动态法测量杨氏模量教案资料
- 格式:doc
- 大小:525.50 KB
- 文档页数:8
实验二 动态悬挂法测定金属材料的杨氏模量杨氏模量是工程材料的一个重要物理参数, 它标志着材料抵抗弹性形变的能力。
“静态拉伸法”由于受弛豫过程等的影响不能真实地反映材料内部结构的变化, 对脆性材料无法进行测量。
目前工程技术上常用“动态悬挂法”测量杨氏模量,也是国家标准指定的一种测量方法。
其基本操作是: 将一根截面均匀的试样(棒)悬挂在两只传感器(一只激振, 一只拾振)下面。
在两端自由的条件下, 使之作自由振动。
测出试样的固有基频, 并根据试样的几何尺寸、密度等参数, 测得材料的杨氏模量。
一、实验目的1.用动态悬挂法测定金属材料的杨氏模量。
2.培养学生综合应用物理仪器的能力。
3.学习确定试样节点处共振频率的方法。
二、仪器与用具动态杨氏模量实验仪(包括试样、杨氏模量测试台、信号发生器), 存贮示波器, 电子天平, 螺旋测微器, 游标卡尺三、实验原理对于一根水平放置的细棒, 以水平方向为 轴, 竖直方向为轴, 由棒的横振动方程:044222=∂∂⎪⎪⎭⎫ ⎝⎛+∂∂x yS EJ t y ρ (2.1)用分离变量法解以上方程对圆形棒得: 。
2436067.1fd m l E = (2.2)上两式中, 为杨氏模量, 为棒长, 为棒的直径, 为棒的质量, 为棒的截面积, 为棒的密度。
如果在实验中测定了试样(棒)在不同温度时的固有频率 , 即可计算出试样在不同温度时的杨氏模量 。
在国际单位制中杨氏模量的单位为( )。
本实验的基本问题是测量试样在不同温度时的共振频率。
由信号发生器输出的等幅正弦波信号, 加在传感器I (激振)上。
通过传感器I 把电信号转变成机械振动, 再由悬线把机械振动传给试样, 使试样受迫作横向振动。
试样另一端的悬线把试样的振动传给传感器II (拾振), 这时机械振动又转变成电信号。
该信号经放大后送到示波器中显示。
当信号发生器的频率不等于试样的共振频率时, 试样不发生共振, 示波器上几乎没有信号波形或波形很小。
动态悬挂法测定金属材料的杨氏模量杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。
目前工程技术上常用“动态悬挂法”测量杨氏模量。
其基本方法是:将一根截面均匀的试样(棒)悬挂在两只传感器(一只激振,一只拾振)下面。
在两端自由的条件下,使之作自由振动。
测出试样的固有基频,并根据试样的几何尺寸、密度等参数,测得材料的杨氏模量。
【实验目的】1. 用动态悬挂法测定金属材料的杨氏模量。
2. 学习确定试样节点处共振频率的方法。
【实验要求】1. 用外延法求出节点处的共振频率。
2. 测定室温下金属材料的杨氏模量。
【实验原理】根据棒的横振动方程044222=∂∂⎟⎟⎠⎞⎜⎜⎝⎛+∂∂xy S EJ t y ρ (1) 用分离变量法解该方程,对圆形棒得 2436067.1f dm l E = (2) 上两式中,E 为杨氏模量,l 为棒长,d 为棒直径,S 为棒截面积,ρ为棒的密度,m 为棒的质量,f 为棒横振动的固有频率,J 为极性矩。
由式(2)可知,测定出试样(棒)在不同温度时的固有频率f 及各力学参数,即可计算出它在不同温度时的杨氏模量。
测量时可采用图(1)的示意装置。
本实验只计算室温下的杨氏模量,故不用加热炉。
实验中有两个问题需加注意。
1. 式(2)给出杨氏模量E 的计算公式中的f 是棒横振动的基频,在实验中要加以判断。
2. 从图1中看到测试棒横振动的激发与拾振是通过悬丝与换能器连接的。
若连接点不在棒横振动的波节上,则横振动的方程不满足。
若连接点就在波节上,则不能激发与拾取试样的振动。
因此为测定固有频率,一般可采用外延测量法来计算固有频率。
具体做法如下:按照方程(1)的解,测试棒时应对基频的横振动的两个波节分别在0.224 l 与0.776 l 。
见图2。
(a) 先将激振与拾振的两悬丝分别连接在棒0.1l 与0.9 l 上,寻找其共振频率f 1。
(b) 将两悬丝逐渐从每间隔0.02 l 间距向里推进,分别寻找出对应的频率f 2、f 3……。
动态法测杨氏模量班级:姓名:学号:一.实验原理:实验原理1.杆的弯曲振动基本方程:对一长杆作微小横振动时可建立如下方程:(1)式中E为杨氏模量。
I为转动惯量,ρ为密度。
对二端自由的杆,其边界条件为::;用分离变数的试探解:以及上述边界条件带入(1)得超越方程ChHCosH=1 (2)解这个超越方程。
经数值计算得到前n个H的值是,, n>2.因振动频率若取基频可推导对圆棒于是有:(3)同理对b为宽度,h为厚度的矩形棒有:(4)式中:尺寸用m,质量用Kg,频率用Hz为单位。
计算出杨氏模量E的单位为N/m22.理论推导表明,杆的横振动节点与振动级次有关,Hn值第1,3,5……数值对应于对称形振动,第2,4,6……对应于反对称形振动。
最低级次的对称振动波形如图3所示。
图3 二端自由杆基频弯曲振动波形表1 振动级次――-节点位置―――频率比表中L为杆的长度由表1可见,基频振动的理论节点位置为0.224L(另一端为0.776L)。
理论上吊扎点应在节点,但节点处试样激发接收均困难。
为此可在试样节点和端点之间选不同点吊扎,用外推法找出节点的共振频率。
不作修正此项系统误差一般不大于0.2%。
推荐采用端点激发接收方式非常有利于室温及高温下的测定。
3.须注意(3)式是在d<<1时推出,否则要作修正,E(修正)=KE(未修正),当材料泊松比为0.25时,K值如下表:径长比d/L 0.02 0.04 0.06 0.08 0.10修正系数K 1.002 1.008 1.019 1.033 1.051二.实验目的1.测量材料在常温下的杨氏模量;2.测量材料在不同温度下的杨氏模量;三.实验所用仪器函数信号发生器,换能器,温控器,示波器,加热炉。
四.实验数据记录及数据处理常温下共振频率试棒参数:f 1 f2 f3 f/Hz764 765 764 764E=215GPa高温(变温条件)下杨氏模量的测量 试棒参数:t/C 50 100 150 200 250 300 f/Hz762755 747 740 734 726 E/GPa 214210206 202198194t-E 图18018519019520020521021522050100150200250300系列1五.思考题对于相同材料的,长度和截面积都相等的圆截面试样和方截面试样,哪一种共振频率更高?答:方截面试样的共振频率更高。
实验四动态杨氏模量测量实验四:动态杨氏模量测量一、实验目的1.学习和掌握动态杨氏模量测量的原理和方法。
2.通过实验,观察和分析金属材料的动态杨氏模量随频率和温度的变化规律。
3.培养实验操作技能和数据分析能力。
二、实验原理动态杨氏模量测量是一种研究材料力学性能的重要方法。
它通过在材料上施加一定频率和振幅的振动,测量材料的应变,从而计算出动态杨氏模量。
动态杨氏模量(E)与应变(Ɛ)和振动频率(f)之间的关系可以用以下公式表示:E = (f² × d²)/(2π² × f² × d²) × (1/Y)其中,d是振幅,Y是材料的密度。
三、实验步骤1.准备实验器材:动态杨氏模量测试仪、金属材料样品、加热炉、温度计、天平、振动器等。
2.将金属材料样品放置在加热炉中,加热至指定温度。
3.将加热后的样品取出,迅速放入动态杨氏模量测试仪中。
4.设置振动器的频率,启动测试仪,记录样品的应变数据。
5.重复以上步骤,在不同温度下进行测量。
四、实验数据分析1.将实验得到的应变数据与振动频率数据进行拟合,得到动态杨氏模量的值。
2.分析动态杨氏模量随温度和频率的变化规律。
一般来说,随着温度的升高,动态杨氏模量会降低;随着频率的增加,动态杨氏模量也会降低。
3.将不同温度下的动态杨氏模量数据进行线性拟合,得到材料的热膨胀系数。
4.根据热膨胀系数可以进一步分析材料的热性能和稳定性。
五、实验结论通过本次实验,我们成功地掌握了动态杨氏模量测量的原理和方法,并观察了金属材料的动态杨氏模量随频率和温度的变化规律。
实验结果表明,随着温度的升高和频率的增加,金属材料的动态杨氏模量均有所降低。
这些结果对于进一步研究材料的力学性能和热性能具有重要意义。
同时,本次实验也锻炼了我们的实验操作技能和数据分析能力。
六、实验讨论与建议1.在实验过程中,应尽量保持温度的稳定,避免温度波动对实验结果的影响。
南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:动态法测量杨氏模量学院:理学院专业班级:应用物理学152班学生姓名:学号:实验地点:B510 座位号:22实验时间:第二周星期五下午4点开始一、实验目的:1、理解动态法测量杨氏模量的基本原理。
2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。
3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。
学会用示波器观察判断样品共振的方法。
4、培养综合运用知识和使用常用实验仪器的能力。
二、实验仪器:信号发生器,动态弹性模量测定仪,铜棒,示波器。
三、实验原理:1、杨氏模量是固体材料在弹性形变范围内正应力与相应正应变的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。
测量杨氏模量有多种方法,可分为静态法、动态法和波传播法三类。
此实验中所采用动态法,既可测量金属的杨氏模量,也可以测量玻璃、陶瓷材料的杨氏模量,测量准确度也较高。
2、如图1所示,长度L远远大于直径d(L>>d)的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为2244=∂∂+∂∂tEJySxyρ(1)其中,棒的轴线沿x方向,y为棒上距左端x处截面的y方向位移,E为杨氏模量,单位为Pa或N/m2;ρ为材料密度;S为截面积;J为某一截面的转动惯量,⎰⎰=sdsyJ2。
横振动方程的边界条件为:棒的两端(x=0、L)是自由端,端点既不受正应力也不受切向力。
用分离变量法求解方程(1),令)()(),(tTxXtxy=,则有224411dtTdTEJSdxXdX•-=ρ(2)由于等式两边分别是两个变量x和t的函数,所以只有当等式两边都等于同一个常数时等式才成立。
假设此常数为K4,则可得到下列两个方程yxO图1 细长棒的弯曲振动xL444=-X K dx X d (3) 0422=+T SEJ K dt T d ρ (4)如果棒中每点都作简谐振动,则上述两方程的通解分别为⎩⎨⎧+=+++=)cos()(sin cos )(4321ϕωt b t T Kxa Kx a shKx a chKx a x X (5) 于是可以得出)cos()sin cos (),(4321ϕω+•+++=t b Kx a Kx a shKx a chKx a t x y (6)式中214⎥⎥⎦⎤⎢⎢⎣⎡=S EJK ρω (7) 式(7)称为频率公式,适用于不同边界条件任意形状截面的试样。
实验五用动态法测定金属杨氏模量【实验目的】1.学会用动态法测定材料的杨氏模量。
2.学会用外推法测量、处理实验数据。
3.了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。
4.培养学习综合运用知识和常用仪器的能力。
【实验仪器】动力学法杨氏模量实验仪、低频信号发生器、通用示波器、试样棒等。
图1 动力学法杨氏测量模量共振检测装置框图【实验原理】测定杨氏模量的方法很多,“动态法”(也称动力学方法)是国家技术标准所推荐的国家标准方法。
此法能准确反应材料在微小形变时的物理性能,测量值精确稳定,对脆性材料(如石墨、陶瓷、玻璃、塑料、复合1材料等)也能测定。
动态法适用的温度范围极广,从液氮―2600℃范围均可测量。
1.测量动态杨氏模量的概况金属动态杨氏模量的测定方法的概念是相对静态拉伸法而言的,其原理为:对于杆的微小横振动,可建立如下的振动方程:20xxxx u 2u u a −=其中:a 2=EI/ρ,E 为杨氏模量,ρ为物体密度,I 为试棒截面的“转动惯量”,对于两端自由的振动,根据其边界条件,用分离变数方法的试探解、超越方程、及振动频率取其基频等方法,一步步解得杨氏模量:3204l mf d 1.6067E =式中,l 为被测物长度,m 为其质量,d 为直径(设被测物为圆棒),f 0为共振频率。
2.共振频率f 的测量杨氏模量的测量方程式中,l 、m 、d 的测量均很容易,关键在于共振频率f 0的测量。
被测试棒可以用细线悬挂在换能器下面,也可以利用支撑式测试架放在换能器之上完成测试。
换能器由发射换能器(也称激振器)和接收换能器(也称拾振器)组成。
f 的测量方法为:信号发生器产生音频正弦讯号,通过压电陶瓷换能器转换成机械振动,由悬丝或支撑架传递给试棒,激发试棒振动,试棒的机械振动再通过另一根悬丝或支撑架传递给换能器还原成电迅号在示波器上显示出来,调节信号发生器的输出频率与试棒固有频率一致时,试棒共振,示波器上出现最大值。
动态法测量杨氏模量一.实验目的1、理解动态法测量杨氏模量的基本原理。
2、掌握动态法测量杨氏模量的基本方法,熟悉信号源和示波器的使用。
二.实验原理如图1所示,长度L远远大于直径d(L>>d)的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为棒的轴线沿x方向,(1)y L0 x x图 1式中y为棒上距左端x处截面的y方向位移,E为杨氏模量,单位为Pa或N/m²;ρ为材料密度,S为截面面积,J为某一截面的转动惯量,J=。
横振动方程的边界条件为:棒的两端(x=0,L)是自由端,端点既不受正应力也不受切向力。
用分离变量法求解方程(1),令y(x,t)=X(x)T(t),既有(2)由于等式两边分别是两个变量x和t的函数,所以只有当等式两边都等于两边都等于同一个常数时等式才成立,假设此常数为,则可得到下列两个方程(3)(4)如果棒中每点都作简谐振动,则上述两方程的通解分别为(5)于是可以得出y(x,t)=()(6)式中(7)式中(7)称为频率公式,适用于不同边界条件任意形状截面的试样。
如果试样的悬挂点(或支撑点)在试样的节点,则根据边界条件得到cosKL•chKL=1 (8)采用数值法可以得出本征值K和棒长L应满足如下关系:KnL=0,4.730,7.835,10.996,14.137, (9)其中第一根=0对应试样静止状态;第二根记为=4.730,所对应的试样振动频率称为基振频率(基频)或者称为固有频率,此时的振动状态如图2所示,第三根=7.853所对应的振动状态如图3所示,称为一次谐波。
由此可知,试样在作基频振动时存在两个节点,它们的位置分别距端面0.224L 和0.776L。
将基频对应的K1值代入频率公式,可得到杨氏模量为E(10)图2 图3如果试样为圆棒(d<<L),则,所以式(10)可改写为(11)同样,对于矩形棒试样则有(12)式中,m为棒的质量,f为基频振动的固有频率,d为圆棒直径,b和h分别为矩形棒的宽度和高度。
实验三十五用动态法测定金属的杨氏模量(最全)word资料实验三十五 用动态法测定金属的杨氏模量杨氏模量是描述固体材料弹性形变的一个重要物理量。
用静态拉伸法可以测出杨氏模量,但此方法的缺点是负荷大,加载速度慢,存在弛豫过程,不能真实地反映材料内部结构的变化;在拉伸过程中,样品的横向和纵向都有形变,而此法忽略横向形变;另外,也不能用于测量脆性材料。
动态悬挂法可以克服这些缺点,是一种非常实用的测量方法。
【实验目的】1. 学会用动态悬挂法测量金属材料的杨氏模量。
2. 培养学生综合应用物理仪器的能力。
【实验仪器】DCY-3型动态杨氏模量测定仪,信号发生器,示波器,游标卡尺,千分尺,物理天平等。
【实验原理】若将一均匀棒悬挂起来,如图5-35-2所示,并使之发生横向振动,其振动方程为02244=∂∂⋅+∂∂t yEJ S x y ρ 式中, y 为振动位移, x 为纵向变量, t 为时间, ρ为棒的密度, S 为棒的截面面积, E 为棒的 杨氏弹性模量, J 称为惯性矩。
振动方程为偏微分方程。
用分离变量法 求解方程(求解过程见附录),得:圆形棒图5-35-2(5-35-1)图5-35-1 DCY-3型动态杨氏模量测定仪 信号发生器 支撑支架2436067.1f dm l E =式中,l 为棒长,d 为棒的截面直径,m 为棒的质量,f 为棒的固有频率。
矩形棒2339464.0f bhm l E =式中,b ,h 分别为棒的宽和厚。
在国际单位制中,杨氏模量的单位为牛顿/米2(N ·m -2)。
实验原理图如5-35-3所示。
由信号发生器输出的正弦信号,加到激发换能器Ⅰ上,通过激发换能器Ⅰ把信号转变成机械振动,再由悬丝把机械振动传给待测试样,使试样受迫做横向振动,试样另一端的悬丝将振动传给接受换能器Ⅱ,这时机械振动又转变成电信号。
该信号送到示波器中显示。
当信号发生器的频率不等于待测试样的固有频率时,试样不发生共振,示波器上没有电信号,或波形幅度很小。
动态法测定金属材料的杨氏模量杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。
测量材料杨氏模量的方法很多,诸如拉伸法、压入法、弯曲法和碰撞法等。
拉伸法是最常用的方法之一。
但该方法使用的载荷较大,加载速度慢,且会产生驰豫现象,影响测量结果的精确度。
另外,此法还不适用于脆性材料的测量。
本实验动态杨氏模量测量仪用振动法测量材料的杨氏模量。
【实验目的】1、了解测量材料杨氏模量的原理;2、学会用作图外推求值法测量振动体基频共振频率;3、学会用动态法测定金属材料的杨氏模量。
【实验器材】YJ-DYZ-I动态杨氏模量综合实验仪及其专用信号源、示波器、钢卷尺、游标卡尺、电子天平。
【实验原理】在外力的作用下,当物体的长度变化不超过某一限度时,撤去外力之后,物体又能完全恢复原状。
在该限度内,物体的长度变化程度与物体内部恢复力之间存在正比关系。
杨氏模量是反映材料应变(即单位长度变化量)与物体内部应力(即单位面积所受到的力的大小)之间关系的物理量。
或者说是反映材料的抗拉或抗压能力。
应变为单位长度的变化量:L L∆;应力为单位面积受到的力:F S;所以有:杨氏模量F SEL L=∆进一步得:F S ESE F L F kxL L L=⇒=∆⇒=∆ESkL=。
所谓“动态法”就是使测试棒(如铝棒、不锈钢棒、铜棒)产生弯曲振动,并使其达到共振,通过共振测量出该种材料的杨氏模量值。
在一定条件下(l d),试样在某温度下圆棒的杨氏模量为:3241.6067l mE fd=。
其中E为金属棒的杨氏模量,l为金属棒的长度,d为金属棒的直径,m为金属棒的质量。
在实验中测定了试样(金属棒)在某一温度时的固有频率(基频谐振频率)f ,即可计算出试样在该温度时的杨氏模量E 。
国际单位制中,杨氏模量的单位为-2•牛顿米。
现实情况不太可能达到ld 的条件,故对原理公式需要作些适当的修正,即原理公式基础上再乘以一个修正量。
3241.6067l m E f T d= 本实验统一近似取 =1.008T 。
实验九用动态法测定金属棒的杨氏模量
【预习思考题】
1.试样固有频率和共振频率有何不同,有何关系?
固有频率只由系统本身的性质决定。
和共振频率是两个不同的概念,它们之间的关系为:
式中Q为试样的机械品质因数。
一般悬挂法测杨氏模量时,Q值的最小值约为50,所以共振频率和固有频率相比只偏低0.005%,故实验中都是用f共代替f固,2.如何尽快找到试样基频共振频率?
测试前根据试样的材质、尺寸、质量,通过(5.7-3)式估算出共振频率的数值,在上述频率附近寻找。
【分析讨论题】
1.测量时为何要将悬线吊扎在试样的节点附近?
理论推导时要求试样做自由振动,应把线吊扎在试样的节点上,但这样做就不能激发试样振动。
因此,实际吊扎位置都要偏离节点。
偏离节点越大,引入的误差就越大。
故要将悬线吊扎在试样的节点附近。
2.如何判断铜棒发生了共振?
可根据以下几条进行判断:
(1)换能器或悬丝发生共振时可通过对上述部件施加负荷(例如用力夹紧),可使此共振信号变小或消失。
(2)发生共振时,迅速切断信号源,观察示波器上李萨如图形变化情况,若波形由椭圆变成一条竖直亮线后逐渐衰减成为一个亮点,即为试样共振频率。
(3)试样发生共振需要一个孕育的过程,切断信号源后信号亦会逐渐衰减,它的共振峰宽度较窄,信号亦较强。
试样共振时,可用尖嘴镊子纵向轻碰试样,这时会按图5.7-1的规律发现波腹、波节。
(4)在共振频率附近进行频率扫描时,共振频率两侧信号相位会有突变导致李萨如图形在Y轴左右明显摆动。
实验四 动态法测定材料氏模量氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。
氏模量测量方法有多种,最常用的有拉伸法测量金属材料的氏模量,这属于静态法测量,这种方法一般仅适用于测量形变较大、延展性较好的材料,对如玻璃及瓷之类的脆性材料就无法用此方法测量。
动态法由于其在测量上的优越性,在实际应用中已经被广泛采用,也是国家标准指定的一种氏模量的测量方法。
本实验用悬挂、支撑二种"动态法"测出试样振动时的固有基频,并根据试样的几何参数测得材料的氏模量。
一、实验目的1.理解动态法测量氏模量的基本原理。
2.掌握动态法测量氏模量的基本方法,学会用动态法测量氏模量。
3.培养综合运用知识和使用常用实验仪器的能力。
4.进一步了解信号发生器和示波器的使用方法。
二、实验原理长度L 远远大于直径d 〔L>>d 的一细长棒,作微小横振动〔弯曲振动时满足的动力学方解以上方程的具体过程如下〔不要求掌握: 用分离变量法:令)()(),(t T x X t x y =代入方程〔1得: 2244d d 1d d 1tTT YJ s x X X ρ-= 等式两边分别是x 和t 的函数,这只有都等于一个常数才有可能,设该常数为4K ,于是得: 这两个线形常微分方程的通解分别为: 于是解振动方程式得通解为:其中式〔2称为频率公式:214⎥⎦⎤⎢⎣⎡=s YJ K ρω <2该公式对任意形状的截面,不同边界条件的试样都是成立的。
我们只要用特定的边界条件定出常数K ,并将其代入特定截面的转动惯量J ,就可以得到具体条件下的计算公式了。
如果悬线悬挂<支撑点>在试样的节点附近,则其边界条件为自由端横向作用力:弯矩 : 022=∂∂=x yYJ M 即x d Xd 0x 33==0x d X d lx 33==将通解代入边界条件,得到1cos =KLchKL ,用数值解法求得本征值K 和棒长L 应满足:420.20 ,279.17 ,137.14 ,9956.10 ,8532.7 ,7300.4 ,0=KL ,由于其中第一个根"0"对应于静态情况,故将其舍去。
实验四 动态法测定材料杨氏模量杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。
杨氏模量测量方法有多种,最常用的有拉伸法测量金属材料的杨氏模量,这属于静态法测量,这种方法一般仅适用于测量形变较大、延展性较好的材料,对如玻璃及陶瓷之类的脆性材料就无法用此方法测量。
动态法由于其在测量上的优越性,在实际应用中已经被广泛采用,也是国家标准指定的一种杨氏模量的测量方法。
本实验用悬挂、支撑二种“动态法”测出试样振动时的固有基频,并根据试样的几何参数测得材料的杨氏模量。
一、实验目的1.理解动态法测量杨氏模量的基本原理。
2.掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。
3.培养综合运用知识和使用常用实验仪器的能力。
4.进一步了解信号发生器和示波器的使用方法。
二、实验原理长度L 远远大于直径d (L>>d )的一细长棒,作微小横振动(弯曲振动)时满足的动解以上方程的具体过程如下(不要求掌握): 用分离变量法:令)()(),(t T x X t x y =代入方程(1)得: 2244d d 1d d 1t TT YJ s x X X ρ-= 等式两边分别是x 和t 的函数,这只有都等于一个常数才有可能,设该常数为4K ,于是得:0d d 444=-X K xX0d d 422=+T s YJK tT ρ 这两个线形常微分方程的通解分别为:Kx B Kx B shKx B chKx B x X sin cos )(4321+++=) cos()(ϕω+=t A t T于是解振动方程式得通解为:) cos()sin cos (),(4321ϕω++++=t A Kx B Kx B shKx B chKx B t x y其中式(2)称为频率公式:214⎥⎦⎤⎢⎣⎡=s YJ K ρω (2)该公式对任意形状的截面,不同边界条件的试样都是成立的。
我们只要用特定的边界条件定出常数K ,并将其代入特定截面的转动惯量J ,就可以得到具体条件下的计算公式了。
如果悬线悬挂(支撑点)在试样的节点附近,则其边界条件为自由端横向作用力:033=∂∂-=∂∂-=xy YJ x M F弯矩 : 022=∂∂=x yYJ M 即0x d Xd 0x 33==0x d Xd lx 33==0x d Xd 0x 22==0x d Xd lx 22==将通解代入边界条件,得到1cos =KLchKL ,用数值解法求得本征值K 和棒长L 应满足:ΛΛ420.20 ,279.17 ,137.14 ,9956.10 ,8532.7 ,7300.4 ,0=KL ,由于其中第一个根“0”对应于静态情况,故将其舍去。
将第二个根作为第一个根,记作L K 1。
一般将7300.4 1=L K 所对应的共振频率称为基频(或称作固有频率)。
在上述L K n 值中,1,3,5…个数值对应着“对称形振动”, 第2、4、6…个数值对应着“反对称形振动”。
图1给出了当4 ,3 ,2 ,1n =时的振动波形。
由1n =图可以看出,试样在作基频振动时,存在两个节点,它们的位置距离端面分别为L 224.0和L 776.0处。
理论上悬挂点(支撑点)应取在节点处,但由于悬挂(支撑点)在节点处试样棒难于被激振和拾振,为此,可以在节点两旁选不同点对称悬挂(支撑),用外推法找出节点处的共振频率。
将第一本征值L7300.4K =代入(2)式,得到自由振动的固有频率(即基频): ()21447300.4⎥⎦⎤⎢⎣⎡=s l YJ ρω 解出杨氏模量:243109978.1ωρJsL Y -⨯=232108870.7f Jm L ⨯⨯=-对于圆棒: ⎰==22)4d (s s d y J 式中d 为圆棒的直径。
得到杨氏模量的表达式为: 2436067.1f dm L Y ⨯= (3)上式即为(1)式的解。
式中L 为棒长,d 为棒的直径,m 为棒的质量。
如果在实验中测定出试样(棒)在不同温度时的固有频率f ,即可计算出被测试样在不同温度条件下的杨氏模量Y 。
在国际单位制中杨氏模量的单位为(2-Nm)。
本实验的基本问题是测量试样在一定温度时的共振频率。
为了测出该频率,实验时可采用如图2所示装置。
由信号发生器输出的等幅正弦波信号,加在传感器I(激振)上。
通过传感器I把电信号转变成机械振动,再由悬线(支撑刀)把机械振动传给试样,使试样受迫作横向振动。
试样另一端的悬线(支撑刀)把试样的振动传给传感器II(拾振),这时机械振动又转变成电信号。
该信号经放大后送到示波器中显示。
当信号发生器的频率不等于试样的共振频率时,试样不发生共振,示波器上几乎没有信号波形或波形很小。
当信号发生器的频率等于试样的共振频率时,试样发生共振。
这时示波器上的波形突然增大,这时读出的频率就是试样在该温度下的共振频率。
根据(3)式,即可计算出该温度下的杨氏模量。
图3动态杨氏模量测试台三、实验仪器1.FB2729A 型动态杨氏模量实验仪 1套; 2.通用双踪示波器1台;3.天平、游标卡尺、螺旋测微计等。
四、实验内容先按图4把实验仪器连接好,通电预热10分钟,再按下述步骤进行实验。
1.测定试样的长度L 、直径d 和质量m ,每个物理量各测5次。
2.在室温下,不锈钢和铜的杨氏模量参考值分别为:211102-⨯Nm 和211102.1-⨯Nm ,实验前可先按公式(1)估算出共振频率f ,以便于寻找共振点。
3.“悬挂法”:把试样棒用细棉线挂在测试台上,悬挂点的位置放在L 9635.0L 0365.0和处测量一组数据,再分别挂在L 901.0L 099.0和,L 8385.0L 1615.0和,L 776.0L 224.0和,L 7135.0L 2865.0和, L 651.0L 349.0和共测量6组数据,一一记录在表1中。
(具体位置金属棒上已用刻度线标注)。
4.把信号发生器的输出与测试台的悬挂法-输入相连,测试台的悬挂法-输出与放大器的输入相接,放大器的输出与示波器的Y 输入相接。
5.把示波器触发信号选择开关设为“内置”, Y 轴增益置于最小档(或左边第二档),Y 轴极性置于“AC ”。
6.鉴频与测量:先将两悬线挂在离试样端部mm 30处,待试样稳定后,调节信号发生器频率旋钮,寻找试样棒的共振频率1f 。
当示波器荧光屏上出现共振现象时,即正弦波幅度突然变大时,再微调信号发生器频率旋钮,使波形振辐达到极大值。
鉴频就是对试样共振模式及振动级次的鉴别,所以它是准确测量操作中重要的一步。
在进行频率扫描时,我们发现试棒不只在一个频率处发生共振现象,而我们使用的公式(3)只适用于基频共振的情况。
所以我们要确定试样是在基频频率下产生的共振。
我们用阻尼法来鉴别:如果用手沿试样棒的长度方向轻触棒的不同部位,同时观察示波器,如果手指触到的是波节处,则示波器上的波形幅度不变,如果手指触到的是波腹处,则示波器上的波形幅度变小,当发现试棒上仅有两个波节时,那么这时的共振就是基频频率下的共振,记下这一频率f 1。
7.因试样共振状态的建立需要有一个过程,且共振峰十分尖锐,因此在共振点附近调节信号频率时,必须十分缓慢地进行,直至示波器的显示屏上出现最大的信号。
8.记录室温下的共振频率f ,求出材料的杨氏模量Y 。
9.本实验用铜棒和钢棒各做一次。
10. “支撑式”:把试样棒从悬挂线上取下,轻放于测试台支撑式的激、拾振器的橡胶支撑刀上。
把信号发生器的输出与测试台的支撑式-输入相连,测试台的支撑式-输出与放大器的输入相接,放大器的输出与示波器的Y 输入相接。
11. 其余同“悬挂法”步骤。
五、数据与结果将所测各物理量的数值代入公式(3),计算出该试样棒的杨氏模量Y 。
再利用不确定度传递估算相对不确定度Y E 和不确定度Y E Y Y ⨯=∆写出实验结果表达式:Y Y Y ∆±=1.估算金属棒的长度L 、直径d 、和质量m 的测量值及其不确定度。
)mm (L L ∆±;mm)(d d ∆±;)g (m m ∆±2.由公式(3)分别求出钢棒和铜棒的杨氏模量 )(2-⋅∆±m N Y Y (已知信号发生器的频率不确定度为: 当Hz 1.0f ,Hz 1000f =∆<,当Hz 1f ,Hz 1000f =∆≥2222)2()()4()3(ffm m d d L L Y Y ∆+∆+∆+∆=∆ 附:铜试样棒的基频共振频率:Hz 780~680杨氏模量为:)( 102.1~1211-⨯≈Nm Y 铜不锈钢试样棒的基频共振频率: Hz 1100~1000杨氏模量为:)( 1010.2~95.1211-⨯≈Nm Y 钢六、注意事项1.试样棒不可随处乱放,保持清洁,拿放时应特别小心。
2.悬挂试样棒后,应移动悬挂横杆上的振,拾振器到既定位置,使二根悬线垂直试样棒。
3.更换试样棒要细心,避免损坏激振,拾振传感器。
4.实验时,试样棒需稳定之后可以进行测量。
【思考题】1. 试讨论:试样的长度L 、直径d 、质量m 、共振频率f 分别应该采用什么规格的仪器测量?为什么?2. 估算本实验的测量误差。
提示:可从以下几个方面考虑: (1)仪器误差限;(2)悬挂/支撑点偏离节点引起的误差。
七、数据表格表1 悬挂/支撑点位置与共振频率数据记录(以mm 160L =计算悬挂/支撑点)表2被测试样的参数与共振基频记录表3 几种固体材料的杨氏模量的参考值【附录】需要说明的二个问题:1. 当测试样品不满足L d <<时,公式(3)需要乘以一个修正系数1T ,有关内容可参考金属材料的国家标准(912005 T /GB -中说明)。
2. 物体的固有频率固f 和共振频率共f 是两个不同的概念,他们之间的关系是:2411Q f f +=共固 式中,Q 为试样的机械品质因素。
对于悬挂法测量,一般Q 的最小值为50,把该值代入公式,共共共固f f Q f f 00005.15041141122≈⨯+=+=,可见,共振频率与固有频率相比只相差十万分之五(%005.0)。
本实验中只能测量出试样的共振频率,由于相差很小,所以用共振频率代替固有频率是合理的。