2018高考数学选择题、填空题答题策略与答题技巧
- 格式:doc
- 大小:530.50 KB
- 文档页数:15
2018年高考数学答题策略与答题技巧一、2012-2017历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所”,取“暂时性放弃以题目的难易只能由自己确定。
一般来说,小题思考 1 分钟还没有建立解答方案,则应采把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题技巧1.函数或方程或不等式的题目,先直接思考后建立三者的联系,首先考虑定义域。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是⋯⋯;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,;漏不遗分类讨论的思想,分类讨论应该不重复7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设根的判别而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用;点)的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊4.求椭圆或是双曲线的离心率,建立关于a、b、c 之间的关系等式即可;5.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;6.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n 项和公式,体会方程的思想;7.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;8.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;3.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为 1 是检验正确与否的重要途径;9.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;10.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;11.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;12.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;13.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;14.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
2018年高考理科数学:选择、填空题常用的10种解法(解析版)方法一 定义法所谓定义法,就是直接利用数学定义解题,数学中的定理、公式、性质和法则等,都是由定义和公理推演出来的.简单地说,定义是对数学实体的高度抽象,用定义法解题是最直接的方法.一般地,涉及圆锥曲线的顶点、焦点、准线、离心率等问题,常用定义法解决.[例1] 如图,F 1,F 2是双曲线C 1:x 216-y 29=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1A |=|F 1F 2|,则C 2的离心率是( )A.56 B.23 C.25D.45解析:由双曲线C 1的方程可得|F 1F 2|=216+9=10, 由双曲线的定义可得|F 1A |-|F 2A |=216=8, 由已知可得|F 1A |=|F 1F 2|=10, 所以|F 2A |=|F 1A |-8=2.设椭圆的长轴长为2a ,则由椭圆的定义可得2a =|F 1A |+|F 2A |=10+2=12. 所以椭圆C 2的离心率e =2c 2a =1012=56.故选A.答案:A[增分有招] 利用定义法求解动点的轨迹或圆锥曲线的有关问题,要注意动点或圆锥曲线上的点所满足的条件,灵活利用相关的定义求解.如本例中根据双曲线的定义和已知条件,分别把A 到两个焦点的距离求出来,然后根据椭圆定义求出其长轴长,最后就可根据离心率的定义求值.[技法体验]1.(2017·广州模拟)如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F |+|P 2F |+…+|P n F |=( ) A .n +10 B .n +20 C .2n +10D .2n +20解析:由题意得,抛物线C :y 2=4x 的焦点为(1,0),准线为x =-1,由抛物线的定义,可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,故|P 1F |+|P 2F |+…+|P n F |=x 1+x 2+…+x n +n =n +10,选A. 答案:A2.(2016·高考浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 解析:借助双曲线的定义、几何性质及余弦定理解决.∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.若△F 1PF 2为锐角三角形,则由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF1||PF 2|=4.故2|PF 1||PF 2|=(|PF 1|+|PF 2|)2-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2,∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8. 答案:(27,8)方法二 特例法特例法,包括特例验证法、特例排除法,就是充分运用选择题中单选题的特征,解题时,可以通过取一些特殊数值、特殊点、特殊函数、特殊数列、特殊图形、特殊位置、特殊向量等对选项进行验证的方法.对于定性、定值的问题可直接确定选项;对于其他问题可以排除干扰项,从而获得正确结论.这是一种求解选项之间有着明显差异的选择题的特殊化策略. [例2] (2016·高考浙江卷)已知实数a ,b ,c ( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:结合特殊值,利用排除法选择答案. 对于A ,取a =b =10,c =-110, 显然|a 2+b +c |+|a +b 2+c |≤1成立,但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立. 对于B ,取a 2=10,b =-10,c =0, 显然|a 2+b +c |+|a 2+b -c |≤1成立,但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立. 对于C ,取a =10,b =-10,c =0, 显然|a +b +c 2|+|a +b -c 2|≤1成立,但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A ,B ,C 均不成立,所以选D. 答案:D[增分有招] 应用特例排除法的关键在于确定选项的差异性,利用差异性选取一些特例来检验选项是否与题干对应,从而排除干扰选项.[技法体验]1.函数f (x )=cos x ·log 2|x |的图象大致为( )解析:函数的定义域为(-∞,0)∪(0,+∞),且f (12)=cos 12log 2|12|=-cos 12,f (-12)=cos(-12)·log 2|-12|=-cos 12,所以f (-12)=f (12),排除A ,D ;又f (12)=-cos 12<0,故排除C. 综上,选B. 答案:B2.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n =( )A .3B .4C .5D.13解析:由于题中直线PQ 的条件是过点E ,所以该直线是一条“动”直线,所以最后的结果必然是一个定值.故可利用特殊直线确定所求值.法一:如图1,PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时m =n =23,故1m +1n=3.故选A.法二:如图2,取直线BE 作为直线PQ ,显然,此时AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n =3.故选A. 答案:A方法三 数形结合法数形结合法,包含“以形助数”和“以数辅形”两个方面,其应用分为两种情形:一是代数问题几何化,借助形的直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是几何问题代数化,借助于数的精确性阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.[例3] (2017·安庆模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,g (x )=x 2-2x ,设a 为实数,若存在实数m ,使f (m )-2g (a )=0,则实数a 的取值范围为( ) A .[-1,+∞)B .[-1,3]C .(-∞,-1]∪[3,+∞)D .(-∞,3]解析:∵g (x )=x 2-2x ,a为实数,∴2g (a )=2a 2-4a .∵函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,作出函数f (x )的图象可知,其值域为[-2,6],∵存在实数m ,使f (m )-2g (a )=0,∴-2≤2a 2-4a ≤6,即-1≤a ≤3,故选B.答案:B[增分有招] 数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,如本例中求解,可通过作出图象,数形结合求解.[技法体验]1.(2017·珠海摸底)已知|a |=|b |,且|a +b |=3|a -b |,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .120°解析:通解:设a 与b 的夹角为θ,由已知可得a 2+2a ·b +b 2=3(a 2-2a ·b +b 2),即4a ·b =a 2+b 2,因为|a |=|b |,所以a ·b =12a 2,所以cos θ=a ·b |a |·|b |=12,θ=60°,选C.优解:由|a |=|b |,且|a +b |=3|a -b |可构造边长为|a |=|b |=1的菱形,如图,则|a +b |与|a -b |分别表示两条对角线的长,且|a +b |=3,|a -b |=1,故a 与b 的夹角为60°,选C. 答案:C2.已知点P 在抛物线y 2=4x 上,则点P 到点Q (2,-1)的距离与点P 到抛物线的焦点F 的距离之和取得最小值时,点P 的坐标为( ) A .(14,1)B .(14,-1)C .(1,2)D .(1,-2)解析:如图,因为点Q (2,-1)在抛物线的内部,由抛物线的定义可知,|PF |等于点P 到准线x =-1的距离.过Q (2,-1)作x =-1的垂线QH ,交抛物线于点K ,则点K 为点P 到点Q (2,-1)的距离与点P 到准线x =-1的距离之和取得最小值时的点.将y =-1代入y 2=4x 得x =14,所以点P 的坐标为(14,-1),选B.答案:B方法四 待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫作待定系数法,其理论依据是多项式恒等——两个多项式各同类项的系数对应相等.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.待定系数法主要用来解决所求解的数学问题具有某种确定的数学表达式,例如数列求和、求函数式、求复数、解析几何中求曲线方程等.[例4] (2017·天津红桥区模拟)已知椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,则椭圆C 的标准方程是( ) A.x 216+y 212=1 B.x 212+y 216=1 C.x 24+y 28=1 D.x 28+y 24=1 解析:由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =(22)2-22=2,因为焦点在y 轴上,故选C.答案:C[增分有招] 待定系数法主要用来解决已经定性的问题,如本例中已知椭圆的焦点所在坐标轴,设出标准方程,根据已知列方程求解.[技法体验]1.若等差数列{a n }的前20项的和为100,前45项的和为400,则前65项的和为( ) A .640 B .650 C .660D .780解析:设等差数列{a n}的公差为d ,依题意,得⎩⎨⎧ 20a 1+20×192d =10045a 1+45×442d =400⇒⎩⎨⎧a 1=9245d =1445,则前65项的和为65a 1+65×642d =65×9245+65×642×1445=780.答案:D2.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f (π4)的值为( )A. 2 B .0 C .1D.3解析:由题图可知,A =2,34T =11π12-π6=34π,∴T =2πω=π,∴ω=2,即f (x )=2sin(2x +φ),由f (π6)=2sin(2×π6+φ)=2得2×π6+φ=2k π+π2,k ∈Z ,即φ=π6+2k π,k ∈Z ,又0<φ<π,∴φ=π6,∴f (x )=2sin(2x +π6),∴f (π4)=2sin(2×π4+π6)=2cos π6=3,故选D. 答案:D方法五 估值法估值法就是不需要计算出代数式的准确数值,通过估计其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要详细的过程,因此可以猜测、合情推理、估算而获得,从而减少运算量. [例5] 若a =20.5,b =log π3,c =log 2sin 2π5,则( ) A .a >b >c B .b >a >c C .c >a >bD .b >c >a解析:由指数函数的性质可知y =2x 在R 上单调递增,而0<0.5<1,所以a =20.5∈(1,2).由对数函数的性质可知y =log πx ,y =log 2x 均在(0,+∞)上单调递增,而1<3<π,所以b =log π3∈(0,1);因为sin 2π5∈(0,1),所以c =log 2sin2π5<0. 综上,a >1>b >0>c ,即a >b >c .故选A. 答案:A[增分有招] 估算,省去很多推导过程和比较复杂的计算,节省时间,是发现问题、研究问题、解决问题的一种重要的运算方法.但要注意估算也要有依据,如本例是根据指数函数与对数函数的单调性估计每个值的取值范围,从而比较三者的大小,其实质就是找一个中间值进行比较.[技法体验]已知函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎫ω>0,|φ|≤π2,其图象与直线y =-1相邻两个交点的距离为π.若f (x )>1对于任意的x ∈⎝⎛⎭⎫-π12,π3恒成立,则φ的取值范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π12,π2 C.⎣⎡⎦⎤π12,π3D.⎝⎛⎦⎤π6,π2解析:因为函数f (x )的最小值为-2+1=-1,由函数f (x )的图象与直线y =-1相邻两个交点的距离为π可得,该函数的最小正周期为T =π,所以2πω=π,解得ω=2.故f (x )=2sin(2x +φ)+1. 由f (x )>1,可得sin(2x +φ)>0.又x ∈⎝⎛⎭⎫-π12,π3,所以2x ∈⎝⎛⎭⎫-π6,2π3. 对于选项B ,D ,若取φ=π2,则2x +π2∈⎝⎛⎭⎫π3,7π6,在⎝⎛⎭⎫π,7π6上,sin(2x +φ)<0,不合题意;对于选项C ,若取φ=π12,则2x +π12∈⎝⎛⎭⎫-π12,3π4,在⎝⎛⎭⎫-π12,0上,sin(2x +φ)<0,不合题意.选A. 答案:A方法六 反证法反证法是指从命题正面论证比较困难,通过假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法.反证法证明问题一般分为三步:(1)反设,即否定结论;(2)归谬,即推导矛盾;(3)得结论,即说明命题成立.[例6] 已知x ∈R ,a =x 2+32,b =1-3x ,c =x 2+x +1,则下列说法正确的是( )A .a ,b ,c 至少有一个不小于1B .a ,b ,c 至多有一个不小于1C .a ,b ,c 都小于1D .a ,b ,c 都大于1解析:假设a ,b ,c 均小于1,即a <1,b <1,c <1,则有a +b +c <3,而a +b +c =2x 2-2x +72=2⎝⎛⎭⎫x -122+3≥3.显然两者矛盾,所以假设不成立. 故a ,b ,c 至少有一个不小于1.选A. 答案:A[增分有招] 反证法证明全称命题以及“至少”“至多”类型的问题比较方便.其关键是根据假设导出矛盾——与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾.如本例中导出等式的矛盾,从而说明假设错误,原命题正确.[技法体验]如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:由条件知△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形. 假设△A 2B 2C 2是锐角三角形, 则由题意可得⎩⎪⎨⎪⎧sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,解得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,所以A 2+B 2+C 2=⎝⎛⎭⎫π2-A 1+⎝⎛⎭⎫π2-B 1+⎝⎛⎭⎫π2-C 1,即π=3π2-π,显然该等式不成立,所以假设不成立. 易知△A 2B 2C 2不是锐角三角形,所以△A 2B 2C 2是钝角三角形.故选D. 答案:D方法七 换元法换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者变为熟悉的形式,把复杂的计算和推证简化.换元的实质是转化,关键是构造元和设元.理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化.换元法经常用于三角函数的化简求值、复合函数解析式的求解等. [例7] 已知正数x ,y 满足4y -2yx=1,则x +2y 的最小值为________.解析:由4y -2y x =1,得x +2y =4xy ,即14y +12x =1,所以x +2y =(x +2y )·⎝⎛⎭⎫14y +12x =1+x 4y +yx ≥1+2x 4y ×yx=2⎝⎛当且仅当x 4y =yx ,⎭⎫即x =2y 时等号成立.所以x +2y 的最小值为2. 答案:2[增分有招] 换元法主要有常量代换和变量代换,要根据所求解问题的特征进行合理代换.如本例中就是使用常数1的代换,将已知条件改写为“14y +12x =1”,然后利用乘法运算规律,任何式子与1的乘积等于本身,再将其展开,通过构造基本不等式的形式求解最值.[技法体验]1.(2016·成都模拟)若函数f (x )=1+3x +a ·9x ,其定义域为(-∞,1],则a 的取值范围是( ) A .a =-49B .a ≥-49C .a ≤-49D .-49≤a <0解析:由题意得1+3x +a ·9x ≥0的解集为(-∞,1],即⎣⎡⎦⎤⎝⎛⎭⎫13x 2+⎝⎛⎭⎫13x +a ≥0的解集为(-∞,1].令t =⎝⎛⎭⎫13x ,则t ≥13,即方程t 2+t +a ≥0的解集为⎣⎡⎭⎫13,+∞, ∴⎝⎛⎭⎫132+13+a =0,所以a =-49. 答案:A2.函数y =cos 2x -sin x 在x ∈⎣⎡⎦⎤0,π4上的最大值为________. 解析:y =cos 2x -sin x =-sin 2x -sin x +1. 令t =sin x ,又x ∈⎣⎡⎦⎤0,π4,∴t ∈⎣⎡⎦⎤0,22, ∴y =-t 2-t +1,t ∈⎣⎡⎦⎤0,22. ∵函数y =-t 2-t +1在⎣⎡⎦⎤0,22上单调递减, ∴t =0时,y max =1. 答案:1方法八 补集法补集法就是已知问题涉及的类别较多,或直接求解比较麻烦时,可以通过求解该问题的对立事件,求出问题的结果,则所求解问题的结果就可以利用补集的思想求得.该方法在概率、函数性质等问题中应用较多. [例8] 某学校为了研究高中三个年级的数学学习情况,从三个年级中分别抽取了1,2,3个班级进行问卷调查,若再从中任意抽取两个班级进行测试,则两个班级不来自同一年级的概率为________.解析:记高一年级中抽取的班级为a 1,高二年级中抽取的班级为b 1,b 2,高三年级中抽取的班级为c 1,c 2,c 3.从已抽取的6个班级中任意抽取两个班级的所有可能结果为(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 1,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15种. 设“抽取的两个班级不来自同一年级”为事件A ,则事件A 为抽取的两个班级来自同一年级. 由题意,两个班级来自同一年级的结果为(b 1,b 2),(c 1,c 2),(c 1,c 3),(c 2,c 3),共4种. 所以P (A )=415,故P (A )=1-P (A )=1-415=1115. 所以两个班级不来自同一年级的概率为1115.答案:1115[增分有招] 利用补集法求解问题时,一定要准确把握所求问题的对立事件.如本例中,“两个班级不来自同一年级”的对立事件是“两个班级来自同一年级”,而高一年级只有一个班级,所以两个班级来自同一年级的可能性仅限于来自于高二年级,或来自于高三年级,显然所包含基本事件的个数较少.[技法体验]1.(2016·四川雅安中学月考)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( )A .(-∞,-1)B .(-1,3)C .(-3,+∞)D .(-3,1)解析:依题意可知“∀x ∈R,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)·(a -3)<0,解得-1<a <3.故选B.答案:B2.已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为________.解析:f ′(x )=2ax -1+1x. (1)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x ≥0,得a ≥12⎝⎛⎭⎫1x -1x 2.①令t =1x,因为x ∈(1,2),所以t ∈⎝⎛⎭⎫12,1, 设h (t )=12(t -t 2)=-12⎝⎛⎭⎫t -122+18,t ∈⎝⎛⎭⎫12,1, 显然函数y =h (t )在区间⎝⎛⎭⎫12,1上单调递减,所以h (1)<h (t )<h ⎝⎛⎭⎫12,即0<h (t )<18. 由①可知,a ≥18. (2)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x ≤0,得a ≤12⎝⎛⎭⎫1x -1x 2.②结合(1)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪⎣⎡⎭⎫18,+∞. 所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为⎝⎛⎭⎫0,18. 答案:⎝⎛⎭⎫0,18方法九 分离参数法分离参数法是求解不等式有解、恒成立问题常用的方法,通过分离参数将问题转化为相应函数的最值或范围问题求解,从而避免对参数进行分类讨论的繁琐过程.该种方法也适用于含参方程有解、无解等问题的解决.但要注意该种方法仅适用于分离参数后能够求解相应函数的最值或值域的情况.[例9] 若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎤0,12恒成立,则a 的最小值是________. 解析:由于x >0,则由已知可得a ≥-x -1x 在x ∈⎝⎛⎦⎤0,12上恒成立,而当x ∈⎝⎛⎦⎤0,12时,⎝⎛⎭⎫-x -1x max =-52, ∴a ≥-52,故a 的最小值为-52. 答案:-52[增分有招] 分离参数法解决不等式恒成立问题或有解问题,关键在于准确分离参数,然后将问题转化为参数与函数最值之间的大小关系.分离参数时要注意参数系数的符号是否会发生变化,如果参数的系数符号为负号,则分离参数时应注意不等号的变化,否则就会导致错解.[技法体验]1.(2016·长沙调研)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( )A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 答案:C2.(2016·湖南五校调研)方程log 12(a -2x )=2+x 有解,则a 的最小值为________. 解析:若方程log 12(a -2x )=2+x 有解,则⎝⎛⎭⎫122+x =a -2x 有解,即14⎝⎛⎭⎫12x +2x =a 有解,∵14⎝⎛⎭⎫12x +2x ≥1,故a 的最小值为1.答案:1方法十 构造法构造法是指利用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决.构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体问题的特点采取相应的解决办法,其基本的方法是借用一类问题的性质,来研究另一类问题的相关性质.常见的构造法有构造函数、构造方程、构造图形等.[例10] 已知m ,n ∈(2,e),且1n 2-1m 2<ln m n,则( ) A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定 解析:由不等式可得1n 2-1m 2<ln m -ln n , 即1n 2+ln n <1m 2+ln m . 设f (x )=1x 2+ln x (x ∈(2,e)), 则f ′(x )=-2x 3+1x =x 2-2x 3. 因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增.因为f (n )<f (m ),所以n <m .故选A.答案:A[增分有招] 构造法的实质是转化,通过构造函数、方程或图形等将问题转化为对应的问题来解决.如本例属于比较两个数值大小的问题,根据数值的特点,构造相应的函数f (x )=1x 2+ln x . [技法体验]1.a =ln 12 014-12 014,b =ln 12 015-12 015,c =ln 12 016-12 016,则a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >cC .c >b >aD .c >a >b 解析:令f (x )=ln x -x ,则f ′(x )=1x -1=1-x x.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数. ∵1>12 014>12 015>12 016>0,∴a >b >c . 答案:A2.如图,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以CD=(2)2+(2)2+(2)2=2R,所以R=62,故球O的体积V=4πR33=6π.答案:6π。
2018年高考数学答题策略与答题技巧一、2012—2017历年高考数学试卷的启发1。
试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2。
解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论.如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1。
先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃",把自己可做的题目做完再回头解答;2。
选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确.切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断.虽然不能完全解答,但是也要把自己的想法与做法写到答卷上.多写不会扣分,写了就可能得分.三、答题技巧1。
函数或方程或不等式的题目,先直接思考后建立三者的联系,首先考虑定义域。
2。
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4。
选择与填空中出现不等式的题目,优选特殊值法;5。
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6。
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7。
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9。
2018高考数学应战策略一、提高解答选择题的速度、填空题的准确度。
数学高考卷中的选择题是对知识的灵活运用,解题要求是只要结果、不要过程。
若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解答选择题要求“快、准、巧”,忌讳“小题大做”。
解答选择题的常用方法:排除法、特殊值检验法、极端性原则、顺推破解法、逆推验证法(代答案入题干验证法)、正难则反法、数形结合法、递推归纳法、特征分析法和估算法等。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
填空题中常见的规范性问题:①解与解集:方程的结果一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示。
②在写区间或集合时,要正确地书写圆括号、方括号或花括号,区间的两端点之间,几何的元素之间用逗号隔开。
二、解答题要牢记分段得分的原则,规范答题。
解答题需注意跳步得分,如果同一解答题的后一问需要用到前一问的证明结论或数字结果,前一问并没有完全解答出来,则可以在后一问中直接应用前一问的数值或结论,这样不影响第二问得分。
如果有些水平高的学生解题中用了高等数学或中学数学教材之外的结论,用结论前应有简单的文字说明或铺垫。
会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。
带单位的解答题,最后结果必须带单位;特别是应用题解题结束后一定要写符合题意的“答”。
排列组合题,无特别声明,要求出数值。
需分类讨论的题目,一般要写综合性结论;函数问题一般要注明定义域。
三、阅卷教师希望看到的是能够减轻阅读量的卷面,具体包括以下六点:①卷面清洁,这是最基本的要求;②书写工整,字迹清晰;③在规定的答题区域答题,否则做无用功;④表述是要根据分值思考要点,尽量细分,用分号或①②③④等符号清楚表述;⑤语言要简洁,答中要害;⑥语言表述要规范,尽量用专业术语。
注意1.答题工具:答选择题时,必须用合格的2B铅笔填涂,如需要对答案进行修改,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。
2018高考数学选择题时间分配建议在备战高考的过程中,数学是许多学生感到头疼的一门科目。
尤其是选择题,对于时间的合理分配显得尤为重要。
本文将为大家提供一些关于2018年高考数学选择题时间分配的建议,希望对同学们的备考有所帮助。
一、熟悉试卷结构在开始时间分配之前,一定要先熟悉试卷的结构。
通常,数学选择题分为A、B两卷,每卷都有若干道题目。
仔细阅读题目数量,了解题型分布,可以有助于更好地掌握整个试卷的时间分配。
二、合理策略分配时间1. 第一轮快速答题一般来说,第一轮答题应采取快速浏览题目的方式,寻找相对简单、容易解答的题目。
这样可以快速获取分数,增加自信心,并留出更多的时间用于难题的分析与计算。
2. 第二轮困难题攻克在第一轮快速答题后,回来解决那些感觉困难的题目。
这一轮可以更仔细地分析题目的要求和解题思路,有目标地进行计算。
3. 第三轮检查核对最后一轮时间可以用来检查和核对答案。
一定要抽出时间来仔细检查题目,避免粗心错误造成失分。
同时,还要注意填写答题卡时的准确性,确保将答案填入正确的位置。
三、具体时间分配示例以下是一个具体的时间分配示例,仅供参考:1. 第一轮快速答题:建议时间40分钟将目光迅速地浏览整体试卷,分3轮答题。
轮次1:10分钟完成20%-30%的简单题目。
轮次2:再用15分钟完成40%-50%的中等难度题目。
轮次3:再用15分钟完成20%-30%的较困难题目。
2. 第二轮困难题攻克:建议时间30分钟根据个人对试卷题目的感觉和了解,再抽出30分钟针对困难题进行解答,这样可以在有限的时间内尽量获取更多的分数。
3. 第三轮检查核对:建议时间20分钟在剩下的时间内,全面检查试卷内容,核对各题答案是否填涂正确,是否存在漏填、重复填写等情况。
同时,可以回顾一下题目的解题过程,确保没有粗心错误的存在。
四、个人备考策略及注意事项1. 合理规划备考时间提前制定备考计划,根据个人的情况合理规划备考时间,努力提高解题速度和准确性。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高考数学选择题答题技巧总结在整个高考数学试卷中,选择题的答题得分与否,对整个数学成绩有着举足轻重的作用。
下面小编给大家带来高考数学选择题答题技巧,希望对你有帮助。
高考数学选择题答题技巧题型特点:(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
2018届高考文科数学(通用版)选择填空题解题技巧选择题是高考试题的三大题型之一,其特点是难度中低、小巧灵活、知识覆盖面广,解题只要结果不看过程。
解选择题的基本策略是充分利用题干和选项信息,先定性后定量,先特殊再一般,先排除后求解,避免“小题大做”。
解答选择题主要有直接法和间接法两大类。
直接法是最基本、最常用的方法,但为了提高解题的速度,我们还要研究解答选择题的间接法和解题技巧。
直接法是最常用的解答选择题方法。
直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密地推理和准确地运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”,作出相应的选择。
涉及概念、性质的辨析或运算较简单的题目常用直接法。
特例法是解答选择题的间接法之一。
通过构造或寻找特殊情况,从而得到解题思路和答案。
特例法适用于一些比较抽象、比较难以直接运算的题目。
但需要注意的是,特例法只能得到部分答案,不能代表所有情况。
在解答选择题时,需要准确地把握题目的特点,提高用直接法解选择题的能力。
同时,在稳的前提下求快,避免“小题大做”,用简便的方法巧解选择题,是建立在扎实掌握基础知识的基础上的。
特例法是解决数学题的一种方法,通过选取特殊情况代入,将问题特殊化或构造满足条件的特殊函数或图形位置,进行判断。
特殊化法适用于含有字母或一般性结论的选择题,特殊情况可能是特殊值、特殊点、特殊位置、特殊数列等。
例如,对于已知O是锐角△XXX的外接圆圆心,∠A=60°,·AB+·AC=2m·AO,求sinCsinB的值,我们可以选取△ABC为正三角形的情况,此时A=B=C=60°,取D为BC的中点,AO=AD,则有AB+AC=2m·AO,化简得到m=3/2.因此,sinCsinB=(√3/2)^2=3/4,答案为A。
需要注意的是,取特例要尽可能简单,有利于计算和推理;若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解。
数学选择题的解题方法当然,仅仅有思路还是不够的,“解题思路”在某种程度上来说,属于理论上的“定性”,要想解具体的题目,还得有科学、合理、简便的方法。
有关选择题的解法的研究,可谓是:仁者见仁,智者见智。
其中不乏真知灼见,现选择部分实用性较强的方法,供参考:1、 直接法有些选择题是由计算题、应用题、证明题、判断题改编而成的。
这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。
2、 筛选法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。
可通过筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。
如筛去不合题意的以后,结论只有一个,则为应选项。
3、 特殊值法有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。
4、 验证法通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。
5、 图象法在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。
6、 试探法对于综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。
数学选择题精选1、同时满足① M ⊆{1, 2, 3, 4, 5}; ② 若a ∈M ,则(6-a )∈M , 的非空集合M 有(C )。
(A )16个 (B )15个 (C )7个 (D )8个提示:着重理解“∈”的意义,对M 中元素的情况进行讨论,分别讨论“一个、两个、三个、四个、五个元素”等几种情况,得出相应结论。
2018 年高考理科数学选择填空的答题技巧第 I 卷一、选择题:本题共12 小题,每题 5 分,共 60 分1~12 ,单项选择选择题只有一个答案是正确的,所以可充分利用题目供给的信息,消除迷惑支的搅乱,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支拥有双重性,既有搅乱的一面,也有可利用的一面,只有经过仔细的观察、分析和思虑才能揭示其潜伏的示意作用,从而从反面供给信息,迅速作出判断。
高考理科数学选择题答题套路理科数学选择题答题套路:剔除法:利用已知条件和选项所供给的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,特别是答案为定值,也许有数值范围时,取特别点代入考据即可消除。
理科数学选择题答题套路:特特别值检验法:关于拥有一般性的数学识题,在解题过程中,可以将问题特别化,利用问题在某一特别状况下不真,则它在一般状况下不真这一原理,达到披沙拣金的目的。
高考数学选择题的解法1.特值检验法:关于拥有一般性的数学识题,我们在解题过程中,可以将问题特别化,利用问题在某一特别状况下不真,则它在一般状况下不真这一原理,达到披沙拣金的目的。
例:△ABC的三个极点在椭圆4x2+5y2=6上,此中A、B 两点关于原点 O 对称,设直线 AC 的斜率 k1 ,直线 BC 的斜率 k2 ,则k1k2 的值为√5/5分析:由于要求k1k2的值,由题干示意可知道k1k2的值为定值。
题中没有给定A、B、C 三点的详尽地点,由于是选择题,我们没有必需去求解,经过简单的画图,即可取最简单计算的值,没关系令A、B 分别为椭圆的长轴上的两个极点, C 为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,应选B。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加显然,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、分析几何上边,很多计算步骤繁琐、计算量大的题,一但采纳极端性去分析,那么就能瞬时解决问题。
掌握高考数学答题技巧,力求正常发挥1.摸透“题情”刚刚拿到试卷,一般心里比较紧张,不要忙于作答,要从头到尾通览全卷,从卷面上获取最多的信息,为实施正确的集体策略做全面调查。
2.信心十足答题中,见到简单题要细心,莫忘乎所以。
面对偏难的题,要有耐心,千万不要着急,力求做到:坚定信心,稳扎稳打,步步为营。
整个过程中要记住:人易我易,我不大意。
人难我难,我不畏惧。
3.两先两后即“先易后难”和“先高后低”。
所谓先高后低指后半段时间如后两题都会做,则先做高分题,后作低分题。
即使时间不足也少丢分,到最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。
4.讲求方法做选择题时,除用直接法外,要牢记另外一些常用的,有效地方法,如排除法,特例检验法,估算法,数形结合法等。
5.分段得分分段得分的基本精神:会作的题目力求不失分,部分理解的题目力争多得分。
(1)缺步解答若遇到一个很困难的问题,聪明的策略是:将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,特别是那些集体层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
(2)退步解答“以退求进”是一个重要的解题策略。
当某个问题不易解决时,可以考虑问题的特殊形势,局部情形等,有时往往茅塞顿开。
(3)辅助解答辅助解答的内容十分广泛,如准确做图,书写规范,完整,字迹清楚等都是辅助解答。
有些选择题,“大胆猜测”也是辅助解答。
6.立足中下题目,力争高水平中下题目在全卷占百分之八十,是试卷的主旋律,是得分的重要来源。
能拿下这些题目,实际上就已经打了个胜仗。
以上是答题技巧的几点建议,另外要特别注意考前的状态,提前进入角色也很重要。
※热门问答问:选择题怎么才能拿到高分?答:选择题主要体现了对双基的考查,知识点是轮换的,除了通常的直选法(由条件求得正确的答案来)外,还得注意解题的特殊技巧,比如用特殊代替一般,排除法,验证法;此外还应注意数形结合、合理猜想等等。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高考数学题型与答题策略一、近年高考数学命题的中心是数学思想方法,考试命题有四个基本点1。
在基础中考能力,这主要体现在选择题和填空题。
2。
在综合中考能力,主要体现在后三道大题。
3。
在应用中考能力,在选择填空中,会出现一、二道大众数学的题目,在大题中有一道应用题。
4。
在新型题中考能力。
这“四考能力”,围绕的中心就是考查数学思想方法。
二、题型特点1。
选择题(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。
试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。
在高考的数学选择题中,定量型的试题所占的比重很大。
而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。
绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
2018高考数学考场答题技巧【三篇】导读:本文2018高考数学考场答题技巧【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【填空题解题方法】一、直接法从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
二、特殊化法当填空题的结论或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
三、数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法将问题等价地转化成便于解决的问题,从而得出正确的结果。
解决恒成立问题通常可以利用分离变量转化为最值的方法求解。
【选择题解题方法】一、直接法直接从题设的条件出发,运用有关的概念、性质、定理、法则和公式等知识,通过严密的推理和计算来得出题目的结论。
二、特例法包括选取符合题意的特殊数值、特殊位置、特殊函数、特殊数列、特殊图形等,代入或者比照选项来确定答案。
这种方法叫做特值代验法,是一种使用频率很高的方法。
三、数形结合画出图形或者图象能够使问题提供的信息更直观地呈现,降低思维难度,是解决数学问题的有力策略。
四、估值判断有些问题,属于比较大小或者确定位置的问题,对数值进行估算,或者对位置进行估计,就可以避免因为精确计算和严格推演而浪费时间。
五、排除法(代入检验法)充分运用选择题中的单选的特征,即有且只有一个正确选项这一信息,通过分析、推理、计算、判断,逐一排除,最终达到目的的一种解法。
六、还可用极限法、放缩法和探究归纳法等【审题要慢做题要快】 1.调整好状态,控制好自我。
(1)保持清醒。
数学的考试时间在下午,建议同学们中午休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。
今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。
建议同学们提前15-20分钟到达考场。
2018年高中数学解题技巧-选择题、填空题(特例法含例题分析)特例法(适用选择、填空题)用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.用特例法解选择题时,特例取得愈简单、愈特殊愈好。
(1)特殊值例1、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )A .-24B .84C .72D .36解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。
(2)特殊函数例2、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A.增函数且最小值为-5B.减函数且最小值是-5C.增函数且最大值为-5D.减函数且最大值是-5解析:构造特殊函数f(x)=35x ,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C 。
例3、定义在R 上的奇函数f(x)为减函数,设a+b ≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b)。
其中正确的不等式序号是( )A .①②④B .①④C .②④D .①③解析:取f(x)= -x ,逐项检查可知①④正确。
故选B 。
(3)特殊数列例4、已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有 ( )A 、11010a a +>B 、21020a a +<C 、3990a a +=D 、5151a = 解析:取满足题意的特殊数列0n a =,则3990a a +=,故选C 。
2018年高考数学答题策略与答题技巧一、2012-2017历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题技巧1.函数或方程或不等式的题目,先直接思考后建立三者的联系,首先考虑定义域。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n 项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高考数学选择题答题策略详解一、高考数学选择题解题策略思想总论高考数学选择题,知识覆盖面宽,概括性强,小巧灵活,有一定深度与综合性,而且分值大,能否迅速、准确地解答出来,成为全卷得分的关键。
1.高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大。
解答选择题的基本要求是四个字——准确、迅速。
2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面。
解答选择题的基本策略是:要充分利用题设和选项两方面提供的信息作出判断。
一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。
解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
3.选择题的解答思路不外乎两条:一是直接法,即从题干出发,探求结果,这类选择题通常用来考核考生最起码的基础知识和基本技能,这一般适用于题号在前1~6的题目;二是间接法,即从选项出发,或者将题干与选项联合考察而得到结果。
因为选择题有备选项,又无须写出解答过程,因此存在一些特殊的解答方法,可以快速准确地得到结果,这就是间接法。
这类选择题通常用来考核考生的思维品质,包括思维的广阔性和深刻性、独立性和批判性、逻辑性和严谨性、灵活性和敏捷性以及创造性;同直接法相比,间接法所需要的时间可能是直接法的几分之一甚至几十分之一,是节约解题时间的重要手段。
我们要始终记住:虽然解数学选择题分直接法和间接法两大类。
直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答。
高考数学选择题填空题答题策略与答题技巧 This model paper was revised by LINDA on December 15, 2012.2018年高考数学答题策略与答题技巧一、2012-2017历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题技巧1.函数或方程或不等式的题目,先直接思考后建立三者的联系,首先考虑定义域。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
2018年高考数学答题策略与答题技巧一、2012-2017历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题技巧1.函数或方程或不等式的题目,先直接思考后建立三者的联系,首先考虑定义域。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
四.每分必争1.答题时间共120分,而你要答分数为150分的考卷,算一算就知道,每分钟应该解答1分多的题目,所以每1分钟的时间都是重要的。
试卷发到手中首先完成必要的检查(是否有印刷不清楚的地方)与填涂。
之后剩下的时间就马上看试卷中可能使用到的公式,做到心中有数。
用心算简单的题目,必要时动一动笔也不是不行(你是写名字或是写一个字母没有人去区分)。
2.在分数上也是每分必争。
你得到89分与得到90分,虽然只差1分,但是有本质的不同,一个是不合格一个是合格。
高考中,你得556分与得557分,虽然只差1分,但是它决定你是否可以上重本线,关系到你的一生。
所以,在答卷的时候要精益求精。
对选择题的每一个选择支进行评估,看与你选的相似的那个是不是更准确?填空题的范围书写是不是集合形式,是不是少或多了一个端点?是不是有一个解应该舍去而没舍?解答题的步骤是不是按照公式、代数、结果的格式完成的,应用题是不是设、列、画(线性归化)、解、答?根据已知条件你还能联想到什么?把它写在考卷上,也许它就是你需要的关键的1分,为什么不去做呢?3.答题的时间紧张是所有同学的感觉,想让它变成宽松的方法只有一个,那就是学会放弃,准确的判断把该放弃的放弃,就为你多得1分提供了前提。
4.冷静一下,表面是耽误了时间,其实是为自己赢得了机会,可能创造出奇迹。
在头脑混乱的时候,不防停下来,喝口水,深吸一口气,再慢慢呼出,就在呼出的同时,你就会得到灵感。
5.题目分析受挫,很可能是一个重要的已知条件被你忽略,所以重新读题,仔细读题才能有所发现,不能停留在某一固定的思维层面不变。
联想你做过的类似的题目的解题方法,把不熟悉的转化为你熟悉的也许就是成功。
6.高考只是人生的重要考试之一,其实人生是由每一分钟组成的。
把握好人生的每一分钟才能真正把握人生。
其实真正的高考是在你生活的每1分钟里。
五、五大解题思想数学思想是对数学知识和方法的本质认识,数学方法是解决数学问题、体现数学思想的手段和工具,数学思想方法的教学在数学教学中是极其重要的。
因此学生在做题的时候不仅仅只局限于做题,而是要考虑这道题考的是什么思想用的什么方法,即做一道题会一类题。
1、特殊与一般的思想用这种思想解选择题有事特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的解题策略,也同样有用。
2、数形结合思想中学数学研究的对象可分为两大类:一类是数、一类是形,但数与形是有联系的,这个联系称之为形数结合或者数形结合。
它既是寻找问题解决切入点的“法宝”,有事优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利用正确地理解题意、快速地解决问题。
3、函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进行函数与方程间的相互转化。
4、分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,公式的限制、某些定理、数学运算法则,图形位置的不确定性,变化等均可能一起分类讨论。
建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
5、极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的位置量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
六、选择题数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
选择题应做到准确而且快速,应“多一点想的,少一点算的”,“不算就不会算错”因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。
我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。
选择题只管结果,不管中间过程,因此在解题过程中可以大胆的简化中间过程,但简化毕竟是简化,数学是一门具有高度精密逻辑性的严谨的科学,没有充分的依据,所有的条件反射都是错误的,只有找到对的依据、逻辑思维过程、验证,答案才可确定,“做题不可以凭印象来,凡‘差不多就是’的都是错误的,无十足把握的都是错误的”。
选择题毕竟是简单的甚至可以口算的,思路也是简单的,如果没思路、做不下去或觉得复杂,或者发现做的时候需要大量计算的时候,可以明确的告诉自己,你的方向错了,可以换一种思路了。
1.直接法当选择题是由计算题、应用题、证明题、判断题改编成的时,可直接按计算题、应用题、证明题、判断题来做,确定答案之后,从选项里找即可。
2.筛选法(排除法)去伪存真,筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。
如筛去不合题意的以后,结论只有一个,则为应选项。
3.特殊值法根据答案中所提供的信息,选择某些特殊情况进行分析,或某些特殊值进行计算,或将字母参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进行判断往往十分简单。
4.验证法(代入法)将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。
5.图象法可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。
6.试探法综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。