第7章 刚体力学
- 格式:ppt
- 大小:3.06 MB
- 文档页数:70
力学(第二版)漆安慎习题解答第七章刚体力学第七章 刚体力学 一、基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c //求质心方法:对称分析法,分割法,积分法。
⒉刚体对轴的转动惯量定义:∑⎰==dm r I r m I ii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==c c c c I a m F βτ(不必考虑惯性力矩)动能:221221cc c k I mv E ω+= ⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ二、思考题解答7.1 火车在拐弯时所作的运动是不是平动?答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。
若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。
但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。
7.2 对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动?答:对静止的刚体施以外力作用,当合外力为了零,即0i c F ma ==∑时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。
所以,对某一确定点刚体所受合外力的力矩i i iM M r F ==⨯∑∑不一定为零。
由刚体的转动定律M J α=可知,刚体将发生转动。
比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。
第七章刚体力学习题解答7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。
⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。
边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。
⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。
解:0.222.1==+==dtd dtd t ωθβω⑴t=0时,s m R v v y x /12.01.02.10,2.1=⨯====ωω2222/2.01.00.2/144.01.0/12.0/sm R a a s m R v a a y y n x =⨯===-=-=-=-=βτ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/ssm R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =⨯⨯=︒=-=⨯⨯-=︒-=ωω222222222222/182.0)14.20.2(1.0)(45sin 45sin 45sin /465.0)14.20.2(1.0)(45cos 45cos 45cos s m R R R a s m R R R a y x -=-⨯=-︒=︒-︒=-=+⨯-=+︒-=︒-︒-=ωβωβωβωβ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s2222/77.01.078.2/2.01.00.20/278.01.078.2s m R a s m R a v s m R v y x y x -=⨯-=-=-=⨯-=-==-=⨯-=-=ωβω7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω=10rad/s 逆时针转动,求臂与铅直成45º时门中心G 的速度和加速度。
第七章刚体力学习题及解答7。
1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度。
估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据)。
解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min。
(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0。
1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上。
x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影。
解:( 1)( 2) 时,由( 3)当时,由7。
1。
5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同.所以:7。
1.6 收割机拔禾轮上面通常装4到6个压板。
拔禾轮一边旋转,一边随收割机前进。
压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1。
2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。
取收割机前进的方向为坐标系正方向7。
1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min。
(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹。
第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s 估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转[解 答](1)22(30001200)1/601.57(rad /s )t 12ωπβ⨯-⨯===V V(2)222220()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为球t 时刻的角速度和角加速度.[解 答]7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45o 时,(3)转过90o时,A 点的速度和加速度在x 和y 轴上的投影.[解 答](1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==v(2)45θ=o时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v R πθωω=+==∴==⨯v v v得(3)当90θ=o时,由7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45o 时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D点相同。
所以:7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反. 已知收割机前进速率为1.2m/s ,拔禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度.[解 答]取地面为基本参考系,收割机为运动参考系。
第七章刚体力学在前面几章的学习中,我们先后讨论了质点、质点组在外力和内力作用下的运动规律。
在本章的学习中,我们将讨论质点组内各质点间无相对运动的一种特殊情况——刚体在外力作用下的运动规律。
刚体:在任何情况下形状大小都不发生变化的质点及合或各质点间没有相对运动的特殊质点系。
0,≡j i r d(i,j=1,2, )刚体这一概念虽然是一种理想化抽象模型,但却十分有用,因此又必要将刚体力学作一番深入地探讨。
同质点力学的情况相同,我们也是从两方面研究刚体力学。
刚体力学今天学习的内容:§7﹒1刚体运动的描述所做的工作:讨论刚体定轴转动和平面运动的运动学特征。
§7﹒1刚体运动的描述与质点力学的情况相同,所谓对刚体运动进行描述,就是研究刚体内任一点随时间的变化情况——研究刚体内任一点的速度、加速度随时间的变化规律。
目前,我们着重讨论前三种类型的刚体运动。
(一) 刚体的平动刚体最基本的运动形式是平动和绕固定轴的转动。
所以在学习刚体运动学时,都是从研究平动和绕固定轴的转动开始的。
所谓平动指的是:在运动过程中,刚体中任意一条直线在各个时刻的位置都保持平行或平行与自身的运动。
如图7-1所示,对刚体上任意二质点之间有关系式:ij i j r r r+=平动≡⇒ij r恒矢量,故而dtr d dt r d j i =及2222dt r d dt r d j i=所以,刚体平动时体内各质元的速度、加速度相等——任一点的运动均可代表整体的运动。
(二) 刚体绕固定轴的转动定轴转动,所有质元都在与某一直线垂直的诸平面上作圆周运动,且圆心在该直线上,并称该直线为转轴。
刚体运动学:研究刚体的运动情况以及如何对刚体的运动进行描述 刚体动力学:研究引起刚体运动状态发生变化的原因,进而阐明各种运动是如何由所受外力产生的。
刚体运动可分为五种类2、定轴转动 1、平动3、平面平行运动4、定点转动5、一般运动图7-1x图7-2建立直角坐标系,令z 轴与转轴重合,如图7-2有相同的x-y 坐标但z 不同质点都有相同的运动状态(a v,),任截面的运动可以代表整体的运动。
第七章刚体单元测验题一、选择题1.长为l 的不均匀细杆的线密度λ=bx ,x 为离杆的一端O 的距离,b 为常数.该杆对过O 端并垂直于杆的轴的转动惯量是A.22bl ; B.32bl ; C.33bl ; D.44bl 答案:D解:转动惯量:2J dJ x dm==⎰⎰其中,bxdxdx dm ==λ积分得:4==420∫bl bxdx x J l2.半径为R 、质量为m 的均质圆盘可绕过其中心且与盘面垂直的铅垂轴转动,圆盘对此转轴的转动惯量为A.2mR ;B.221mR ;C.232mR ;D.3mR 答案:B解:距离转轴r 、宽度为dr 的小圆环的转动惯量为222)2(==r dr r Rm dmr dJ ππ整个圆盘的转动惯量为2=)2(==22200∫∫mR r dr r R m dJ J RR ππ3.半径为R 、质量为m 的均质圆盘可绕过其中心且与盘面垂直的铅垂轴转动,圆盘与水平面间的摩擦系数为μ,则圆盘受到的摩擦力矩大小为A.μmgR μ21;C.mgR μ32;D.2mgR μ答案:C解:距离转轴r 、宽度为dr 的小圆环所受摩擦力对转轴的力矩为:r g dr r RmdM )2(=2ππμ总的摩擦力对转轴的力矩:32=)2(==2200∫∫mgR gr dr r R m dM M R Rμππμ4.一块边长为a 、质量为m 0的正三角形薄板对过其一边的轴的转动惯量为A.20=a m J ;B.2021=a m J ;C.2031=a m J ;D.2081=a m J 答案:D 解:如图建立坐标系在x dx 、平行于y 轴的细条质元,其质量为:23dm ydx xdx ρρ==该细条质元绕一边的转动惯量为:2)2dJ a x dm =-积分得所求转动惯量:3222001)238J dJ x xdx m a ρ ==-=⎰⎰.5.下列关于定轴转动刚体的运动特点,正确的是A.刚体(非转轴)上的任一质点都作平面圆周运动.B.刚体(非转轴)上的不同质点转动速度大小相等.C.刚体上距离转轴近的质点转动角速度小、距离转轴远的质点转动角速度大.D.质量小的刚体转动得快、质量大的刚体转动得慢.答案:A二、填空题1.如图,质量分别为m 1=200g 、m 2=250g 的两个物体用不可伸长的轻绳相连,绳子套在质量m 0=100g ,半径r =10cm 的质量均匀的圆盘形滑轮上,绳的质量及滑轮轴承处、物体与桌面间的摩擦均可忽略不计,绳与滑轮之间无滑动.m 1的加速度a =m/s2.(结果保留一位小数).3.8~4.0)解:设滑轮转动的角加速度为α对1m 应用牛顿第二定律:111T m g F m a-=对2m 应用牛顿第二定律:am F T 22=对0m 应用转动定律:12T T F r F r J α-=其中,定滑轮的转动惯量:2012J m r =绳与滑轮无滑动条件:a r α=联立解得:210122 3.9m s 22m g a m m m ==++三、判断题1.刚体转动有限大的角位移可以看做矢量答案:错2.刚体转动无限小的角位移可以看做矢量答案:对3.定轴转动刚体的转动动能等于其质心运动的动能答案:错4.定轴转动刚体的转动动能与其转动角速度的平方成正比答案:对。