[数学]北师大版八年级数学下册全册学案
- 格式:doc
- 大小:807.00 KB
- 文档页数:46
一、提请学生回忆并整理已经学过的8条基本事实中的5条:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等(SAS);4.两角及其夹边对应相等的两个三角形全等(ASA);5.三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。
二、等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。
问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?三、顶角是60°的等腰三角形是等边三角形;底角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形;三条边都相等的三角形是等边三角形。
二、1、定理斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.2、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半3、课堂练习:考点一:等腰三角形【例题】1.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20° B.30° C.40° D.50°2.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°3.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个4.(2014秋•西城区校级期中)已知:AD既是△ABC的角平分线又是BC边上的中线,DE⊥AB于E,DF ⊥AC于F,求证:BE=CF.5.(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.6.(2015•应城市二模)如图,点D、E在△ABC的BC边上,AB=AC,BD=CE.求证:AD=AE.7.如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹);(2)求证:BM=EM .8.(1)如图1,已知△ABC ,以AB 、AC 为边向△ABC 外作等边△ABD 和等边△ACE ,连接BE ,CD ,判断BE 与CD 的大小关系为:BE_____CD .(不需说明理由)(2)如图2,已知△ABC ,以AB 、AC 为边向外作等腰△ABD 和等腰△ACE ,且顶角∠BAD =∠CAE ,连接BE 、CD ,BE 与CD 有什么数量关系?请说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B 、E 的距离.已经测得∠ABC =45°,∠CAE =90°,AB =BC =100米,AC =AE ,求BE 的长.9.如图,在ABC △中,AC =AB ,120=B AC ∠°,B E =A E ,D 为EC 中点.C D E B A(1)求CAE ∠的度数;(2)求证:A DE △是等边三角形【习题】1.(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .求证:AD=BE .(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE边DE上的高,连接BE.①求证:2CM+BE=AE;②若将图2中的△DCE绕点C旋转至图3所示位置,①中的结论还成立吗?若不成立,写出它们之间的数量关系.2.如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.3.(2014秋•嘉鱼县校级月考)如图所示,∠1=∠2,BD=CD,试证明△ABC是等腰三角形.4(2014秋•衡阳县校级月考)已知:如图所示,AD是△ABC的高,E为AD上一点,且BE=EC,求证:△ABC是等腰三角形.5.(2013秋•滨湖区校级期中)把一张对边平行的纸条,如图所示折叠,重合部分是什么形状?说明理由.6.(2012•温州模拟)在下列四个条件中:①AB=DC;②BE=CE;③∠B=∠C;④∠BAE=∠CDE.请选出两个作为条件,得出△AED是等腰三角形(写出一个即可),并加以证明.已知:;求证:△AED是等腰三角形.7.(2012秋•文登市校级期中)如图,△ABC是等边三角形,BD是中线,P是直线BC上一点,CP=CD.求证:△DBP是等腰三角形.8.(2011秋•西城区校级期中)如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD 延长线于E,BA、CE延长线相交于F点.求证:(1)△BCF是等腰三角形;(2)BD=2CE.9.(2010春•福安市期末)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.10.(2009春•东山县校级期末)△ABC是等腰直角三角形,∠BAC=90°,BE是角平分线,ED⊥BC.①请你写出图中所有的等腰三角形;②若BC=10,求AB+AE的长.11.(2015春•龙口市期末)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.考点二:直角三角形【例题】1.(2007春•南阳期末)如图:△ABC中,AD⊥BC于D,点E在AD上,△ADC和△BDE是等腰三角形,EC=5cm,求AB的长.2.(2002•呼和浩特)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.3.如图,△ABC的高BD与CE相交于点O,OD=OE,AO的延长线交BC于点M,请你从图中找出几对全等的直角三角形,并说明理由.4.(2014•南岗区模拟)如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE中点,连接MD,若BD=2,CD=1.则MD的长为.5.(2015春•白城校级期中)在Rt△ABC中,∠C=90°,D是BC边上一点,且BD=AD=10,∠ADC=60°,求△ABC的面积.6.(2015秋•岳池县期中)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长.【习题】1.(2010•大连校级自主招生)在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE交于点P,若∠A=50°,则∠BPC的度数是度.2.(2007•包头)如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6.沿DE折叠,使得点A与点B重合,则折痕DE的长为.3.(2015春•秦淮区期末)如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.4.(2015秋•武威校级月考)如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.5.(2015秋•周口校级月考)如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.6.如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠EDF.7.(2015秋•威海期中)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,求BE的长.8.(2013秋•龙口市期末)如图,Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,若AD=6cm,求DC 的长.9.(2012•淮安)如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10,AB=20.求∠A的度数.10.(2015秋•建湖县期中)如图,在四边形ABCD中,∠BAD=∠BCD=90°,M、N分别是BD、AC的中点(1)求证:MN⊥AC;(2)若∠ADC=120°,求∠1的度数.11.(2015秋•东台市期中)如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,试说明:(1)MD=MB;(2)MN⊥BD.12.(2015秋•绍兴校级期中)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)若∠EMD=40°,求∠DAC的度数.13.(2014秋•无锡校级期末)已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.14.(2014秋•黄浦区期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长.11。
新版北师大版八年级下册数学全册教案教学设计DBCAE F OABCDE二.【效果检测】1.如图1 (1),在△ABC 与△A 'B 'C '中,若AB =A 'B ',AC =A 'C ',∠C =∠C '=90°,这时Rt △ABC 与Rt △A 'B 'C '是否全等?导学: 把Rt △ABC 与Rt △A 'B 'C '拼合在一起 ,如图1(2),因为 ∠ACB =∠A 'C 'B '=90°,所以B 、C(C ')、B '三点在一条直线上, 因此,△ABB '是一个等腰三角形,可以知道∠B =∠B '.根据AAS 公理可知Rt △A 'B 'C '≌Rt △ABC 。
请你按照上面的分析,尝试着完成本题的证明过程。
证明:反思:1.为什么要说明B 、C(C ')、B '三点在一条直线上呢?2.前面我们曾用画图剪拼的方法,比较感性的获得“斜边和一条直角边对应相等的两个直角三角形的全等。
”但由于观察并不一定可靠,通过今天严谨逻辑证明,我们确信这是一条数学真理。
3.根据勾股定理、SAS 公理你还有其他证明方法吗?三.【布置任务】师生互动探究问题1. 证明:在直角三角形中,30°角所对的直角边等于斜边的一半。
点拨:1.我们可构造如图1(2)的图形所示中,在等边三角形AB B '中,如 ∠BA C =30°,那么△ABC 是一个直角三角形,且BC =21AB 。
四.【小组交流】学生展示问题2. 如图所示,在△ABC 中,已知D 是BC 中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,DE =DF . 求证:AB=AC点拨:要证AB=AC ,只要分别证AE=AF ,BE=CF,因而只要用”HL ”证明Rt △AED ≌Rt △AFD, Rt △BED ≌Rt △CFD 。
六.【课堂训练】拓展延伸问题3 如图,CD ⊥AB,BE ⊥AC,垂足分别是D 、E,BE 、CD 相交于点O ,如果AB=AC ,哪么图中有几对全C=90度,点D在BC上,课外作业第二章 一元一次不等式与一元一次不等式组2.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。
认识分式课题:第五章分式与分式方程第1节认识分式(第2课时)学习目标1、熟练掌握分式的基本性质和最简分式的概念。
2、利用分式的基本性质对分式进行恒等变形。
3、了解分式约分的步骤和依据,掌握分式约分的方法。
重点1、分式的基本性质2、利用分式的基本性质约分,将一个分式化简为最简分式。
难点利用分式的基本性质对分式进行约分。
教学流程学校年级组二备教师课前备课自主学习,尝试解决一、预习析知:1、分数的基本性质:分数的分子与分母都,分数的值不变。
表示为:mambab••=,)0(≠÷÷=mmambab2、分式基本性质:(1)2163=的依据是什么?答:(2)你认为2aa21与相等吗?mnn2与mn呢?为什么?解:因为0≠a,aa⨯⨯=2121= 。
所以2aa21与(填“相等”或“不相等”)。
因为0≠n,=÷÷=nmnnnmnn22。
所以mnn2与mn(填“相等”或“不相等”)。
(3)分式的基本性质:分式的和都同时乘以(或除以)同.一个不等于零的整式.........,分式的值不变。
用字母表示为:,mambab••=,mambab÷÷=(m是整式,且m≠0)。
3.叫做约分.4.叫做最简分式.5、想一想:(1).yx--与yx有什么关系?(2).yx-,yx-与yx-有什么关系?二、预习检测:1、填空:()aba =1, ()162=a a , ()bc ab =, ()y x xyxy x +=+2。
2.下列等式不正确的是( )A.x x y y-=- B. x x y y -=- C.x x y y -=- D. x x y y -=-- 3.根据分式的基本性质,分式a ab --可变形为( ) A .a a b -- B .a a b+ C .-a a b - D .a a b+ 4.下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y-- 合作学习,信息交流 三、探究提升: 1、化简下列各式:(1)532164xyz yz x - (2)x x x 3222+ (3)96922++-x x x (4)y x y xy x 33612622-+- 2、不改变分式的值,使下列分式的分子与分母都不含负号:(1)a b 2- (2)dabc -- (3)q p 43-- 3、化简下列各式:(1)11--a a (2)44--+m m (3)2224x x x -- (4)2)2(2m m m -- (5)xy y x --3)(2 4、化简求值:1222+--m m m m ,其中m=3。
八年级下册北师大版数学全册教案第一章:二次根式1.1 二次根式的概念与性质教学目标:理解二次根式的概念,掌握二次根式的性质及运算方法。
教学内容:介绍二次根式的定义,探索二次根式的性质,如平方、乘除、加减等运算方法。
教学方法:通过实际例子引导学生理解二次根式的概念,通过练习题巩固二次根式的性质及运算方法。
1.2 二次根式的乘除法教学目标:掌握二次根式的乘除法运算规则。
教学内容:介绍二次根式的乘除法运算方法,如乘法、除法的规则及注意事项。
教学方法:通过实际例子讲解二次根式的乘除法运算方法,通过练习题巩固学生的理解。
第二章:角的度量2.1 角的概念与分类教学目标:理解角的概念,掌握角的分类及度量方法。
教学内容:介绍角的概念,如锐角、直角、钝角等,学习角的度量方法,如度、分、秒的换算。
教学方法:通过实际例子引导学生理解角的概念,通过练习题巩固角的分类及度量方法。
2.2 量角器的使用教学目标:掌握量角器的使用方法,能够准确测量角的大小。
教学内容:介绍量角器的结构及使用方法,如量角器的摆放、读数等。
教学方法:通过实际操作讲解量角器的使用方法,通过练习题巩固学生的掌握程度。
第三章:平行线的性质3.1 平行线的定义与性质教学目标:理解平行线的定义,掌握平行线的性质及推论。
教学内容:介绍平行线的定义,探索平行线的性质,如同位角相等、内错角相等等。
教学方法:通过实际例子引导学生理解平行线的定义,通过练习题巩固平行线的性质及推论。
3.2 平行线的判定教学目标:掌握平行线的判定方法,能够正确判断两条直线是否平行。
教学内容:介绍平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等。
教学方法:通过实际例子讲解平行线的判定方法,通过练习题巩固学生的理解。
第四章:几何图形的对称性4.1 对称性的概念与性质教学目标:理解对称性的概念,掌握对称性的性质及应用。
教学内容:介绍对称性的概念,探索对称性的性质,如轴对称、中心对称等。
八年级下册北师大版数学全册教案第一章:平行四边形与特殊平行四边形1.1 平行四边形的性质教学目标:让学生掌握平行四边形的性质,并能运用其性质解决实际问题。
教学内容:平行四边形的定义,平行四边形的对边相等,对角相等,对边平行。
教学方法:通过实物演示,引导学生发现平行四边形的性质,并通过例题巩固知识点。
1.2 特殊的平行四边形教学目标:让学生了解特殊的平行四边形(矩形、菱形、正方形)的性质,并能运用其性质解决实际问题。
教学内容:矩形的性质,菱形的性质,正方形的性质。
教学方法:通过实物演示,引导学生发现特殊平行四边形的性质,并通过例题巩固知识点。
第二章:三角形的证明2.1 三角形的性质教学目标:让学生掌握三角形的性质,并能运用其性质解决实际问题。
教学内容:三角形的定义,三角形的内角和,三角形的边关系。
教学方法:通过实物演示,引导学生发现三角形的性质,并通过例题巩固知识点。
2.2 三角形的证明教学目标:让学生学会使用三角形的性质进行证明,并能运用证明解决实际问题。
教学内容:三角形的证明方法,证明的步骤。
教学方法:通过例题,引导学生学会使用三角形的性质进行证明,并培养学生的逻辑思维能力。
第三章:二次函数3.1 二次函数的定义与性质教学目标:让学生掌握二次函数的定义与性质,并能运用其性质解决实际问题。
教学内容:二次函数的定义,二次函数的图像,二次函数的性质。
教学方法:通过实物演示,引导学生发现二次函数的性质,并通过例题巩固知识点。
3.2 二次函数的图像与解析式教学目标:让学生学会绘制二次函数的图像,并能运用解析式解决实际问题。
教学内容:二次函数的图像,二次函数的解析式。
教学方法:通过例题,引导学生学会绘制二次函数的图像,并培养学生的几何直观能力。
第四章:数据的收集、整理与分析4.1 数据的收集教学目标:让学生掌握数据收集的方法,并能运用其方法解决实际问题。
教学内容:数据的定义,数据的收集方法。
教学方法:通过实例,引导学生了解数据收集的方法,并通过练习巩固知识点。
第四章因式分解学习目标:知道因式分解的意义。
明白因式分解与整式乘法的关系。
会用提取公因式法分解因式。
清楚添括号法则。
会用平方差公式分解因式。
会用完全平方公式分解因式。
初步会综合运用因式分解知识解决一些简单的数学问题。
重点与难点:重难点:会综合运用因式分解知识解决数学问题。
知识点1 基本概念把一个多项式化成的形式,这种变形叫做把这个多项式,也叫做把这个多项式。
如:()ma+mb+mc m(a+b+c)()·提公因式法多项式ma+mb+mc中的各项都有一个公共的因式 ,我们把这个因式叫做这个多项式的公因式.ma+mb+mc= 就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2– x = x( ),8a2b-4ab+2a = 2a( )·公式法(1)平方差公式:a2-b2=( )( ).例如:4x2-9=( )2-()2=( )( ).(2)完全平方公式:a2±2ab+b2=( )2例如:4x2-12xy+9y2=()2A 层练习1.下列由左到右的变形哪些是因式分解,哪些不是(是的打“∨”,•不是的打“×”):(1)(x+3)(x-3)=x 2-9; ( ); (2)x 2+2x+2=(x+1)2+1;( )(3)x 2-x-12=(x+3)(x-4);( ); (4)x 2+3xy+2y 2=(x+2y )(x+y );( )(5)1-21x =(1+1x )(1-1x );( ); (6)m 2+1m +2=(m+1m)2;( ) (7)a 3-b 3=(a-b )(a 2+ab+b 2).( )B 层练习2、检验下列因式分解是否正确?(1)2ab 2+8ab 3=2ab 2 (1 + 4b) ( )(2) 2x 2-9= (2x+3)(2x-3) ( )(3) x 2-2x-3=(x-3)(x+1) ( )(4) 36a 2-12a-1= (6a-1) 2 ( )C 层练习1.若 x 2+mx-n 能分解成(x-2)(x-5),则m= ,n= 。
2.1 不等关系学习目标:1.理解不等式的意义.2.能根据条件列出不等式.3.通过列不等式,训练学生的分析判断能力和逻辑推理能力.4.通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.学习重点:用不等关系解决实际问题.学习难点:正确理解题意列出不等式.课前预习1.一般地,用符号“<”(或“≤”),“>”或(“≥”),“≠”连接两个代数式,表示关系的式子叫不等式.2.用适当的符号表示以下关系:大于小于最多至少不大于不小于不超过a是正数 a是非负数 a是非正数3.根据已知条件列不等式,就是用不等式表示代数式之间的不等关系,重点是抓住关键词理解.尝试练习1.下列式子中,是不等式的有 .(填序号)①2<3;②x2+2>0;③m-5 ④a(m+n)=am+an;⑤23≠x+4;⑥2a-3≥1-a.2.用不等式表示.(1)x 的3倍与8的和比x 的5倍大: ;x 2是非负数 .(2)3与y 的2倍的和为负数: ;m 与n 的差的32不小于5: . (3)a 、b 两数平方和不小于这两数积的2倍: .典例讲解【例】(基础过关)知识点一:不等式的定义例1.下列式子中,是不等式的有 .(填序号);<①02- ②3x+1; ③(a-1)2≥0; ④3>4;⑤322≠+x x ; ⑥s=vt ; ⑦x+3≤5.知识点二:根据数量关系列不等式例2.用不等式表示实际情境中的不等关系.①周长为C 的正方形面积不大于252cm : .②铁路托运的行李长(a cm )、宽(b cm )、高(c cm )之和不得超过160cm : . ③某树种植时树围6cm ,生长期内每年增加3cm ,经过x 年后树围超过30cm : .变式训练:1. 今年成都7月份最高气温为34℃,最低气温为18℃,则气温t 的变化范围是( )A. t >18℃B.t ≤34℃C. 18℃≤t ≤ 34℃D.18℃<t <34℃2.坐在行驶在公路上的汽车里会看到不同的交通标志图形,它们有着不同的意义,如图所示,如果设汽车的质量为x,速度为y,宽度为l,高度为h,用不等式表示图中的意义:(1);(2);(3);(4);3.用不等式表示.(1)x的40%比它的3倍小:;(2)x的7倍与2倍的和不足-11:;(3)a的3倍与5的差为非负数:;(4)X与8的差的一半不大于1:;(5)X不小于5且不大于8:;(6)2y-3的值至少比y-3大7: .4.用甲乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料维生素C含量(单位/千克)500 80原料价格(元/千克)16 4(1)现配制这种饮料9千克,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(千克)应满足的不等式:;(2)如果还要求甲、乙两种原料的费用不超过70元,试写出(千克)应满足的另一个不等式: .知识点三:比较大小例3.在下列各题的空格处,填上适当的不等号.34- 43- ; ()21- ()25.0-; a - 0 ; 322+x 0; ()21--x 0 ; 542+-x x 0;随堂评测:1. 学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车辆y 辆,则不等式:“45x+30y ≥500”表示的实际意义是( )A. 两种客车总的载客量不少于500人B. 两种客车总的载客量不超过500人C. 两种客车总的载客量不足500人D. 两种客车总的载客量恰好等于500人2. 在数学式:-2<0,5a+3b >0,x=5,22y xy x -+,a ≠0,m+2≥n+3中,不等式有 个.3. 某品牌袋装奶粉,袋上标有“净含量400g ”“每百克中含有蛋白质≥18.9g ”,那么这样的一袋奶粉中蛋白质的含量不少于 克.4. 用不等号填空.(1)-π -3;(2)2a 0;(3)y x + y x +;(4)(-5)÷(-1) (-6)÷(-7);(5)当a 0时,a a -=.5. (1)小华拿24元购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,请你列出关于x 的不等式: ;(2)八(1)班同学去春游花300元租客车,每人交7元,租车费还不够,每人交8元又有剩余,那么八(1)班人数x 应该满足的关系式为: .6.有理数m 、n 在数轴上的位置如图所示,用不等号填空:(1)m+n 0; (2)m-n 0; (3)n m 0; (4)2m n.7.用适当的符号表示下列不等关系(必要时请先设未知数):(1)x 的31与x 的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不大于70%;(5)小明的身体不比小刚轻.。
综合与实践平面图形的镶嵌【学习目标】1.了解平面镶嵌的概念,会用多边形无缝隙、不重叠地覆盖平面。
2.通过动手操作平面镶嵌,增强学生数学知识的应用意识,从中体验数学知识的价值。
【前置学习】预习课本的内容,完成下列填空:1.定义: 用一些的多边形把平面的一部分 ,叫做平面镶嵌。
它的特点是相邻的多边形之间既不又不,严丝合缝。
2. 平面镶嵌的条件是: 拼接在同一个顶点处的各个多边形的内角之和等于。
【活动准备】1.知识回顾:(1)正三角形的内角度数为______,正方形的内角度数为______,正五边形的内角度数为_______,正六边形的内角度数为________,正八边形的内角度数为_______,正十二边形的内角度数为_______。
(2)三角形的内角和为________,四边形的内角和为________。
2.材料准备:(1)边长为3cm的正三角形,正方形,正五边形,正六边形的纸片若干张;(2)形状、大小完全相同的一般三角形纸片若干张;(3)形状、大小完全相同的一般四边形纸片若干张。
【活动探究】1.活动一:在正三角形,正方形,正五边形,正六边形纸片中,如果只用其中一种正多边形进行镶嵌,哪几种正多边形能镶嵌成一个平面图形?在每个拼接点处需要几个这样的正多边形?为什么? ________、__________、_________都可以,分别需要____个、____个____个;但___________不可以。
理由是。
2.活动二:用正三角形,正方形,正五边形,正六边形纸片中的两种正多边形镶嵌,哪两种正多边形能镶嵌成一个平面图案? 在每个拼接点处各需要几个?(1) ∵ 60°× +90°× =360°∴用____个正三角形和______个正方形能覆盖平面.(2) ∵ 60°× +120°× =360°∴用_____个正三角形和______个正六边形能覆盖平面.这种情况就有几种拼法?(3) 思考:正八边形和正方形,正十二边形和正三角形能进行平面镶嵌吗?3.活动三: (1)用一些形状,大小相同的三角形纸板能否镶嵌成平面图案?(2)再用一些形状,大小相同的四边形纸板能否也镶嵌成平面图案?动手拼一拼,有什么发现?【巩固练习】1.某商店出售下列五种形状的地砖:⑴等腰三角形、⑵四边形、⑶正五边形、⑷正六边形、⑸正八边形,如果只选用其中一种地砖镶嵌地面,可供选择的地砖共有种。
新北师大版八年级数学下册全册教案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第一章三角形的证明【单元分析】本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了 8 条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论。
运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论。
在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础。
【单元目标】1.知识与技能(1)等腰三角形的性质和判定定理;(2)直角三角形的性质定理和判定定理;2.过程与方法(1)会运用等腰三角形的性质和判定定理解决相关问题;(2)直角三角形的性质定理和判定定理解决简单的实际问题;3.情感态度与价值观(1)经历由情景引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力;(2)感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。
【单元重点】在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。
【单元难点】明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。
【教学思路】1.对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。
2.对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。
2022北师大版八年级数学下册全套教案目录第一章一元一次不等式和一元一次不等式组1不等关系2不等式的基本性质3不等式的解集4一元一次不等式5一元一次不等式与一次函数6一元一次不等式组第二章分解因式1分解因式2提公因式法3运用公式法第三章分式1分式2分式的乘除法3分式的加减法4分式方程第四章相似图形1线段的比2黄金分割3形状相同的图形4相似多边形5相似三角形6探索三角形相似的条件7测量旗杆的高度8相似多边形的性质9图形的放大与缩小第五章数据的收集与处理1每周干家务活的时间2数据的收集3频数与频率4数据的波动第六章证明(一)1你能肯定吗2定义与命题3为什么他们平行4如果两条直线平行5三角形内角和定理的证明6关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。
能够根据具体的事例列出不等关系式。
二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝2,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。
在上面的问题中,所谓成的正方形的面积可以表示为(L/4)2,远的面积可以表示为π(L/2π)2(1)要是正方形的面积不大于25㎝2,就是(L/4)2≤25,即L2/16≤25。
(2)要使原的面积大于100㎝2,就是π(L/2π)2>100即L2/4π>100。
(3)当L=8时,正方形的面积为82/16=6,圆的面积为82/4π≈5.1,4<5.1此时圆的面积大。
当L=12时,正方形的面积为122/16=9,圆的面积为122/4π≈11.5,9<11.5,此时还是圆的面积大。
教师得出结论(4)由(3)可以发现,无论绳长L取何值,圆的面积总大于正方形的面积,即L2/4π>L2/16。
2024年北师大版八年级下册数学全册教案设计一、教学内容1. 第五章:数据的收集与处理详细内容:数据的收集、整理、描述、分析及概率初步。
2. 第六章:平面几何图形详细内容:三角形、四边形、圆的基本性质及计算。
3. 第七章:一元二次方程详细内容:一元二次方程的解法、根与系数的关系、实际应用。
4. 第八章:函数及其图像详细内容:函数的概念、性质、图像及简单应用。
二、教学目标1. 掌握数据的收集、整理、描述、分析的方法,能运用概率知识解决简单问题。
2. 熟悉平面几何图形的性质和计算方法,提高空间想象能力。
3. 学会一元二次方程的解法,理解根与系数的关系,解决实际问题。
4. 了解函数的概念,掌握函数的性质和图像,能运用函数知识解决简单问题。
三、教学难点与重点1. 教学难点:数据的处理、几何图形的计算、一元二次方程的解法、函数的性质。
2. 教学重点:数据的收集与整理、平面几何图形的性质、一元二次方程的应用、函数图像的分析。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:教材、练习册、草稿本、直尺、圆规。
五、教学过程1. 导入:通过实际情景引入,激发学生学习兴趣。
2. 新课导入:讲解教材内容,举例说明,引导学生掌握知识点。
4. 随堂练习:布置相关练习题,巩固所学知识,及时反馈。
5. 知识拓展:引导学生发现数学规律,提高思维能力。
7. 课后作业布置:布置具有代表性的作业,巩固所学知识。
六、板书设计1. 2024年北师大版八年级下册数学2. 内容:按照教学过程,分模块书写板书,突出重点和难点。
七、作业设计1. 作业题目:(1)收集班级同学的身高数据,整理成表格,并计算平均身高。
(2)计算一个三角形和一个四边形的面积。
(3)解一元二次方程:x^2 5x + 6 = 0。
(4)分析函数y = 2x + 1的图像性质。
2. 答案:(1)平均身高:待定(根据实际数据计算)。
(2)三角形面积:待定(根据实际图形计算)。
本节教学随感录教学目的:1.使学生理解相似三角形的定义,掌握定义中的两个条件,理解相似比的意义.2.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)3.通过相似三角形概念的引入过程,培养学生联系实际的意识,增进数学应用的眼光.教学重点:.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)教学难点:准确找出相似三角形的对应边和对应角度。
教学方法:学情分析:教学过程:一、讨论相似三角形的定义请同学们都拿出文具盒中的三角板,观察它们之间的关系,再与教师手中的木制三角板比较,观察这些三角形的关系,这是有全等的关系也有相似的关系.从全等与相似的类比,不难得到相似三角形的定义.二、给出定义1.从∠A=∠A,∠B=∠B,∠C=∠C,AB:A’B’=BC:B’C’=AC:A’C’可知△ABC∽△A’B’C’2.板书定义.叫学生写在笔记本上.3.什么叫相似比,说明相似比的意义.注意:(在记两个三角形相似的时候,和记三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样可以比较容易找出相似的对应的角和边) △ABC和△A’B’C’的比与△A’B’C’和△ABC的比不一定相等,而是成倒数的关系.三、导出定理1.讨论为什么“平行于三角形一边的直线和其它两边的相交,所构成的三角形与原三角形相似?”如图:如果DE∥BC,∠ADE =∠B∠AED=∠C;AD:AB=DE D E:BC=AE:ACB C2、平行于三角形的一边,且和其他两边相交的直线,所截得的三角形与原三角形的三边对应成比例.(成比例的线段不都在一个角的两边上,而分别是截得的三角形与原三角形的三条边)四、学生练习1、讨论224页练习1(1)所有的等腰三角形相似吗?等边三角形呢?为什么?(2)所有的直角三角形相似吗?等腰直角三角形呢?为什么?演示课件2、课堂练习224页2(目的,找对应边对应角)3、练习:找出哪些对三角形是相似的.找出对应角、对应边,列出比例式.五、课堂小结:1、相似三角形的定义;2、会准确找出两三角形的对应边和对应角;六、课外作业:P235 N1(1)、(2),N 2。
1.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。
从问题中来,到问题中去。
1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式? (3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)改变l 的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l ,圆的面积可以表示为22⎪⎭⎫ ⎝⎛ππl 。
(1) 要使正方形的面积不大于25㎝2,就是25)4(2≤l ,即25162≤l 。
(2) 要使圆的面积大于100㎝2,就是22⎪⎭⎫⎝⎛ππl >100, 即 π42l >100(3) 当l =8时,正方形的面积为)(416822cm =,圆的面积为)(1.54822cm ≈π, 4<5.1,此时圆的面积大。
当l =12时,正方形的面积为)(9161222cm =,圆的面积为)(5.1141222cm ≈π, 9<11.5,此时还是圆的面积大。
(4) 不论怎样改变l 的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l ㎝的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即π42l >162l 2. (1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m ?(只列关系式)(2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m 以外的安全区域。
已知导火线的燃烧速度为0.2m/s ,人离开的速度为4m/s ,导火线的长度x (m )应满足怎样的关系式? 答案:(1)设这棵树生长x 年其树围才能超过2.4m ,则5+3x >240。
1.1 等腰三角形 第1课时 三角形的全等和等腰三角形的性质1.复习全等三角形的判定定理及相关性质; 2.理解并掌握等腰三角形的性质定理及推论,能够运用其解决简单的几何问题.(重点,难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC 有什么特点?二、合作探究探究点一:全等三角形的判定和性质 【类型一】全等三角形的判定△ABD ≌△ACD的条件是( )A .BD =CDB .AB =AC C .∠B =∠CD .∠BAD =∠CAD解析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.A.∵∠1=∠2,AD 为公共边,若BD =CD ,则△ABD ≌△ACD (SAS);B.∵∠1=∠2,AD 为公共边,若AB =AC ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;C.∵∠1=∠2,AD 为公共边,若∠B =∠C ,则△ABD ≌△ACD (AAS);D.∵∠1=∠2,AD 为公共边,若∠BAD =∠CAD ,则△ABD ≌△ACD (ASA);故选B.方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.要注意AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【类型二】全等三角形的性质如图,△ABC ≌△CDA ,并且AB =CD ,那么下列结论错误的是( )A .∠1=∠2B .AC =CA C .∠D =∠B D .AC =BC解析:由△ABC ≌△CDA ,并且AB =CD ,AC 和CA 是公共边,可知∠1和∠2,∠D 和∠B 是对应角.全等三角形的对应角相等,对应边相等,因而前三个选项一定正确.AC 和BC 不是对应边,不一定相等.∵△ABC ≌△CDA ,AB =CD ,∴∠1和∠2,∠D 和∠B 是对应角,∴∠1=∠2,∠D =∠B ,∴AC 和CA 是对应边,而不是BC ,∴A 、B 、C 正确,错误的结论是D.故选D.方法总结:本题主要考查了全等三角形的性质;根据已知条件正确确定对应边、对应角是解决本题的关键.探究点二:等边对等角【类型一】 运用“等边对等角”求角的度数如图,AB =AC =AD ,若∠BAD =80°,则∠BCD =( )A .80°B .100°C .140°D .160°解析:先根据已知和四边形的内角和为360°,可求∠B +∠BCD +∠D 的度数,再根据等腰三角形的性质可得∠B =∠ACB ,∠ACD =∠D ,从而得到∠BCD 的值.∵∠BAD =80°,∴∠B +∠BCD +∠D =280°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠D ,∴∠BCD =280°÷2=140°,故选C.方法总结:求角的度数时,①在等腰三角形中,一定要考虑三角形内角和定理;②有平行线时,要考虑平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补;③两条相交直线中,对顶角相等,互为邻补角的两角之和等于180°.【类型二】 分类讨论思想在等腰三角形求角度中的运用30°,求它的顶角的度数.解析:本题可根据等腰三角形的性质和三角形内角和定理求解,由于本题中没有明确30°角是顶角还是底角,因此要分类讨论.解:①当底角是30°时,顶角的度数为180°-2×30°=120°;②顶角即为30°.因此等腰三角形的顶角的度数为30°或120°.方法总结:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分类讨论是正确解答本题的关键.探究点三:三线合一【类型一】 利用等腰三角形“三线合一”进行计算如图,在△ABC 中,已知AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =125°.求∠ACB 和∠BAC 的度数.解析:根据等腰三角形三线合一的性质可得AE ⊥BC ,再求出∠CDE ,然后根据直角三角形两锐角互余求出∠DCE ,根据角平分线的定义求出∠ACB ,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC .解:∵AB =AC ,AE 平分∠BAC ,∴AE ⊥BC .∵∠ADC =125°,∴∠CDE =55°,∴∠DCE =90°-∠CDE =35°.又∵CD 平分∠ACB ,∴∠ACB =2∠DCE =70°.又∵AB =AC ,∴∠B =∠ACB =70°,∴∠BAC =180-(∠B +∠ACB )=40°.方法总结:利用等腰三角形“三线合一”的性质进行计算,有两种类型:一是求边长,求边长时应利用等腰三角形的底边上的中线与其他两线互相重合;二是求角度的大小,求角度时,应利用等腰三角形的顶角的平分线或底边上的高与其他两线互相重合.【类型二】 利用等腰三角形“三线合一”进行证明如图,△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E 使得AE =AD ,连接DE ,求证:DE ⊥BC .解析:作AF ∥DE ,交BC 于点F .利用等边对等角及平行线的性质证明∠BAF =∠FAC .在△ABC 中由“三线合一”得AF ⊥BC .再结合AF ∥DE 可得出结论.证明:过点A 作AF ∥DE ,交BC 于点F . ∵AE =AD ,∴∠E =∠ADE .∵AF ∥DE ,∴∠E =∠BAF ,∠FAC =∠ADE . ∴∠BAF =∠FAC .又∵AB =AC ,∴AF ⊥BC . ∵AF ∥DE ,∴DE ⊥BC . 方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角 3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高.第2课时等边三角形的性质1.进一步学习等腰三角形的相关性质,了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质;2.学习等边三角形的性质,并能够运用其解决问题.(重点、难点)一、情境导入我们欣赏下列两个建筑物(如图),图中的三角形是什么样的特殊三角形?这样的三角形我们是怎样定义的,有什么性质?二、合作探究探究点一:等腰三角形两底角的平分线(两腰上的高、中线)的相关性质如图,在△ABC 中,AB =AC ,CD ⊥AB于点D ,BE ⊥AC 于点E ,求证:DE ∥BC .证明:因为AB =AC ,所以∠ABC =∠ACB .又因为CD ⊥AB 于点D ,BE ⊥AC 于点E ,所以∠AEB =∠ADC =90°,所以∠ABE =∠ACD ,所以∠ABC -∠ABE =∠ACB -∠ACD ,所以∠EBC =∠DCB .在△BEC 与△CDB 中,⎩⎪⎨⎪⎧∠BEC =∠CDB ,∠EBC =∠DCB ,BC =CB ,所以△BEC ≌△CDB ,所以BD =CE ,所以AB -BD =AC-CE ,即AD =AE ,所以∠ADE =∠AED .又因为∠A 是△ADE 和△ABC 的顶角,所以∠ADE =∠ABC ,所以DE ∥BC .方法总结:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等.探究点二:等边三角形的相关性质【类型一】利用等边三角形的性质求角度如图,△ABC 是等边三角形,E 是AC上一点,D 是BC 延长线上一点,连接BE ,DE .若∠ABE =40°,BE =DE ,求∠CED 的度数.解析:因为△ABC 三个内角为60°,∠ABE =40°,求出∠EBC 的度数,因为BE =DE ,所以得到∠EBC =∠D ,求出∠D 的度数,利用外角性质即可求出∠CED 的度数.解:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵∠ABE =40°,∴∠EBC =∠ABC -∠ABE =60°-40°=20°.∵BE =DE ,∴∠D =∠EBC =20°,∴∠CED =∠ACB -∠D =40°.方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.【类型二】 利用等边三角形的性质证明线段相等如图:已知等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M ,求证:BM =EM .解析:要证BM =EM ,由题意证△BDM ≌△EDM 即可.证明:连接BD ,∵在等边△ABC 中,D 是AC的中点,∴∠DBC =12∠ABC =12×60°=30°,∠ACB =60°.∵CE =CD ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠E =30°,∴∠DBC =∠E =30°.∵DM ⊥BC ,∴∠DMB =∠DME =90°,在△DMB 和△DME 中,⎩⎪⎨⎪⎧∠DMB =∠DME ,∠DBM =∠E ,DM =DM ,∴△DME ≌△DMB .∴BM =EM .方法总结:证明线段相等可利用三角形全等得到.还应明白等边三角形是特殊的等腰三角形,所以等腰三角形的性质完全适合等边三角形.【类型三】 等边三角形的性质与全等三角形的综合运用△ABC 为正三角形,点M 是边BC 上任意一点,点N 是边CA 上任意一点,且BM =CN ,BN 与AM 相交于Q 点,求∠BQM 的度数.解析:先根据已知条件利用SAS 判定△ABM ≌△BCN ,再根据全等三角形的性质求得∠AQN =∠ABC =60°.解:∵△ABC 为正三角形,∴∠ABC =∠C =∠BAC =60°,AB =BC .在△AMB 和△BNC 中,∵⎩⎪⎨⎪⎧AB =BC ,∠ABC =∠C ,BM =CN ,∴△AMB ≌△BNC (SAS), ∴∠BAM =∠CBN ,∴∠BQM =∠ABQ +∠BAM =∠ABQ +∠CBN =∠ABC =60°.方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.三、板书设计1.等腰三角形两底角的平分线(两腰上的高、中线)的相关性质等腰三角形两底角的平分线相等; 等腰三角形两腰上的高相等; 等腰三角形两腰上的中线相等. 2.等边三角形的性质等边三角形的三个内角都相等,并且每个角都等于60°.本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形.学习等边三角形的定义、性质.让学生在探索图形特征以及相关结论的活动中,进一步培养空间观念,锻炼思维能力.让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.第3课时等腰三角形的判定与反证法1.掌握等腰三角形的判定定理并学会运用;(重点)2.理解并掌握反证法的思想,能够运用反证法进行证明.一、情境导入某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(A 点)为目标,然后在这棵树的正南方南岸B 点插一小旗作标志,沿南偏东60度方向走一段距离到C 处时,测得∠ACB 为30度,这时,地质专家测得BC 的长度是50米,就可知河流宽度是50米.同学们,你们想知道这样估测河流宽度的根据是什么吗?他是怎么知道BC 的长度是等于河流宽度的呢?今天我们就要学习等腰三角形的判定.二、合作探究探究点一:等腰三角形的判定(等角对等边) 【类型一】 确定等腰三角形的个数如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD 的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 判定一个三角形是等腰三角形如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高,AE 是∠BAC 的角平分线,AE 与CD交于点F ,求证:△CEF 是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE =∠ACD ,然后根据三角形外角的性质求得∠CEF =∠CFE ,根据等角对等边求得CE =CF ,从而求得△CEF 是等腰三角形.解:∵在△ABC 中,∠ACB =90°,∴∠B +∠BAC =90°.∵CD 是AB 边上的高,∴∠ACD +∠BAC =90°,∴∠B =∠ACD .∵AE 是∠BAC 的角平分线,∴∠BAE =∠EAC ,∴∠B +∠BAE =∠AEC ,∠ACD+∠EAC =∠CFE ,即∠CEF =∠CFE ,∴CE =CF ,∴△CEF 是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型三】 等腰三角形性质和判定的综合运用如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =50°时,求∠DEF 的度数.解析:(1)根据等边对等角可得∠B =∠C ,利用“边角边”证明△BDE 和△CEF 全等,根据全等三角形对应边相等可得DE =EF ,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE =∠CEF ,然后求出∠BED +∠CEF =∠BED +∠BDE ,再利用三角形的内角和定理和平角的定义求出∠B =∠DEF .(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF=65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.探究点二:反证法 【类型一】 假设60°”时,首先应假设这个三角形中( )A .有一个内角大于60°B .有一个内角小于60°C .每一个内角都大于60°D .每一个内角都小于60°解析:用反证法证明命题时,应先假设结论不成立,所以可先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选C.方法总结:在假设结论不成立时,要注意考虑结论的反面所有可能的情况,必须把它全部否定. 【类型二】 用反证法证明一个命题求证:△ABC 中不能有两个钝角.解析:用反证法证明,假设△ABC 中能有两个钝角,得出的结论与三角形的内角和定理相矛盾,所以原命题正确.证明:假设△ABC 中能有两个钝角,即∠A <90°,∠B >90°,∠C >90°,所以∠A +∠B +∠C >180°,与三角形的内角和为180°矛盾,所以假设不成立,因此原命题正确,即△ABC 中不能有两个钝角.方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.第4课时等边三角形的判定及含30°角的直角三角形的性质1.学习并掌握等边三角形的判定方法,能够运用等边三角形的性质和判定解决问题;(重点、难点)2.理解并掌握含30°角直角三角形的性质,能灵活运用其解决有关问题.(难点)一、情境导入观察下面图形:师:等腰三角形中有一种特殊的三角形,你知道是什么三角形吗?生:等边三角形.师:对,等边三角形具有和谐的对称美.今天我们来学习等边三角形,引出课题.二、合作探究探究点一:等边三角形的判定【类型一】三边都相等的三角形是等边三角形已知a,,是△的三边,且满足关系式a2+c2=2ab+2bc-2b2,试说明△ABC是等边三角形.解析:把已知的关系式化为两个完全平方的和等于0的形式求解.解:移项得a2+c2-2ab-2bc+2b2=0,∴a2+b2-2ab+c2-2bc+b2=0,∴(a-b)2+(b-c)2=0,∴a-b=0且b-c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.方法总结:(1)几个非负数的和为零,那么每一个非负数都等于零;(2)有两边相等的三角形是等腰三角形,三边都相等的三角形是等边三角形,等边三角形是特殊的等腰三角形.【类型二】三个角都是60°的三角形是等边三角形如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.试判定△ODE的形状,并说明你的理由.解析:根据平行线的性质及等边三角形的性质可得∠ODE=∠OED=60°,再根据三角形内角和定理得∠DOE=60°,从而可得△ODE是等边三角形.解:△ODE是等边三角形,理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°.∴∠DOE=180°-∠ODE-∠OED=180°-60°-60°=60°.∴∠DOE=∠ODE=∠OED=60°.∴△ODE是等边三角形.方法总结:证明一个三角形是等边三角形时,如果较易求出角的度数,那么就可以分别求出这个三角形的三个角都等于60°,从而判定这个三角形是等边三角形.【类型三】有一个角是60°的等腰三角形是等边三角形如图,在△EBD 中,EB =ED ,点C 在BD 上,CE =CD ,BE ⊥CE ,A 是CE 延长线上一点,AB=BC .试判断△ABC 的形状,并证明你的结论.解析:由于EB =ED ,CE =CD ,根据等边对等角及三角形外角性质,可求得∠CBE =12∠ECB .再由BE ⊥CE ,根据三角形内角和定理,可求得∠ECB =60°.又∵AB =BC ,从而得出△ABC 是等边三角形.解:△ABC 是等边三角形.理由如下:∵CE =CD ,∴∠CED =∠D . 又∵∠ECB =∠CED +∠D .∴∠ECB =2∠D .∵BE =DE ,∴∠CBE =∠D .∴∠ECB =2∠CBE .∴∠CBE =12∠ECB .∵BE ⊥CE ,∴∠CEB =90°.又∵∠ECB +∠CBE +∠CEB =180°,∴∠ECB +12∠ECB +90°=180°,∴∠ECB =60°.又∵AB =BC ,∴△ABC 是等边三角形. 方法总结:(1)已知一个三角形中两边相等,要证明这个三角形是等边三角形,有两种思考方法:①证明另一边也与这两边相等;②证明这个三角形中有一个角等于60°.(2)已知一个三角形中有一个角等于60°,要证明这个三角形是等边三角形,有两种思考方法:①证明另外两个角也等于60°;②证明这个三角形中有两边相等.探究点二:含30°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,则AB的长度是( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形. 【类型二】 与角平分线有关的综合运用如图,∠=30°,平分∠,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD 等于( )A .3B .2C .1.5D .1解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP+∠AOP =30°.又∵PC =3,∴PE =12PC =12×3=1.5.∵∠AOP =∠BOP ,OP =OP ,∠OEP =∠ODP ,∴△OPE ≌△ODP ,∴PD =PE =1.5.故选C.方法总结:含30°角的直角三角形与角平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】 利用含30°角的直角三角形解决实际问题境,已知AC =50m ,AB =40m ,∠BAC =150°,这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?解析:作BD ⊥CA 交CA 的延长线于点D .在Rt △ABD 中,利用30°角所对的直角边是斜边的一半求BD ,即△ABC 的高.运用三角形面积公式计算面积求解.解:如图所示,过点B 作BD ⊥CA 交CA 的延长线于点D .∵∠BAC =150°,∴∠DAB =30°.∵AB=40m ,∴BD =12AB =20m ,∴S △ABC =12×50×20=500(m 2).∵这种草皮每平方米a 元,∴一共需要500a元.方法总结:解此题的关键在于作出CA 边上的高,根据相关的性质求BD 的长,正确的计算出△ABC 的面积.三、板书设计1.等边三角形的判定三边都相等的三角形是等边三角形;三个角都是60°的三角形是等边三角形; 有一个角是60°的等腰三角形是等边三角形. 2.含30°角的直角三角形的性质在直角三角形中,如果一个锐角是30°,那么它所对的直角边等于斜边的一半.本节课借助于教学活动的展开,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,有助于学生思维能力的提高.不足之处是部分学生综合运用知识解决问题的能力还有待于在今后的教学和作业中进一步的训练得以提高.1.2 直角三角形第1课时 直角三角形的性质与判定1.复习直角三角形的相关知识,归纳并掌握直角三角形的性质和判定;2.学习并掌握勾股定理及其逆定理,能够运用其解决问题.(重点,难点)一、情境导入 古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后按如图所示的方法用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:直角三角形的性质与判定【类型一】判定三角形是否为直角三角形三角形的是( )A .∠A +∠B =∠C B .∠A -∠B =∠CC .∠A ∶∠B ∶∠C =1∶2∶3D .∠A =∠B =3∠C解析:由直角三角形内角和为180°求得三角形的每一个角的度数,再判断其形状.A 中∠A +∠B =∠C ,即2∠C =180°,∠C =90°,为直角三角形,同理,B ,C 中均为直角三角形,D 选项中∠A =∠B =3∠C ,即7∠C =180°,三个角没有90°角,故不是直角三角形.故选D.方法总结:在判定一个三角形是否为直角三角形时要注意直角三角形中有一个内角为90°.【类型二】直角三角形的性质的应用CE⊥AB于E .(1)猜测∠1与∠2的关系,并说明理由. (2)如果∠A 是钝角,如图②,(1)中的结论是否还成立?解析:(1)根据垂直的定义可得△ABD 和△BCE 都是直角三角形,再根据直角三角形两锐角互余可得∠1+∠B =90°,∠2+∠B =90°,从而得解;(2)根据垂直的定义可得∠D =∠E =90°,然后求出∠1+∠4=90°,∠2+∠3=90°,再根据∠3、∠4是对顶角解答即可. 解:(1)∠1=∠2.∵AD ⊥BC ,CE ⊥AB ,∴△ABD 和△BCE 都是直角三角形,∴∠1+∠B =90°,∠2+∠B =90°,∴∠1=∠2; (2)结论仍然成立.理由如下:∵BD ⊥AC ,CE ⊥AB ,∴∠D =∠E =90°,∴∠1+∠4=90°,∠2+∠3=90°,∵∠3=∠4(对顶角相等),∴∠1=∠2. 方法总结:本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余,同角或等角的余角相等的性质,熟记性质是解题的关键.探究点二:勾股定理【类型一】直接运用勾股定理已知:如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D .求:(1)AC 的长; (2)S △ABC ; (3)CD 的长.解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ;(2)S △ABC =12CB ·AC =30cm 2;(3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD =AC ·BC AB =6013cm. 方法总结:解答此类问题,一般是先利用勾股定理求出第三边,利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】 分类讨论思想在勾股定理中的应用在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,试求△ABC 周长.解析:本题应分两种情况进行讨论:(1)当△ABC 为锐角三角形时,在Rt △ABD 和Rt △ACD 中,运用勾股定理可将BD 和CD 的长求出,两者相加即为BC 的长,从而可将△ABC 的周长求出;(2)当△ABC 为钝角三角形时,在Rt △ABD 和Rt △ACD 中,运用勾股定理可将BD 和CD 的长求出,两者相减即为BC 的长,从而可将△ABC 的周长求出.解:此题应分两种情况进行讨论:(1)当△ABC 为锐角三角形时,在Rt △ABD中,BD =AB 2-AD 2=152-122=9,在Rt △ACD中,CD =AC 2-AD 2=132-122=5,∴BC =BD +CD =5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC 为钝角三角形时,在Rt △ABD中,BD =AB 2-AD 2=152-122=9.在Rt △ACD中,CD =AC 2-AD 2=132-122=5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:在题目未给出具体图形时,应考虑三角形是锐角三角形还是钝角三角形,凡符合题设的情况都要考虑,体现了分类讨论思想,这是解无图几何问题的常用方法.探究点三:勾股定理的逆定理 【类型一】 判断三角形的形状,若小方格边长为1,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对解析:∵正方形小方格边长为1,∴BC =42+62=213,AC =22+32=13,AB =12+82=65.在△ABC 中,∵BC 2+AC 2=52+13=65,AB 2=65,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选A.方法总结:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系如图,在正方形ABCD 中,AE =EB ,AF=14AD ,求证:CE ⊥EF .证明:连接CF ,设正方形的边长为4.∵四边形ABCD 为正方形,∴AB =BC =CD =DA =4.∵点E 为AB 中点,AF =14AD ,∴AE =BE =2,AF =1,DF =3.由勾股定理得EF 2=12+22=5,EC 2=22+42=20,FC 2=42+32=25.∵EF 2+EC 2=FC 2,∴△CFE 是直角三角形,∴∠FEC =90°,即EF ⊥CE .方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要方法.【类型三】 运用勾股定理的逆定理解决面积问题如图,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.解析:连接AC ,根据已知条件运用勾股定理的逆定理可证△ACD 为直角三角形,然后代入三角形面积公式将△ABC 和△ACD 这两个直角三角形的面积求出,两者面积相加即为四边形ABCD 的面积.解:连接AC ,∵∠B =90°,∴△ABC 为直角三角形.∵AC 2=AB 2+BC 2=82+62=102,∴AC=10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,且∠ACD =90°,∴S 四边形ABCD =S △ABC+S △ACD =12×6×8+12×10×24=144.方法总结:此题将求四边形面积的问题转化为求两个直角三角形面积和的问题,既考查了对勾股定理逆定理的掌握情况,又体现了转化思想在解题时的应用.探究点四:互逆命题与互逆定理写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补; (2)垂直于同一条直线的两直线平行; (3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:分别找出各命题的题设和结论将其互换即可.解:(1)同旁内角互补,两直线平行.真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内).真命题;(3)内错角相等.假命题;(4)等边三角形有一个角是60°.真命题.方法总结:一个定理不一定有逆定理,只有当它的逆命题为真命题时,它才有逆定理.三、板书设计1.直角三角形的性质与判定直角三角的两个锐角互余;有两个角互余的三角形是直角三角形.2.勾股定理及勾股定理的逆定理直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.本节课充分发挥了学生动手操作能力、分类讨论能力、交流能力和空间想象能力,让学生充分体验到了数学思考的魅力和知识创新的乐趣,突显教学过程中的师生互动,使学生真正成为主动学习者.。
北师大版八年级下册数学教案数学是研究现实世界空间形式和数量关系的一门科学。
八年级数学是中学的重要部分也是为高中打下基础,下面为你整理了北师大版八年级下册数学教案,希望对你有帮助。
北师大初二数学下册教案:统计调查教材分析:1、地位与作用本节课主要是在学生学习了收集、整理、描述、分析数据的一般过程与方法(全面调查)的基础上来进一步研究抽样调查。
这是抽样调查第一节课,通过调查结果有破坏性以及数目变大,全面调查不太合适,需要新的调查方法,使学生感受到抽样调查的必要性。
接着重点介绍抽样调查的有关概念和它们之间的关系,难点是有关抽样调查的特征的探究。
最后又介绍了最科学、应用最广泛的简单随机抽样,为后面学习分层抽样做铺垫。
本节课有承上启下的作用。
社会在向信息时代迈进,数据日益成为一种重要的信息,统计主要来研究生活中的数据,帮助人们解决问题。
根据数据思考和处理问题,通过数据发现事物发展规律是统计的基本思想。
特别注意到,本节课用样本估计总体是归纳法在统计中的一种运用。
统计调查介绍了利用收集整理数据的方法,本节抽样调查是其中的主要内容,蕴含以上的统计思想。
学好本节课非常关键。
2、教学目标知识目标:让学生经历数据的收集、整理、描述、分析的模拟历程,从中了解抽样调查、总体、个体、样本、样本容量等统计概念;全面调查与抽样调查的特点;用简单随机抽样的数据去估计总体的方法。
能力目标:初步感受抽样调查的必要性和可行性。
初步体会用样本估计总体的思想。
体会有代表性的样本对正确估计总体的重要性。
情感目标:鼓励学生自主探索、合作交流,意识到合作的重要性。
为达到以上教学目标,结合学生实际情况,确定本节课教学重难点。
3、教学重难点重点:理解抽样调查、总体、个体、样本、样本容量等统计概念,体会用样本估计总体的思想。
难点:全面调查与抽样调查的特点;选取有代表性的样本对正确估计总体的重要性。
我通过举具体的生活实例来说明讲解来突出重点突破难点。
学情分析:学生以往的学习内容中,多是以确定性为主的知识,虽在前一阶段学习了统计图表,全面调查收集数据,并对统计有了初步认识,但抽样调查的不确定性会导致学生出现对统计结果的怀疑和对统计的科学性的质疑。
1.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。
从问题中来,到问题中去。
1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式? (3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)改变l 的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l ,圆的面积可以表示为22⎪⎭⎫⎝⎛ππl 。
(1) 要使正方形的面积不大于25㎝2,就是25)4(2≤l ,即25162≤l 。
(2) 要使圆的面积大于100㎝2,就是22⎪⎭⎫⎝⎛ππl >100, 即 π42l >100(3) 当l =8时,正方形的面积为)(416822cm =,圆的面积为)(1.54822cm ≈π, 4<5.1,此时圆的面积大。
当l =12时,正方形的面积为)(9161222cm =,圆的面积为)(5.1141222cm ≈π, 9<11.5,此时还是圆的面积大。
(4) 不论怎样改变l 的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l㎝的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即π42l >162l 2. (1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m 的地方作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m ?(只列关系式)(2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m 以外的安全区域。
已知导火线的燃烧速度为0.2m/s ,人离开的速度为4m/s ,导火线的长度x (m )应满足怎样的关系式? 答案:(1)设这棵树生长x 年其树围才能超过2.4m ,则5+3x >240。
(2)人离开10m 以外的地方需要的时间,应小于导火线燃烧的时间,只有这样才能保证人的安全:410<2.0x 分析巩固练习: 用不等式表示:(1) a 的相反数是正数;(2) m 与2的差小于32; (3) x 的31与4的和不是正数; (4) y 的一半与x 的2倍的和不小于3。
解答:(1)a 的相反数是-a ,正数是比零大的数,所以“a 的相反数是正数”就是-a >0;(2)“m 与2的差”就是m-2,“ 差小于32”即是m-2<32; (3)“x 的31”就是31x ,“x 的31与4的和不是正数”就是31x+4≤0;(4)“y 的一半”不是21y,“x 的2倍”就是2x ,“不小于3”即指大于或等于3,故“y 的一半与x的2倍的和不小于”就是21y+2x ≥3。
3. 下列各数:21,-4,π,0,5.2,3其中使不等式2-x >1,成立是 ( )A .-4,π,5.2B .π,5.2,3C .21,0,3 D .π,5.2答案:D4. 有理数a ,b 在数轴上的位置如图1-2所示,所ba ba +-的值 ( )A .>0B .<0C .=0D .≥0 答案:B小结提问,快速回答:1. 表示不等式关系的符号有哪些?2. 用适当的符号表示下列关系:(1)x 的5倍与3的差比x 的4倍大; (2)a 的41的相反数是非负数; (3)x 的3倍不小于y 的8倍。
3. 下列不等式中,总能成立的是 ( )A .2a >0 B .02≤-a C .2a >a D .2a >a 作业要求:作业本1.2不等式的基本性质一、教学目标1.经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2.掌握不等式的基本性质。
二、教学重难点不等式的基本性质的掌握与应用。
三、教学过程设计 1.比较归纳,产生新知我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变。
请问:如果在不等式的两边都加上或都减去同一个整式,那么结果会怎样?请兴几例试一试,并与同伴交流。
类比等式的基本性质得出猜想:不等式的结果不变。
试举几例验证猜想。
如3<7,3+1=4,7+1=8,4<8,所以3+1<7+1;3-5=-2,7-5=2,-2<2,所以 3-5<7-5;3+a <7+a ;3<7,3-a <7-a 等。
都能说明猜想的正确性。
2.探索交流,概括性质完成下列填空。
2<3,2×5 3×5;2<3,2×(-1) 3×(-1); 2<3,2×(-5) 3×(-5);你发现了什么?请再举几例试试,与同伴交流。
通过计算结果不难发现:前两个空填“<”,后三个空填“>”。
得出不等式的基本性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(通过自我探索与具体的例子使学生加深对不等式性质的印象)3.练习巩固,促进迁移1.(1)用“>”号或“<”号填空,并简说理由。
①6+2 -3+2;②6×(-2)-3×(-2);③6÷2 -3÷2;④6÷(-2)-3÷(-2)(2)如果a>b,则2.利用不等式的基本性质,填“>”或“<”:(1)若a>b,则2a+1 2b+1;(2)若<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0,c<0,(a-b)c 0。
4.巩固应用,拓展研究.1. 按照下列条件,写出仍能成立的不等式,并说明根据。
(1)a>b两边都加上-4;(2)-3a<b两边都除以-3;(3)a≥3b两边都乘以2;(4)a≤2b两边都加上c;2. 根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数):5.课内深化,提升能力比较下列各题两式的大小:6.回顾联系,形成结构想一想:本节课学了哪些知识?有哪些性质?在运用性质时应注意什么?(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)7.课外作业与拓展课外作业:课本第9页“习题1.2”1.3不等式的解集一、教学目标1.理解不等式解与解集的意义。
2.了解不等式解集的数轴表示。
二、教学重难点重点是区分不等式解与解集的概念,难点是在数轴上表示不等式的解集。
三、教学过程设计1.创设情景,导出问题(课本问题)燃放某中礼花弹时,为了确保安全,人在点燃导火线后要在燃放前10m以外的安全区域。
已知导火线的燃烧速度为0.02m/s,人离开的速度为4m/s,那么导火线的长度应为多少厘米?(在建立不等式之前,先让学生分析清楚问题中量与量之间的关系:为了使人有足够的时间到达安全区域,导火线燃烧的时间应大于人到达安全区域的时间。
)设导火线的长度应为x cm ,根据题意,得即x>52.探索交流,得出概念1.想一想:(1)你能找出几个使不等式x>5成立的x的值吗?(2)x=5,6,8能使不等式x>5成立吗?(字母可以表示任何数,但对于满足x>5中的字母x,它能够取任意数吗?如果不能,它能取哪些数呢?启发学生动手验证、动脑思考,并从中初步体会不等式解的意义及不等式解与方程解的不同之处。
)能使不等式成立得未知数得值,叫做不等式的解。
例如,6是不等式x>5一个解,7,8,9,……也是不等式x>5的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x-5≤-1的解集为x≤4;不等式x2>0的解集是所有非零实数。
求不等式解集的过程叫做解不等式。
2.议一议:请你用自己的方式将不等式x>5的解集和x-5≤-1的解集分别表示在数轴上,并与同伴交流。
(引导学生回忆实数与数轴上点的对应关系,认识数轴上的点是有序的,实数是可以比较大小的,让学生用具体实数对应的点加以说明)3.练习巩固,促进迁移1.判断下列说法是否正确:(1)x=2是不等式x+3<4的解;(2)x=2是不等式3x<7的解集;(3)不等式3x<7的解是x=2;(4)x=3是不等式3x≥9的解。
答案:(1)不正确;(2)不正确;(3)不正确;(4)正确。
2.在数轴上表示出下列不等式的解集:(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1答案:(1)数轴上实心与空心的区别在于:空心点表示解集不包括这一点,实心点表示解集包括这一点。
(2)数轴上表示不等式的解集遵循“大于向右走,小于向左走”这一原则。
4.回顾联系,形成结构想一想:本节课学了哪些知识?在运用时应注意什么?(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)5.课外作业与拓展课外作业:课本第12页“习题1.3”1.4一元一次不等式(1)教学目的和要求:会用一元一次不等式,并能在数轴上表示其解集。
教学重点和难点:重点:一元一次不等式的解法难点:解决一元一次不等式时等号方向的改变。
教学过程:1. 观察下列不等式:(1)155.22≥-x ; (2)75.8≤x (3)x <4 (4)x 35+>240 这些不等式有哪些共同特点?这些等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,象这样的不等式,叫做一元一次不等式。
2. 先阅读每(1)题的解法,然后仿做第(2)题,最后谈谈自己读题、做题的体会。
(1)解不等式3722xx -≥-,并把它的解集表示在数轴上。
解 去分母,得 )7(2)2(3x x -≥- 去括号,得 x x 21463-≥-移项、合并同类项,得205≥x两边都除以5,得4≥x这个不等式的解集在数轴上表示如下(图1-13)(2)解不等式2235-+≥x x ,并把它的解集表示的数轴上。
答案:320-≤x其解集在数轴上表示如下图1-403. 解不等式)1(2)3(410-≤--x x ,并把它的解集在数轴上表示出来。
解答:去括号,得2212410-≤+-x x , 移项,得x x 4212210+≤++。
合并同类项,得 24x 6≤系数化为1,得x ≤4。
得4≥x 。
在数轴上表示不等式解集如图4. 解不等式612131-≥--+y y y ,并把它的解集在数轴上表示出来。
解答:去分母,得11)(3)1(2-≥--+y y y答案:3≤y这个不等式的解集数轴上表示如图5. y 取何正整数时,代数式2(y-1)的值不大于10-4(y-3)的值。