中考二次函数与特殊三角形有关的问题(含答案)
- 格式:docx
- 大小:231.93 KB
- 文档页数:6
二次函数与三角形的存在性问题一、预备知识1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y )(1)线段对称轴是直线2x 21x x +=(2)AB 两点之间距离公式:221221)()(y y x x PQ -+-=中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫ ⎝⎛++222121y y ,x x 。
2、两直线的解析式为11b x k y +=与 22b x k y +=如果这两天两直线互相垂直,则有121-=⋅k k3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2(1)当k1=k2,b1≠b2 ,L1∥L2(2)当k1≠k2, ,L1与L2相交(3)K1×k2= -1时, L1与L2垂直二、三角形的存在性问题探究:三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形(一)三角形的性质和判定:1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。
判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。
2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。
判定:有一个角是直角的三角形是直角三角形。
3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。
判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。
判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。
总结:(1)已知A 、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A 、B 点重合)即在两圆上以及两圆的公共弦上(2)已知A 、B 两点,通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A 、B 点重合)即在圆上以及在两条与直径AB 垂直的直线上。
特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。
2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。
2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。
中考复习之二次函数压轴40个问题主要题型:1.二次函数之面积问题2.二次函数之特殊三角形的存在性问题3.二次函数之特殊四边形的存在性问题4.二次函数之线段最值问题5.二次函数之角度问题题目:如图,抛物线与x轴交于A、B两点,与y轴交于点C,OB=OC=3,OA=1,顶点为D第1问.如图,抛物线与x轴交于A、B两点,与y轴交于点C,OB=OC=3,OA=1,顶点为D.求二次函数的解析式;解:设:设二次函数解为y=a(x+1)(x-3)将(0,3)代入得a=-1,故二次函数解析式为y=-x2+2x +3第2问.如图,抛物线与x轴交于A、B两点,与y轴交于点C,OB=OC=3,OA=1.顶点为D1.判断∆BCD的形状;解:D(1,4),B(3,0),C(0,3),方法一:BC=32,CD=2,BD=25,BC2+CD2=BD2,故∆BCD是直角三角形;方法二:KCD =1,KBC=-1,KCD∙KBC=-1,故CD⊥CB,所以∆BCD是直角三角形;yxBCAODyxBCAODyxBCAODyxBCAOD第3问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1.顶点为D, 2. 四边形ABDC 的面积解:BC:y =-x +3,铅垂法:E(1,2)DE=2,S BCD ∆=21∙2∙3=3 S ABDC 四=21∙4∙3+3=9第4问:如图,抛物线与x 轴交于A 、B 两点,与y 交于点C,OB=OC=3,OA=1,顶点为D, 1. P 为直线BC 上方抛物线上一点,求∆PBC 面积最大值及P 点坐标;解:方法一:设P(m,-m+2m+3)S PBC ∆=21∙3∙[-m 2+2m+3-(m+3)] =23(-m 2+3m),当m=23时,S 有最大值,此时P(23,415)S m ax =827 方法二:平移BC 至抛物线相切时,面积可取最大值设切线为y =-x +n,与抛物线y =-x 2+2x+3联立得x2-3x +n -3=0,∆=0,n=23,y =415,故P(23,415)S m ax =827y xBCAODy xBCAODEy xBCAOD第5问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D5点M 为BC 上方抛物线上一点,过点M 作y 轴的平行线交BC 于点N,求MN 的最大值;解:设点M(m,-m 2+2m+3),BC:y =-x +3,则点N(m,-m+3)MN=-m 2+2m+3-(-m+3)=-m 2+3m 当m=23时,MN m ax =49第6问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OC=3,OA=1,顶点为D, 6. 在对称轴上找一点P,使∆ACP 的周长最小,并求出最小值解:点A 、B 关于对称轴对称,连接BP,则BP=AP,PA+PC=PB+PC,当点B 、P 、C 三点共线时,可取最小值,此时P(1,2),∆ACP 周长的最小值为10+32第7问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1,顶点为D 1. 在y 轴上找一点E,使∆BDE 为直角三角形,求出E 点坐标, 方法一:y xBCAOPDy xBCAODy xNBCAODMy xBCAOD P1.DE ⊥BE 时,设E(0,m)易知∆DEF~∆EBO,OE DF =BO EF ,即m 1=34m-,m=3或1,故E 1(0,1)、E 2(0,3)2. DE ⊥DB 时,设E(0,m)易知∆DEN~∆BDM,BM DN =DM EN ,即m 1=34m -,m=27故E ;(0,27)3. DB ⊥BE 时,设E(0,m),易知∆DBF~∆BEG,BG DF =EG BF ,即m -2=34,m=-23,故E 4(0,-23)第8问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1. 在y 轴上找一点F,使∆BDF 为等腰三角形,求出F 点坐标;2. BD=DF,设F(0,m),22)4()01(m -+-=25,m=4+9 或4-19,F 1(0,4+19);F 2(0,4-19)yxFBCAODExyN MBCAODExy GFEBCAODxy BCAODF2.BD=BF,设F(0,m),22)0()03(m -+-=25,m=±11,F 1(0,11),F 2(0,-11)3.DF=BF,设F(0,m),22)0()03(m -+-=22)4()01(m -+-,m=1,F 4(0,1)第9问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1,顶点为D 1. 求抛物线上一点N,使S ABN ∆=S ABC ∆;解:设N 点的坐标(m,n),则∆ABC 与∆ABN 底相同,故n=±3,-m 2+2m+3=3或者-m 2+2m+3=3得m 1=0,m 2=2,m 3=1-7,m 4=1+7,N(0,3),(2,3),(1-7,-3),(1+7,-3)第10问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1,顶点为D, 1. 在抛物线上找一点Q,使S BDQ ∆=S AOC ∆解:设Q(m,-m 2+2m+3),S AOC ∆=23,BD :y =-2x +6,铅垂高QS=|-m 2+2m+3-(-2m+6)| S BDQ ∆=|-m 2+2m+3-(-2m+6)|∙21∙1=23得m=0或4Q(0,3),(4,-5),xBCAODFBCAOD FBCAODFBCAODN第11问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.在抛物线上找一点E,使BE 平分∆ABC 的面积; 解:BE 平分∆ABC 的面积,故BE 经过AC 的中点,AC 中点(-21,23),BE:y =-73x +79; 与抛物线联立得-x 2+2x +3=-73+79x =-74或722,E(-74;4919)或(722;491849)第12问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA =1,顶点为D 1.在对称轴上找一点M,使|MB -MC|取最大值,并求出最大值;解:点B 关于对称轴对称的点A,连接MA,则MB=MA,MA -MC<AC, 当点A 、C 、M 共线时,|MB -MA|m ax =AC=10, AC:y =3x x +3,M(1,6)第13问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.M 、N 为对称轴上的两点(M 在N 点上方),且MN=1,求四边形ACNM 周长的最小值; 解:A 关于对称轴对称的点B,连接BN,则BN=AN,将点向下平移1个单位得C’、N,则C’N=CM, 故CM+BN=C’N+BN,当C’、N 、B 共线时,取最小值(CM+BN)m in =13,故ACNM 周长得最小值为1+10+13BCAODQABCODEABCODM第14问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.E 在抛物线对称轴上,在抛物线上找一点F,使得点四边形ACFE 为平行四边形; 解:设E(1,m)F(n,-n 2+2n+3),A(-1,0),C(0,3),A 平行至点C 与E 平移至点F, n=1+1=2,m+3=-n 2+2n+3,m=0,故E(1,0)F(2,3)第15问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.M 为y 轴上一点,在坐标平面内找一点N,使A 、C 、M 、N 为顶点的四边形为菱形; 解:当 ACM 为等腰三角形时,问题转化为等腰三角形问题 1.ACNM 为菱形时,M(0,3),N(1,0),2.AMCN 为菱形时,M(0,34),N(-1,35),3.ACMN 为菱形时,M(0,3+10),N(-1,10)ABCODMNABCODM NC'ABCODEFABCODMN ABCONDM4.ACMN 为菱形时,M(0,3-10),N(-1,-10)第16问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.E 为x 轴上一点,以BE 为边的正方形BEFG ; 另一点G 在抛物线上,求点F 坐标;设E(m,0)则EF=|-m 2+2m+3|由EF=EB 得3-m=|-m 2+2m+3|,m=0或m=-2故F(0,3)或F(-2,-5)第17问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.P 是抛物线上任意一点,过点P 作PE ⊥y 轴于点E,交直线BC 于点G ;过点G 作GF ⊥x 轴,连接EF,求EF 的最小值;连接OG,则OG=EF,当OG ⊥BC 时,OG 最小,即EF 最小,故EF m in =233x C,OB=OC=3,OA=1,顶点为D1.M 在抛物线上CB 上方一点过点M 作y 轴的平行线,交BC 于点E,则ME 的最大值是多少? 解:设M(m,-m 2+2m+3),BC :y =-x +3,E(m,3-m),ME=-m 2+2m+3-(3-m)=-m 2+3m,当m=23ABCONDMABCNODMGCABO EFF CABOE GFEGCABOPFEGCABOP时,ME m ax =49第19问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.求一点P,使∠POC=∠PCO ; 解:点P 在OC 得垂直平分线上,-x2+2x +3=23,x =1±210P 1(1-210,23)P 2(1+210,23)第20问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D1.E(2,-2),M 为x 轴上一点,且∠EMO=∠CMO ; 1.M 在右侧时,易知∆CMO~∆EMG,设M(m,0)则有2-m m =23,m=6 2.M 在左侧时,同理易知∆CMO~∆EMG ,m m --2=23,m=6(舍) 第21问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.P 是直线y =x 上的动点,当直接y =x 平分∠APB 时,求点P 的坐标; 如图,∆PAO ≅∆PEO,此时OE=OA=1,故E(0,-1),EB :y =31x -1,与y =x 得x =-23,P(-23,-23) ECABOMPPCABOCABOEMG第22问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.点P 在抛物线上,且∠ABP=∠CBD,求P 坐标;解:C(0,3)D(1,4)B(3,0)tan ∠CBD=31,故tan ∠PBO=31,OE=1或者OF=1,PB :y =-31x +1或y 且=31x -1,联立可得P 1(-32,911)P 2(-23,-23)第23问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D1.在抛物线上找一点P,使∠ACP=450;方法1:∠OCB=∠ACP=450,得∠ACO=∠ECB,故tan ∠ECB=31,作EH ⊥BC,设BH=m,则EH=m;CH=3m,故4m=32,m=423,E(23,0)故CE:y =-2x +3,联立得P(4,-5) 方法2:由12345模型得tan ∠ECO=21得E(23,0)第24问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.P 在抛物线上,∠DBP=450; 由tan ∠CBD=31,∠CBD+∠CBP=450,而∠PBO+∠CBP=450,故tan ∠PBO=31,BP:y =-31x +1,P(-32,911) ECABOPPEFCABODPPHECABOPDP第25问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.点P 在抛物线上,∠PCB=150,求点P 的坐标;解:由∠BCO=450得∠PCO=30或∠PCO=600,故PC:y =-3x +3或y =-33x +3联立得P(2+3,-23)P(2+33,3328-)第26问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D1.直线y =31x -1与y 轴交于点E,求∠EBC -∠CBD ; 由tan ∠DBC=tan ∠EBO=31,故∠EBC -∠CBD=450第27问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.过点P(3,0)作直线与抛物线交于F 、G 、FM 、GN 分别垂直于x 轴,求PM,PN ;设F(1x ,1y )G(2x ,2y ),直线y =k (x +3)与抛物线y =-2x +2x +3联立得2x +(k -2)x +3k -3=0;1x +2x =2-k ,1x •2x =3k -3,PM •PN=(1x +3)(2x +3)=1x •2x +3(1x +2x )+9=12CABOPDPPF CABODPEECABODENMGFCABOPD第28问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为DP 是第一象限抛物线上,PE ⊥AB,求BEAE的值,若PE 2=AE •BE,求P 点坐标 设P(m,-m 2+2m+3),AE=m+1,BE=3-m,BE AE =mm -+31,(m+1)(3-m)=(-m 2+2m+3)2得m=1+3,P(1+3,1)第29问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D M 为直线y =33x 3上的点,N(0,-1),求23BM+MN 的最小值, 过点B 作I ⊥x 轴,MH ⊥I,∠MBH=600,MH=23BM,23BM+MN=MH+MN,当N 、M 、H 共线且垂直于I 时取最值(23BM+MN)min=3第30问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D M 为直线y =33x 3上的点,求21BM+OM 的最小值 过点B 作I:y =3x -33,MH ⊥I,∠MBH=300,MH=21BH,21BH+OM=MH+OM,当Q 、M 、H共线且垂直于I 时取最值(21BM+MN )min=233xy EBCAOPxy BCA O MN H第31问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D M 为直线y =33x 3上的点,求22BM+OM 的最小值 过点B 作I,I 与直线MN 夹角450,MH ⊥I,∠MBH=450,MH=22BM,22BM+OM=MH+OM,当Q 、M 、H 共线且垂直于I 时取最值两着色三角形相似,得cos150=426,(21BM +MN)min=423-63第32问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D在AB 上是否存在点M,使CM+21BM 取最小值. 过点B 作I,I 与x 轴夹角为300,MH=21BM,21BM+CM=MH+CM,当C 、M 、H 共线且垂直于I 时取最值(21BM+CM)min=2333+第33问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为Dxy BCAMO Hxy BCAMOHxy BCAO M EHM 是抛物线上一点,作MH ⊥x 轴,交BC 于点E,当ME:EH=3:2时,求M 点的横坐标, 设M(m,-m 2+2m+3),则E(m,3-m),ME=-m 2+2m+3-(3-m),EH=3-m,ME:EH=3:2 即有-m 2+2m+3-(3-m)=23(3-m) m=23第34问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于顶点为D P 是抛物线上一点,且∠PAB=2CBD,求P 点坐标. tan ∠CBD=31,tan ∠PAB=tan2∠CBD=43(12345模型) 设P(m,-m 2+2m+3)(1)tan ∠PAB=1322+++-m m m =43,m=49,P(49,1639)(2)tan ∠PAB=1322+--m m m =43,m=415,P(415,1657)第35问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为DF(1,415)直线y =417,(1)证明:M 上任意一点到直线y =417距离等于到F 点的距离, M(m,-m 2+2m+3),MH=417-(-m 2+2m+3)=m 2-2m+45MF=222)41532()1(-++-+-m m m =m 2-2m+45,故MH=MF xyEBCAOMHxy BCAODPP第36问:如图,抛物线与x 轴交于、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为DF(1,415)直线y =417,(2)证明:N(2,-1)M 为抛物线上一点,求NM+MF 的最小值 由(1)可知MF=MH,故NM+MF=MN+MH,(NM+MF)min=421第37问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D ∠BAC 的角平分线交y 轴于点M,绕点M 作直线I,与x 轴交于点E,与A 交于点F,求证:AE 1+AF 1为定值 过点M 、F 、C 作x 轴的平行线,交AC 于点G,交AM 于点H 、I ,易知:∆AEM~∆HFM,∆AFH~∆ACI,AO GM =AC CG ,CI GM =AC AG ,相加得AO GM +CI GM =AC CG +ACAG=1 即有AO 1+AC 1=GM 1,同理可得AE 1+AF 1=GM1=1+1010第38问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D P 为第四象限抛物线上一点,且tan ∠APC=21,求出点P 的坐标; 过点C 作CE ⊥AC,取一点E 使CE=2AC,过点C 作MN||x 轴,作A M ⊥MN 、EN ⊥MN,易知∆ACM~∆CEN,CN=6,EN=2,E(6,1),P 为以AE 为直径的圆与抛物线的交点AE 的中点F,F(25,21) xy BCOFMHxy BCNOFMHA过点易知AE HF AFACGM AO =CG AC ,GM CI =AGAC,GM AO +GM CI =CG AC +AGAC =1即有1AO +1AC =1GM,同1AE +1AF =1GM =11010xy H G FEMBCOIPF=225,设P(m,-m 2+2m+3),PF 2=(m -25)2+(-m 2+2m+325)2=225m=255,y =2531--,P(255,2531--)第39问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 直线y =x -3与抛物线交于点P,在x 轴正半轴上找一点E,使tan(∠PBO+∠PEO)=25 在x 轴上找一点F,使tan ∠HPF=25,∠HPF=450+∠BPH=∠PBO+∠PEO=450+∠PEO, 故∠BPF=∠PEO,故∆BEP~∆BPF,BP BE =BF BP ,即253-m =21525,m -3=320,m=329故E(329,0)第40问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 对称轴与BC 交于点E,在直线BC 上找一点P,使∆ABP 与∆DEB 相似,∠BED=1350=∠ABP,故P 在CB 的延长线上,DE=2,BE=22,AB=3,1.当∆EDB~∆BAP,AB DE =BP EB ,即42=BP22,BP=42,P(7,-4) 2.∆EDB~∆BPA 时,BP=22,P(5,-2)AxyN MPFEBCOAH PE FAxyIHEBCODP 1P 2。
三角函数与二次函数综合卷21.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是.(填写所有正确结论的序号)2.已知:BD是四边形ABCD的对角线,AB⊥BC,∠C=60°,AB=1,BC=33+,CD=23. (1)求tan∠ABD的值;(2)求AD的长.DCBA3.海上有一小岛,为了测量小岛两端A、B的距离,测量人员设计了一种测量方法,如图所示,已知B点是CD的中点,E是BA延长线上的一点,测得AE=10海里,DE=30海里,且DE⊥EC,cos∠D=35.(1)求小岛两端A、B的距离;(2)过点C作CF⊥AB交AB的延长线于点F,求sin∠BCF的值.EABFDC4.如图,在△ABC中,90ACB∠=,AC BC=,点P是△ABC一点,且135APB APC∠=∠=.AB C P(1)求证:△CPA ∽△APB ;(2)试求tan PCB ∠的值.5.如图,在梯形ABCD 中,︒=∠=∠90B A ,=AB 25,点E 在AB 上,︒=∠45AED ,6=DE ,7=CE .(1)求AE 的长;(2)求BCE ∠sin 的值.6.如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=23,AD=4.(1)求BC 的长;(2)求tan ∠DAE 的值.7.如图,在Rt △ABC 中,∠ABO=90°,OB=4,AB=8,且反比例函数xk y =在第一象限的图象分别交OA 、AB 于点C 和点D ,连结OD ,若4=∆BOD S ,(1)求反比例函数解析式;(2)求C 点坐标.8.如图,在△ABC 中,BD ⊥AC 于点D ,22AB =6BD =并且12ABD CBD ∠=∠.求AC 的长.D ABC9.下图是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1 m,拱桥的跨度为10 m,桥洞与水面的最大距离是5 m,桥洞两侧壁上各有一盏距离水面4 m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如下右图).(10分)(1)求抛物线的关系式;(2)求两盏景观灯之间的水平距离.10.已知二次函数的图象的一部分如图所示,求:(1)这个二次函数关系式,(2)求图象与x轴的另一个交点,(3)看图回答,当x取何值时y ﹤0.(12分)11.如图,直线l经过A(3,0),B(0,3)两点与二次函数y=x2+1的图象在第一象限相交于点C.(1)求△AOC的面积;(2)求二次函数图象的顶点D与点B,C构成的三角形的面积.12.抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求抛物线的解析式;(2)求抛物线与x轴的交点坐标;(3)画出这条抛物线大致图象;(4)根据图象回答:①当x取什么值时,y>0 ?②当x取什么值时,y的值随x的增大而减小?13.立定跳远时,以小明起跳时重心所在竖直方向为y轴(假设起跳时重心与起跳点在同一竖直方向上),地平线为x轴,建立平面直角坐标系(如图),则小明此跳重心所走过的路径是一条形如y=-0.2(x-1)2+0.7的抛物线,在最后落地时重心离地面0.3m(假如落地时重心与脚后跟在同一竖直方向上).(1)小明在这一跳中,重心离地面最高时距离地面多少米?此时他离起跳点的水平距离有多少米?(2)小明此跳在起跳时重心离地面有多高?(3)小明这一跳能得满分吗(2.40m为满分)?参考答案1.①③④【解析】试题分析:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴ECEFBEAF=,∵点E是AB的中点,∴AE=BE,∴ECEFAEAF=,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=DH,在Rt△AEF和Rt△HEF中,⎩⎨⎧==EHAEEFEF,∴Rt△AEF≌Rt△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若23=CDBC,则tan∠BCE=323222121=⨯====CDBCCDBCABBCBEBC,∴∠BEC=60°,∴∠BCE=30°∴∠DCF=∠ECF=30°,又∵∠D=∠CEF, CF=CF∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故答案为:①③④.考点:1、矩形的性质;2、全等三角形;3、三角函数;4、相似三角形2.(1)1;(2【解析】试题分析:(1)过点D作DE⊥BC于点E,根据∠C=60°求出CE、DE,再求出BE,从而得到DE=BE,然后求出∠EDB=∠EBD=45°,再求出∠ABD=45°,然后根据特殊角的三角函数值解答.(2)过点A作AF⊥BD于点F,求出BD,然后求出DF,在Rt△ADF中,利用勾股定理列式计算即可得解.⊥于点E.试题解析:(1)如图,作DE BC∵在Rt△CDE 中,∠C=60°,∵∴DE BE 3.==∴在Rt△BDE 中,∠EDB= ∠EBD=45º.∵AB⊥BC,∠ABC=90º,∴∠ABD=∠ABC-∠EBD=45º.∴tan∠ABD=1.(2)如图,作AF BD⊥于点F.在Rt△ABF 中,∠ABF=45º, AB=1,∵在Rt△BDE 中,DE BE3==,∴在Rt△AFD考点:1.勾股定理;2.锐角三角函数定义;3.特殊角的三角函数值.3.(1) 16.7(海里).【解析】试题分析:(1)在Rt△CED中,利用三角函数求出CE,CD的长,根据中点的定义求得BE 的长,AB=BE-AE即可求解;(2)设BF=x海里.在Rt△CFB中,利用勾股定理求得CF2=CB2-BF2=252-x2=625-x2.在Rt △CFE中,列出关于x的方程,求得x的值,从而求得sin∠BCF的值.(1)在Rt△CED中,∠CED=90°,DE=30海里,∴cos∠∴CE=40(海里),CD=50(海里).∵B点是CD的中点,∴(海里)∴AB=BE-AE=25-8.3=16.7(海里).答:小岛两端A、B的距离为16.7海里.(2)设BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=252-x2=625-x2.在Rt△CFE中,∠CFE=90°,∴CF2+EF2=CE2,即625-x2+(25+x)2=1600.解得x=7.∴sin∠考点: 解直角三角形的应用.4.(1)证明见解析;(2)2.【解析】试题分析:(1)应用△ABC中角的关系求出∠PAC=∠PBA和∠APB=∠APC即可证得;(2)由等腰直角三角形,相似三角形的性质和锐角三角函数定义即可求得.试题解析:(1)∵在△ABC中,∠ACB=90º,AC=BC∴∠BAC=45º,即∠PAC+∠PAB=45º,又在△APB中,∠APB=135º,∴∠PBA+∠PAB=45º,∴∠PAC=∠PBA,又∠APB=∠APC,∴△CPA ∽△APB.(2)∵△ABC 是等腰直角三角形,又∵△CPA ∽△APB ,令CP=k ,则,PB=2k ,又在△BCP 中,∠BPC=360º-∠APC-∠BPC=90º,考点:1. 等腰直角三角形的性质;2.相似三角形的判定和性质;3.锐角三角函数定义.5.(1(2 【解析】试题分析:(1)在DAE Rt ∆中,∠A=90°,∠AED=45°,DE=6,根据这些条件利用余弦函数求AE ;(2)在BCE Rt ∆中,EC=7,再利用(1)的解答结果,根据正弦函数来解答sin BCE ∠的值. 中,︒=∠90A ,︒=∠45AED ,6=DE ∴AED DE AE ∠⨯=cos =︒⨯45cos 6=;(2)∵AE AB BE -=在BCE Rt ∆中,7=EC , 考点:解直角三角形.6.(1(2【解析】 试题分析:(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt △ADC ,得出DC=4;解Rt △ADB ,得出AB=6,根据勾股定理求出BC=BD+DC 即可求解;(2)先由三角形的中线的定义求出CE 的值,则DE=CE-CD ,然后在Rt △ADE 中根据正切函数的定义即可求解.试题解析:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°.在△ADC 中,∵∠ADC=90°,∠C=45°,AD=4,∴DC=AD=4.在△ADB 中,∵∠ADB=90°,AD=4,∴∴∴(2)∵AE 是BC 边上的中线,∴∴∴tan ∠ 考点: 解直角三角形.7.(1(2)(2,4). 【解析】试题分析:(1)由4=∆BOD S ,且OB=4,可求BD 的长,因此D 点坐标可求,从而确定反比例函数解析式.(2)过点C 作CE ⊥OB 于点E .在AOB Rt ∆中,利用锐角三角函数可求出CE 和OE 的长,从而求出C 点坐标.试题解析:(1)设D (x ,y ),则有OB=x ,BD=y .由 4=∆BOD S ,得xy=8.k=xy ,∴k=8, (2)过点C 作CE ⊥OB 于点E .在AOB Rt ∆中,︒=∠90ABO ,4=OB ,8=AB ,∴tan ∠AOB 2==BO AB , ∴2=EOCE ,CE=2EO , 设C 点坐标为(a ,2a ), 把点C (a ,2a )代入x y 8=中,得 822=a ,解得2±=a ,∵点C 在第一象限,∴a>0,取a=2.∴C 点坐标为(2,4).考点: 反比例函数综合题.8.42.【解析】试题分析:在Rt △ABD 中,tan ∠ABD=33AD BD =,即可求出∠ABD=30°,从而判断△ABC 为直角三角形,且∠C=30°,利用30°所对的直角边等于斜边的一半即可求出AC 的长. 试题解析:在Rt △ABD 中,∠BDA=90°,AB=22,BD=6∴tan ∠ABD=33AD BD =, ∴∠ABD=30°,∠A=60°∵∠ABD=12∠CBD ∴∠CBD=60°,∠ABC=90°在Rt △ABD 中,42cos AB AC A== 考点: 解直角三角形. 9.(1)y= (x-5)2 +5(0≤x ≤10). (2)两景观灯间的距离为5米.试题分析:(1)抛物线的顶点坐标为(5,5),与y 轴交点坐标是(0,1) 设抛物线的解析式是y=A (x ﹣5)2+5把(0,1)代入y=A (x ﹣5)2+5得A=﹣∴y=﹣(x ﹣5)2+5(0≤x ≤10);(2)由已知得两景观灯的纵坐标都是4∴4=﹣(x ﹣5)2+5 ∴(x ﹣5)2=1∴x 1=,x 2= ∴两景观灯间的距离为﹣=5米考点:二次函数的应用10.(1)二次函数关系式为y=2x 2 -4x-6;(2)与x 轴的另一个交点是(-1,0),(3)-1﹤x ﹤3【解析】试题分析:(1)由图象可知,抛物线顶点为(1,-8)所以可设二次函数为y=A (x-1)2-8,则该二次函数过(3,0)这个点所以4A-8=0;即A=2所以二次函数关系式为:y=2(x-1)2-8= y=2x 2 -4x-6;(2)当y=0时, 2x 2 -4x-6=0所以(x-3)(x+1)=0;得x=3或者x=-1所以图像与x 轴的另一个交点为(-1,0);(3)根据图象可知:当-1<x <3时,y <0考点:二次函数的图象及性质11.(1)3;(2)1【解析】试题分析:(1)由A (3,0),B (0,3)两点可求出一次函数的解析式为y =-x +3.联立⎩⎨⎧+=+-=132x y x y 并根据图中点C 的位置,得C 点坐标为(1,2).∴S △AOC =12·|OA|·|y C |=12×3×2=3. (2)二次函数y =x 2+1的顶点坐标为D (0,1). ∴S △BCD =12·|BD|·|x C |=12×|3-1|×1=1. 考点:1.函数图象的交点;2.二次函数性质12.(1)抛物线的解析式为y=-x 2+2x+3;(2)抛物线与x 轴的交点坐标(-1,0),(3,0);(3)详见解析;(4)①当-1<x <3时,y >0;②当x >1时,y 的值随x 的增大而减小.试题分析:(1)将(0,3)代入y=-x2+(m-1)x+m求得m,即可得出抛物线的解析式;(2)令y=0,求得与x轴的交点坐标;令x=0,求得与y轴的交点坐标;(3)得出对称轴,顶点坐标,画出图象即可;(4)当y>0时,即图象在一、二象限的部分;当y<0时,即图象在一、二象限的部分;在对称轴的右侧,y的值随x的增大而减小.试题解析:(1)∵抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,∴m=3,∴抛物线的解析式为y=-x2+2x+3;(2)令y=0,得x2-2x-3=0,解得x=-1或3,∴抛物线与x轴的交点坐标(-1,0),(3,0);令x=0,得y=3,∴抛物线与y轴的交点坐标(0,3);(3)对称轴为x=1,顶点坐标(1,4),图象如图,(4)如图,①当-1<x<3时,y>0;当x<-1或x>3时,y<0;②当x>1时,y的值随x的增大而减小.考点:1.抛物线与x轴的交点;2.二次函数的图象;3.待定系数法求二次函数解析式.13.(1)小明在这一跳中,重心离地面最高时距离地面0.7米,此时他离起跳点的水平距离有1米;(2)小明此跳在起跳时重心离地面有0.5米高;(3)小明这一跳能得满分;【解析】试题分析:(1)由解析式即可得到;(2)在解析式中令x=0,则可得到小明在起跳时重心离地面有高度;(3)在解析式中令y=0,解方程即可得到;试题解析:(1)由解析式y=-0.2(x-1)2+0.7可知抛物线的开口向下,顶点坐标为(1,0.7),所以小明在这一跳中,重心离地面最高时距离地面0.7米,此时他离起跳点的水平距离有1米;(2)令x=0,则y=-0.2(x-1)2+0.7=-0.2+0.7=0.5,即小明此跳在起跳时重心离地面有0.5米高;(3)令y=0,则有-0.2(x-1)2+0.7=0,解得x1=2142+≈2.87>2.4,x2=2142-<0(舍去)所以小明这一跳能得满分;考点:二次函数的应用。
专项12 二次函数与几何综合-特殊三角形存在问题等腰三角形的存在性问题【方法1 几何法】“两圆一线”(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有AB=AC ;(2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有BA=BC ;(3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C ,有CA=CB .注意:若有重合的情况,则需排除.以点 C 1 为例,具体求点坐标:过点A 作AH ⊥x 轴交x 轴于点H ,则AH=1, 又32121131311==-=∴=HC AC ,()03211,坐标为故点-C 类似可求点 C 2 、C 3、C 4 .关于点 C 5 考虑另一种方法.【方法2 代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C直角三角形的存在性【方法1 几何法】“两线一圆”(1)若∠A 为直角,过点 A 作 AB 的垂线,与 x 轴的交点即为所求点 C ;(2)若∠B 为直角,过点 B 作 AB 的垂线,与 x 轴的交点即为所求点 C ;(3)若∠C 为直角,以 AB 为直径作圆,与 x 轴的交点即为所求点 C .(直径所对的圆周角为直角)如何求得点坐标?以C 2为例:构造三垂直.),坐标为(故代入得:坐标得、由易证0213232222C C C BN AM B A N MBBN AM BN AMB ===∆≈∆()),坐标为(,,坐标为故或故又即代入得:,设,坐标得、由易证求法相同,如下:、040231a ,4a ,3ab ,3ab 1N a,31,4333333343C C C C C C C C C C b bM BN AM B A NBM N AMNB AM ==+=======∆≈∆【方法2 代数法】点-线-方程23m 20352235110,m 135-m 1-m 35-m 11-m 22222122111=+=+=+=+==,解得:)代入得方程(,,,)表示线段:();,()、,(),又坐标为()表示点:设(:不妨来求下)()()()(BC C C C A AB B A【考点1 等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A (﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【答案】(1)y=,(2)m=时,△ADE的面积取得最大值为(3)点P坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2)【解答】解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得,所以二次函数的解析式为:y=,(2)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A2=9+n2,PE2=1+(n+2)2,AE2=16+4=20,当P A2=PE2时,9+n2=1+(n+2)2,解得,n=1,此时P(﹣1,1);当P A2=AE2时,9+n2=20,解得,n=,此时点P坐标为(﹣1,);当PE2=AE2时,1+(n+2)2=20,解得,n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述,P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).【变式1-2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)y=x2﹣2x﹣3 (2)①n=时,PM最大=②P(3﹣,2﹣4)或(2,﹣3).【解答】解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)解法一:当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=n2=0(不符合题意,舍),n3=2,n2﹣2n﹣3=﹣3,P(2,﹣3).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=3﹣,n3=3+(不符合题意,舍),n2﹣2n﹣3=2﹣4,P(3﹣,2﹣4).综上所述:P(3﹣,2﹣4)或(2,﹣3).解法二:当PM=PC时,∵BC:y=x﹣3∴∠ABC=45°∵PH⊥AB∴∠BMH=∠CMP=45°∴PM=PC时,△CPM为等腰直角三角形,CP∥x轴设P(n,n2﹣2n﹣3),则CP=nMP=﹣n2+3n∴n=﹣n2+3n解得n=0(舍去)或n=2,∴P(2,﹣3)当PM=CM时,设P(n,n2﹣2n﹣3),则=﹣n2+3n=﹣n2+3n∵n>0∴n=﹣n2+3n解得n=3﹣∴P(3﹣,2﹣4)综上所述:P(3﹣,2﹣4)或(2,﹣3)【变式1-2】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线对称轴为x=1,点B与A(﹣1,0)关于直线x=1对称,∴B(3,0),设y=a(x﹣3)(x+1),把C(0,3)代入得:﹣3a=3,解得:a=﹣1,∴y=﹣(x﹣3)(x+1)=﹣x2+2x+3,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,故抛物线解析式为y=﹣x2+2x+3,直线BC的解析式为y=﹣x+3;(2)存在,设Q(m,﹣m+3)(0<m<3),∵A(﹣1,0),C(0,3),∴AC2=OA2+OC2=12+32=10,AQ2=(m+1)2+(﹣m+3)2=2m2﹣4m+10,CQ2=m2+m2=2m2,∵以A,C,Q为顶点的三角形是等腰三角形,∴AC=AQ或AC=CQ或AQ=CQ,当AC=AQ时,10=2m2﹣4m+10,解得:m=0(舍去)或m=2,∴Q(2,1);当AC=CQ时,10=2m2,解得:m=﹣(舍去)或m=,∴Q(,3﹣);当AQ=CQ时,2m2﹣4m+10=2m2,解得:m=,∴Q(,);综上所述,点Q的坐标为(2,1)或(,3﹣)或(,).【考点2 直角三角形的存在性】【典例2】(2021秋•建华区期末)抛物线y=x2+bx+c经过A、B(1,0)、C(0,﹣3)三点.点D为抛物线的顶点,连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在y轴上是否存在一点E,使△ADE为直角三角形?若存在,请你直接写出点E的坐标;若不存在,请说明理由.【解答】解(1)∵抛物线y=x2+bx+c经过B(1,0)、C(0,﹣3),∴,解得,∴抛物线的解析式为:y=x2+2x﹣3.(4)在y轴上存在点E,使△ADE为直角三角形,理由如下:∵抛物线的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),设E点坐标为(0,m),∴AE2=m2+9,DE2=m2+8m+17,AD2=20,当∠EAD=90°时,有AE2+AD2=DE2,∴m2+9+20=m2+8m+17,解得m=,∴此时点E的坐标为(0,);当∠ADE=90°时,DE2+AD2=AE2,m2+8m+17+20=m2+9,解得m=﹣,∴此时点E的坐标为(0,﹣);当∠AED=90°时,AE2+DE2=AD2,m2+9+m2+8m+17=20,解得m=﹣1或m=﹣3,∴此时点E的坐标为(0,﹣1)或(0,﹣3).综上所述,符合题意的点E的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).【变式2-1】(2022•灞桥区校级模拟)如图,抛物线与x轴交于点A(1,0),B(3,0),与y轴交于点C(0,3).(1)求二次函数的表达式及顶点坐标;(2)连接BC,在抛物线的对称轴上是否存在一点E,使△BCE是直角三角形?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)(x﹣3),将点C(0,3)代入y=a(x﹣1)(x﹣3),∴3a=3,∴a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为(2,﹣1);(2)存在一点E,使△BCE是直角三角形,理由如下:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,设E(2,t),∵△BCE是直角三角形,∴BE⊥CE,∵B(3,0),C(0,3),∴BC=3,BE=,CE=,①当BC为斜边时,∴18=()2+()2,解得t=,∴E点坐标为(2,)或(2,);②当BE为斜边时,∴18+()2=()2,解得t=5,∴E点坐标为(2,5);③当CE为斜边时,∴18+()2=()2,解得t=﹣1,∴E点坐标为(2,﹣1);综上所述:E点坐标为(2,)或(2,)或(2,5)或(2,﹣1).【变式2-2】(2022•碑林区校级四模)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c 交x轴于点A(﹣5,0),B(﹣1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,点E为抛物线C2上一点若△DOE是以DO为直角边的直角三角形,求点E的坐标.【解答】解:(1)将点A(﹣5,0),B(﹣1,0),C(0,5)代入y=ax2+bx+c,∴,解得,∴y=x2+6x+5,∵y=x2+6x+5=(x+3)2﹣4,∴顶点D(﹣3,﹣4);(2)设抛物线C2上任意一点(x,y),则(x,y)关于y轴对称的点为(﹣x,y),∵点(﹣x,y)在抛物线C1上,∴抛物线记作C2的解析式为y=x2﹣6x+5,设E(t,t2﹣6t+5),过点D作DG⊥x轴交于点G,过点E作EH⊥x轴交于点H,∵∠DOE=90°,∴∠GOD+∠HOE=90°,∵∠GOD+∠GDO=90°,∴∠HOE=∠GDO,∴△GDO∽△HOE,∴=,∵DG=4,GO=3,HE=﹣t2+6t﹣5,OH=t,∴=,∴t=4或t=,∴E(4,﹣3)或E(,﹣).【变式2-3】(2022•武功县模拟)如图,经过点A(2,6)的直线y=x+m与y轴交于点B,以点A为顶点的抛物线经过点B,抛物线的对称轴为直线l.(1)求点B的坐标和抛物线的函数表达式;(2)在l右侧的抛物线上是否存在点P,使得以P、A、B为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=x+m经过点A(2,6),∴2+m=6,解得m=4,即y=x+4.令x=0,得y=4,即点B的坐标为(0,4).∵点A(2,6)为抛物线的顶点,∴可设抛物线的函数表达式为y=a(x﹣2)2+6(a≠0),将点B(0,4)代入,得4=4a+6,解得,∴抛物线的函数表达式为.∴点B的坐标为(0,4),抛物线的函数表达式为y=﹣x2+2x+4;(2)∵点A(2,6)为抛物线的顶点,∴抛物线的对称轴l:x=2.①当AB为该等腰三角形的底边时:如图,点P在P2的位置.过点A作AC⊥y轴于点C,过点P2作P2D⊥AC交CA的延长线于点D,作P2E⊥y轴于点E,连接P2A,P2B,则P2A=P2B,∠D=∠P2EB=90°.∵A(2,6),B(0,4),AC⊥BC,∴AC=BC=2,∴△ABC是等腰直角三角形,∴∠CAB=∠CBA.∵P2A=P2B,∴∠P2AB=∠P2BA,∴180°﹣∠CAB﹣∠P2AB=180°﹣∠CBA﹣∠P2BA,即∠P2AD=∠P2BE.在△P2AD和△P2BE中,∠D=∠P2EB,∠P2AD=∠P2BE,P2A=P2B,∴△P2AD≌△P2BE(AAS),∴P2D=P2E.设,则P2E=m,,∴,解得(舍去)或,∴;②当AB为该等腰三角形的腰时,作点B关于l的对称点P1,由抛物线的对称性可知,AB=AP1.∵B(0,4),抛物线的对称轴为直线x=2,∴P1(4,4).综上可知,在l右侧的抛物线上存在点P,使得以P、A、B为顶点的三角形是等腰三角形,点P的坐标为(4,4)或.【考点3 等腰直角三角形的存在性】【典例3】(2022•黔东南州一模)抛物线y=ax2+bx﹣经过点(1,﹣1),现将一块等腰直角三角板ABC(∠ACB=90°)按照如图的方式放在第二象限,斜靠在两坐标轴上,且点A、C坐标分别为(0,2)、(﹣1,0).B点在抛物线y=ax2+bx﹣图象上.(1)求点B的坐标:(2)求抛物的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求出点P的坐标:若不存在,请说明理由.【解答】解:(1)过点B作BD⊥x轴,垂足为D.∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO(AAS),∴BD=OC=1,CD=OA=2,∴点B的坐标为(﹣3,1);(2)抛物线y=ax2+bx﹣经过点(1,﹣1),点B(﹣3,1),则,解得,所以抛物线的解析式为y=x2+x﹣;(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC(AAS),∴CM=CD=2,P1M=BD=1,∵OC=1,∴OM=1,∴P1(1,﹣1);②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴点P2(2,1),③以A为直角顶点的等腰Rt△ACP的顶点P有两种情况.即过点A作直线L⊥AC,在直线L上截取AP=AC时,点P可能在y轴右侧,即现在解答情况②的点P2;点P也可能在y轴左侧,即还有第③种情况的点P3.因此,然后过P3作P3G⊥y轴于G,同理:△AGP3≌△CAO,∴GP3=OA=2,AG=OC=1,∴P3为(﹣2,3);经检验,点P1(1,﹣1)与在抛物线y=x2+x﹣上,点P2(2,1)点P3(﹣2,3)都不在抛物线y=x2+x﹣上.综上,存在,点P的坐标为(1,﹣1).【变式1-1】(2022•兴宁区校级模拟)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M的坐标.如果不存在,请说明理由;【解答】解:(1)由题意,解得:,∴二次函数的表达式为y=x2﹣2x;(2)过点A作直线AF⊥x轴于点F,由(1)得y=(x﹣4)2﹣4,∴抛物线的顶点A(4,﹣4),①AM=BM,∵B(8,0),∴BF=4,∵∠AFB=90°,AF=BF=4,∴△ABF是等腰直角三角形,∴M在点F处,△ABM是等腰直角三角形,此时M为(4,0),②AB=AM,由①得△ABF是等腰直角三角形,BF=4,∴AB===4,∴M为(4,﹣4﹣4)或(4,﹣4+4),③AB=BM,∵AB=BM,BF⊥AM,∴MF=AF,∴M为(4,4),综上所述,M为(4,0),(4,﹣4﹣4)或(4,﹣4+4)或(4,4);【变式3-2】(2022•禅城区二模)如图,抛物线经过原点O,对称轴为直线x=2且与x轴交于点D,直线l:y=﹣2x﹣1与y轴交于点A,与抛物线有且只有一个公共点B,并且点B在第四象限,直线l与直线x=2交于点C.(1)连接AD,求证:AD⊥AC.(2)求抛物线的函数关系式.(3)在直线l上有一点动点P,抛物线上有一动点Q,当△PBQ是以PQ为斜边的等腰直角三角形时,直接写出此时点P的坐标.【解答】解:(1)如图1,过点C作CE⊥y轴于点E,则∠AEC=∠DOA=90°,∵直线y=﹣2x﹣1与y轴交于点A,与直线x=2交于点C,∴A(0,﹣1),C(2,﹣5),∴E(0,﹣5),∴OA=1,OD=2,CE=2,AE=4,∴=,==,∴=,∵∠AEC=∠DOA,∴△AEC∽△DOA,∴∠CAE=∠ADO,∵∠ADO+∠DAO=90°,∴∠CAE+∠DAO=90°,∴∠DAC=180°﹣(∠CAE+∠DAO)=180°﹣90°=90°,∴AD⊥AC.(2)设抛物线的函数关系式为y=ax2+bx,∵对称轴为直线x=2,∴=2,∴b=﹣4a,∴y=ax2﹣4ax,由ax2﹣4ax=﹣2x﹣1,整理得ax2+(2﹣4a)x+1=0,∵直线y=﹣2x﹣1与抛物线有且只有一个公共点B,∴Δ=(2﹣4a)2﹣4a=0,解得:a1=,a2=1,当a=时,抛物线解析式为y=x2﹣x,联立得x2﹣x=﹣2x﹣1,解得:x1=x2=﹣2,∴B(﹣2,3)与点B在第四象限矛盾,故a=不符合题意,舍去,当a=1时,y=x2﹣4x,联立得x2﹣4x=﹣2x﹣1,解得:x1=x2=1,∴B(1,﹣3),点B在第四象限符合题意,∴a=1,∴该抛物线的函数关系式为y=x2﹣4x.(3)如图2,过点B作BQ⊥AB交抛物线于点Q,作GH∥x轴交y轴于点G,过点Q 作QH⊥GH,则∠AGB=∠BHQ=∠ABQ=90°,∴∠ABG+∠QBH=∠ABG+∠BAG=90°,∴∠QBH=∠BAG,∴△ABG∽△BQH,∴=,设Q(t,t2﹣4t),∵A(0,﹣1),B(1,﹣3),∴AG=2,BG=1,BH=t﹣1,QH=t2﹣4t+3,∴=,解得:t=1(舍去)或t=,∴BH=﹣1=,QH=()2﹣4×+3=,过点B作EF∥y轴,过点P1作P1E⊥EF,过点P2作P2F⊥EF,∵△PBQ是以PQ为斜边的等腰直角三角形,∴P1B=BQ=P2B,∵∠P1BE+∠EBQ=∠EBQ+∠QBH=90°,∴∠P1BE=∠QBH,∵∠BEP1=∠BHQ=90°,∴△BEP1≌△BHQ(AAS),∴EP1=QH=,BE=BH=,∴P1(﹣,﹣),同理可得:P2(,﹣),综上,点P的坐标为P1(﹣,﹣),P2(,﹣).1.(2022•榆阳区一模)如图,已知抛物线y=mx2+4x+n与x轴交于A、B两点,与y轴交于点C.直线y=x﹣3经过B,C两点.(1)求抛物线的函数表达式;(2)抛物线的顶点为M,在该抛物线的对称轴l上是否存在点P,使得以C,M,P为顶点的三角形是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将C(0,﹣3),B(3,0)代入y=mx2+4x+n中,∴,解得,∴y=﹣x2+4x﹣3;(2)存在点P,使得以C,M,P为顶点的三角形是等腰三角形,理由如下:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴M(2,1),对称轴为直线x=2,设P(2,t),∴MP=|t﹣1|,MC=2,CP=,①当MP=MC时,|t﹣1|=2,∴t=2+1或t=﹣2+1,∴P(2,2+1)或(2,﹣2+1);②当MP=CP时,|t﹣1|=,解得t=﹣,∴P(2,﹣);③当MC=CP时,2=,解得t=1(舍)或t=﹣7,∴P(2,7);综上所述:P点坐标为(2,2+1)或(2,﹣2+1)或(2,﹣)或(2,7).2.(2022•岚山区一模)已知抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,交y轴于点C,点P是抛物线上一个动点,且点P的横坐标为m.(1)求抛物线的解析式;(2)如图2,将直线BC沿y轴向下平移5个单位,交x轴于点M,交y轴于点N.过点P作x轴的垂线,交直线MN于点D,是否存在一点P,使△BMD是等腰三角形?若存在,请直接写出符合条件的m的值;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,∴,解得,,∴抛物线的解析式为y=﹣x2+x+8;(3)易证线BC的解析式为y=﹣x+8,向下平移5个单位得到y=﹣x+3,当y=0时,x=3,∴M(3,0),当x=0时,y=3,∴N(0,3),由题意得PD⊥MB,∵MB=8﹣3=5,D(m,﹣m+3),∴MD2=(m﹣3)2+(﹣m+3)2,BD2=(8﹣m)2+(﹣m+3)2,若△BMD是等腰三角形,可分三种情况:①当MB=MD时,∴(m﹣3)2+(﹣m+3)2=25,解得m1=3+,m2=3﹣,②当MB=BD时,∴(8﹣m)2+(﹣m+3)2=25,解得,m1=3(舍去),m2=8(舍去),③当MD+BD时,∴(8﹣m)2+(﹣m+3)2=(m﹣3)2+(﹣m+3)2,解得,m=5.5.综上所述,m的值为3+或3﹣或5.5时,△BMD是等腰三角形.3.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x 轴于点D,直线y=﹣x+3与x轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)在x轴上是否存在点P,使得△PDC为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.【解答】解:(1)对于直线y=﹣x+3,令y=0,即﹣x+3=0,解得:x=3,令x=0,得y=3,∴B(3,0),C(0,3),∵A为x轴负半轴上一点,且OA=OB,∴A(﹣1,0).将点A、B的坐标分别代入y=﹣x2+bx+c中,得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(3)存在.如图2,∵点P在x轴上,∴设P(m,0).∵C(0,3),D(1,0),∴由勾股定理,得:CD2=OC2+OD2=32+12=10,PD2=(m﹣1)2,CP2=OP2+OC2=m2+32=m2+9,分为三种情况讨论:①当CD=PD时,CD2=PD2,即10=(m﹣1)2,解得m1=1+,m2=1﹣,此时点P的坐标为(1+,0)或(1﹣,0);②当CD=CP时,CD2=CP2,即10=m2+9,解得m1=﹣1,m2=1(不符合题意,舍去),此时点P的坐标为(﹣1,0);③当PC=PD时,PC2=PD2,即m2+9=(m﹣1)2,解得m=﹣4,此时点P的坐标为(﹣4,0).综上所述,在x轴上存在点P,使得△PDC为等腰三角形,满足条件的点P的坐标为(1+,0)或(1﹣,0)或(﹣1,0)或(﹣4,0).4.(2022•鞍山模拟)抛物线与坐标轴交于A(﹣1,0)、B(4,0)、C(0,4),连接AC、BC.(1)求抛物线的解析式;(3)如图2,点E是抛物线上第一象限内对称轴右侧的一点,连接EC,点D是抛物线的对称轴上的一点,连接ED、CD,当△CED是以点E为顶点的等腰直角三角形时,直接写出点E的横坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线y=ax2+bx+c过A(﹣1,0),B(4,0),C(0,4)三点,∴.解得:.∴抛物线对应的二次函数的解析式为y=﹣x2+3x+4;(2)设G(x,﹣x2+3x+4),∵S△BHG=S△ABG﹣S△ABH,S△AHC=S△ABC﹣S△ABH,△BHG与△AHC的面积差为1,∵A(﹣1,0)、B(4,0),∴AB=5,(3)∵y=﹣x2+3x+4,∴抛物线对称轴为x=﹣=,,点E分别作EM⊥y轴于M,作EN⊥EM,过点D作DN⊥EN,垂足为N,∴∠CME=∠DNE=90°,∠MEN=90°,∵△CED是以点E为顶点的等腰直角三角形,∴∠CED=90°,∴∠CEM+∠MED=∠DEN+∠MED=90°,CE=DE,∴∠CEM=∠DEN,∴△EMC≌△END(AAS),∴CM=DN,设E(m,﹣m2+3m+4)(m>),∴4﹣(﹣m2+3m+4)=m﹣,∴m=或(不合题意,舍去),∴点E的横坐标为.5.(2022•渭滨区模拟)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣3,0),B(4,0)代入y=ax2+bx+4,∴,解得,∴抛物线的表达式为:;(2)存在点Q,使得以A,C,Q为顶点的三角形是等腰三角形,理由如下:令x=0,则y=4,∴点C(0,4),∵A(﹣3,0)、C(0,4),∴AC=5,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+4,设点M(m,0),则点Q(m,﹣m+4),①当AC=CQ时,过点Q作QE⊥y轴于点E,连接AQ,∵CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:舍去负值),∴点;②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或m=0(舍去0),∴点Q(1,3);③当CQ=AQ时,则2m2=[m﹣(﹣3)]2+(﹣m+4)2,解得:舍去);综上所述,点Q的坐标为(1,3)或.31。
中考数学“特殊三角形的存在性问题”题型解析二次函数与特殊三角形的存在性问题主要分为两类:一类是静态的特殊三角形的存在性问题;一类是动态的特殊三角形的存在性问题 .静态的特殊三角形的存在性问题难度相对较小,可根据抛物线的对称性以及三角形的特点为切入点来解决;动态的特殊三角形的存在性问题难度相对较大,解决此类问题的关键是根据题意分析出动点在动的过程一些不变的量以及不变的关系 .本节主要来讨论下关于动态的特殊三角形的存在性问题 .类型一:等腰三角形存在性问题【例题1】如图,已知抛物线y = -1/4 x^2 - 1/2 x + 2 与x 轴交于A , B 两点,与y 轴交于点C . (1)求点A , B , C 的坐标;(2)此抛物线的对称轴上是否存在点M,使得△ACM 是等腰三角形?若存在请求出点M 的坐标;若不存在,请说明理由 .【分析】(1)分别令y = 0 , x = 0 , 即可解决问题;(2)分A、C、M 为顶点三种情形讨论,分别求解即可 . 【解析】(1)令y = 0 , 得-1/4 x^2 - 1/2 x + 2 = 0 ,∴x^2 + 2x - 8 = 0 ,∴x = - 4(舍)或2 ,∴点A 坐标(2,0),点B 坐标(-4,0),令x = 0 , 得y = 2 ,∴点C 的坐标(0,2).(2)如图所示,①当C 为顶点时,CM1 = CA , CM2 = CA , 作M1N⊥OC 于N , 在Rt△CM1N 中,∴点M1 坐标(-1,2+√7),点M2 坐标(-1 , 2-√7).②点M3 为顶点时,∵直线AC 解析式为y = -x + 2 , 线段AC 的垂直平分线为y = x , ∴点M3 坐标为(-1,-1).③当点A 为顶点的等腰三角形不存在 .综上所述M 坐标为(-1,-1)或(-1,2+√7)或(-1 , 2-√7).类型二:直角三角形存在性问题【例题2】如图,△OAB 的一边OB 在x 轴的正半轴上,点A 的坐标为(6,8),OA = OB,点P 在线段OB 上,点Q 在y 轴的正半轴上,OP = 2OQ,过点Q 作x 轴的平行线分别交OA,AB 于点E , F .(1)求直线AB 的解析式;(2)是否存在点P,使△PEF 为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由 .【分析】(1)由点A 的坐标可确定出OA 的长,即为OB 的长,从而可确定出B 点坐标,利用待定系数法即可求出直线AB 的解析式;(2)分三种情况来考虑:若∠PEF = 90°;若∠PFE = 90°,若∠EPF = 90°,过点E , F 分别作x 轴垂线,垂足分别为G、H,分别求出t 的值,确定出满足题意P 坐标即可 .【解题策略】此类问题主要考查特殊三角形的存在性问题:首先运用特殊三角形的性质画出相应的图形,确定动点问题的位置;其次借助特殊三角形的性质找到动点与已知点的位置关系和数量关系;最后结合已知列出方程求解即可 .要注意分类讨论时考虑全面所有可能的情形 .。
2021中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练四:与等腰三角形相关的压轴题(附答案)方法提炼:1、设出点坐标,利用等腰三角形的性质求边长;2、当所给定长未说明是等腰三角形的底还是腰时,需分情况讨论:①当定长为腰,找已知直线上满足条件的点时,以定长的某一端点为圆心,以定长为半径画弧,若所画弧与已知直线有交点且交点不是定长的另一端点时,交点即为所求的点;若所画弧与已知直线无交点或交点是定长的另一端点时,满足条件的点不存在;②当定长为底边时,作出定长的垂直平分线,若作出的垂直平分线与已知直线有交点,则交点即为所求的点,若作出的垂直平分线与已知直线无交点,则满足条件的点不存在.用以上方法即可找出所有符合条件的点。
典例引领:例:如图,直线y=3x+3交x轴于点A,交y轴于点B,过A、B两点的抛物线交x轴于另一点C(3,0)。
(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由。
解:(1)抛物线的解析式为:y=-x2+2x+3(2)该抛物线的对称轴为x= 1。
设Q点坐标为(1,m)当AB=AQ时Q点坐标(1, 6),或(1,- 6);当BA= BQ时解得:m=0,m =6, Q点坐标为(1,0)或(1,6) 此点在直线AB上,不符合题意应舍去; 当QA=QB时解得:m=1,Q点坐标为(1,1).抛物线的对称轴上是存在着点Q(1, 6)、(1,- 6)、(1,0)、(1,1)跟踪训练:1.抛物线y=ax2﹣4ax+3a交x轴于点B、C两点,交y轴于点A,点D为抛物线的顶点,连接AB、AC,已知△ABC的面积为3.(1)求抛物线的解析式;(2)点P为抛物线对称轴右侧一点,点P的横坐标为m,过点P作PQ∥AC交y轴于点Q,AQ的长度为d,求d与m的函数关系式;(3)在(2)的条件下,当d=4时,作DN⊥y轴于点N,点G为抛物线上一点,AG交线段PD于点M,连接MN,若△AMN是以MN为底的等腰三角形,求点G的坐标.2.如图,抛物线y=﹣x2﹣x+c与x轴交于A,B两点,且点B的坐标为(3,0),与y 轴交于点C,连接AC,BC,点P是抛物线上在第二象限内的一个动点,点P的横坐标为a,过点P作x轴的垂线,交AC于点Q.(1)求A,C两点的坐标.(2)请用含a的代数式表示线段PQ的长,并求出a为何值时PQ取得最大值.(3)试探究在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN⊥x轴于点N,交抛物线于点M,当△BCM面积最大时,求△BPN的周长.(3)在(2)的条件下,当△BCM面积最大时,在抛物线的对称轴上是否存在点Q,使△CNQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.4.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP 为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标.5.图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,点在抛物线上,求的最小值.6.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.7.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0),B(1,0)两点,与y轴交于点C(0,﹣3),顶点为D,其对称轴与x轴交于点E.(1)求二次函数解析式;(2)连接AC,AD,CD,试判断△ADC的形状,并说明理由;(3)点P为第三象限内抛物线上一点,△APC的面积记为S,求S的最大值及此时点P 的坐标;(4)在线段AC上,是否存在点F,使△AEF为等腰三角形?若存在,直接写出点F的坐标;若不存在,请说明理由.8.抛物线y=ax2+bx+分别交x轴于点A(1,0),B(﹣3,0),交y轴于点C.抛物线的对称轴l与x轴相交于点D,直线AC与抛物线的对称轴l相交于点P.(1)请直接写出抛物线的解析式和点D的坐标;(2)如图1,点M为线段OC上的动点,点N为线段AC上的动点,且MN⊥AC,在点M,点N移动的过程中,DM+MC是否有最小值?如果有,请求出最小值;(3)以点C为旋转中心,将直线AC绕点C逆时针旋转,旋转角为α(0°<α≤90°),直线AC旋转时,与抛物线的对称轴l相交于点E,与抛物线的另一个交点为点Q.①如图2,当直线AC旋转到与直线BC重合时,判断线段PE、ED的数量关系?并说明理由;②当△CPQ为等腰三角形时,请直接写出点Q的坐标.9.如图,抛物线y=x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,﹣4).(1)求该抛物线的解析式;(2)点Q是线段BA上的一动点,点E为线段AC上一动点,若始终保持∠AQE=∠ABC,连接CQ,求△CQE的面积S关于点Q的横坐标m的函数关系式;(3)若点D为OB的中点,点M是线段BC上一点,当△OMD为等腰三角形时,直接写出点M的坐标.10.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.11.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.12.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,且抛物线经过点D(2,3).(1)求这条抛物线的表达式;(2)将该抛物线向下平移,使得新抛物线的顶点G在x轴上.原抛物线上一点M平移后的对应点为点N,如果△AMN是以MN为底边的等腰三角形,求点N的坐标;(3)若点P为抛物线上第一象限内的动点,过点B作BE⊥OP,垂足为E,点Q为y轴上的一个动点,连接QE、QD,试求QE+QD的最小值.13.如图,菱形ABCD在平面直角坐标系中,边AB在x轴的负半轴上,点C在y轴的正半轴上,AB=10,tan∠DAB=,抛物线经过点B、C、D.(1)求抛物线的解析式;(2)直线EF与BC平行,与抛物线只有一个交点,求直线EF解析式;(3)抛物线对称轴上是否存在点P,使△PBC是以BC为腰的等腰三角形?若存在直接写出P点坐标,若不存在说明理由.参考答案1.分析:(1)y=ax2﹣4ax+3a交x轴于点B、C两点,交y轴于点A,则点B、C的坐标分别为:(1,0)、(3,0),点A(0,3a),△ABC的面积=AB×OA=3a=3,即可求解;(2)PQ平行线于AC直线,其表达式设为:y=﹣x+b,设点P(m,m2﹣4m+3)(m>2),将点P的坐标代入上式,即可求解;(3)d=4时,点P(4,3),设点G(n,n2﹣4n+3),直线PD的函数表达式为:y=2x ﹣5…①,直线AG的函数表达式为:y=(n﹣4)x+3…②,联立①②并解得:x=,故点M(,﹣5),AN=AM,即4+9=()2+(﹣8)2,即可求解.解:(1)y=ax2﹣4ax+3a交x轴于点B、C两点,交y轴于点A,则点B、C的坐标分别为:(1,0)、(3,0),点A(0,3a),△ABC的面积=AB×OA=3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3;(2)点A(0,3),点C(3,0),D(2,﹣1),则PQ平行线于AC直线,其表达式设为:y=﹣x+b,设点P(m,m2﹣4m+3)(m>2),将点P的坐标代入上式并解得:b=m2﹣3m﹣3,则d=AQ=|m2﹣3m|(m>2);(3)当d=4时,|m2﹣3m|=4,解得:m=4或﹣1(舍去﹣1),故点P(4,3),设点G(n,n2﹣4n+3),点D(2,﹣1),则点N(0,﹣1)同理可得:直线PD的函数表达式为:y=2x﹣5…①,直线AG的函数表达式为:y=(n﹣4)x+3…②,联立①②并解得:x=,故点M(,﹣5),点A(0,3)、点N(0,﹣1),AN=AM,即16=()2+(﹣8)2,解得:n=或4,故点G(,﹣)或(4,3).点评:本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质、图形的面积计算等,其中(2),要注意分类求解,避免遗漏.2.分析:(1)将点B的坐标(3,0)代入抛物线解析式可得出c=4,解方程,得x1=3,x2=﹣4,则A(﹣4,0);(2)求出直线AC的解析式y=﹣x+4,设P(a,),则点Q(a,a+4),则PQ可用a表示,由二次函数的性质可求出PQ的最大值;(3)分BC=BQ、BC=CQ、CQ=BQ三种情况,分别列得出方程求解即可.解:(1)把点B的坐标(3,0)代入抛物线解析式得,,解得:c=4,令y=0,则,解得x1=3,x2=﹣4,∴A(﹣4,0),C(0,4);(2)∵A(﹣4,0),C(0,4),设直线AC的解析式为y=kx+b,∴,∴,∴直线AC的解析式y=x+4,点P的横坐标为a,P(a,),则点Q(a,a+4),∴PQ==,∵,∴a=﹣2时,PQ有最大值;(3)存在,理由:点A、B、C的坐标分别为(﹣4,0)、(3,0)、(0,4),则BC=5,AB=7,AC=4,∠OAC=∠OCA=45°,将点B、C的坐标代入一次函数表达式:y=mx+n并解得:,∴直线BC的解析式为y=﹣x+4,设BC的中点为H,由中点坐标公式可得H(),∴过BC的中点H且与直线BC垂直直线的表达式为:y=,①当BC=BQ时,如图1,∴BC=BQ=5,设:QM=AM=n,则BM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q1(﹣1,3);②当BC=CQ时,如图1,∴CQ=5,则AQ=AC﹣CQ=4,∴,∴,③当CQ=BQ时,联立直线AC解析式y=x+4和y=,解得x=﹣(不合题意,舍去),综合以上可得点Q的坐标为:Q(﹣1,3)或().点评:主要考查了二次函数的解析式的求法,等腰三角形的判定与性质,二次函数的性质等知识点,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.分析:(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)先求出直线BC的解析式,设P(x,﹣x+3),则M(x,﹣x2+2x+3),求出△BCM 面积的表达式,这是一个二次函数,求出其取最大值的条件;然后利用勾股定理可求出△BPN的周长;(3)由(2)可知N(),设Q(1,a),由两点间的距离公式可分别表示出CQ2,QN2,CN2,若△CNQ为等腰三角形,可分CQ=QN、CQ=CN、QN=CN三种情况考虑,由此可得到关于a的方程,解方程求出符合题意的坐标即可.解:(1)由题意可得:,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)设直线BC的解析式为:y=kx+b,则有:,解得:,∴直线BC的解析式为:y=﹣x+3.设P(x,﹣x+3),则M(x,﹣x2+2x+3),∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.∴S△BCM=S△PMC+S△PMB=(x B﹣x C)=,∴S△BCM==,∴当x=时,△BCM的面积最大.此时P(),∴PN=ON=,∴BN=OB﹣ON=3﹣=,在Rt△BPN中,由勾股定理得:PB=,C△BCN=BN+PN+PB=3+,∴当△BCM的面积最大时,△BPN的周长为3+;(3)由(2)知P点坐标为(),∴,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为x=1,设Q(1,a),∵C(0,3),N(),∴CQ2=12+(3﹣a)2,,,若△CNQ为等腰三角形,可分三种情况:当CQ=QN时,1+,解得:a=,∴点Q的坐标为(1,),当CQ=CN时,1+,解得:a=3,∴点Q的坐标为(1,3﹣),(1,3+),当QN=CN时,,解得:a=,∴点Q的坐标为(1,),(1﹣),综合以上可得点Q的坐标为(1,)或(1,3﹣)或(1,3+)或(1,)或(1,﹣).点评:本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、等腰三角形的性质及分类讨论思想等知识.把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.4.分析:(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;(3)如图2,构造BG与x轴成30°角,将MB转化为线段M到BG的距离,从而可知C、M、N、B′在同一条直线上时,CN+MN+MB取最小值,根据CG的长和∠CGB =60°即可求出最小值.根据直线BG求出直线CB′解析式,即求出MN坐标.解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,把A(﹣1,0),C(0,3)代入解析式得,∴,解得b=2,c=3.故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,则,解得:,故直线BC的解析式为y=﹣x+3;∴设P(t,3﹣t),∴D(t,﹣t2+2t+3),∴PD=(﹣t2+2t+3)﹣(3﹣t)=﹣t2+3t,∵OB=OC=3,∴△BOC是等腰直角三角形,∴∠OCB=45°,当CD=PC时,则∠CPD=∠CDP,∵PD∥y轴,∴∠CPD=∠OCB=45°,∴∠CDP=45°,∴∠PCD=90°,∴直线CD的解析式为y=x+3,解得或,∴D(1,4),此时P(1,2);当CD=PD时,则∠DCP=∠CPD=45°,∴∠CDP=90°,∴CD∥x轴,∴D点的纵坐标为3,代入y=﹣x2+2x+3得,3=﹣x2+2x+3,解得x=0或x=2,此时P(2,1);当PC=PD时,∵PC=t,∴t=﹣t2+3t,解得t=0或t=3﹣,此时P(3﹣,);综上,当△CDP为等腰三角形时,点P的坐标为(1,2)或(2,1)或(3﹣,).(3)CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).理由如下:如图,取G点坐标为(0,﹣),连接BG,∵B(3,0),∴直线BG解析式为:y=,∴tan∠GBO=,∴∠GBO=30°,过M点作MB′⊥BG,∴,∴CN+MN+MB=CN+MN+B′M,∴CN+MN+MB取最小值时,C、M、N、B′在同一条直线上,即CB′⊥BG,设直线CB′解析式为,∵C(0,3)故直线CB′解析式为为,∵抛物线的顶点为E坐标为(1,4),EF⊥x轴,N在EF、CB′上,∴N坐标为(1,3﹣),M(m,0)是x轴一个动点,也是CB′与x轴交点,∴M(,0).∵CG=3+,∠CGB=60°,∴CB′=CG sin∠CGB=(3+)×=,综上所述:CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).点评:此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.5.分析:(1)由已知抛物线顶点D可设抛物线顶点式,再把点A代入即求得二次项系数a 的值.(2)由点B、D坐标可求BD的长.设点P坐标为(0,t),用t表示BP2,DP2.对BP =BD、DP=BD、BP=DP三种情况进行分类讨论计算,解方程求得t的值并讨论是否合理.(3)由点B、C坐标可得∠BCO=45°,所以过点P作BC垂线段PQ即构造出等腰直角△PQC,可得PQ=PC,故有MP+PC=MP+PQ.过点M作BC的垂线段MH,根据垂线段最短性质,可知当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH 最小,即需求MH的长.连接MB、MC构造△BCM,利用y轴分成△BCD与△CDM求面积和即得到△BCM面积,再由S△BCM=BC•MH即求得MH的长.解:(1)∵抛物线顶点为D(1,﹣4)∴设顶点式为y=a(x﹣1)2﹣4∵A(﹣1,0)在抛物线上∴4a﹣4=0,解得:a=1∴抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3(2)在y轴的负半轴上存在点P,使△BDP是等腰三角形.∵B(3,0),D(1,﹣4)∴BD2=(3﹣1)2+(0+4)2=20设y轴负半轴的点P坐标为(0,t)(t<0)∴BP2=32+t2,DP2=12+(t+4)2①若BP=BD,则9+t2=20解得:t1=(舍去),t2=﹣②若DP=BD,则1+(t+4)2=20解得:t1=(舍去),t2=﹣﹣4③若BP=DP,则9+t2=1+(t+4)2解得:t=﹣1综上所述,点P坐标为(0,﹣)或(0,﹣﹣4)或(0,﹣1)(3)连接MC、MB,MB交y轴于点D,过点P作PQ⊥BC于点Q,过点M作MH⊥BC 于点H∵x=0时,y=x2﹣2x﹣3=﹣3∴C(0.﹣3)∵B(3,0),∠BOC=90°∴∠OBC=∠OCB=45°,BC=3∵∠PQC=90°∴Rt△PQC中,sin∠BCO==∴PQ=PC∴MP+PC=MP+PQ∵MH⊥BC于点H∴当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小∵M(﹣,m)在抛物线上∴m=(﹣)2﹣2×(﹣)﹣3=∴M(﹣,)设直线MB解析式为y=kx+b∴解得:∴直线MB:y=﹣x+∴MB与y轴交点D(0,)∴CD=﹣(﹣3)=∴S△BCM=S△BCD+S△CDM=CD•BO+CD•|x M|=CD•(x B﹣x M)=××(3+)=∵S△BCM=BC•MH∴MH=∴MP+PC的最小值为点评:本题考查了二次函数的图象与性质,等腰三角形和等腰直角三角形的性质,解二元一次方程组和一元二次方程,垂线段最短定理.求线段和最小值时,一般利用特殊三角函数应用把含有系数的线段长进行转换,再利用三点成一直线或垂线段最短性质得到最短路径的位置,进而计算.6.分析:(1)求直线y=﹣x+4与x轴交点B,与y轴交点C,用待定系数法即求得抛物线解析式.(2)根据点B、C坐标求得∠OBC=45°,又PE⊥x轴于点E,得到△PEB是等腰直角三角形,由PB=t求得BE=PE=t,即可用t表示各线段,得到点M的横坐标,进而用m表示点M纵坐标,求得MP的长.根据MP∥CN可证△MPQ∽△NCQ,故有,把用t表示的MP、NC代入即得到关于t的方程,求解即得到t的值.(3)因为不确定等腰△PDM的底和腰,故需分3种情况讨论:①若MD=MP,则∠MDP =∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP,则∠DMP=∠MPD =45°,进而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,则∠PMD =∠PDM,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF进而得CF=CD.用t表示M的坐标,求直线AM解析式,求得AM与y轴交点F 的坐标,即能用t表示CF的长.把直线AM与直线BC解析式联立方程组,解得x的值即为点D横坐标.过D作y轴垂线段DG,得等腰直角△CDG,用DG即点D横坐标,进而可用t表示CD的长.把含t的式子代入CF=CD,解方程即得到t的值.解:(1)直线y=﹣x+4中,当x=0时,y=4∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴解得:∴抛物线解析式为y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=t∴∠BEP=90°∴Rt△BEP中,sin∠PBE=∴BE=PE=PB=t∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t ∵点M在抛物线上∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t∴MP=y M﹣y P=﹣t2+4t∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴∴解得:t1=,t2=4(点P不与点C重合,故舍去)∴t的值为(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m ∴解得:∴直线AM:y=tx+t∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:x=∴DG=x D=∵∠CGD=90°,∠DCG=45°∴CD=DG=∴4﹣t=解得:t=﹣1综上所述,当△PDM是等腰三角形时,t=1或t=﹣1.点评:本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.7.分析:(1)二次函数表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),则﹣3a=﹣3,解得:a=1,即可求解;(2)由AD2=AC2+CD2,故△ADC为直角三角形;(3)S=PH×OA=(﹣x﹣3﹣x2﹣2x+3)=﹣(x+)2+,即可求解;(4)分AE=EF、AE=AF、AF=EF三种情况分别求解即可.解:(1)二次函数表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),则﹣3a=﹣3,解得:a=1,函数的表达式为:y=x2+2x﹣3;(2)由(1)知,点D(﹣1,﹣4),AC=3,CD=,AD==,∴AD2=AC2+CD2,故△ADC为直角三角形;(3)过点P作PH∥y轴交AC于点H,将点A、C的坐标代入一次函数表达式并解得:直线AC的表达式为:y=﹣x﹣3,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),S=PH×OA=(﹣x﹣3﹣x2﹣2x+3)=﹣(x+)2+,当x=﹣时,S最大值为,此时点P(﹣,﹣);(4)∵OA=OC=3,∴∠OAC=∠OCA=45°,①当AE=EF时,如下图,△AEF为等腰直角三角形,AE=2=EF,∴点F(﹣1,﹣2);②当AE=AF时,同理可得:点F(﹣3+,﹣);③当AF=EF时,同理可得:点F(﹣2,﹣1);故点F的坐标为:(﹣1,﹣2)或(﹣3+,﹣)或(﹣2,﹣1).点评:本题考查的是二次函数综合运用,涉及到等腰三角形的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.8.分析:(1)用待定系数法即求得抛物线解析式;用顶点坐标公式即求得对称轴直线,得到点D坐标.(2)求点C坐标,利用三角函数求得∠OCA的度数.由MN垂直AC可把MC转化为MN,所以当点D、M、N在同一直线上时DM+MC=DM+MN,根据垂线段最短,可知过点D作DF⊥AC于点F,此时为DM+MN最短.求∠OAC的度数,利用三角函数即求得DF的长.(3)①求直线BC解析式,把x=1代入即求得点E坐标,进而得DE的长.由∠PDA =90°,∠P AD=60°利用三角函数求得PD的长,进而得PE的长,求得PE=2ED.②求直线AC解析式,求点P坐标,进而求PC的长.设抛物线上的点Q坐标为(t,﹣t2﹣t+)(t≠0),根据两点间距离公式即能用t表示PQ2,CQ2.由△CPQ为等腰三角形分三种情况讨论两腰相等,即列得关于t的方程,求解得t的值即得到点Q 坐标.解:(1)∵抛物线y=ax2+bx+经过点A(1,0),B(﹣3,0)∴解得:∴抛物线的解析式为:y=﹣x2﹣x+∵对称轴为直线:x=﹣=﹣1∴D(﹣1,0)(2)在M,N移动的过程中,DM+MC有最小值.如图1,过点D作DF⊥AC于点F∵当x=0时,y=﹣x2﹣x+=∴C(0,)∵A(1,0)∴在Rt△AOC中,tan∠OCA===∴∠OCA=30°∵MN⊥AC,即∠MNC=90°∴MN=MC∴DM+MC=DM+MN∴当点D、M、N在同一直线上时,DM+MC=DM+MN=DF最小∵∠OAC=90°﹣∠OCA=60°∴在Rt△DAF中,sin∠OAC=∴DF=AD=×(1+1)=∴DM+MC的最小值为(3)①PE=2ED,理由如下:设直线BC的解析式为y=kx+b∴解得:∴直线BC的解析式为y=x+,∵对称轴为直线:x=﹣1,点E在对称轴上∴点E(﹣1,)∴DE=∵∠PDA=90°,∠P AD=60°∴在Rt△P AD中,tan∠OAC=∴PD=2∴PE=PD﹣DE=2﹣=∴PE=2ED②设直线AC解析式为y=cx+把点A(1,0)代入得:c+=0,解得:c=﹣∴直线AC:y=﹣x+∵直线AC与对称轴:直线x=﹣1的交点为P∴P(﹣1,2)∴PC==2∵点Q在抛物线上∴设点Q坐标为(t,﹣t2﹣t+)(t≠0)∴PQ2=(t+1)2+(﹣t2﹣t+﹣2)2,CQ2=t2+(﹣t2﹣t+﹣)2i)若PQ=PC,如图2∴PE垂直平分CQ∴QE=CE=1,y Q=y C=∴Q(﹣2,)ii)若PQ=CQ,则(t+1)2+(﹣t2﹣t+﹣2)2=t2+(﹣t2﹣t+﹣)2解得:t1=﹣2,t2=﹣1∴Q(﹣2,)或(﹣1,)iii)若PC=CQ,则t2+(﹣t2﹣t+﹣)2=4解得:t=﹣2∴Q(﹣2,)综上所述,当△CPQ为等腰三角形时点Q的坐标分别为(﹣2,),(﹣1,).点评:本题考查了二次函数的图象与性质,求一次函数解析式,特殊角三角函数,垂线段最短,两点间距离公式,等腰三角形的性质.求线段与线段的几分之一的和的最小值,通常需要对几分之一线段长进行转换,再利用三点共线或垂线段最短等相关定理找到最小值时的位置.9.分析:(1)将点A、C的坐标代入抛物线,利用待定系数法求二次函数解析式解答;(2)先求出点B的坐标,再根据三角形的面积公式求出S△ABC,设Q(m,0),表示出QA,再判断出△AQE∽△ABC,然后根据相似三角形面积的比等于相似比的平方表示出S△AQE,再根据S△QCE=S△AQC﹣S△AQE整理得到关于m的函数关系;(3)分①当DM=DO时,DO=DM=DB=2,∠OBC=∠BMD=45°,再求出∠BDM =90°,然后写出M点的坐标;②当MD=MO时,过点M作MN⊥OD于点N,根据等腰三角形三线合一的性质可得点N为OD的中点,求出DN=ON=1,BN=BD+DN=3,再根据△BMN为等腰直角三角形求出MN=BN=3,然后写出M点的坐标;③当OD=OM时,根据△OBC为等腰直角三角形求出点O到BC的距离,然后与OD相比较判断出不存在.解:(1)将点A(2,0),C(0,﹣4),分别代入y=x2+bx+c,,解得:,∴抛物线的解析式为y=;(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴点B(﹣4,0),AB=2﹣(﹣4)=2+4=6,S△ABC=AB•OC==12,设Q点坐标为(m,0),则QA=2﹣m.∵∠AQE=∠ABC,∴QE∥BC,∴△AQE∽△ABC,∴,∴,S△QCE=S△AQC﹣S△AQE=,=﹣.(3)△OMD为等腰三角形,可能有三种情形:①当DM=DO时,DO=DM=DA=2,所以,∠OBC=∠BMD=45°,所以,∠BDM=90°,所以,M点的坐标为(﹣2,﹣2);②当MD=MO时,如图,过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,BN=BD+DN=3,又△BMN为等腰直角三角形,∴MN=BN=3,∴M点的坐标为(﹣1,﹣3);③当OD=OM时,∵△OBC为等腰直角三角形,∴点O到BC的距离为×4=2,即BC上的点与点O之间的最小距离为2,∵2>2,∴OD=OM的情况不存在,综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).点评:本题是二次函数综合题,主要考查了待定系数法求二次函数解析式,抛物线与x 轴的交点问题,三角形的面积,相似三角形面积的比等于相似比的平方的性质,等腰三角形的性质,等腰直角三角形的性质,注意等腰三角形根据腰长的不同分情况讨论.10.分析:(1)用待定系数法即可求抛物线解析式.(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t 表示点F坐标,进而表示PF的长.把△P AB分成△P AF与△PBF求面积和,即得到△P AB面积与t的函数关系,配方即得到t为何值时,△P AB面积最大,进而求得此时点P 坐标.(3)设点P横坐标为t,即能用t表示PD的长.根据对称性可知点P、E关于抛物线对称轴对称,用中点坐标公式可得用t表示点E横坐标,进而用t表示PE的长(注意点P、E左右位置不确定,需分类讨论).由于△PDE要成为等腰直角三角形,∠DPE=90°,所以PD=PE,把含t的式子代入求值即得到点P坐标.解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△P AB=S△P AF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△P AB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.点评:本题考查了二次函数的图象与性质,求二次函数最值,等腰直角三角形的性质,中点坐标公式,一元二次方程的解法.分类讨论进行计算时,要注意讨论求得的解是否符合分类条件,是否需要舍去.11.分析:(1)函数的表达式为:y=﹣(x+1)(x﹣5),即可求解;(2)确定PB、CE的表达式,联立求得点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,即可求解;(3)分当CP=CF、CP=PF、CF=PF三种情况,分别求解即可.解:(1)函数的表达式为:y=﹣(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=2,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+,∵CE⊥PB,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=,解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3,故点P(2,﹣3)或(2,5);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)2=()2+4,解得:m=0或(0舍去),②当CP=PF时,同理可得:m=,③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2)或(2,)或(2,)点评:本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.12.分析:(1)由抛物线与x轴两交点设交点式,把点D代入即求得抛物线表达式.(2)由原抛物线顶点式可知,向下平移4个单位后顶点落在x轴上,故MN=4且MN ⊥x轴.由于△AMN为等腰三角形且MN为底边,故有x轴垂直平分MN,得到点N纵坐标为﹣2,代入新抛物线解析式解方程即求得点N横坐标.(3)作点D关于y轴的对称点D',根据轴对称性质即有QD=QD',易得当点D'、Q、E 在同一直线上时,QE+QD=QE+QD'=ED'最小.由于点E随点P运动也是一个动点,由∠OEB=90°且O、B是定点可得点E的运动轨迹为圆弧.故当点E运动到点D'与圆心所连线段上时,D'E最小.求出圆心F的坐标,即求出D'F和半径r,所以D'E=D'F﹣r,所求即为QE+QD的最小值.解:(1)抛物线与x轴交于A(﹣1,0)、B(3,0)∴设交点式为y=a(x+1)(x﹣3)∵抛物线经过点D(2,3)∴a(x+1)(x﹣3)=3解得:a=﹣1∴抛物线表达式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴向下平移后新抛物线为y=﹣(x﹣1)2,顶点G(1,0),即抛物线向下平移4个单位∵原抛物线上一点M平移后的对应点为点N∴MN=4,MN⊥x轴∵△AMN是以MN为底边的等腰三角形,且点A在x轴上∴x轴垂直平分MN∴N的纵坐标为﹣2∴﹣(x﹣1)2=﹣2解得:x1=1+,x2=1﹣∴点N坐标为(1+,﹣2)或(1﹣,﹣2)(3)作点D关于y轴的对称点点D',连接D'Q,取OB中点F,连接D'F∵D(2,3),点Q为y轴上的动点∴D'(﹣2,3),QD=QD'∴当点D'、Q、E在同一直线上时,QE+QD=QE+QD'=ED'最小∵BE⊥OP于点E,P为抛物线上第一象限内的动点∴∠OEB=90°∴点E在以OB为直径的圆在第一象限内的弧上运动∵圆心F(,0),r=∴当点E在线段D'F上时,D'E=D'F﹣EF=﹣=最小∴QE+QD的最小值为.点评:本题考查了二次函数的图象与性质,平移的性质,等腰三角形的性质,解一元二次方程,轴对称求最短路径,圆周角定理,勾股定理.第(3)题求线段和最小值涉及的两条线段有2个动点,先由常规的轴对称求最短路径问题确定点D'、Q、E必须共线,再找出点E运动轨迹为圆弧而得到点E在D'与圆心连线上时D'E最小.13.分析:(1)由菱形的性质可得AD∥BC,BC=AB=10,那么∠DAB=∠CBO,根据tan ∠DAB=tan∠CBO==,求出B、C、D三点的坐标,利用待定系数法求出抛物线的解析式;(2)利用待定系数法求出直线BC的解析式为y=x+8.根据EF∥BC,可设直线EF 解析式为y=x+t,根据直线EF与抛物线只有一个交点,得出方程x2+x+8=x+t 只有一个解,即△=0,求出t的值,得到直线EF的解析式;(3)分别利用当CP=CB时,△PCB为等腰三角形;当BP=BC时,△PCB为等腰三角形,利用勾股定理列方程即可.解:(1)∵四边形ABCD是菱形,∴AD∥BC,BC=AB=10,∴∠DAB=∠CBO,∴tan∠DAB=tan∠CBO==,∵BC=10,。
2023年九年级数学中考复习:二次函数综合压轴题(特殊三角形问题)1.如图,直线y=﹣23x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣43x2+bx+c经过点A,B,M(m,0)为x轴上一动点,点M在线段OA上运动且不与O,A重合,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.(1)求点B的坐标和抛物线的解析式;(2)在运动过程中,若点P为线段MN的中点,求m的值;(3)在运动过程中,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;2.如图△,已知抛物线y=ax2﹣4amx+3am2(a、m为参数,且a>0,m>0)与x轴交于A、B两点(A在B的左边),与y轴交于点C.(1)求点B的坐标(结果可以含参数m);(2)连接CA、CB,若C(0,3m),求tan△ACB的值;(3)如图△,在(2)的条件下,抛物线的对称轴为直线l:x=2,点P是抛物线上的一个动点,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的的等腰直角三角形.若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由.3.如图,已知二次函数的图象经过点A (4,4)、B (5,0)和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为D (m ,0),并与直线OA 交于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.4.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B .(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.△当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹.并直接写出直线CD 的解析式;△点()(),0P m n m >是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR ∆.在△的条件下,记PQR ∆与COD ∆的公共部分的面积为S .求S 关于m 的函数关系式,并求S 的最大值.5.已知抛物线y=a(x﹣1)(x﹣3)(a<0)的顶点为A,交y轴交于点C,过C作CB△x 轴交抛物线于点B,过点B作直线l△x轴,连结OA并延长,交l于点D,连结OB.(1)当a=﹣1时,求线段OB的长.(2)是否存在特定的a值,使得△OBD为等腰三角形?若存在,请写出求a值的计算过程;若不存在,请说明理由.(3)设△OBD的外心M的坐标为(m,n),求m与n的数量关系式.6.如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且△DBP=45°,求点P的坐标;(3)在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.7.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y 轴交于点C(0,4).点D为抛物线上一点(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围.8.已知:如图,抛物线y=ax2+bx﹣3与x轴交于A点,与y轴交于C点,且A(1,0)、B(3,0),点D是抛物线的顶点.(1)求抛物线的解析式(2)在y轴上是否存在M点,使得△MAC是以AC为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.(3)点P为抛物线上的动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标.9.如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN△x 轴于点N ,交抛物线于点M ,当△BCM 面积最大时,求△BPN 的周长. (3)在(2)的条件下,当△BCM 面积最大时,在抛物线的对称轴上是否存在点Q ,使△CNQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.10.如图1,抛物线243y x x =++与x 轴交于,A B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 抛物线的顶点.(1)求直线BD 的解析式;(2)抛物线对称轴交x 轴于点E ,P 为直线BD 上方的抛物线上一动点,过点P 作PF BD ⊥于点F ,当线段PF 的长最大时,连接PE ,过点E 作射线EM ,且EM EP ⊥,点G 为射线EM 上一动点(点G 不与点E 重合),连接PG ,H 为PG 中点,连接AH ,求AH 的最小值;(3)如图2,平移抛物线,使抛物线的顶点D 在射线BD 上移动,点B ,D 平移后的对应点分别为点'B ,'D ,y 轴上有一动点M ,连接'MB ,'MD ,''MB D ∆是否能为等腰直角三角形?若能,请求出所有符合条件的M 点的坐标;若不能,请说明理由.11.如图1,抛物线()230y ax bx a =++≠与x 轴交于()1,0A -、()30B ,两点,与y 轴交于点C ,顶点为点M .(1)求这条抛物线的解析式及直线BM 的解析式;(2)P 段BM 上一动点(点P 不与点B 、M 重合),过点P 向x 轴引垂线,垂足为Q ,设OQ 的长为t ,四边形PQAC 的面积为S .求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在线段BM 上是否存在点N ,使NMC ∆为等腰三角形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.如图,已知抛物线与x 轴交于A(−1,0)、B(3,0)两点,与y 轴交于点C(0,3).(1)该抛物线的对称轴是直线___________, (2)求抛物线的解析式;(3)设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由:13.在平面直角坐标系中,将二次函数()20y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值.14.如图,抛物线2y ax bx c =++与x 轴的交点分别为()6,0A -和点()4,0B ,与y 轴的交点为()0,3C .(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.△是否同时存在点D 和点P ,使得APQ ∆和CDO ∆全等,若存在,求点D 的坐标,若不存在,请说明理由;△若DCB CDB ∠=∠,CD 是MN 的垂直平分线,求点M 的坐标.15.如图,抛物线y=ax 2+bx+2交x 轴于点A(-3,0)和点B(1,0),交y 轴于点C (1)求这个抛物线的函数表达式.(2)点D 的坐标为(-1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且△MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.16.如图,抛物线23y ax bx =+-与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求抛物线的解析式.(2)点N 是y 轴负半轴上的一点,且ON =Q 在对称轴右侧的抛物线上运动,连接QO ,QO 与抛物线的对称轴交于点M ,连接MN ,当MN 平分OMD ∠时,求点Q 的坐标.(3)直线BC 交对称轴于点E ,P 是坐标平面内一点,请直接写出PCE ∆与ACD ∆全等时点P 的坐标.17.已知:直线122y x =+与y 轴交于A ,与x 轴交于D ,抛物线y =12x 2+bx +c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求抛物线的解析式;(2)点P 是直线AE 上一动点,当△PBC 周长最小时,求点P 坐标; (3)动点Q 在x 轴上移动,当△QAE 是直角三角形时,求点Q 的坐标;(4)在y 轴上是否存在一点M ,使得点M 到C 点的距离与到直线AD 的距离恰好相等?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.18.如图,已知抛物线y =x 2+bx +c 与x 轴交于点A ,B ,AB =2,与y 轴交于点C ,对称轴为直线x =2.(1)求抛物线的函数表达式;(2)设D 为抛物线的顶点,连接DA 、DB ,试判断△ABD 的形状,并说明理由; (3)设P 为对称轴上一动点,要使PC ﹣PB 的值最大,求出P 点的坐标.19.如图,抛物线2y ax bx c =++ 经过点()2,5A -,与x 轴相交于()1,0B -,()3,0C 两点,(1)抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将BCD ∆沿沿直线BD 翻折得到BC D '∆,若点D '恰好落在抛物线的对称轴上,求点C '和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当CPQ ∆为等边三角形时,求直线BP 的函数表达式.20.如图,在直角坐标系中有Rt AOB ∆,O 为坐标原点,1,tan 3OB ABO =∠=,将此三角形绕原点O 顺时针旋转90︒,得到Rt COD ∆,二次函数2y x bx c =-++的图象刚好经过,,A B C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线:3l y kx k =-+与二次函数图象相交于,M N 两点. △若2PMN S ∆=,求k 的值;△证明:无论k 为何值,PMN ∆恒为直角三角形;△当直线l 绕着定点Q 旋转时,PMN ∆外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.参考答案:1.(1)B (0,2),抛物线解析式为y=﹣43x 2+103x+2;(2)m 的值为12;(3)当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5.0)或(118,0). 2.(1)B (3m ,0);(2)tan△ACB =12;(3)点P 的坐标是:)或). 3.(1)y =﹣x 2+5x ;(2)当点P 在直线OA 的上方时,线段PC 的最大值是4;(3)存在,P 的坐标是(4,2﹣)或(6,﹣6)或(5,0). 4.(1)()21154y x =--+;(2);4y x =-+;△S 27448x x =-+-;S 的最大值为47.5.(1)5;(2)a =﹣1(3)m =3n 2+2 6.(1)y =﹣x 2+3x +4;(2)P (﹣25,6625);(3)点M 的坐标为(32,298)或(32,﹣58)或(32,52)或(32,32).7.(1)y=x 2-5x+4, A(1,0);(2)(6,10)或(2,-2);m <6或 3m <28.(1)y =﹣x 2+4x ﹣3;(2)在y 轴上存在点M ,点M 的坐标为(0,3),(0,3-或(0,3-,(3)P (4,﹣3).9.(1)y =﹣x 2+2x+3 (2)310.(1)43y x =-+(2(3)(0,,,.11.(1)2y x 2x 3=-++,26y x =-+;(2)四边形ACPQ S 29322t t =-++,t 的取值范围是13t <<;(3)716,55N ⎛⎫⎪⎝⎭或14N ⎛ ⎝⎭或()2,2N 12.(1)1x = (2)2y x 2x 3=-++;(3)存在,⎝⎭或(2.3)13.(1)21322y x x =--;1122y x =+;(2)ACE ∆的面积最大值是2516,此时E 点坐标为315,28⎛⎫- ⎪⎝⎭;(3)35PE PA +的最小值是3.14.(1)211384y x x =--+;(2)△存在点D ,使得APQ ∆和CDO ∆全等,3,02D ⎛⎫⎪⎝⎭,理由见解析;△点3,02M ⎛⎫⎪⎝⎭15.(1)y=-23x 2-43x+2;(2)S 的最大值为174;(3)存在,点N或)或)或).16.(1)223y x x =--;(2)点Q 的坐标为:1Q ,2Q ;(3)若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 17.(1)215222y x x =-+;(2)P (1213,3213);(3)Q 点坐标为(1,0)或(172,0);(4)存在;M 点坐标为M (0,﹣8).18.(1)抛物线的函数表达式为y =x 2﹣4x +3;(2)△ADB 是等腰直角三角形;理由见解析;(3)P (2,﹣3).19.(1)223y x x =--;(2)点'C 坐标为(点D 的坐标为⎛ ⎝⎭;(3)直线BP 的函数表达式为y =y x =20.(1)2y x 2x 3=-++,()1,4P ;(2)△k =±△2241y x x =-++.。
1.如图,抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .〔1〕求A 、B 、C 三点的坐标;〔2〕过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积;解:〔1〕令0y =,得210x -= 解得1x =± 令0x =,得1y =-∴A (1,0)-B (1,0)C (0,1)-……………………3分〔2〕∵O A =O B =O C =1∴∠BAC =∠AC O=∠BC O=45∵A P ∥CB , ∴∠P AB =45过点P 作P E ⊥x 轴于E ,那么∆A P E 为等腰直角三角形令O E =a ,那么P E =1a +∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=- 解得12a =,21a =-〔不合题意,舍去〕∴P E =3……………………………………………………………………………5分∴四边形ACB P 的面积S =12AB •O C +12AB •P E =112123422⨯⨯+⨯⨯=………………………………6分2.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物线的顶点为D .〔1〕求b ,c 的值;〔2〕点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;〔3〕在〔2〕的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 假设存在,求出所有点P 的坐标;假设不存在,说明理由.解:〔1〕由得:A 〔-1,0〕 B 〔4,5〕…………………1分∵二次函数2y x bx c =++的图像经过点A 〔-1,0〕B(4,5)∴101645b c b c -+=⎧⎨++=⎩…………………………………………………2分 解得:b=-2 c=-3…………………………………………………3分〔2〕如26题图:∵直线AB 经过点A 〔-1,0〕 B(4,5)∴直线AB 的解析式为:y=x+1……………………………………4分∵二次函数223y x x =--∴设点E(t , t+1),那么F 〔t ,223t t --〕………………………5分∴EF= 2(1)(23)t t t +---………………………………………6分=2325()24t --+ ∴当32t =时,EF 的最大值=254 ∴点E 的坐标为〔32,52〕………………………………7分 〔3〕①如26题图:顺次连接点E 、B 、F 、D 得四边形EBFD.可求出点F 的坐标〔32,154-〕,点D 的坐标为〔1,-4〕 S EBFD 四边行 = SBEF + S DEF =12531253(4)(1)242242⨯-+⨯- =758………………………………………………10分 ②如26题备用图:ⅰ)过点E 作a ⊥EF 交抛物线于点P,设点P(m ,223m m --)那么有:25232m m --= 解得:1226m =-,2226m += ∴12265(,)2p -, 22265(,)2p + ⅱ〕过点F 作b ⊥EF 交抛物线于3P ,设3P 〔n ,223n n --〕那么有:215423n n --=- 解得:112n = ,232n =〔与点F 重合,舍去〕 ∴3P 11524(,-) 综上所述:所有点P 的坐标:12265(,)22p -,22265(,)22p +3P 〔11524(,-). 能使△EFP 组成以EF 为直角边的直角三角形.…………………………………… 13分3.如图,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,与y 轴交于点P ,顶点为C 〔1,-2〕. 〔1〕求此函数的关系式;〔2〕作点C 关于x 轴的对称点D ,顺次连接A 、C 、B 、D.假设在抛物线上存在点E ,使直线PE 将四边形ABCD 分成面积相等的两个四边形,求点E 的坐标;〔1〕∵c bx x y ++=2的顶点为C 〔1,-2〕, ∴2)1(2--=x y ,122--=x x y . ……………2分 26题备用图〔2〕设直线PE 对应的函数关系式为b kx y +=由题意,四边形ACBD 是菱形.故直线PE 必过菱形ACBD 的对称中心M . ………3分由P (0,-1),M 〔1,0〕,得⎩⎨⎧=+-=01b k b .从而1-=x y , …5分 设E (x ,1-x ),代入122--=x x y ,得1212--=-x x x . 解之得01=x ,32=x ,根据题意,得点E (3,2) …………………………………7分.4如图,抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点〔点A 在点B 的右侧〕,点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动〔点P 与A 不重合〕,过点P 作PD ∥y 轴,交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,假设点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?假设存在,求点F 的坐标;假设不存在,请说明理由.解:〔1〕∵抛物线的顶点为Q 〔2,-1〕∴设()122--=x a y将C 〔0,3〕代入上式,得()12032--=a1=a ∴()122--=x y , 即342+-=x x y …〔3分〕〔2〕分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合(如图)令y =0, 得0342=+-x x 解之得11=x , 32=x∵点A 在点B 的右边, ∴B(1,0), A(3,0)∴P 1(1,0) 〔5分〕②解:当点A 为△APD 2的直角顶点是(如图)∵OA=OC, ∠AOC= 90, ∴∠OAD 2=45当∠D 2AP 2= 90时, ∠OAP 2= 45, ∴AO 平分∠D 2AP 2- .又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO, ∴P 2、D 2关于x 轴对称设直线AC 的函数关系式为b kx y +=将A(3,0), C(0,3)代入上式得 ⎩⎨⎧=+=bb k 330, ∴⎩⎨⎧=-=31b k ∴3+-=x y ……………〔7分〕 ∵D 2在3+-=x y 上, P 2在342+-=x x y 上,∴设D 2(x ,3+-x ), P 2(x ,342+-x x )∴(3+-x )+(342+-x x )=0 0652=+-x x , ∴21=x , 32=x (舍)∴当x =2时, 342+-=x x y =32422+⨯-=-1 ∴P 2的坐标为P 2(2,-1)(即为抛物线顶点)∴P 点坐标为P 1(1,0), P 2(2,-1) …………………………………………………〔9分〕(3)解: 由题(2)知,当点P 的坐标为P 1(1,0)时,不能构成平行四边形……………………〔10分〕当点P 的坐标为P 2(2,-1)(即顶点Q)时,平移直线AP(如图)交x 轴于点E,交抛物线于点F.当AP=FE 时,四边形PAFE 是平行四边形∵P(2,-1), ∴可令F(x ,1)∴1342=+-x x 解之得: 221-=x , 222+=x ∴F 点有两点, 即F 1(22-,1), F 2(22+,1) ……………〔13分〕3. 〔2021,25,10分〕如图,抛物线212y x x a =-+与x 轴交于A ,B 两点,与y 轴交于点C ,其顶点在直线y =-2x 上.(1)求a 的值;(2)求A ,B 两点的坐标; (3)以AC ,CB 为一组邻边作□ABCD ,那么点D 关于x 轴的对称点D ´是否在该抛物线上?请说明理由.考点:二次函数综合题。
中考数学专题复习:二次函数综合题(特殊三角形问题)1.如图,已知抛物线经过点A (-1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是线段AB 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)在点P 运动过程中,是否存在点Q ,使得△BQM 是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)连接AC ,将△AOC 绕平面内某点H 顺时针旋转90°,得到111A O C △,点A 、O 、C 的对应点分别是点1A 、1O 、1C 、若111A O C △的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点1A 的横坐标.2.如图,已知A (﹣2,0)、B (3,0),抛物线y =ax 2+bx +4经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一动点,点P 的横坐标为m .过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN ⊥BC ,垂足为点N .(1)直接写出抛物线的函数关系式 ;(2)请用含m 的代数式表示线段PN 的长 ;(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得⊥BCO +2⊥PCN =90°?若存在,请求出m 的值;若不存在,请说明理由;(4)连接AQ ,若△ACQ 为等腰三角形,请直接写出m 的值 .3.如图,抛物线2y ax bx =+过()4,0A ,()1,3B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH x ⊥轴,交x 轴于点H .(1)求抛物线的表达式;(2)求ABC 的面积;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,当CMN △为等腰直角三角形时,点N 的坐标为______.4.如图,已知二次函数的图象经过点()3,3A 、()4,0B 和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为(),0D m ,并与直线OA 交于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当0m >时,探索是否存在点P ,使得PCO △为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接AD 、BD ,探究是否存在点D ,使得⊥ABD 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得⊥P AB 为直角三角形,请求出点P 的坐标.6.如图,在平面直角坐标系xOy 中,抛物线26y ax bx =++与x 轴交于点()2,0A -和点()6,0B ,与y 轴交于点C ,顶点为D ,连接BC 交抛物线的对称轴l 于点E .(1)求抛物线的表达式;(2)连接CD 、BD ,点P 是射线DE 上的一点,如果PDB CDB S S =△△,求点P 的坐标;(3)点M 是线段BE 上的一点,点N 是对称轴l 右侧抛物线上的一点,如果EMN 是以EM 为腰的等腰直角三角形,求点M 的坐标.7.已知抛物线经过A (-1,0)、B (0、3)、 C (3,0)三点,O 为坐标原点,抛物线交正方形OBDC 的边BD 于点E ,点M 为射线BD 上一动点,连接OM ,交BC 于点F(1)求抛物线的表达式;(2)求证:⊥BOF =⊥BDF :(3)是否存在点M 使⊥MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长8.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式;(2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.9.已知二次函数214y x bx c =-++图像的对称轴与x 轴交于点A (1,0),图像与y 轴交于点B (0,3),C 、D 为该二次函数图像上的两个动点(点C 在点D 的左侧),且90CAD ∠=.(1)求该二次函数的表达式;(2)若点C 与点B 重合,求tan⊥CDA 的值;(3)点C 是否存在其他的位置,使得tan⊥CDA 的值与(2)中所求的值相等?若存在,请求出点C 的坐标;若不存在,请说明理由.10.如图1,抛物线y =-x 2+bx +c 交x 轴于A ,B 两点,交y 轴于C 点,D 是抛物线上的动点,已知A 的坐标为(-3,0),C 的坐标为(0,3).(1)求该抛物线的函数表达式以及B 点的坐标;(2)在第二象限内是否存在点D 使得⊥ACD 是直角三角形且⊥ADC=90°,若存在请求出D 点的坐标,若不存在请说明理由;(3)如图2,连接AC ,BC ,当⊥ACD=⊥BCO ,求D 点的坐标.11.如图,在平面直角坐标系中,抛物线C 1:y =ax 2+bx ﹣1经过点A (﹣1,﹣2)和点B (﹣2,1),抛物线C 2:y =3x 2+3x +1,动直线x =t 与抛物线C 1交于点N ,与抛物线C 2交于点M .(1)求抛物线C 1的表达式;(2)求线段MN 的长(用含t 的代数式表达);(3)当⊥BMN 是以MN 为直角边的等腰直角三角形时,求t 的值.12.如图,二次函数23y ax bx =++的图象经过点A (-1,0),B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)第一象限内的二次函数23y ax bx =++图象上有一动点P ,x 轴正半轴上有一点D ,且OD =2,当S △PCD =3时,求出点P 的坐标;(3)若点M 在第一象限内二次函数图象上,是否存在以CD 为直角边的Rt MCD ,若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线23y ax bx =+-与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A ,D 两点,与y 轴交于点E ,点D 的坐标为()4,3-.(1)求抛物线的解析式;(2)若点P 是抛物线上的点,点P 的横坐标为()0m m ≥,过点P 作PM x ⊥轴,垂足为M .PM 与直线l 交于点N ,当点N 是线段PM 的三等分点时,求点P 的坐标;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.14.如图,抛物线23y ax bx =+-与x 轴交于()30A -,,()1,0B 两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)若点E 是线段AC 上一动点,过点E 的直线EF 平行于y 轴并交抛物线于点F ,当线段EF 取得最大值时,在x 轴上是否存在这样的点P ,使得以点E 、B 、P 为顶点的三角形是以EB 为腰的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.15.如图,抛物线2y x bx c =-++与x 轴相交于A ,B 两点(点A 位于点B 的左侧),与y 轴相交于点C ,M 是抛物线的顶点,直线1x =是抛物线的对称轴,且点C 的坐标为(0,3).(1)求抛物线的解析式;(2)已知P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若,PD m PCD =△的面积为S .⊥求S 与m 之间的函数关系式,并写出自变量m 的取值范围;⊥当S 取得最大值时,求点P 的坐标.(3)在(2)的条件下,在线段MB 上是否存在点P ,使PCD 为等腰三角形?如果存在,直接写出满足条件的点P 的坐标;如果不存在,请说明理由.16.如图,在平面直角坐标系中,已知抛物线y =ax 2+4x +c 与直线AB 相交于点A (0,1)和点B (3,4).(1)求该抛物线的解析式;(2)设C 为直线AB 上方的抛物线上一点,连接AC ,BC ,以AC ,BC 为邻边作平行四边形ACBP ,求四边形ACBP 面积的最大值;(3)将该抛物线向左平移2个单位长度得到抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点D ,是否存在点E 使得△ADE 是以AD 为腰的等腰直角三角形?若存在,直接写出....点E 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.18.如图,已知抛物线212y x bx c =++经过点B (4,0)和点C (0,-2),与x 轴的另一个交点为点A ,其对称轴l 与x 轴交于点E ,过点C 且平行x 轴的直线交抛物线于点D ,连接AD .(1)求该抛物线的解析式;(2)判断⊥ABD 的形状,并说明理由;(3)P 为线段AD 上一点,连接PE ,若△APE 是直角三角形,求点P 的坐标;(4)抛物线的对称轴上是否存在一点P ,使△APD 是直角三角形,若存在,求出P 点坐标;若不存在,请说明理由.19.如图,抛物线22y ax x c =-+与x 轴相交于A ,B 两点,与y 轴相交于点C ,点A 在点B 的左侧,()1,0A -,()0,3C -,点E 是抛物线的顶点,P 是抛物线对称轴上的点.(1)求抛物线的函数表达式;(2)当点P 关于直线BC 的对称点Q 落在抛物线上时,求点Q 的横坐标;(3)若点D 是抛物线上的动点,是否存在以点B ,C ,P ,D 为顶点的四边形是平行四边形.若存在,直接写出点D 的坐标__________;若不存在,请说明理由;(4)直线CE 交x 轴于点F ,若点G 是线段EF 上的一个动点,是否存在以点O ,F ,G 为顶点的三角形与ABC 相似,若存在,请直接写出点G 的坐标__________;若不存在,请说明理由.20.如图1,抛物线23y ax bx =++与x 轴交于点()3,0A 、()1,0B -,与y 轴交于点C ,点P 为x 轴上方抛物线上的动点,点F 为y 轴上的动点,连接PA ,PF ,AF .(1)求该抛物线所对应的函数解析式;(2)如图1,当点F 的坐标为()0,4-,求出此时AFP 面积的最大值;(3)如图2,是否存在点F ,使得AFP 是以AP 为腰的等腰直角三角形?若存在,求出所有点F 的坐标;若不存在,请说明理由.参考答案:1.(1)213222y x x =-++ (2)存在,Q (3,2)或Q (-1,0)(3)两个“和谐点”,1A 的横坐标是1或122.(1)222433y x x =-++ (2)22655PN m m =-+ (3)存在,741253.(1)24y x x =-+(2)3(3)(2,0)或(﹣4,0)或(﹣2,0)或(4,0).4.(1)y =-x 2+4x (2)94(3)存在,点P 的坐标为(3+或(3-或(5,-5)或(4,0)5.(1)2142y x x =+- (2)(-2,-4)(3)P 点坐标为:(-1,3),(-1,-5),(12--+,,(12--, 6.(1)21262y x x =-++ (2)()2,2(3)()4,2或(27.(1)2y x 2x 3=-++(2)见解析(3)存在,2或28.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)()3,4-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭9.(1)211342y x x =-++(2)1(3)()2,1-,()32,(12--10.(1)y =-x 2-2x +3,B (1,0)(2)存在,D (-2,3) (3)D (-52,74)或(-4,-5)11.(1)y =2x 2+3x ﹣1(2)t 2+2(3)t =012.(1)2+23y x x =-+(2)P 1(32,154),P 2(2,3)(3)存在点M 其坐标为1M 43539(,)或2M13.(1)y =14x 2−x −3 (2)(3,−154)或(0,−3) (3)(0,−133)或(0,9)14.(1)223y x x =+-(2)()4,-0,或10⎛⎫ ⎪ ⎪⎝⎭,或10⎛⎫ ⎪ ⎪⎝⎭15.(1)2y x 2x 3=-++ (2)⊥213(04)42S m m m =-+<≤;⊥S 有最大值为94,此时3,32P ⎛⎫ ⎪⎝⎭(3)存在,(6-+-或(42-+16.(1)241y x x =-++ (2)274(3)存在,E (4,3)或(-2,5)或(-3,2)或(3,0).17.(2)()11,-(3)()14-,或()25-,或⎝⎭或⎝⎭18.(1)213222y x x =-- (2)直角三角形,见解析(3)(1,-1)或(32,-54)(4)存在,( 32,-1+2 ),( 32,-1- 2,( 32,5),( 32,-5) 19.(1)223y x x =-- (2)11(3)存在,()2,3-或()4,5或()2,5-(4)存在,39,44⎛⎫-- ⎪⎝⎭或()1,2--20.(1)2y x 2x 3=-++ (2)323(3)存在,12(0,3),(0,1)F F --,32)F。
专题28 二次函数中的三角形问题知识对接考点一、二次函数中的三角形问题考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
考点二、解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
要点补充:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
要点补充:专项训练一、单选题1.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A .B .C .D .【答案】A 【分析】设三角形运动速度为1,分0≤t≤2时,2<t≤2时,2<时,时五种情况,可知等腰直角三角形与正方形的不重叠部分面积变化过程是变小--不变--变大,分别求出函数关系式,即可得出答案. 【详解】∵等腰直角三角形的直角边长为1, ∵当s =12×1×1+2×2﹣212t ⨯=92﹣12t 2;s =22-12+2×12t)2=t 2﹣112;t≤2时,s =2122-×1×1=72;当2<时,s =22-2×12(t -2)2=t 2﹣4t+152;当2+2<s =22+12-2×12t+2)2=92t+2)2,∵等腰直角三角形与正方形的不重叠部分面积变化过程是变小--不变--变大,且变小、变大时的图象为抛物线,不变时的图象为直线, ∵A 符合要求, 故选:A . 【点睛】考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论,熟练掌握二次函数的图象是解题关键.2.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l :13y x b =+经过点10,4M ⎛⎫⎪⎝⎭一组抛物线的顶点()111B y ,,()222,B y ,()333,B y ,…(),n n B n y (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:()11,0A x ,()22,0A x ,()33,0A x ,…()11,0n n A x ++(n 为正整数).若()101x d d =<<,当d 为( )时,这组抛物线中存在美丽抛物线A .512或712B .512或1112C .712或1112D .712【答案】B 【分析】由抛物线的对称性可知,所有构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半,又0<d <1,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的顶点纵坐标必定小于1,据此对上一步结论分析可得满足美丽抛物线对应的顶点,再确定抛物线与x 轴的交点值与对称轴的距离,从而可求得d 的值 【详解】解: 直线l :13y x b =+经过点M (0,14)则b=14,∵直线l :1134y x =+由抛物线的对称性知:抛物线的顶点与x 轴的两个交点构成的直角三角形必为等腰直角三角形; ∵该等腰三角形的高等于斜边的一半 ∵0<d <1∵该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1)∵当x=1时,11173412y =+=<1;当x=2时,221113412y =+= <1; 当x=3时,315144y =+=>1; ∵美丽抛物线的顶点只有12,B B ∵若1B 为顶点,由17(1,)12B ,则7511212d =-= , ∵若2B 为顶点,由211(2,)12B ,则11111(2)11212d ⎡⎤=---=⎢⎥⎣⎦综上所述,d 的值为512或1112时,存在美丽抛物线. 故选B . 【点睛】此题主要考查抛物线与x 轴的交点,抛物线的对称性.3.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是A.16B.15C.14D.13【答案】C【详解】根据在OB上的两个交点之间的距离为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,∵一共有7条抛物线.同理可得开口向上的抛物线也有7条.∵满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14.故选C.4.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果∵ABC是该抛物线的内接格点三角形,A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()。
2023年九年级中考数学专题:二次函数综合题(特殊三角形问题)1.如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在y轴上是否存在点P使得∠OBP+∠OBC=45°,若存在,求出点P的坐标,若不存在,请说明理由;(3)点M是BC为直径的圆上的动点,将点M绕原点O顺时针旋转90°得点N,连接NA,求NA的取值范围.2.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点,过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E.(1)求抛物线解析式;(2)当点P运动到什么位置时,DP的长最大?(3)是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.3.如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).(1)求此抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.4.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,△BAC=90°,A(1,0),B(0,2),二次函数y=x2+bx﹣2的图象经过C点.(1)求二次函数的解析式;(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC的面积等于△ABC的面积的两倍.(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使△QAC=45°?请你求出此时的Q点坐标.5.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求该抛物线的解析式;(2)点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值;(3)抛物线对称轴上是否存在点M,使△MAB是以AB为斜边的直角三角形,若存在,请直接写出点M 的坐标;若不存在,并说明理由;(4)在对称轴上是否存在点N,使△BCN为直角三角形,若存在,直接写出N点坐标,若不存在,说明理由.6.抛物线2y x bx c=++经过A、B(1,0)、C(0,-3)三点.点D为抛物线的顶点,连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点P,使PB+PC最小,求出P点坐标;(3)在线段AC上找一点M,使AOM△ABC,请你直接写出点M的坐标;(4)在y轴上是否存在一点E,使ADE为直角三角形?若存在,请你直接写出点E的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).(1)求该抛物线的函数表达式.(2)点P为直线AB下方抛物线上的任意一点,连接P A,PB,求△P AB面积的最大值.(3)在二次函数的对称轴上找一点C,使得△ABC是等腰三角形,求满足条件的点C的坐标.8.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD Q 的坐标;若不存在,请说明理由.9.如图,已知点A的坐标为(-2,0),直线y=-34x+3与x轴,y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c,过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN△AB,交AC于点N.点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当以MN为直角边的△QMN是等腰直角三角形时,直接写出此时t的取值.10.如图,在平面直角坐标系中,抛物线2=++与x轴交于A,B两点,与y轴交于点C,已知y x bx cB(3,0),C(0,3-),连接BC,点P是抛物线上的一个动点,点N是对称轴上的一个动点.(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在点M,使得MBC为等腰三角形,若存在,求M的坐标;(3)若点P在直线BC的下方,当点P到直线BC的距离最大时,在抛物线上是否存在点Q,使得以点P,C,N,Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.11.如图,抛物线2y x bx c=++经过A(-1,0)、B(5,6)两点,点E是线段AB上一动点,过点E作x轴的垂线,交抛物线于点F.(1)求抛物线的解析式;(2)求线段EF的最大值;(3)在抛物线的对称轴上是否存在一个动点P,使得ABP∆是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点12.如图,直线y=﹣12A(﹣1,0).(1)求B、C两点的坐标;(2)求该二次函数的解析式;(3)若抛物线的对称轴与x轴交于点D,则在抛物线的对称轴上是否存在一点N,使NCD为等腰三角形?若存在,求点N的坐标;若不存在,请说明理由.13.如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx +c 经过B 、C 两点,与x 轴另一交点为A ,顶点为D .(1)求抛物线的解析式.(2)如果一个圆经过点O 、点B 、点C 三点,并交于抛物线AC 段于点E ,求△OEB 的度数.(3)在抛物线的对称轴上是否存在点P ,使△PCD 为等腰三角形,如果存在,求出点P 的坐标,如果不存在,请说明理由.14.如图,抛物线2y ax bx =+过(4,0)A ,()1,3B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH x ⊥轴,交x 轴于点H .(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出ABC ∆的面积;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,是否存在以点C 、M 、N 为顶点的三角形为等腰直角三角形?若存在,求出其值;若不存在,请说明理由.15.如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D .点M 从O 点出发,以每秒1个单位长度的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于Q .(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S ,求S 与x 的函数关系式,并指出自变量x 的取值范围;(3)在线段BC 上是否存在点Q ,使得DBQ ∆成为以BQ 为一腰的等腰三角形?若存在,求出点Q 的坐标,若不存在,说明理由.16.如图,已知一条直线过点(0,4)且与抛物线y =14x 2交于A ,B 两点,其中点B 的横坐标是8. (1)求这条直线AB 的函数关系式及点A 的坐标;(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,写出点C 的坐标,若不存在,请说明理由.(3)过线段AB 上一点P ,作PM △x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN +3MP 的长度最大?最大值是多少?17.如图,已知抛物线()()62y a x x =+-过点()0,2C ,交x 轴于点A 和点B (点A 在点B 的左侧),抛物线的顶点为D ,对称轴DE 交x 轴于点E ,连接EC .(1)直接写出a 的值,点A 的坐标和抛物线对称轴的表达式.(2)若点M 是抛物线对称轴DE 上的点,当MCE 是等腰三角形时,求点M 的坐标.(3)点P 是抛物线上的动点,连接PC ,PE ,将PCE 沿CE 所在的直线对折,点P 落在坐标平面内的点P '处.求当点P '恰好落在直线AD 上时点P 的横坐标.18.如图,直线y x n =-+与x 轴交于点()3,0A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)(),0E m 为x 轴上一动点,过点E 作ED x ⊥轴,交直线AB 于点D ,交抛物线于点P ,连接BP . △点E 在线段OA 上运动,若BPD △直角三角形,求点E 的坐标;△点E 在x 轴的正半轴上运动,若45PBD ABO ∠+∠=︒,请直接写出m 的值.19.如图,抛物线2y x bx c =-++的图象交x 轴于,A B 两点,交y 轴于点C ,直线3y x =-+经过,B C 两点.(1)求抛物线的解析式;PC PB,求PBC面积的最大值,并求出此时点P的坐(2)点P为抛物线第一象限上的一动点,连接,标;(3)在抛物线的对称轴上是否存在点M,使得BCM为直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.20.如图,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使△P AB的面积与△ABC的面积相等,若存在,求出点P的坐标;若不存在,请说明理由.(3)设抛物线的对称轴与x轴交于点M,在对称轴上存在点Q,使△CMQ是以MC为腰的等腰三角形,请直接写出所有符合条件的点Q的坐标.答案1.(1)y =﹣12x 2+32x +2 (2)存在,(0,﹣43)或(0,43)NA ≤2.(1)y =﹣x 2﹣2x +3(2)点P 的坐标为315,24⎛⎫- ⎪⎝⎭(3)存在,点P 坐标为(﹣2,33.(1)y =x 2+2x ﹣3; (2)(﹣32,154-)(3)(-1,2)或(-1,﹣4)或(-1-14.(1)222y x x -=-;(2)当点P 运动至坐标为()2,2-时,恰好使△PBC 的面积等于△ABC 的面积的两倍; (3)Q ⎝⎭或.Q ⎝⎭ 5.(1)y =﹣23x 2﹣43x +2;(2)174;(3)存在,M 点坐标为(﹣1,﹣2)或(﹣1,2);(4)存在,N 的坐标为(﹣1,32)或(﹣1,﹣1) 6.(1)223y x x =+-;(2)P (-1,-2);(3)(34-,94-);(4)存在,E 1(0,-3)或E 2(0,-1)或E 3(0,72-)或E 4(0,32)7.(1)y =x 2+4x ﹣1;(2)278;(3)C 点坐标为1(2,1C --,2(2,1C --,3(2,4C --,4(2,4C --,57(2,)3C -- 8.(1)抛物线解析式为y =﹣x 2+2x +3,直线BD 解析式为y =﹣x +3;(2)94;(3)存在,(1,4)或(2,3)9.(1)y =-38x 2+34x +3;D (1,278);(2)P (3,158);(3)83或14310.(1)223y x x =--;(2)存在,M 的坐标为(1,1-)或(1或(1,或(1,3-+或(1,3-;(3)存在,Q 的坐标为(52,74-)或(12-,74-)或(12,154-)11.(1)y =x 2-3x -4;(2)9;(3)存在,点P 的坐标为3(2,3(2 ,35(,)22-,319(,)22 12.(1)B (4,0),C (0,2);(2)213222y x x =-++;(3)存在,123435353325(,),(,),(,4),(,),22222216N N N N - 13.(1)抛物线解析式y =﹣x 2+2x +3;(2)△OEB =45°;(3)存在,点P (1,2)、(1,3)、(1,4)、(1,、(1,4△PCD 为等腰三角形14.(1)24y x x =-+;(2)3(3)C ,,3;(3)N 点坐标为(2,0)或(4,0)-或(2,0)-或(4,0),15.(1)(3,0)B ,(0,2)C ;(2)2321()(03)24S x x =--+;(3)存在,Q 的坐标为2(2)3,或(3, 16.(1)y =32x +4,A 点的坐标为(﹣2,1);(2)存在,点C 的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M 的横坐标为6时,MN +3PM 的长度的最大值是1817.(1)a =−16;对称轴为直线x =−2;A (−6,0);(2)(−2,2)或(−2,4)或(−2,)或(−2,;(3 18.(1)2y x 2x 3=-++;(2)△E (1,0)或(2,0);△5m =或73.19.(1)2y x 2x 3=-++;(2)315(,)24P ;(3)1234,,(1,2),(1,4)M M M M ⎛⎛- ⎝⎭⎝⎭. 20.(1)y =26122x x -+﹣(2)存在,点P 的坐标为:(﹣6)或(﹣2,﹣6)或(﹣4,6)(3)点Q 的坐标为1Q (﹣2,)或2Q (﹣2,﹣3Q (﹣2,12)。
中考数学压轴题之--二次函数角度的存在性问题(一)问题1:在分析特殊角的存在性问题,一般要将特殊角放在直角三角形中考虑,如何构造直角三角形?问题2:在处理特殊角的存在性问题时建等式的手段有哪些?问题3:角度的存在性问题的处理思路是什么?1.如图,在平面直角坐标系xOy中,点P为抛物线上一动点,点A的坐标为(4,2),若∠AOP=45°,则点P的坐标为( )A. B.(3,9)C.或(-3,9)D.(3,9)或答案:B解题思路:试题难度:三颗星知识点:弦图模型2.如图,抛物线与x轴交于A,B两点(点A在点B右侧),与y 轴交于点C.D为抛物线上的一点,且,连接BD,点P为抛物线上一点.若∠DBP=45°,则点P的坐标为( )A. B.C.或D.或答案:A解题思路:试题难度:三颗星知识点:弦图模型3.如图,已知二次函数的图象经过A(-3,0),B(1,0),C(0,6)三点,直线与y轴交于点D,点P为二次函数图象上一动点,若∠PAD=45°,则满足题意的点P的坐标为( )A. B.C.或D.或答案:C解题思路:试题难度:三颗星知识点:弦图模型4.已知二次函数的图象经过两点,点D的坐标为,点P为二次函数图象上一动点,若∠ADP=45°,则满足题意的点P的坐标为( )A. B.或C. D.或答案:D解题思路:试题难度:三颗星知识点:弦图模型5.如图,抛物线与x轴交于A,B两点,与y轴交于点C,点D是抛物线的对称轴与x轴的交点,点P是抛物线上一点,且∠DCP=30°,则符合题意的点P的坐标为( )A.或B.或C. D.答案:C 解题思路:试题难度:三颗星知识点:二次函数背景下的存在性问题学生做题后建议通过以下问题总结反思问题1:在分析特殊角的存在性问题,一般要将特殊角放在直角三角形中考虑,如何构造直角三角形?问题2:在处理特殊角的存在性问题时建等式的手段有哪些?问题3:结合第1题考虑不变特征是什么?问题4:角度的存在性问题的处理思路是什么?。
中考二次函数与特殊三角形有关的问题
1.(2015岳阳)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点. (1)求抛物线的解析式;
(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由;
(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.
图①图②
第1题图
2. 如图,直线y =-x +2与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B 、C 和点A (-1,0).
(1)求B 、C 两点坐标;
(2)求该二次函数的关系式;
(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;
(4)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.
第2题图
2
1
【答案】
1.解:(1)∵点A (1,0),B (4,0)在抛物线上,
∴设抛物线解析式为y =a (x -1)(x -4),
将点C (0,3)代入得a (0-1)(0-4)=3,
解得a =, ∴抛物线解析式为y =
(x -1)(x -4), 即y =
x 2-x+3. (2)存在.连接BC 交对称轴于点P ,连接PA ,如解图①,
∵点A 与点B 关于对称轴x =对称, ∴BC ≤PB +PC =PA +PC ,
即当点P 在直线BC 上时,四边形PAOC 的周长最小,
在Rt △BOC 中,OB =4,OC =3,∠BOC =90°,
∴BC = =5,
∴四边形PAOC 的周长的最小值为OA +O C+BC =1+3+5=9.第1题解图①
(3)存在.设直线BC 的解析式为y =kx +t ,
将点B (4,0),点C (0,3)代入得,解得, ∴直线BC 的解析式为y = - x +3. 点M 在BC 上,设点M 的坐标为(
m ,-
m +3)(0<m <4), 要使△CQM 是等腰三角形,且△BQM 是直角三角形,则只有以下两种情况, (Ⅰ)当MQ ⊥OB ,CM =MQ 时,如解图②所示,
则CM =MQ =- m +3, MB =BC -CM =5-(- m +3)=2+m ,
由sin ∠CBO = = =,第1题解图② 4
343434152
522OC OB +⎩⎨⎧==+304t t k ⎪⎩⎪⎨⎧==3
43-t k 4
3434
343
43BC OC BM MQ 5
3
即=,解得m =, 则点M 的坐标为(,); (Ⅱ)当CM =MQ ,MQ ⊥BC 时,如解图③, 过M 作MN ⊥OB 于N ,
则ON =m ,MN =-m +3, 在Rt △BMN 中,易得BM =
=×(-m +3) =-
m +5, ∴CM =BC -BM =m ,第1题解图③ 在Rt △BMQ 中,QM =BM ·tan ∠MBQ = (-m +5), 由CM =MQ 得 (-m +5)= m , 解得m =,此时点M 的坐标为(,). 综上所述,存在满足条件的点M ,点M 的坐标为(
,)或(,). 2. 解:(1)令x =0,可得y =2,
令y =0,可得x =4,
即点B (4,0),C (0,2).
(2)设二次函数的解析式为y =ax 2+bx +c ,
将点A 、B 、C 的坐标代入解析式得,
,解得 , m m 4
2343-++53232381543MBN MN ∠sin 35434545434543454571271271223815712712⎪⎩⎪⎨⎧==++=+204160-c c b a c b a b c b a ⎪⎪⎪⎩
⎪⎪⎪⎨⎧===22321
-
即该二次函数的关系式为y=-x 2+x +2. (3)存在.满足条件的点P 的坐标分别为P 1(,4),P 2(,),P 3(,-). 【解法提示】∵y = -x 2+x +2,
∴y =-(x -)2+,
∴抛物线的对称轴是x =,
∴OD =.
∵C (0,2),
∴OC =2.
在Rt △OCD 中,由勾股定理得CD =.
∵△CDP 是以CD 为腰的等腰三角形, ∴CP 1=DP 2=DP 3=CD .
如解图①所示,作CE ⊥对称轴于点E , ∴EP 1=ED =2,∴DP 1=4.
∴P 1(,4),P 2(,),P 3(,-).
第2题解图①
(4)如解图②,过点C 作CM ⊥EF 于点M , 设E (a ,-a +2),F (a ,-a 2+a +2),
∴EF =-a 2+a +2-(-a +2)
=-a 2+2a (0≤a ≤4).
∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD ·OC +E F ·CM +EF ·BN 第2题解图②
2123232325232521
23
21
23825
23
23
25
23
23252325
21
2123
21
23
21
21
21
212
1
=+a (-a 2+2a )+(4-a )·(-a 2+2a ) =-a 2+4a +
=-(a -2)2+(0≤a ≤4),
∴a =2时,S 四边形CDBF 最大=,
∴E (2,1).
252121212125
213
213。