1)在1()21f x x =-中,对于定义域D 内的任意一个自变量0x ,都有函数值10()(1f x ∈-,11)D ∉,故函数1()21f x x =-在1D 上不封闭;在2()21x f x =-中,21(0,1)x -∈,在1D 上封闭.(2)5()2x a g x x -=+的定义域为(1,2),对称中心为(2,5)-, 当100a +>时,函数5()2x a g x x -=+在2D 上为增函数, 只需(1)1(2)210f f a ⎧⎪⎨⎪>-⎩…„,解得2a =当100a +<时,函数5()2x a g x x -=+在2D 上为减函数, 只需(1)2(2)110f f a ⎧⎪⎨⎪<-⎩„…,解得a ∈∅ 综上,所求a 的值等于2.证明:(3)Q 函数()f x 在其定义域D 上封闭,且单调递增.0x D ∈且00(())f f x x =,∴根据单调函数性质0()f x D ∈,则有唯一的0x D ∈,00()f x x ∴=.21.已知函数||0()20x x a x f x x +⎧=⎨<⎩…,其中a R ∈. (1)若1a =-,解不等式1()4f x …; (2)设0a >,21()log ()g x f x=,若对任意的1[2t ∈,2],函数()g x 在区间[t ,2]t +上的最大值和最小值的差不超过1,求实数a 的取值范围;(3)已知函数()y f x =存在反函数,其反函数记为1()y f x -=,若关于x 的不等式12(4)()|2|f a f x x a --+-„在[0x ∈,)+∞上恒成立,求实数a 的取值范围.【解答】解:(1)当1a =-,|1|,0()2,0x x x f x x -⎧=⎨<⎩…, 当0x …时,1()|1|4f x x =-…,解得54x …或34x „,所以304x 剟或54x …;当0x <时,1()24x f x =…,解得2x -…,所以20x -<„; 综上所述,不等式的解为35[2,][,)44x ∈-+∞U . (2)0a >Q ,1[2t ∈,2],[x t ∈,2]t +,()f x x a ∴=+,2211()log ()()g x f log a x x==+, 由复合函数的单调判断原则,可知()g x 在[x t ∈,2]t +上单调递减,2211()()()(2)()()12max min g x g x g t g t log a log a t t ∴-=-+=+-++„, 化简得,2(2)t a t t -+…在1[2t ∈,2]上恒成立, 令32[0,]2m t =-∈,则22()(2)(2)(4)68t m m h m t t m m m m -===+---+, 当0m =时,()0h m =, 当3(0,]2m ∈时,1()86h m m m=+-, 由对勾函数性质可知,86m m +-在3(0,]2上单调递减,∴8316566236m m +-+-=…,即60()5h m <„, 故实数a 的取值范围为65a …; (3)Q 函数()y f x =存在反函数,()y f x ∴=单调,又()f x Q 在(,0)-∞上单调递增,()y f x ∴=在R 上必须单调递增,0021a ∴+=…即1a …,12,(),01x a x a f x log x x --⎧∴=⎨<<⎩…, 令2()()|2|F x f x x a =+-,[0x ∈,)+∞, 则222223,2()|2|,2a x a a x F x x a x a ax a a x ⎧-+⎪⎪=++-=⎨⎪-++<⎪⎩…, ∴22()()22min a a F x F a ==+, 12(4)()|2|f a f x x a --+-Q „在[0x ∈,)+∞上恒成立,∴当041a <-<即34a <<时,22(4)2a log a a -+„恒成立,34a ∴<<,当4a a -…即2a „时,242a a a a --+„32a 剟,综上所述,实数a 的取值范围为3,2](3,4)a ∈U .。
复旦附中2020学年第一学期高一年级数学期末考试试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.函数()2()log 2f x x =+−的定义域为____________. 【答案】()2,4【解析】由已知得,2420x x ⎧⎪⇒<<−>>2.不等式()()2233131x x −>+的解集为____________. 【答案】()1,0−【解析】()()2233131x x −>+>的解, 解得10x −<<3.函数2()log (31),[0,5]f x x x =+∈的反函数是____________.【答案】21,[0,4]3x y x −=∈【解析】由已知得,[][]312,0,5,0,4yx x y +=∈∈所以()f x 的反函数是21,[0,4]3x y x −=∈4.对于实数,,,a b c d ,定义a b ad bc c d−=. 设函数22log (1)1()log 1x f x x −−=,则方程()1f x =的解为 .【答案】2x =【解析】由已知得,222()log (1)log log (1),(1)f x x x x x x =−+=−> 令方程()1f x =,即(1)2x x −=,2,1x x ==−(舍) 故答案为2x = 5.若函数()1axf x x =+在区间(0,)+∞是严格增函数,则实数a 的取值范围是___ _____.【答案】0a >【解析】由已知得,()1()111a x a ax af x a x x x +−===−+++ 因为函数()1axf x x =+在区间(0,)+∞是严格增函数 所以实数a 的取值范围是0a >6.已知函数24()min 1,log f x x x ⎧⎫=+⎨⎬⎩⎭,若函数()()g x f x k =−恰有两个零点,则k 的取值范围为_______________. 【答案】(1,2)【解析】由已知得,当04x <≤时,241log x x +≥,当4x >时,241log x x+< 故241,4()log ,04x f x xx x ⎧+>⎪=⎨⎪<≤⎩ 因为函数()()g x f x k =−恰有两个零点等价于函数()f x 与y k =的图像有两个交点, 作出函数图像可知,k 的取值范围为(1,2)7.已知函数15()||(0)2f x x x x =+−>,则()f x 的递减区间是_______. 【答案】1(0,)2,(1,2)【解析】由已知得,151,021522()||5112222x x x x f x x x x x x ⎧+−<≤≥⎪⎪=+−⎨⎪−−<<⎪⎩=或,则()f x 的递减区间是1(0,)2,(1,2)8.若函数()232x x f x −=+⋅的图像关于直线x m =成轴对称图形,则m =___ . 【答案】3log 212=m 【解析】对任意的R x ∈,)()(x m f m x f −=+成立,故m x x m m x m x −−−−+⋅+=⋅+232232,整理得0)232)(22(=⋅−−−−mmxx,所以0232=⋅−−m m ,即3log 212=m9.若关于x 的不等式1202x x m −−<在区间[0,1]内恒成立,则实数m 的取值范围为_____.【答案】⎪⎭⎫ ⎝⎛223,【解析】题源选自【2017年浦东一模10】 由1|2|02x x m −−<,得122x x m −<,∴11222xx xm −<−<, 即112222xx x xm −<<+在区间[0,1]内恒成立, 函数1()22xx f x =−在区间[0,1]内单调递增,()f x ∴的最大值为32;令1()22x x g x =+,2(12)x t t =≤≤, 则1y t t=+在[1,2]上为增函数,由内函数2x t =为增函数,1()22x xg x ∴=+在区间[0,1]内单调递增,()g x 的最小值为2.∴322m <<.故答案为:322m <<. 10.已知函数22()(815)()f x x x ax bx c =++++是偶函数,若方程21ax bx c ++=在区间[]1,2上有解,则实数a 的取值范围是_____________.【答案】11,83⎡⎤⎢⎥⎣⎦【解析】题源选自【2020年普陀一模10】函数整理为()()()()432()815815815f x ax a b x a b c x b c x c =+++++++++,因为函数是偶函数,需80a b +=,1580b c +=,即8b a =−,15158c b a =−=,所以21ax bx c ++=可整理:281510ax ax a −+−=.令()28151g x ax ax a =−+−,对称轴4x =在区间[]1,2的右侧,可保证区间内函数()g x 单调,根据零点存在性定理:()()120g g ⋅≤,即()()81514161510a a a a a a −+−⋅−+−≤,易得11,83a ⎡⎤∈⎢⎥⎣⎦11.若函数()221++=+x x af x x ()0x ≥的值域为[),a +∞,则实数a 的取值范围是_____.【答案】(],2−∞【解析】由已知得,()22(1)11(1)(0)1121x x a f x x a a x x x x x +−++++=+−==+≥++因为(0)f a =,所以①当10a −≤ 时,即1a ≤时,1()(1)1a f x x x −=+++在[)0,+∞上的增函数, 所以min ()(0)f x f a ==满足值域为[),a +∞,此时1y x =+为增函数,11a y x −=+也为增函数,因此()y f x =为增函数,②当11a −>时,即2a >时,1()(1)1a f x x x −=+++在1)−上单调递减,在单调递增,min ()1)f x f ∴=−且(0)1)f f >不满足值域为[),a +∞,舍去 ③当011a <−≤时,即12a <≤时,()y f x =在[)0,+∞上单调递增, 所以min ()()(1)f x f x f a ∴≥==满足的值域为[),a +∞ 综上所述,a 的取值范围为2a ≤,即(,2]a ∈−∞12.已知集合[][],14,9A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是____________. 【答案】1或3−【解析】题源选自【2019年上海春考12】 【法一】当0t >时,当[],1a t t ∈+,则[]4,9t t aλ∈++,当[]4,9a t t ∈++,则[],1t t aλ∈+,即当a t =时,9t aλ≤+;当9a t =+时,t aλ≥,即()9t t λ=+;即当1a t =+时,4t aλ≥+,当4a t =+时,1t aλ≤+,即()()14t t λ=++,所以()()()914t t t t +=++,解得1t =.当104t t +<<+时, 当[],1a t t ∈+,则[],1t t aλ∈+,当[]4,9a t t ∈++,则[]4,9t t aλ∈++,即当a t =时,1t aλ≤+,当1a t =+时,t aλ≥,即()1t t λ=+;即当4a t =+时,9t aλ≤+,当9a t =+时,4t aλ≥+即()()49t t λ=++,所以()()()149t t t t +=++,解得3t =−.当90t +<时,同理可得,无解【法二】存在正数λ,使得对任意1a A ∈,都存在2a A ∈,使得12a a λ=, 当0t >时, 思考 当1a t =时,()()124,9a a t t t t λ=∈++⎡⎤⎣⎦ 当11a t =+时,()()()()1214,19a a t t t t λ=∈++++⎡⎤⎣⎦ 当14a t =+时,()()()124,14a a t t t t λ=∈+++⎡⎤⎣⎦ 当19a t =+时,()()()129,19a a t t t t λ=∈+++⎡⎤⎣⎦二、选择题(本大题共4题,满分20分,每题5分)每题有且只有一个正确选项.考生在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知()f x 为定义在R 上的奇函数,当0x <时,()3xf x =,则函数()f x 的值域为( )A .()1,1−B .[)0,1C .RD .[]0,1 【答案】A【解析】因为()f x 为定义在R 上的奇函数,所以(0)0f = 又因为0x <时,()3xf x =,所以()(0,1)f x ∈当0x >时,则0x −<所以()()3x f x f x −=−−=−,所以()(1,0)f x ∈− 综上所述,函数的值域为()1,1−,故选A14.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比. 按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至5000,则C 大约增加了( ) A .20% B .23%C .28%D .50%【答案】B 【解析】将信噪比SN从1000提升至5000时,C 大约增加了 222log (15000)log (11000)log (11000)W W W +−++2225000lg1000log 5001log 10012lg 2lg1000log 1001lg 2lg lg −−=≈120.2323%3lg −=≈= 故选B15.若函数1()ln f x x a x=−+在区间(1,)e 上存在零点,则常数a 的取值范围( ) A. 01a << B.11a e << C. D. 【答案】C【解析】因为1()ln ,(1,)f x x a x e x=−+∈ 1e -1<a <11e+1<a <1所以()()10f f e ⋅<因为1(1)ln110,()ln 0f a f e e a e=−+<=−+> 所以常数a 的取值范围16.设函数()f x 的定义域是R ,已知以下三个陈述句:p :存在a ∈R 且0a ≠,对任意的x ∈R ,均有(2)(2)()x a x f f f a +<+恒成立;1q :()f x 严格递减,且()0f x >恒成立;2q :()f x 严格递增,存在00x <,使得0()0f x =;用这三个陈述句组成了两个命题,命题S :“若1q ,则p ”;命题T :“若2q ,则p ”,则关于S,T ,以下说法正确的是( )A. 两个命题S,T 都是真命题B. 只有命题S 是真命题C. 只有命题T 是真命题D. 两个命题S,T 都不是真命题 【答案】A【解析】本题考察函数的性质1q :当0a >时,()0f a >,()f x 单调递减,且()0f x >而()()()222()22x a x x axx f f f f a ''++>⇒<<+ ,()()22()x a x f f f a +⇒<+,符合p所以1q 可推得p ,“若1q ,则p ”成立,所以S 为真2q :当00a x =<时,()0f a =,()f x 单调递增而,22x a x x a x ++<<()()()()22202()x a x x x f f f f f a +⇒<=+=+ ()()222()x a x f f f a +⇒<+所以2q 可推得p ,“若2q ,则p ”成立,所以T 为真 综上所述,命题S ,T 均为真命题,故选A1e-1<a <1三、解答题(本大题共5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知函数()()2151m h x m m x+=−+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()=+g x h x 在11,2x ⎡⎤∈−⎢⎥⎣⎦的值域.【解析】(1)2511m m −+=, 解得0m =或5m =. 即()h x x =或()6h x x =.又因为函数()h x 为奇函数,所以()h x x =,0m =.(2)()()g x h x x ==+设t =11,2x ⎡⎤∈−⎢⎥⎣⎦,所以t ⎡∈⎣,212tx −=. 所以()22111122t y t t −=+=−−+(此处可用单调性代替)当1t =时,max 1y =,当0t =时,min 12y =,故值域为1,12⎡⎤⎢⎥⎣⎦.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数()12|log |h x x =. (1)求()h x 在11,22a a ⎡⎤⎛⎫> ⎪⎢⎥⎣⎦⎝⎭上的最大值;(2)设函数()f x 的定义域为I ,若存在区间A I ⊆,满足:对任何1x A ∈,都存在2x A ∈(其中A 表示A 在I 上的补集),使得()()12f x f x =,则称区间A 为()f x 的“Γ区间”.已知12()|log |h x x =(1,22x ⎡∈⎤⎢⎥⎣⎦),若1,2A a ⎡⎫=⎪⎢⎣⎭是函数()h x 的“Γ区间”,求a 的最大值.【解析】(1)()1212h h ⎛⎫==⎪⎝⎭,① 若112a <≤,则()h x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,所以()h x 的最大值为112h ⎛⎫= ⎪⎝⎭; ② 若12a <≤,则()h x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,a 上单调递增,因此此时()()1212h a h h ⎛⎫≤==⎪⎝⎭,所以()h x 的最大值为112h ⎛⎫= ⎪⎝⎭; ③ 若2a >,则()h x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,a 上单调递增, 因此此时()()122h a h h ⎛⎫≥= ⎪⎝⎭,所以()h x 的最大值为()12|log |h a a =; 综上知:若122a <≤,则()h x 的最大值为1;若2a >,则()h x 的最大值为12|log |a ;(2)由已知: ①当112a <≤时,()f x 在1[,)2a 上的值域为12(|log |,1]a , ()f x 在[,2]a 上的值域为[0,1],因为[]12(|log ,1|]0,1a ⊆, 满足条件,所以此时1,2a ⎡⎫⎪⎢⎣⎭是()f x 的“Γ区间”; ②当12a <≤时,()f x 在1,2a ⎡⎫⎪⎢⎣⎭上得到值域为[]0,1,()f x 在[],2a 上的值域为12|log |,2a ⎡⎤⎣⎦,此时,120|log |,2a ⎡⎤∉⎣⎦所以此时1,2a ⎡⎫⎪⎢⎣⎭不是()f x 的“Γ区间”; 故所求a 的最大值为1. 19.(本题满分14分,第1小题满分6分,第2小题满分8分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献. 生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()21502p x x x =+;当产量不小于60万箱时,()64001011860p x x x=+−. 若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完. (1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大? 【解析】(1)当060x <<时,2211100504005040022y x x x x x ⎛⎫=−+−=−+− ⎪⎝⎭;当60x ≥时,6400640010010118604001460y x x x x x ⎛⎫⎛⎫=−+−−=−+ ⎪ ⎪⎝⎭⎝⎭. 所以,2150400,060,264001460,60,,x x x x N y x x x N x ⎧−+−<<∈⎪⎪=⎨⎛⎫⎪−+≥∈ ⎪⎪⎝⎭⎩(2)当060x <<时,221150400(50)85022y x x x =−+−=−−+, 当50x =时,y 取得最大值,最大值为850万元; 当60x ≥时,6400146014601300y x x ⎛⎫=−+≤−= ⎪⎝⎭, 当且仅当6400x x=时,即80x =时,y 取得最大值,最大值为1300万元. 综上,当产量为80万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1300万元.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 设0a >,函数1()12xf x a =+⋅. (1)若1a =,求()f x 的反函数1()f x −;(2)求函数()()y f x f x ⋅−=的最大值(用a 表示) ;(3)设()()(1)g x f x f x =−−.若对任意(,0]x ∈−∞,)(()0g x g ≥恒成立,求a 的取值范围.【解析】(1)()f x 值域(0,1)21log yx y−= 121()log (01)xf x x x−−=<<(定义域可不写) (2)21(1)(22)x x y a a −=+++2121a a ≤=++当0x =时,等号成立 所以最大值为2121a a ++ (3)2()2232x xag x a a −=⋅++, 令2(0,1]xt =∈,因此223ay a t a t−=++ 在1t =时取得最小值,即22a t t+ 在1t =时取得最小值 由函数22y a t t =+在严减,在)+∞严增得1≥整理得,0a <≤另解,222()(2)322xx x a g x a a −⋅=+⋅+令2(0,1]x t =∈,则2232aty a t at −=++,由已知,当(0,1]t ∈时,2223232at aa t at a a −−≥++++恒成立,整理得,2(1)(2)0t a t −−≥恒成立,由10t −<得,220a t −≤恒成立,得0a <≤21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知函数()f x x x a =−,其中a 为常数. (1)当1a =时,解不等式()2f x <;(2)若()f x 是奇函数,判断并证明()f x 的单调性; (3)若在[0,2]上存在2021个不同的实数(1,2,,2021)i x i =,122021x x x <<<,使得122320202021()()()()()()8f x f x f x f x f x f x −+−++−=,求实数a 的取值范围.解:(1) 当1x ≥时,220x x −−<,即12x ≤< 当1x <时,220x x −+>,即1x <综上,该不等式的解集为(,2)−∞− (2)0a = 在R 上严增(分0x ≥和0x <两种情况写不给分) 证明略 (3)①当0a ≤时,()()f x x x a =−在[0,2]上是严格增函数122311()()()()()()()()n n n f x f x f x f x f x f x f x f x −∴−+−++−=−,取值范围是(0,2(2)]a −2(2)8a ∴−≥ 解得:2a ≤−②当4a ≥时,()()f x x a x =−在[0,2]上是增函数122311()()()()()()()()n n n f x f x f x f x f x f x f x f x −∴−+−++−=−取值范围是(0,2(2)]a −2(2)8a ∴−≥ 解得:6a ≥③当24a ≤<时,由三角不等式,122312()()()()()()()(0)(2)224(4)44242n n f x f x f x f x f x f x a a af f f a a −−+−++−≤−−=⨯−+=−+<不满足条件 ④当02a <<时,由三角不等式,122312()()()()()()2()(0)()(2)24(4)44222n n f x f x f x f x f x f x a a af f f a f a a −−+−++−≤−−+=−+=−+<,不满足条件综上,a 的取值范围为(,2][6,)−∞−+∞虹口区2020学年第一学期高一年级数学期末考试试卷2021.01一. 填空题1. 已知集合{1,1,2}A =−,2{|0}B x x x =+=,则A B =【答案】{1}−2. 不等式301x x +≤−的解集为 【答案】[3,1)−3. 函数4()f x x x =+,1[,4]2x ∈的值域为【答案】17[4,]24. 计算:7log 222220log 2log 3log 579+−+= 【答案】45. 用“二分法”求方程340x x +−=在区间(1,2)内的实根,首先取区间中点 1.5x =进行判断,那么下一个取的点是x = 【答案】1.256. 已知条件:211p k x k −≤≤−,:33q x −≤<,且p 是q 的必要条件,则实数k 的取 值范围为 【答案】(,2]−∞−7. 不等式|2||1|5x x ++−≤的解集为 【答案】[3,2]−8.(A 组题)已知函数()3x f x a =+的反函数为1()y f x −=,若函数1()y f x −=的图像过 点(3,2),则实数a 的值为 【答案】6−(B 组题)已知函数||()2x a f x −=在区间[1,)+∞上是严格增函数,则实数a 的取值范围为 【答案】(,1]−∞9.(A 组题)已知集合1{|||3A x x m m =−<+,其中,x m ∈Z ,且0}m >,1{|||3B x x =+< 2m ,其中,x m ∈Z ,且0}m >,则AB 的元素个数为 (用含正整数m 的式子表示) 【答案】2m(B 组题)若集合2{|560}A x x x =+−=,{|30,}B x ax a =+=∈R ,且B A ⊂,则满足条件的实数a 的取值集合为 【答案】1{3,0,}2−10.(A 组题)已知函数2230()30x x x f x x x x ⎧+≥=⎨−<⎩,若2(3)(2)0f a f a −+>,则实数a 的 取值范围为【解析】画图可知,可知()y f x =是R 上的奇函数,严格增函数,由2(3)(2)0f a f a −+>得2(3)(2)(2)f a f a f a −>−=−,所以232a a −>−,解得(,3)(1,)a ∈−∞−+∞.(B 组题)已知函数()y f x =是定义在实数集R 上的偶函数,若()f x 在区间(0,)+∞上 是严格增函数,且(2)0f =,则不等式()0f x x≤的解集为 【答案】(,2](0,2]−∞−二. 选择题11. 已知a 、b 都是实数,那么“a b >”是“33a b >”的( C )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件12. 函数412x xy +=的图像的对称性为( B ) A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 关于直线y x =对称 13. 已知全集U =R 及集合21{|284a A a −=≤<,且}a ∈Z ,2{|3100Bb b b =+−>, 其中}b ∈R ,则AB 的元素个数为( B )A. 4B. 3C. 2D. 114. 已知函数2x y x =+,ln y x x =+,lg y x x =+的零点依次为1x 、2x 、3x ,则1x 、2x 、3x 的大小关系为( D )A. 123x x x <<B. 213x x x <<C. 231x x x <<D. 132x x x <<【解析】转化为123()2,()ln ,()lg xf x f x x f x x ===与y x =−交点的横坐标的大小关系,易得132x x x <<,故选D.15.(A 组题)设()y f x =是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意 的[,2]x t t ∈+,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( A )A. )+∞B. [2,)+∞C. (0,2]D. [1][2,3]−【解析】当0x ≥时,2()f x x =满足2())f x f =,易得在R 上,2())f x f =,则对任意[,2]x t t ∈+,不等式())f x f t +≥恒成立,易得()y f x =是定义在R 上的严格增函数,所以x t +≥恒成立,所以1)t x ≥恒成立,所以1)(2)t t ≥−+,解得)t ∈+∞. (B 组题)若函数||y x a =−−与1ay x =+在区间[1,2]上都是严格减函数,则实数a 的 取值范围为( D )A. (,0)−∞B. (1,0)(0,1]−C. (0,1)D. (0,1]三. 解答题16. 已知a 、b 是任意实数,求证:4433a b a b ab +≥+,并指出等号成立的条件.【解析】因为()()()()44334343a b a b ab a a b b ab +−+=−+− ()3333()()()a a b b b a a b a b =−+−=−−()22222213()()24a b a ab b a b a b b ⎡⎤⎛⎫=−++=−++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故()()44330a b a b ab +−+≥,即4433a b a b ab +≥+,当且仅当a b =时,等号成立.17. 某居民小区欲在一块空地上建一面积为12002m 的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:m ),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少? 【解析】设矩形停车场的南北侧边长为x 米,则其东西侧边长为1200x 米, 人行通道占地面积为12007200(6)81200848S x x x x ⎛⎫=++−=++⎪⎝⎭,由平均值不等式,得7200848482244896S x x =++≥+=⨯+=, 当且仅当72008x x =,即30x =时,min 96S =,此时120040x=, 设计矩形停车场的南北侧边长为30m ,则其东西侧边长为40m ,才能使人行通道占地面积最小,最小面积是2528m .18. 已知函数23||1x y x −=+. (1)作出这个函数的大致图像; (2)讨论关于x 的方程23||1x t x −=+的根的个数. 【解析】(1)因为235211x y x x −==−++, 故先将5y x=−的图像向左平移1个单位,再向上平移2个单位,得到函数521y x =−+的图像,再将函数521y x =−+的图像在x 轴下方部分 翻折到x 轴上方,便得到函数23||1x y x −=+的大致图像; (2)当0t <时,方程23||1x t x −=+的根的个数为0, 当0t =或2t =时,方程23||1x t x −=+的根的个数为1, 当02t <<或2t >时,方程23||1x t x −=+的根的个数为2.19. 已知函数16()1x f x a a+=−+(0a >,1a ≠)是定义在R 上的奇函数.(1)求实数a 的值及函数()y f x =的值域;(2)若不等式()33x t f x ⋅≥−在[1,2]x ∈上恒成立,求实数t 的取值范围. 【解析】(1)由()f x 是定义在R 上的奇函数得6(0)0,10f a a=−=+,解得3a =, 此时31()31x x f x −=+,故对于任意的x R ∈,有3131()()03131x x x x f x f x −−−−+−=+=++,即()f x 是定义在R 上的奇函数,所以3a =,令31()31x x f x y −==+,则1301x y y +=>−,解得11y −<<, 即函数()y f x =的值域为(1,1)−;(2)法一:由(1)得31()31x x f x −=+,于是不等式()33x t f x ⋅≥−可化为()23(2)3(3)0xx t t −+⋅+−≤,令3[3,9]x u =∈(因为[1,2]x ∈),则不等式2(2)(3)0u t u t −+⋅+−≤在[3,9]u ∈上恒成立,令2()(2)(3)g u u t u t =−+⋅+−,则()0g u ≤在[3,9]u ∈上恒成立,等价于(3)0(9)0g g ≤⎧⎨≤⎩,即(3)93(2)(3)0(9)819(2)(3)0g t t g t t =−++−≤⎧⎨=−++−≤⎩151522t t t ≥⎧⎪⇔⇔≥⎨≥⎪⎩,所以,实数t 的取值范围是15,2⎡⎫+∞⎪⎢⎣⎭. 法二:由(1)得31()31x x f x −=+,当[1,2]x ∈时,()0f x >,于是不等式()33x t f x ⋅≥−可化为 ()()()()2333131433431()313131x x x xx x x xt f x −+−−−≥===−−−−−, 令31[2,8]x v −=∈(因为[1,2]x ∈),则由函数4()φv v v =−在[2,8]上是严格增函数知max 15()(8)2φv φ==, 所以,实数t 的取值范围是15,2⎡⎫+∞⎪⎢⎣⎭. 20.(A 组题)已知函数212log (1)0()log (1)0x x f x x x +≥⎧⎪=⎨−<⎪⎩.(1)判断函数()y f x =的奇偶性;(2)对任意的实数1x 、2x ,且120x x +>,求证:12()()0f x f x +>; (3)若关于x 的方程23[()]()04f x af x a +−+−=有两个不相等的正根,求实数a 取值范围. 【解析】(1)2(0)log (10)0f =+=,当0x >时,0x −<,有122()log [1()]log (1)()f x x x f x −=−−=−+=−,即()()f x f x −=−,当0x <时,0x −>,有212()log [1()]log (1)()f x x x f x −=+−=−−=−,即()()f x f x −=−,综上,函数()y f x =在R 上是奇函数;(2)因为函数2log y x =在(0,)+∞上是严格增函数,函数1u x =+在R 上也是严格增函数,故函数2log (1)y x =+在[0,)+∞上是严格增函数, 由(1)得函数()y f x =在R 上是奇函数,由奇函数的单调性得, 函数12log (1)y x =−在(,0)−∞上也是严格增函数,从而函数()y f x =在R 上是严格增函数,由120x x +>,得12x x >−,所以()()()122f x f x f x >−=−, 即()()120f x f x +>;(3)由(1)得函数()y f x =在R 上是奇函数,故原方程可化为23[()]()04f x af x a −+−=, 令()f x t =,则当0x >时,()0t f x =>,原方程有两个不相等的正根等价于:关于t 的方程2304t at a ⎛⎫−+−= ⎪⎝⎭有两 个不相等的正根,即23401343001,343344a a a a a a a a a a ⎧⎛⎫⎧∆=−−> ⎪⎪⎪<>⎝⎭⎪⎪⎪>⇔>⇔<<>⎨⎨⎪⎪⎪⎪−>>⎩⎪⎩或或,所以实数a 取值范围为3,1(3,)4⎛⎫+∞ ⎪⎝⎭.(B 组题)设a 是正常数,函数2()log )f x ax =满足(1)(1)0f f −+=. (1)求a 的值,并判断函数()y f x =的奇偶性;(2)是否存在一个正整数M ,使得()M f x >对于任意x ∈恒成立?若存在,求出M 的最小值,若不存在,请说明理由.【解析】(1)由(1)(1)0f f −+=得22log )log )0a a +=,即()22log 20a −=,注意到0a >,解得1a =,于是)2()log f x x =+,对于任意实数x ||0x x x x >=+≥,0x +>恒成立,故()y f x =的定义域是R ,在R 中任取一个实数x ,都有x R −∈,并且))22()log log f x x x −=−=)22log log ()x f x ==−+=−,故()()f x f x −=−,因此)2log y x =是奇函数;(2)设12,x x 是区间上任意给定实数,且12x x <,易知2212011x x <+<+,故120x x <+<,因为2log y x =在(0,)+∞上是严格增函数,故))2122log log x x +<+,从而)2log y x =在上是严格增函数,此时函数的最大值为2log (2,由()M f x >对于任意x ∈恒成立,得2log (2M >+, 又M 是正整数,故M 的最小值是2.附加题对于定义在D 上的函数()y f x =,设区间[,]m n 是D 的一个子集,若存在0(,)x m n ∈,使得函数()y f x =在区间0[,]m x 上是严格减函数,在区间0[,]x n 上是严格增函数,则称函数()y f x =在区间[,]m n 上具有性质P .(1)若函数2y ax bx =+在区间[0,1]上具有性质P ,写出实数a 、b 所满足的条件; (2)设c 是常数,若函数3y x cx =−在区间[1,2]上具有性质P ,求实数c 的取值范围. 【解析】(1)当函数2y ax bx =+在区间[0,1]上具有性质P 时,由其图像在R 上是抛物线, 故此抛物线的开口向上(即0a >),且对称轴是(0,1)2bx a=−∈, 于是实数a 、b 所满足的条件为20a b −<<;(2)记3()f x x cx =−,设12,x x 是区间[1,2]上任意给定的两个实数,总有()()()()2212121122f x f x x x x x x x c −=−++−,若3c ≤,当12x x <时,总有120x x −<且2211220x x x x c ++−>, 故()()120f x f x −<,因此3y x cx =−在区间[1,2]上是严格增函数,舍去,若12c ≥,当12x x <时,总有120x x −<且2211220x x x x c ++−<, 故()()120f x f x −>,因此3y x cx =−在区间[1,2]上是严格减函数,舍去,若312c <<,当12x x <且12,x x ⎡∈⎢⎣时,总有120x x −<且2211220x x x x c ++−<,因此3y x cx =−在区间⎡⎢⎣上是严格减函数,当12x x <且12,x x ⎤∈⎥⎦时,总有120x x −<且2211220x x x x c ++−>,故()()120f x f x −<,因此3y x cx =−在区间⎤⎥⎦上是严格增函数,因此,当(3,12)c ∈时,函数3y x cx =−在区间[1,2]上具有性质P .控江中学2020学年度第一学期期终考试高一数学试卷一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知全集{}{}210,27U x x A x x =<≤=<<,则A =_________. 【答案】[]7,102.设实数a 满足2log 4a =,则a =_________. 【答案】163.已知幂函数235()(1)m m f x m x −−=−的图像不经过原点,则实数m =_________.【答案】24.函数2()21f x x ax =−−在区间[]1,3上为严格减函数的充要条件是_________. 【答案】3a ≥5.函数22()log (1)f x x =−的定义域为_________. 【答案】(1,1)− 6.设函数2,0(),,0x x f x x x −≤⎧=⎨>⎩若()9f α=,则α=_________. 【答案】3或9−7.若函数()(1)xf x a a =>在[]1,2−上的最大值为4,则其最小值为_________.【答案】128.在同一平面直角坐标系中,函数()y g x =的图像与3xy =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =−,则a 的值是______.【解析】3()log g x x =,3()log ()()1g a a f a −=−==−,所以13a =−. 9.如果关于x 的方程53x x a −++=有解,则实数a 的取值范围是_________. 【解析】=53(5)(3)8a x x x x −++≥−−+=.10.若定义在R 上的奇函数()f x 在(0,)+∞上是严格增函数,且(4)0f −=,则使得()0xf x >成立的x 的取值范围是_________.【解析】()0xf x >,所以,()x f x 同号,又()f x 在(0,)+∞上是严格增函数且为奇函数,(4)0f −=,所以()f x 在(,0)(0,)−∞+∞和上是严格增函数, (4)(4)(0)0f f f −===画出大致图像,()x f x 和在(,4)(4,)−∞−+∞和上同号, 所以(,4)(4,)x ∈−∞−+∞.11. 函数()lg(221)x xf x a −=++−的值域是R ,则实数a 的取值范围是___________.【解析】2211x xa a −++−≥+,所以101a a +≤⇒≤−.12. 若直角坐标平面内两点,P Q 满足条件:①,P Q 都在函数()f x 的图像上;②,P Q 关于原点对称,则对称点(,)P Q 是函数()f x 的一个“匹配点对”(点对(,)P Q 与(,)Q P 看作同一个“匹配点对”),已知函数2241,0()2,0x x x x f x x e ⎧++<⎪=⎨≥⎪⎩,则()f x 的“匹配点对”有____个.【解析】根据题意:画出两函数的图像,并把2241(0)y x x x =++>的图像关于原点对称的图像,如图:观察图像可得, 他们的交点个数是:2二、选择题13.函数111y x =−+的值域是( C ) A.(,1)−∞ B.(1,)+∞ C.(,1)(1,)−∞+∞ D.(,)−∞+∞ 14.若,0a b c a b c >>++=,则下列各式正确的是( D ) A.ab bc > B.ac bc > C.a b b c > D.ab ac >15.已知函数1,0()0,01,0x f x x x >⎧⎪==⎨⎪−<⎩,若2()()F x x f x =⋅,则()F x 是( B )A.奇函数,在(,)−∞+∞上为严格减函数B.奇函数,在(,)−∞+∞上为严格增函数C.偶函数,在(,0)−∞上严格减,在(0,)+∞上严格增D.偶函数,在(,0)−∞上严格增,在(0,)+∞上严格减16.设0a b c >>>,则221121025()a ac c ab a a b ++−+−取得最小值时,a 的值为( A )2 C. 4D.【解析】2222111121025(5)()()a ac c a c a ab ab ab a a b ab a a b ++−+−+−+++−=− 211(5)()0224()a c ab a a b ab a a b =−+++−+≥++=−, 当且仅当50,1,()1ac ab a a b −==−=,即25a b c ===时取等号, 故选A.三、解答题17.已知函数2()21f x ax ax =++.(1)若实数1a =,请写出函数()3f x y =的单调区间(不需要过程); (2)已知函数()y f x =在区间[3,2]−上的最大值为2,求实数a 的值. 【解析】(1)当1a =时,222(())11333xx x f x y +++===,严格增区间是(1,)−+∞,严格减区间是(,1)−∞−; (2)①当0a >时,对称轴1[3,2]x =−∈−,所以(2)4412f a a =++=,解得18a =, ②当0a =时,()1f x =不合题意, ③当0a <时,对称轴1[3,2]x =−∈−, 所以(1)212f a a −=−+=,解得1a =−,综上,18a =或1a =−. 18.设函数()|2|,()2f x x a g x x =−=+.(1)当1a =时,求不等式()()f x g x ≤的解集;(2)求证:1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.【解析】(1)当1a =时,不等式()()f x g x ≤即|21|2x x −≤+,所以12212x x x ⎧≤⎪⎨⎪−+≤+⎩或12212x x x ⎧≥⎪⎨⎪−≤+⎩,解得133x −≤≤, 故解集为1,33⎡⎤−⎢⎥⎣⎦;(2)反证法,假设1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都小于12,则111111,,1222222a b a b a −<+<−<−<−<−<,前两式相加,得1122a −<<,由最后一个式子得1322a <<,矛盾,所以1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.19. 研究表明:在一节40分钟的网课中,学生的注意力指数y 与听课时间x (单位:分钟)之间的变化曲线如图所示,当[0,16]x ∈时,曲线是二次函数图像的一部分;当[16,40]x ∈ 时,曲线是函数0.880log ()y x a =++图像的一部分,当学生的注意力指数不高于68时, 称学生处于“欠佳听课状态”. (1)求函数()y f x =的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态” 的时间有多长?(精确到1分钟)【解析】(1)当[0,16]x ∈时,设2()(12)84(0)f x b x b =−+<由(16)80f =,得:2(1612)84=80b −+,故14b =−...............2分 当[16,40]x ∈时,由(16)80f =,得:0.8log (16)8080a ++=, 故15a =−.................4分所以20.81(12)84,[0,16]()4log (15)80,(16,40]x x f x x x ⎧−−+∈⎪=⎨⎪−+∈⎩...........................6分(2)当[0,16]x ∈时,由21(12)84684x −−+≤,得:[0,4]x ∈......................3分当[16,40]x ∈时,由0.8log (15)8068x −+≤,得:12150.829.6x −≥+≈所以[30,40]x ∈...........................3分因此,在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有14分 钟..............8分.20. 已知1()log 1amxf x x −=−(0a >、1a ≠)是奇函数. (1)求实数m 的值;(2)判断函数()f x 在(1,)+∞上的单调性,并给出证明;(3)当(,2)x n a ∈−时,()f x 的值域是(1,)+∞,求实数a 与n 的值. 【解析】(1)因为函数()f x 是奇函数,所以()()0f x f x −+=在定义域内恒成立,所以11log log 011aa mx mx x x +−+=−−−,即11111mx mxx x +−⋅=−−−, 即22211m x x −=−在定义域内恒成立,所以21m =,又当1m =时,111mxx −=−−矛盾,所以1m =−; (2)由(1)得1()log 1a x f x x +=−,设11221111x x t x x x +−+===+−−−, 设12,1,)x x ∈+∞,且12x x >,则()()()211212122221111x x t t x x x x −−=−=−−−−, 因为12,1,)x x ∈+∞,且12x x >,所以122110,10,0x x x x −>−>−<, 所以120t t −<,即12t t <,当1a >时,12log log a a t t <,()()12f x f x <,()f x 严格减, 同理,当01a <<时,()f x 严格增;(3)函数()f x 的定义域为(,1)1,)−∞−+∞,①当21n a <−≤−时,01a <<,所以()f x 在(,2)n a −上严格增,要使得()f x 的值域是(1,)+∞,则1log 1121an n a +⎧=⎪−⎨⎪−=−⎩,无解; ②当12n a ≤<−时,3a >,所以()f x 在(,2)n a −上严格减,要使得()f x 的值域是(1,)+∞,则1,1log 13a n a a =⎧⎪−⎨=⎪−⎩,解得2a =+或2a =,综上,1,2n a ==+.21.若函数()f x 的定义域为D ,集合M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()f x 为M 上的t −增长函数.(1)已知函数()g x x =,判断()g x 是否为区间[]1,0−上的32−增长函数,并说明理由; (2)已知函数()f x x =,且()f x 是区间[4,2]−−上的n −增长函数,求正整数n 的最小值;(3)如果()f x 是定义域为R 的奇函数,当0x ≥时,22()f x x a a =−−,且()f x 为R 上的4−增长函数,求实数a 的取值范围.【解析】(1)()g x x =是;因为[]1,0x ∀∈−,()3330222g x g x x x ⎛⎫⎛⎫+−=+−=> ⎪ ⎪⎝⎭⎝⎭; (2)由题意得,x n x +>对[4,2]x ∈−−恒成立等价于2222x nx n x ++>,即220nx n +>对[4,2]x ∈−−恒成立 因为0n >,所以22nx n +是关于x 的一次函数且单调递增,于是只需280n n −+>,解得8n >,所以满足题意的最小正整数n 为9.(3)由题意得2222222,(),2,x a x a f x x a x a x a x a ⎧+≤−⎪=−−<<⎨⎪−≥⎩已知任意x ∈R ,(4)()f x f x +≥,因为()f x 在22[,]a a −上递减,所以,4x x +不能同时在区间22[,]a a −上,因此2224()2a a a >−−=,注意到()f x 在2[2,0]a −上非负,在2[0,2]a 上非正若22244a a <≤,当22x a =−时,24[0,2]x a +∈,此时(4)()f x f x +≤,矛盾,因此244a >,即(1,1)a ∈−.当244a >时,下证()f x 为R 上的4-增长函数: ①当24x a +≤−,(4)()f x f x +>显然成立,②当224a x a −<+<时,2243x a a <−<−,此时2(4)(4)f x x a +=−+>−,22()2f x x a a =+<−,(4)()f x f x +>③当24x a +≥时,22(4)422()f x x a x a f x +=+−>+≥ 因此()f x 为R 上的4-增长函数综上,为使得()f x 为R 上的4-增长函数a 的取值范围是()1,1−.长宁区2020学年第一学期高一年级数学期末考试试卷(考试时间90分钟,本卷满分100分)一、填空题(本大题共12小题,每小题3分,共36分.答案填在答题纸相应位置). 1.已知全集为R ,集合{}32A x x =−≤<,则A = . 【答案】()[),32,−∞−+∞2.函数y =的定义域为 .【答案】[)1+∞,3.若幂函数a y x =在区间()0,+∞上是严格减函数,则实数a 的取值范围是 . 【答案】(),0−∞4.设一元二次方程2630x x −−=的两个实根为1x 、2x ,则2212x x += . 【答案】425.已知:31x m α<−,:2x β<,若α是β充分条件,则m 的取值范围是 . 【答案】1m ≤6.若()2log 10x −>,则x 的取值范围是 . 【答案】2x >7.设a 、b 都为正数,且4a b +=,则11a b+的最小值为 . 【答案】18.设关于x 的不等式21110a x b x c ++>与22220a x b x c ++>的解集分别为A 、B ,则不等式组2111222200a xb xc a x b x c ⎧++≤⎪⎨++>⎪⎩的解集可以用集合A 、B 的运算表示为 . 【答案】A B9.已知lg 2a =,103b =,试用a 、b 表示12log 25= . 【答案】()212a a b−+10.已知函数[]()220,1y x ax x =+∈的最小值为2−,则实数a = . 【答案】32−11.设关于x 的方程()223,x x ax b a b −+−=+∈R 解集为M ,关于x 的不等式()()2230x x −−≥的解集为N ,若集合M N =,则a b ⋅= .【答案】15−12.若函数()121log 1,1021,0x x x y x m−−−≤<⎧⎪=⎨⎪−≤≤⎩的值域为[]1,1−,则实数m 的取值范围为 .【答案】12m ≤≤二、选择题(本大题共4小题,每小题3分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)13.下列四组函数中,两个函数相同的是( C ). .A y =2y =;.B 1y =和0y x =;.C {}()0,1y x x =∈和{}()20,1y x x =∈;.D 2log a y x =和2log a y x =.14.函数1312xy x ⎛⎫=− ⎪⎝⎭的零点所在区间为( B )..A 10,3⎛⎫ ⎪⎝⎭;.B 11,32⎛⎫⎪⎝⎭;.C 12,23⎛⎫⎪⎝⎭;.D 2,13⎛⎫ ⎪⎝⎭.15.在同一直角坐标系中,二次函数2y ax bx =+与幂函数()0b ay x x =>图像的关系可能为( A ).A .B .C .D 16.已知“非空集合M 的元素都是集合P 的元素”是假命题.给出下列四个命题: ①M 的元素不都是P 的元素; ②M 的元素都不是P 的元素; ③存在x P ∈且x M ∈;④存在x M ∈且x P ∉;这四个命题中,真命题的个数为( B )..A 1个;.B 2个;.C 3个.D 4个;【解析】①④正确.三、解答题(本大题共5小题,共52分.解答要写出文字说明、证明过程或演算步骤). 17.(本题满分6分)已知集合{}23A x x =−<,集合1207x B xx −⎧⎫=>⎨⎬−⎩⎭.求集合A B .【解析】{}()231,5A x x =−<=−,1210,772x B xx −⎧⎫⎛⎫=>=⎨⎬ ⎪−⎩⎭⎝⎭,所以()1,7A B =−18.(本题满分8分,共有2小题,第(1)小题4分,第(2)小题4分). 化简下列代数式(1)())1620a aa +<;(2)010a <<.【解析】(1)()163332a aa a a a a a a +=++=−−+=−;(21lg a ===−.19.(本题满分10分,共有2小题,第(1)小题5分,第(2)小题5分)甲、乙两城相距100km ,某天然气公司计划在两地之间建天然气站P 给甲、乙两城供气.设P 站距甲城km x ,为保证城市安全,天然气站距两城市的距离均不得少于10km .已知建设费用y (万元)与甲、乙两地的供气距离()km 的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P 距甲城的距离为40km 时,建设费用为1300万元. (1)把建设费用y (万元)表示成P 站与甲城的距离()km x 的函数,并求定义域; (2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.【解析】(1)设比例系数为k ,则22(100)(1090)y k x x x ⎡⎤=+−≤≤⎣⎦又40,1300x y ==,所以()2213004060k =+,即14k =, 所以()22211(100)1005000(1090)42y x x x x x ⎡⎤=+−=−+≤≤⎣⎦(2)由(1)可得()22211(100)100500042y x x x x ⎡⎤=+−=−+⎣⎦, 所以()22111005000(50)125022y x x x =−+=−+, 所以当50x =时,y 有最小值为1250万元,所以天然气供气站建在距甲城50km 时费用最小,最小费用的值为1250万元.20.(本题满分14分,共有3小题,第(1)小题4分,第(2)小题5分,第(3)小题5分).设()2121x x f x −=+.(1)判断函数()y f x =的奇偶性,并说明理由; (2)求证:函数()y f x =在R 上是严格增函数; (3)若()()2110f t f t −+−<,求t 的取值范围. 【解析】(1)函数()y f x =为奇函数,证明如下:易知()2121x x f x −=+的定义域为(),−∞+∞,关于原点对称,()()()()22121122112221x xx xx xx x f x f x −−−−−−−−====−+++,所以()y f x =为奇函数; (2)任取12,x x R ∈,且12x x <易知()212122=1212121x x x x xf x −+−==−+++,()()()()()1212212212222222211212121212121x x x x x x x x f x f x −⎛⎫−=−−−=−= ⎪++++++⎝⎭因为12x x <,所以2112210,0,10,22212022x x x x x x >>−<+>+>,所以()()120f x f x −<,即()()12f x f x <, 所以函数()y f x =在R 上是严格增函数; (2)因为()y f x =在R 上是奇函数且严格增,所以()()()()()222110111f t f t f t f t f t −+−<⇔−<−−=−()()221120210t t t t t t ⇔−<−⇔+−>⇔+−>,解得1t >或2t <−,所以t 的取值范围是1t >或2t <−.21.(本题满分14分,共有3小题,第1小题4分,第2小题4分,第3小题6分)设()()2af x x a x=−+∈R . (1)求不等式()()11f x f x −−>的解集M ; (2)若函数()y f x =在()0,+∞上最小值为114a −+,求实数a 的值;。
学校:___________姓名:___________班级:___________考号:___________一、单项选择第1页共16页◎第2页共16页第3页 共16页◎第4页 共16页二、选用适当的单词或短语补全短文三、完形填空第5页 共16页◎第6页 共16页38.A .outdated B .original C .cheap D .available 39.A .connecting B .designing C .printing D .copying 40.A .opposed B .attached C .possible D .fundamental 41.A .In addition B .In particular C .In summary D .In detail 42.A .leads to B .sorts out C .takes down D .makes for 43.A .healthy B .virtual C .real D .working 44.A .choice B .reference C .responsibility D .downside 45.A .experienced B .avoided C .underrated D .disliked 46.A .turn to B .think about C .make up D .set aside 47.A .Outside B .Opposite C .Against D .Inside 48.A .debate B .end C .tragedy D .achievement 49.A .pointless B .positive C .personal D .peaceful 50.A .damageB .affectC .useD .forget四、阅读理解disappear, but no, there they were, watering, pulling weeds and checking for insects.One day I slipped out by myself to the garden, feeling a little bit guilty. I had a suspicion that the sugar snap peas were ripe, and I wanted a taste. As I walked along the row, a little voice piped up behind me. “What are you eating, Mama?”Abby’s big blue eyes sparkled as I showed her how to pull the strings off and pop (剥出) the peas into her mouth. She just loved how tasty they were. Then my sweet seven-year-old girl put me to shame. “Mama, I’ve got to pick a bunch. Won’t the others love them? I can’t wait to share.”I realized how selfish I had been. I’d tried to keep the joys of gardening to myself, and here was a child who couldn’t wait to share with her brothers and sisters. I held back tears and said, “Sure, honey, let’s pick some and I’ll show you how to prepare them. We’ll make the most wonderful supper.”51.Why did the writer ask her children to do chores whenever they were in the garden?A.She didn’t want to do all the work on her own.B.She intended to show the hard labor of gardening.C.She didn’t want them to get hurt or get too tired.D.She was determined to keep the garden to herself.52.What were the children like?① loud ②lively ③ guilty ④ loving ⑤ strongA.①②③④B.①②④C.①②③D.④⑤53.The underlined word “resent” probably means________.A.dislike B.expect C.keep D.sacrifice54.What did the writer try to tell the readers with this story?A.The best way to communicate with children is by working together.B.The golden rule of gardening is that many hands make light work.C.Everything feels better when shared with your family or your friend.D.Parents should spend as much time with their children as possible.Six Best Places for ________ in Paris第7页共16页◎第8页共16页boat snapped a photo of the humpback near Madagascar.To match the two sightings, Stevick's team used an extensive international catalogue of photographs ofthe undersides of tail flukes, which have distinctive markings. Researchers routinely compare the markingsin each new photograph to those in the archive.The scientists then estimated the animal's shortest possible route: an are skirting the southern tip ofSouth Africa and heading north-east towards Madagascar. The minimum distance is 9,800 kilometers, saysStevick, but this is likely to be an underestimate, because the whale probably took a roundabout way to feedon frill in the Southern Ocean near Antarctica before reaching its destination.Most humpback-whale researches focus on their efforts on the Northern Hemisphere because theSouthern Ocean near the Antarctica is a tough environment and it is hard to get to, explaining RochelleConstantine, who studies the ecology of humpback whales at the University of Auckland in New Zealand.But, for whales, oceans in the Southern Hemisphere are wider and easier to travel across, says Constantine.Scientists will probably observe more long-distance migrations in the Southern Hemisphere as satellitetracking becomes increasingly common, she adds.Daniel Palacios, an oceanographer at the University of Hawaii at Monoa, says that record-breakingjourney could indicate that migration patterns are shifting as populations begin to recover fromnear-extinction and the population increases. But the reasons why whale did not follow the usual migrationroutes remain a mystery. She could have been exploring new habitats, or simply have lost her way. “Wegenerally think of humpback whales as very well studied, but then they surprise us with things like this,”Palacios says. “Undoubtedly there are a lot of things we still don't know about whale migration.”58.In what way was the whale's journey considered unusual?A.It covered a long distance from west to east.B.A female whale rather than a male one completed it.C.The whale moved from its breeding ground to its feeding area.D.No one had ever spotted the whale other than at its destination.59.Why did the researchers compare the markings on tail flukes?A.There is a vast collection of such markings.B.The markings there last by far the longest.第9页共16页◎第10页共16页C.No two whales share the same markings.D.The markings are easiest to photograph. 60.What can be inferred from the passage?A.More evidence should have been provided that the whale had even arrived at Madagascar.B.South Hemisphere can provide more information about humpback whales' migration.C.The whale's actual route might well have been shorter than the scientists had estimated.D.North Hemisphere's environment is becoming tougher for whales to survive. 61.What is the passage mainly about?A.A female whale was spotted twice in the Southern Ocean.B.Research on whales is a breakthrough.C.Whales' migration routes vary with the climate change.D.A whale surprises researchers with her journey.五、六选四六、用单词的适当形式完成短文第11页共16页◎第12页共16页七、汉译英(整句)76.先进农业技术的引进使得这个农庄重新焕发了生机。