九年级数学图形的旋转全章测试题
- 格式:doc
- 大小:258.00 KB
- 文档页数:13
九年级数学上册第二十三章旋转必须掌握的典型题单选题1、如图,将△ABC绕点A逆时针旋转40°得到△ADE,AD与BC相交于点F,若∠E=80°且△AFC是以线段FC 为底边的等腰三角形,则∠BAC的度数为()A.55°B.60°C.65°D.70°答案:B分析:由旋转的性质得出∠E=∠C=80°,∠BAD=40°,由等腰三角形的性质得出∠C=∠AFC=80°,求出∠CAF=20°,根据∠BAC=∠BAD+∠CAF即可得出答案.解:∵将△ABC绕点A逆时针旋转40°得到△ADE,且∠E=80°,∴∠E=∠C=80°,∠BAD=40°,又∵△AFC是以线段FC为底边的等腰三角形,∴AC=AF,∴∠C=∠AFC=80°,∴∠CAF=180°−∠C−∠AFC=180°−80°−80°=20°,∴∠BAC=∠BAD+∠CAF=40°+20°=60°,故选:B.小提示:本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.2、如图,△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)()A.90°+12αB.90°−12αC.180°−32αD.32α答案:C分析:根据旋转的性质可得,BC=DC,∠ACE=α,∠A=∠E,则∠B=∠BDC,利用三角形内角和可求得∠B,进而可求得∠E,则可求得答案.解:∵将△ABC绕点C顺时针旋转得到△EDC,且∠BCD=α∴BC=DC,∠ACE=α,∠A=∠E,∴∠B=∠BDC,∴∠B=∠BDC=180°−α2=90°−α2,∴∠A=∠E=90°−∠B=90°−90°+α2=α2,∴∠A=∠E=α2,∴∠EFC=180°−∠ACE−∠E=180°−α−α2=180°−32α,故选:C.小提示:本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.3、如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°答案:C分析:由旋转的性质可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性质可得∠DAC=20°,即可求解.解:∵将△ABC绕点A逆时针旋转55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故选C.小提示:本题考查了旋转的性质,掌握旋转的性质是本题的关键.4、下列四个银行标志中,是中心对称图形的标志是()A.B.C.D.答案:A分析:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.据此即可判断.解:A.是中心对称图形,故此选项符合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:A.小提示:本题主要考查了中心对称图形定义,关键是找出对称中心.5、如图,在ΔABC中,AB=2,BC=3.6,∠B=60∘,将ΔABC绕点A顺时针旋转度得到ΔADE,当点B的对应点D 恰好落在BC边上时,则CD的长为()A.1.6B.1.8C.2D.2.6答案:A分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.由旋转的性质可知,AD=AB,∵∠B=60∘,AD=AB,∴ΔADB为等边三角形,∴BD=AB=2,∴CD=CB−BD=1.6,故选A.小提示:此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB6、如图,将ΔABC绕点C顺时针旋转得到ΔDEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC答案:D分析:利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出∠A=∠EBC,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB判断选项B不一定正确即可.解:∵ΔABC 绕点C 顺时针旋转得到ΔDEC ,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180°−∠ACD 2;∠EBC=∠BEC=180°−∠BCE 2,∴选项A 、C 不一定正确,∴∠A =∠EBC ,∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB 不一定等于900,∴选项B 不一定正确;故选D .小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.7、如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .AD//EF,AB//GFB .BO =GOC .CD =HE,BC =GH D .DO =HO答案:D分析:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.A .∵AD 与EF 关于点O 成中心对称,∴AD //EF ,同理可得AB //GF ,正确;B .∵点B 与点G 关于点O 成中心对称,∴BO =GO ,正确;C .∵CD 与HE 关于点O 成中心对称,∴CD=HE,同理可得BC=GH,正确;D.∵点D与点E关于点O成中心对称,∴DO=EO,∴DO=HO错误,故选:D.小提示:本题考查中心对称图形的性质,是基础考点,掌握相关知识是解题关键.8、某校举办了“送福迎新春,剪纸庆佳节”比赛.以下参赛作品中,是中心对称图形的是().A.B.C.D.答案:D解:选项A,B,C中的图形不是中心对称图形,选项D中的图形是中心对称图形,故选D小提示:本题考查的是中心对称图形的识别,中心对称图形的定义:把一个图形绕某点旋转180°后能够与自身重合,则这个图形是中心对称图形,掌握“中心对称图形的定义”是解本题的关键.9、下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.答案:C分析:根据轴对称图形和中心对称图形的概念逐项判断即可.A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.小提示:本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.10、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°答案:C分析:根据图形的对称性,用360°除以3计算即可得解.解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.小提示:本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.填空题11、在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab=________.答案:12分析:根据关于原点对称的两点坐标关系:横、纵坐标均互为相反数,即可求出a和b的值,从而求出结论.解:∵点A(a,2)与点B(6,b)关于原点对称,∴a=-6,b=-2∴ab=12所以答案是:12.小提示:此题考查的是根据两点关于原点对称,求参数的值,掌握关于原点对称的两点坐标关系是解题关键.12、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.答案:6秒或19.5秒分析:设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.所以答案是:6秒或19.5秒.小提示:本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13、如图,在矩形ABCD中,对角线AC、BD的交点为O,矩形的长、宽分别为7cm、4cm,EF过点O分别交AB、CD于E、F,那么图中阴影部分面积为___cm2.答案:7分析:先根据矩形的性质可得OA=OC,AB∥CD,S▭ABCD=28cm2,再根据平行线的性质可得∠OAE=∠OCF,∠OEA=∠OFC,然后根据三角形全等的判定定理证出△AOE≅△COF,根据全等三角形的性质可得S△AOE=S△COF,由此即可得.解:∵四边形ABCD是矩形,且长、宽分别为7cm、4cm,∴OA=OC,AB∥CD,S▭ABCD=7×4=28(cm2),∴∠OAE=∠OCF,∠OEA=∠OFC,在△AOE和△COF中,{∠OAE=∠OCF∠OEA=∠OFCOA=OC,∴△AOE≅△COF(AAS),∴S△AOE=S△COF,则图中阴影部分面积为S△AOE+S△DOF=S△COF+S△DOF=S△COD=14S▭ABCD=7cm2,所以答案是:7.小提示:本题考查了矩形的性质、三角形全等的判定与性质等知识点,熟练掌握三角形全等的判定与性质是解题关键.14、如图,△ABC与△DEF关于O点成中心对称.则AB________DE,BC//________,AC=________.答案: = EF DF分析:利用关于某点对称的图形全等,这样可以得出对应边与对应角之间的关系,进而解决.∵△ABC与△DEF关于O点成中心对称,∴△ABC≌△DEF,∴AB=DE,AC=DF,∠ABC=∠DEF∴∠CBO=∠FEO,∴BC//EF.所以答案是:=,EF,DF.小提示:此题主要考查了关于某点对称的图形之间的关系,涉及全等三角形,难度不大,熟练掌握中心对称图形的定义是解题的关键.15、以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.答案:(2,﹣1)分析:根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),所以答案是:(2,﹣1).小提示:此题考查中心对称图形的顶点在坐标系中的表示.解答题16、如图1,在等腰Rt△ABC中,∠A=90°,点D、E分别在边AB、AC上,AD=AE,连接,点M、P、N分别为DE、DC、BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是______,位置关系是______;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,求△PMN面积的最大值.答案:(1)PM=PN,PM⊥PN(2)△PMN是等腰直角三角形,理由见解析(3)492分析:(1)利用三角形的中位线定理得出PM=12CE,PN=12BD,进而得出BD=CE,即可得出结论,再利用三角形的中位线定理得出PM∥CE,再得出∠DPM=∠DCA,最后利用互余得出结论;(2)先判断出△ABD≌△ACE(SAS),得出BD=CE,同(1)的方法得出PM=12CE,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)由等腰直角三角形可知,当PM最大时,△PMN面积最大,而BD的最大值是AB+AD=14,即可得出结论.(1)解:∵P、N分别为DC、BC的中点,∴PN∥BD,PN=12BD,∵点M、P分别为DE、DC的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,PM∥CE,∴∠DPN=∠ADC,∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN.所以答案是:PM=PN,PM⊥PN.(2)解:△PMN是等腰直角三角形,理由如下.由旋转可知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,由三角形的中位线定理得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法可得,PM∥CE,PN∥BD,∠DPM=∠DCE,∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC,=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形.(3)解:由(2)可知,△PMN是等腰直角三角形,PM=PN=12BD,∴当PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492.小提示:本题综合考查了三角形全等的判定与性质、旋转的性质及三角形的中位线定理,熟练应用相关知识是解决本题的关键.17、如图,在等边△ABC中,D为BC边上一点,连接AD,将△ACD沿AD翻折得到△AED,连接BE并延长交AD的延长线于点F,连接CF.(1)若∠CAD=20°,求∠CBF的度数;(2)若∠CAD=a,求∠CBF的大小;(3)猜想CF,BF,AF之间的数量关系,并证明.答案:(1)20°;(2)∠CBF=α;(3)AF=CF+BF,理由见解析分析:(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∠ABE=∠AEB=1(180°−∠BAE)=80°,∠CBF=∠ABE-2∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∴∠ABE=∠AEB=1(180°−∠BAE)=80°,2∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=α,AC=AE,∴∠BAE=∠BAC−∠EAD−∠CAD=60°−2α,AB=AE,∴∠ABE=∠AEB=12(180°−∠BAE)=60°+α,∴∠CBF=∠ABE−∠ABC=α;(3)AF=CF+BF,理由如下:如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG在△AEF和△ACF中,{AE=AC∠EAF=∠CAF AF=AF,∴△AEF≌△ACF(SAS),∴∠AFE=∠AFC,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F、C、G三点共线,∴△AFG是等边三角形,∴AF=GF=CF+CG=CF+BF.小提示:本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.18、马老师在带领学生学习《正方形的性质与判定》这一课时,给出如下问题:如图①,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′O与正方形ABCD的边长相等.在正方形A′B′C′O绕点O旋转的过程中,OA′与AB相交于点M,OC′与BC相交于点N,探究两个正方形重叠部分的面积与正方形ABCD的面积有什么关系.(1)小亮第一个举手回答“两个正方形重叠部分的面积是正方形ABCD面积的______”;请说明理由.(2)马老师鼓励同学们编道拓展题,小颖编了这样一道题:如图②,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,求四边形ABCD的面积.请你帮小颖解答这道题.答案:(1)14,见解析(2)18,见解析分析:(1)只需要证明△MOB≌△NOC得到S△MOB=S△NOC,即可求解.(2)过A作AE⊥AC,交CD的延长线于E,证明△EAD≌△CAB得到S△ABC=S△ADE,AE=AC=6,则S△AEC=12×6×6=18S四边形ABCD =S△ACD+S△ABC=S△ACD+S△ADE=S△EAC=12AE⋅AC=18.(1)解:∵四边形ABCD是正方形,四边形OA′B′C′是正方形,∴AC⊥BD,OB=OC,∠OBM=∠OCN=45°,∠A′OC′=90°,∴∠BOC=∠A′OC′=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴S四边形OMBN =S△OBC=14S正方形ABCD.答案为:14;(2)过A作AE⊥AC,交CD的延长线于E,∵AE⊥AC,∴∠EAC=90°,∵∠DAB=90°,∴∠DAE=∠BAC,∵∠BAD=∠BCD=90°,∴∠ADC+∠B=180°,∵∠EDA+∠ADC=180°,∴∠EDA=∠B,∵AD=AB,在△ABC与△ADE中,{∠EAD=∠CABAD=AB∠EDA=∠B,∴△ABC≌△ADE(ASA),∴AC=AE,∵AC=6,∴AE=6,∴S△AEC=12×6×6=18,∴S四边形ABCD=18.小提示:本题主要考查了正方形的性质,全等三角形的性质与判定,四边形内角和,熟知全等三角形的性质与判定是解题的关键.。
九年级数学上册第二十三章《旋转》测试卷-人教版(含答案)一、选择题(共10小题)1. 下列图形中,是轴对称图形但不是中心对称图形的是( )A. 正三角形B. 正方形C. 正六边形D. 圆2. 如图,在△ABC中,AB=2,BC=3.6,∠B=60∘,将△ABC绕点A顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,CD的长为( )A. 1.6B. 1.8C. 2D. 2.63. 平面直角坐标系内的点A(−(12)−1,1)与点B(∣−2∣,−1)关于( )A. y轴对称B. x轴对称C. 原点对称D. 以上都不对4. 如图,紫荆花图案绕中心至少旋转x∘后能与原来的图案互相重合,则x的值为( )A. 36B. 45C. 60D. 725. 下列图形中是中心对称图形的有( )个.A. 1B. 2C. 3D. 46. 如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度是( )A. 30∘B. 60∘C. 72∘D. 90∘7. 勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A. B.C. D.8. 如图,在△ABC中,∠BAC=120∘,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是( )A. ∠ABC=∠ADCB. CB=CDC. DE+DC=BCD. AB∥CD9. 已知一次函数y=kx+b(k≠0)经过(2,−1),(−3,4)两点,则它的图象不经过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )A. 42B. 32C. 42或32D. 37或33二、填空题(共8小题)11. 如图,△ABC中,∠BAC=30∘,将△ABC绕点A按顺时针方向旋转85∘,对应得到△ADE,则∠CAD=∘.12. (1)等边三角形绕中心至少旋转∘与自身重合;(2)正方形绕中心至少旋转∘与自身重合;(3)五角星绕中心至少旋转∘与自身重合;(4)正n边形绕中心至少旋转∘与自身重合.13. 已知A(2,4),B(6,2),以原点为位似中心,将线段AB缩小为原来的一半,则A的对应点坐标为.14. 七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图①所示)中各板块的边长之间的关系拼成一个凸六边形(如图②所示),则该凸六边形的周长是cm.15. 如图,将矩形ABCD绕点A旋转至矩形ABʹCʹDʹ的位置,此时ACʹ的中点恰好与D点重合,ABʹ交CD于点E.若AB=3,则△AEC的面积为.16. 已知直角坐标系内有A(−1,2),B(3,0),C(1,4),D(x,y)四个点.若以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为.17. 如图,在Rt△ABC中,∠ACB=90∘,将△ABC绕顶点C逆时针旋转得到△AʹBʹC,M是BC的中点,N是AʹBʹ的中点,连接MN,若BC=4,∠ABC=60∘,则线段MN的最大值为.18. 如图在Rt△ABC中,AB=AC,∠ABC=∠ACB=45∘,D,E是斜边BC上两点,且∠DAE=45∘,若BD=3,CE=4,S△ADE=15,则△ABD与△AEC的面积之和是.三、解答题(共5小题)19. 请回答下列问题.(1)如图,点A与Aʹ关于原点对称,写出Aʹ坐标.(2)如图,点A与Aʹ关于原点对称,写出Aʹ坐标.20. 如图所示,△ABC是等边三角形,D是BC延长线上一点,△ACD经过旋转后到达△BCE的位置.(1)旋转中心是,逆时针旋转了度;(2)如果M是AD的中点,那么经过上述旋转后,点M转到的位置为.21. 已知:四边形ABCD(如图).(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.22. 如图,已知菱形ABCD的对角线AC与BD相交于点O,AE垂直且平分边CD,垂足为E.求∠BCD的度数.OA<OM=ON),∠AOB=∠MON= 23. 如图,已知△AOB和△MON都是等腰直角三角形(√2290∘.(1)如图①,连接AM,BN,求证:△AOM≌△BON;(2)若将△MON绕点O顺时针旋转,①如图②,当点N恰好在AB边上时,求证:BN2+AN2=2ON2;②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.参考答案1. A【解析】A.正三角形是轴对称图形但不是中心对称图形,故本选项符合题意;B.正方形既是轴对称图形,又是中心对称图形,故本选项不合题意;C.正六边形既是轴对称图形,又是中心对称图形,故本选项不合题意;D.圆既是轴对称图形,又是中心对称图形,故本选项不合题意.2. A【解析】由旋转的性质可得,AD =AB ,∵∠B =60∘,∴△ADB 为等边三角形,∴BD =AB =2,∴CD =CB −BD =1.6.3. C【解析】∵−(12)−1=−2,∴A 点坐标为 (−2,1),∵∣−2∣=2,∴B 点坐标为 (2,−1),∵−2 与 2 互为相反数,1 与 −1 互为相反数,∴ 点 A (−2,1) 与点 B (2,−1) 关于原点对称.4. D5. B6. C7. B【解析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形, 8. D【解析】由旋转的性质得出 CD =CA ,∠EDC =∠CAB =120∘,∵ 点 A ,D ,E 在同一条直线上,∴∠ADC =60∘,∴△ADC 为等边三角形,∴∠DAC =60∘,∴∠BAD =60∘=∠ADC ,∴AB ∥CD .9. C【解析】将(2,−1)与(−3,4)分别代入一次函数解析式y=kx+b中,得到一次函数解析式为y=−x+1,不经过第三象限.10. C【解析】分两种情况:①如图,当△ABC是锐角三角形时,∵AD是△ABC的高,∴AD⊥BC,∴∠ADB=∠ADC=90∘,∵AB=15,AD=12,∴在Rt△ABD中,BD2=AB2−AD2=152−122=81=92,∴BD=9,∵AC=13,AD=12,∴在Rt△ACD中,CD2=AC2−AD2,132−122=25=52,∴CD=5,∴△ABC的周长为15+13+9+5=42;②如图,当△ABC是钝角三角形时,由①可知,BD=9,CD=5,∴BC=BD−CD=9−5=4,∴△ABC的周长为15+13+4=32.故选C.11. 5512. 120,90,72∘,360n13. (1,2)或(−1,−2)14. (32√2+16)15. √3【解析】由旋转的性质可知ACʹ=AC,∵D为ACʹ的中点,∴AD=12ACʹ=12AC,∵四边形ABCD是矩形,∴AD⊥CD,∴∠ACD=30∘,∵AB∥CD,∴∠CAB=30∘,∴∠CʹABʹ=∠CAB=30∘,∴∠EAC=30∘,∴AE=EC,∴DE=12AE=12EC,∴CE=23CD=23AB=2,DE=1,∴AD=√3,∴S△AEC=12EC⋅AD=√3.16. (1,−2)或(5,2)或(−3,6)【解析】由图象可知,满足条件的点D的坐标为(1,−2)或(5,2)或(−3,6).17. 6【解析】连接CN.在Rt△ABC中,∵∠ACB=90∘,∠B=60∘,∴∠A=30∘,∴AB=AʹBʹ=2BC=8,∵N是AʹBʹ的中点,AʹBʹ=4,∴CN=12∵CM=BM=2,∴MN≤CN+CM=6,∴MN的最大值为6.18. 21【解析】将△AEC顺时针方向旋转90∘至△AFB,过点A作AH⊥BC于H,根据旋转的性质可得△AEC≌△ABF,∴∠ABF=∠ACD=45∘,∠BAF=∠CAE,AE=AF,∴∠FBE=45∘+45∘=90∘,BF=CE,∴BD2+BF2=DF2,∵∠DAE=45∘,∴∠BAD+∠CAE=45∘,∴∠BAD+∠BAF=45∘,∴∠DAE=∠DAF,又∵AD=AD,∴△DAE≌△DAF(SAS),∴DE=DF,∴BD2+BF2=DE2,∵BD=3,CE=4,∴DE=5,∴BC=BD+DE+CE=12,∵AB=AC,∠BAC=90∘,AH⊥BC,∴AH=BH=CH=12BC=6,∴△ABD与△AEC的面积之和:=12×BD×AH+12×CE×AH=12×(3+4)×6=21.19. (1)Aʹ(−2,−1)(2)Aʹ(1,−2) 20. (1)点C;60(2)BE的中点21. (1)图略(2)图略(3)图略22. 由条件可推出AC=AD,即△ACD,△ACB都是等边三角形,于是可得∠BCD=120∘.23. (1)因为∠AOB=∠MON=90∘,所以∠AOM=∠BON,在△AOM和△BON中,{AO=BO,∠AOM=∠BON, OM=ON,所以△AOM≌△BON(SAS).(2)①如图1,连接AM.同(1)可证△AOM≌△BON,∴AM=BN,∠OAM=∠B=45∘.∵∠OAB=∠B=45∘,∴∠MAN=∠OAM+∠OAB=90∘,∴在Rt△AMN中,MN2=AN2+AM2.∵△MON是等腰直角三角形,∴MN2=2ON2,∴BN2+AN2=2ON2.②BN=√46−3√22.【解析】②如图2,设OA交BN于J,过点O作OH⊥MN于H.∵△AOM ≌△BON ,∴AM =BN ,∵OM =ON =3,∠MON =90∘,OH ⊥MN , ∴MN =3√2,MH =HN =OH =3√22, ∴AH =√OA 2−OH 2=√42−(3√22)2=√462, ∴BN =AM =MH +AH =√46+3√22. 如图 3,同法可证 BN =AM =√46−3√22.。
人教版九年级数学上册第二十三章《旋转》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列垃圾分类的标志中,既是轴对称图形又是中心对称图形的是()A.可回收物B.厨余垃圾C.有害垃圾D.其它垃圾物3.下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.7.2022年油价多次上涨,新能源车企迎来了更多的关注,如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,在平面直角坐标系中,△ABC的边AB⊥x轴,A(﹣2,0),C(﹣4,1),二次函数y=x2﹣2x﹣3的图象经过点B.将△ABC沿x轴向右平移m(m>0)个单位,使点A平移到点A′,然后绕点A'顺时针旋转90°,若此时点C的对应点C′恰好落在抛物线上,则m的值为()A B C D .9.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒10.如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .11.如图,矩形ABCD 中,AD =2,ABAC 上有一点G (异于A ,C ),连接 DG ,将△AGD 绕点A 逆时针旋转60°得到△AEF ,则BF 的长为( )A B .C D .=60°,在x 轴正半轴上有一点C ,点C 坐标为()1,0,将线段AC 绕点A 逆时针旋转120°,得线段AD ,连接BD .则BD 的长度为( )A .B .4CD .152二、填空题(本大题4个小题,每小题4分,共16分)13.点(6,1)-关于原点的对称点是__________.14.如图,在ABC 中,80ACB ∠=︒,将ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,使CC '平分B C A ''∠,则旋转角的度数为__________.15.如图,在ABC 中,70CAB ∠=︒,在同一平面内,将ABC 绕点A 逆时针旋转到AB C ''△的位置,使CC AB '∥,作B D AC '∥交BC 于点D ,则AB D '∠=______.16.如图,在ABC 中,90B ,4AB BC ==,将ABC 绕点A 逆时针旋转60︒,得到ADE ,则点D 到BC 的距离是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图所示的正方形网格中,画出将△ABC 绕点C 逆时针旋转90°得到的△MNC ,A 、B 的对应点分别为M 、N .18.如图,ABC 的顶点坐标分别为(4,5)A -,(5,2)B -,(3,4)C -.(1)画出与ABC 关于原点O 对称的111A B C △,并写出点1A 的坐标为___________.(2)D 是x 轴上一点,使DB DC 的值最小,画出点D (保图痕迹),D 点坐标为___________.(3)(,0)P t 是x 轴上的动点,将点C 绕点P 顺时针旋转90︒至点E ,直线25y x =-+经过点E ,则t 的值为___________.19.阅读理解,并解答问题:观察发现:如图1是一块正方形瓷砖,分析发现这块瓷砖上的图案是按图2所示的过程设计的,其中虚线所在的直线是正方形的对称轴.问题解决:用四块如图1所示的正方形瓷砖按下列要求拼成一个新的大正方形,并在图3和图4中各画一种拼法.(1)图3中所画拼图拼成的图案是轴对称图形,但不是中心对称图形;(2)图4中所画拼图拼成的图案既是轴对称图形,又是中心对称图形.20.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.21.如图,在平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()4,1,点C 的坐标为()3,3.(1)画出将ABC 向下平移5个单位长度得到的111A B C △;(2)画出将ABC 绕点原点O 逆时针旋转90°后得到的222A B C △,写出2C 的坐标.22.如图,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BC 上(不与点B ,C 重合),连接AD ,以点A 为中心,将线段AD 逆时针旋转180°﹣α得到线段AE ,连接BE .(1)∠BAC +∠DAE = °;(2)取CD 中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明.23.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90 得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为()0,3,则点B 的坐标为___________;②若点B 的坐标为()3,1,则点A 的坐标为___________;(2)(3,3)E -,(2,3)F -,(,0)G a ,线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F '.①求点E '的坐标(用含a 的式子表示);②若O 的半径为2E F '',上任意一点都在O 内部或圆上,直接写出满足条件的EE '的长度的最大值.24.已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.25.如图,在Rt ABC △中,90BAC ∠=︒,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.参考答案:1.C【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B.不是中心对称图形,是轴对称图形,故本选项不合题意;C.既是中心对称图形又是轴对称图形,故本选项符合题意;D.既不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.既是轴对称图形,又是中心对称图形.故本选项符合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】A是轴对称图形不是中心对称图形,不符合题意;B是轴对称图形不是中心对称图形,不符合题意;C既不是轴对称图形也不是中心对称图形,不符合题意;D既是轴对称图形又是中心对称图形,符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,即轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.B【分析】根据轴对称图形及中心对称图形的概念可直接进行排除选项.【详解】解:A、文字上方的图案既不是轴对称图形也不是中心对称图形,故不符合题意;B、文字上方的图案既是轴对称图形也是中心对称图形,故符合题意;C、文字上方的图案是轴对称图形但不是中心对称图形,故不符合题意;D、文字上方的图案既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查轴对称图形及中心对称图形的识别,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.是轴对称图形,不是中心对称图形.故本选项不符合题意;C.既是轴对称图形又是中心对称图形.故本选项符合题意;D.是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.C【分析】作CD⊥AB于D,C'D'⊥A'B'于D',先根据已知条件求出点B坐标,由A、B、C三点坐标可得CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).进而表示出点C'的坐标为(m﹣1,2),最后将C'坐标代入二次函数解析式中计算即可得到点C坐标.【详解】解:作CD⊥AB于D,C'D'⊥A'B'于D',∵AB⊥x轴,二次函数y=x2﹣2x﹣3的图象经过点B,∴点B(﹣2,5)∵A(﹣2,0),C(﹣4,1),∴CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).∵A'D'=AD=1,C'D'=CD=2,∴点C'坐标为(m﹣1,2),又点C'在抛物线上,∴把C'(m﹣1,2)代入y=x2﹣2x﹣3中,得:(m ﹣1)2﹣2(m ﹣1)﹣3=2,整理得:m 2﹣4m ﹣2=0.解得:m 1=m 2=2(舍去).故选:C .【点睛】此题考查了二次函数图象上点的坐标特点,平移的性质,解一元二次方程,正确理解平移的性质是解题的关键.9.B【分析】由旋转的性质得出80E C ∠=∠=︒,40BAD ∠=︒,由等腰三角形的性质得出80C AFC ∠=∠=︒,求出20CAF ∠=︒,根据BAC BAD CAF ∠=∠+∠即可得出答案. 【详解】解:将ABC 绕点A 逆时针旋转40︒得到ADE ,且80E ∠=︒,80E C ∴∠=∠=︒,40BAD ∠=︒,又AFC 是以线段FC 为底边的等腰三角形,AC AF ∴=,80C AFC ∴∠=∠=︒,180180808020CAF C AFC ∴∠=︒-∠-∠=︒-︒-︒=︒,402060BAC BAD CAF ∴∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.10.C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∴图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.11.A【分析】过点F 作FH ⊥BA 交BA 的延长线于点H ,则∠FHA =90°,△AGD 绕点A 逆时针旋转60°得到△AEF ,得∠F AD =60°,AF =AD =2,又由四边形ABCD 是矩形,∠BAD =90°,得AF=1,由勾股定理得AH=,得到到∠F AH=30°,在Rt△AFH中,FH=12BH=AH+AB,再由勾股定理得BF=【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A 逆时针旋转60°得到△AEF∴∠F AD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠F AD+ ∠BAD=150°∴∠F AH=180°-∠BAF=30°AF=1在Rt△AFH中,FH=12由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB由勾股定理得BF=故BF故选:A【点睛】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.12.C【分析】连接CD,过点A作AE⊥CD于点E,过点E作FG⊥x轴于点F,过点A作AG⊥FG于点G,设E(m,n),根据旋转证∠ACG=30°,CE,根据两角对应相等证△AEG∽△ECF,求出74E ⎛ ⎝⎭,52D ⎛ ⎝⎭,结合B (-2,0)求出BD =. 【详解】连接CD ,过点A 作AE ⊥CD 于点E ,过点E 作FG ⊥x 轴于点F ,过点A 作AG ⊥FG 于点G ,则∠AEC =∠OFG =∠G =90°,∵∠AOF =90°,∴∠OAG =90°,∴四边形AOFG 是矩形,∵(0,A ,∴FG =OA设E (m ,n ),∴AG =OF =m ,EF =n ,∴CF =m -1,EGn ,由旋转知,∠CAD =120°,AC =AD ,∴CE =DE ,∠ACG =30°,∴CE,∵∠CEF +∠ECF =∠AEG +∠CEF =90°,∴∠AEG =∠ECF ,∴△AEG ∽△ECF ,∴EF CE AG AE ==,∴=n m∵CF CE EG AE==∴74m =,n∴74E ⎛ ⎝⎭, ∵73144-=,735442+=,∴52D ⎛ ⎝⎭,∵∠ABO=60°,=OA∴OB =2,B (-2,0),∴BD =. 故选C .【点睛】本题主要考查了旋转,等腰三角形,含30°的直角三角形,两点间的距离公式,熟练掌握旋转图形全等性质,三线合一含30°角的直角三角形边的性质,两点间的距离公式是解决此题的关键.13.(6,1)-【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是点P '(﹣x ,﹣y ),进而得出答案.【详解】解:点(6,﹣1)关于原点的对称点的坐标为(﹣6,1).故答案为:(﹣6,1).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键. 14.100︒##100度【分析】根据旋转的性质得出80B C A ''∠=︒,C A AC '=,再根据角平分线的性质得出40CC A '∠=︒,利用等腰三角形的性质可求旋转角.【详解】解:∵ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,∴80C B C A A B ∠︒==''∠,C A AC '=,∵CC '平分B C A ''∠,∴1402CC A B C A '''∠=∠=︒,∴40CC A C CA ''∠=∠=︒,∴100C AC '∠=︒,故答案为:100°.【点睛】本题考查了旋转的性质和等腰三角形的性质,解题关键是熟练运用旋转的性质得出角的度数.15.30°##30度【分析】利用旋转的性质可求得AC =AC ′,∠CAB =∠C ′AB ′,由平行线性质和三角形内角和定理可求得∠C ′AC ;进而求得∠CAB ′即可解答;【详解】解:∵CC AB '∥,∴∠C ′CA =∠CAB =70°,由旋转的性质可得:AC =AC ′,∠CAB =∠C ′AB ′=70°,∴∠ACC ′=∠AC ′C =70°,∴∠C ′AC =180°-70°-70°=40°,∴∠CAB ′=∠C ′AB ′-∠C ′AC =70°-40°=30°,∵B D AC '∥,∴∠AB ′D =∠CAB ′=30°,故答案为:30°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质;掌握旋转的性质是解题关键.16.2【分析】由旋转的性质可得4AB AD ==,60BAD ∠=︒,可证ABD △是等边三角形,由直角三角形的性质可求解.【详解】解:如图,连接BD ,过点D 作DH BC ⊥于H ,将ABC 绕点A 逆时针旋转60︒,4AB AD ∴==,60BAD ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,60ABD ∠=︒,30DBC ∴∠=︒,DH BC ⊥,122DH BD ∴==, ∴点D 到BC 的距离是2,故答案为:2.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,掌握旋转的性质是解题的关键.17.见解析【分析】根据题意画出旋转后的图形即可;【详解】:如图,【点睛】本题主要考查了图形的旋转,掌握旋转图形的画法是解题的关键.18.(1)作图见详解,(4,5)-(2)作图见详解,13,03⎛⎫- ⎪⎝⎭(3)2-【分析】(1)已知ABC 三点坐标,ABC 关于原点O 对称的111A B C △各对应点的坐标与原坐标的横纵坐标均为相反数,由此即可作图;(2)作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小; (3)构造全等三角形求出等E 坐标,利用待定系数法即可解问题.【详解】(1)解:已知ABC 三点坐标(4,5)A -,(5,2)B -,(3,4)C -,关于原点对称,则对应点的坐标分别是1(4,5)A -,1(5,2)B -,1(3,4)C -,连接1A ,1B ,1C 所组成的图形为所求图形111A B C △,如图所示,(2)解:作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小,如图所示,已知(4,5)A -,(5,2)B -,(3,4)C -,点B'是点B 关于x 轴的对称点,∴'(5,2)B --、(34)C -,, ∴直线'BC 解析式为313y x =+,当0y =时,133x , ∴1303D ⎛⎫- ⎪⎝⎭,. (3)解:如图所示,作CH x ⊥轴于H EK x ⊥,轴于K ,根据题意得,(34)C -,,90CHP CPE PKE ∠=∠=∠=︒, ∴9090CPH HCP CPH EPK ∠+∠=︒∠+∠=︒,,∴PCH EPK ∠=∠,∵PC PE =,∴(AAS)PCH EPK △≌△,∴43PK CH EK PH t ====+,,∴4OK t =+,∴(43)E t t ++,,∵点E 在直线25y x =-+上,∴3245t t +=-++(),∴2t =-.【点睛】本题考查平面直角坐标系中图形的旋转变换,一次函数图像上的点的特征,轴对称最短问题等知识,解题的关键是熟练掌握旋转变换的性质,根据题意添加常用辅助线,构造全等三角形解决问题.19.(1)见解析(2)见解析【分析】(1)按照轴对称的意义得出答案即可;(2)按照轴对称的定义和中心对称的定义设计,所设计的图案既是中心对称图形,又是轴对称图形.(1)解:(1)参考图案,如图所示:(2)(2)参考图案,如图所示:【点睛】本题考查利用轴对称或中心对称设计图案,关键是理解轴对称和中心对称的定义.20.(1)见解析(2)见解析(3)6【分析】(1)首先确定C 点的平移规律,依此规律平移A 、B 两点,从而得到111A B C △; (2)利用中心对称的性质作出A 、B 、C 的对应点2A 、2B 、2C 即可;(3)先求112AC C 的面积,四边形1221A C A C 的面积为112AC C 面积的2倍.(1)解:如图所示,111A B C △为所求作;(2)解:如图所示,222A B C △为所求作; (3)解:如图,123C C =,1A 到12C C 距离为2; 则112AC C 的面积为:13232⨯⨯=. ∴由图可得四边形1221A C A C 的面积为236S =⨯=.【点睛】本题考查了坐标的平移,中心对称图形的画法,网格中图形面积的求法,解题的关键是根据题意画出图象. 21.(1)见解析 (2)见解析,()3,3-【分析】(1)利用平移的坐标特征写出1A 、1B 、1C 的坐标,然后描点依次连接即可; (2)利用网格特点和旋转的性质找出 A 、B 、C 的对应点 2A 、2B 、2C ,然后描点依次连接即可得 (1)解:经过平移可得:()11,4A -,()14,4B -,()13,2C -,顺次连接,如图所示:111A B C △即为所求作;(2)解:旋转后的点的坐标分别为:()21,1A -,()21,4B -,()23,3C -,然后顺次连接, 如图所示:222A B C △即为所求作,2C 的坐标()3,3-【点睛】本题考查了作图:平移及旋转变换,找到对应点的坐标,然后顺次连接各点是解题关键. 22.(1)180 (2)12AF BE =,证明见解析;【分析】(1)由旋转可知∠DAE =180°-a ,所以得到:∠BAC +∠DAE =a +180°-a =180°; (2)连接并延长AF ,使FG =AF ,连接DG ,CG ;因为DF =CF ,AF =GF ;可以得到四变形ADGC 为平行四边形;从而有∠DAC +∠ACG =180°,再证∠ACG =∠BAE 继而证明△ABE ≌△CAG 得到BE =AG ,即可得线段AF 与BE 的数量关系; 【详解】(1)解:由旋转可知∠DAE =180°-a , ∠BAC +∠DAE =a +180°-a =180° 故答案为:180(2)解:如图所示:连接并延长AF ,使FG =AF ,连接DG ,CG ; ∵DF =CF ,AF =GF ;∴四变形ADGC 为平行四边形; ∴∠DAC +∠ACG =180°,即∠ACG =180°-∠DAC ,∠BAE =∠BAC +∠DAE-∠DAC =180°-∠DAC , 所以∠ACG =∠BAE ,∵四变形ADGC 为平行四边形; ∴AD =CG , 又∵AD =AE , AE =CG ,在△ABE 和△CAG 中,{AB CA BAE ACG AE CG=∠=∠=∴△ABE ≌△CAG , ∴BE =AG , ∴AF =12AG =12BE ,故线段AF 与BE 的数量关系:AF =12BE ;【点睛】本题考查了旋转的性质,旋转角的定义,以及全等三角形的性质的判定,解题的关键是熟悉并灵活应用以上性质. 23.(1)①()3,0,②()1,3- (2)①(3,3)a a ++,【分析】(1)①②根据“垂直图形”的定义可得答案;(2)①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,利用AAS证明PEG HGE '△≌△得3E H PG a '==+,3GH EP ==,从而得出答案;②由点E '的坐标可知,满足条件的点E '在第一象限的O 上,求出点E '的坐标,从而解决问题. (1)解:①点A 的坐标为()0,3, ∴点B 的坐标为()3,0,故答案为:()3,0;②当()3,1B 时,如图,()1,3A -,故答案为:()1,3-; (2)解:①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,90EGE ∠'=︒,EG E G =',90EGP E GH ∴∠+∠'=︒,90EGP E ∠+∠=︒, E E GH ∴∠=∠',EPG GHE ∠=∠',∴AAS HG PEG E '△≌△(), 3E H PG a ∴'==+,3GH EP ==,3OH a ∴=+,3,3E a a ∴'++();②如图,观察图象知,满足条件的点E '在第一象限的O 上,()3,3E a a '++,2OE '=,()()222332a a ∴+++=,3a +=负值舍去),3a ∴=,E ∴',EE ∴'EE ∴'【点睛】本题是几何变换综合题,主要考查了全等三角形的判定与性质,“垂直图形”的定义,坐标与图形,求出点E '的坐标是解题的关键.24.(1)见解析;(2)①见解析; 【分析】(1)证明△AMO ≌△BNO 即可;(2)①连接BN ,证明△AMO ≌△BNO ,得到∠A =∠OBN =45°,进而得到∠MBN =90°,且△OMN 为等腰直角三角形,再在△BNM 中使用勾股定理即可证明; ②分两种情况分别画出图形即可求解.【详解】解:(1)∵AOB 和MON △都是等腰直角三角形, ∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON ,∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOBBOM BOM , ==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45A OBN,AM BN =,∴454590ABNABOOBN,且OMN ∆为等腰直角三角形,∴MN ,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAH HM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AH HM;故46322AM或.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 25.(1)见解析 (2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C ∴∠=∠AED AEC ∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠,1802EAC C ∠=︒-∠, ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒, 90ABC C ∴∠+∠=︒, 90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.。
人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图 1,已知△ABC,AC=BC,△C=90△,顶点C 在直线 l 上。
人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A...B...C...D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A...B...C...D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A...B...C...D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A...B...C...D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A...B...C...D.6.已知点是点关于原点的对称点,则的值为( )A...B.-..C...D.±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A...B...C...D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A.①②..B.①②..C.②③..D.①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A.1..B.1..C.4+5..D.4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A...B...C...D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A...B...C...D.【答案】D【解析】试题分析: 根据图形,由规律可循. 从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A...B...C...D.【答案】B【解析】试题分析: 根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点: 1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A...B...C...D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度. 点A 在第二象限的角平分线上,且OA= ,正好旋转到y轴正半轴. 则A点的对应点A1的坐标是(0, ).【详解】∵A的坐标是(-1,1),∴OA= ,且A1在y轴正半轴上,∴A1点的坐标是(0, ).【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A...B...C...D.【答案】A【解析】【分析】设A( ,1),过A作AB⊥x轴于B,于是得到AB=1,OB= ,根据边角关系得到∠AOB=30°,由于点( ,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A( ,1),过A作AB⊥x轴于B,则AB=1,OB= ,∴tan∠AOB= == ,∴∠AOB=30°,∵点( ,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点( ,1)绕原点顺时针旋转60°后得到点是( ,-1),故选: A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A...B...C...D.【答案】A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A.B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选: A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A...B.-..C...D.±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'【答案】B【解析】【分析】根据中心对称的定义: 把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选: B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义. 也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条【答案】C【解析】试题分析: 直接利用轴对称图形的性质分别得出符合题意的答案.解: 如图所示: 能满足条件的线段有4条.故选:C.考点: 利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A...B...C...D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项: 最小旋转角度= =120°;B.最小旋转角度= =90°;C.最小旋转角度= =72°;D.最小旋转角度= =60°;综上可得: 旋转的角度最大的是A.故选: A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种【答案】C【解析】试题分析: 利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解: 如图所示: 组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评: 此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A.①②..B.①②..C.②③..D.①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是: ①②④是中心对称图形;而③不是中心对称图形.故选: B.【点睛】考查了中心对称图形的概念. 在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A.1..B.1..C.4+5..D.4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选: D.【点睛】考查图形的平移变换和弧长公式的运用. 在平面直角坐标系中,图形的平移与图形上某点的平移相同. 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)【答案】B【解析】【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选: B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A...B...C...D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得: 图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等. 要注意旋转的三要素: ①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案.. (1).中心对.. (2).对称中心【解析】【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心. 故答案是: 中心对称,对称中心.【点睛】考查了中心对称图形的概念: 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为: 4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题的关键.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是: 四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是: ①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是: 60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是: (-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示. 答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题. 关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解: 根据图形可知: , , ,各点关于原点对称的点的坐标分别是: , , ,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标. 关键是掌握关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2) .【解析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B.∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补. 理由如下:由旋转的性质知: ,∴,∵,∴,因此与互补;线段. 理由如下:由旋转知: , , ,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示: ,即为所求,点的坐标为: ;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。
九年级数学上册第二十三章旋转经典大题例题单选题1、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD=DC=1AC=2√22∴OD是△ABC的中位线∴BC=2OD∵OA2=OD2+AD2∴(4−x)2=x2+(2√2)2,解得x=1∴BC=2OD=2x=2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD的长是解题的关键.2、如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤答案:C分析:根据旋转变换及全等图形的定义对应边相等,对应角相等的图形是全等图形对个图进行一一分析判断即可解:②以右下角顶点为定点顺时针旋转90°后,两个实线图形刚好重合,③中为平行四边形,而①中为梯形,所以不能和①中图形完全重合,④可上下反转成②的情况,然后旋转可和①中图形完全重合,⑤可旋转180°后可和①中图形完全重合,∴与①中由实线围成的图形全等的有②④⑤.故选择C.小提示:本题考查多边形全等的判定,掌握全等图形的定义,关键是会通过图形的旋转使它们全等.3、在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣12答案:D分析:首先根据关于原点对称的点的坐标特点可得a+2+4=0,2−b=0,可得a,b的值,再代入求解即可得到答案.解:∵点(a+2,2)关于原点的对称点为(4,﹣b),∴a+2+4=0,2−b=0,解得:a=−6,b=2,∴ab=−12,故选D小提示:本题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的横纵坐标都互为相反数.4、如图,△OAB中,∠AOB=60°,OA=4,点B的坐标为(6,0),将△OAB绕点A逆时针旋转得到△CAD,当点O的对应点C落在OB上时,点D的坐标为()A.(7,3√3)B.(7,5)C.(5√3,5)D.(5√3,3√3)答案:A分析:如图,过点D作DE⊥x轴于点E.证明△AOC是等边三角形,解直角三角形求出DE,CE,可得结论.解:如图,过点D作DE⊥x轴于点E.∵B(6,0),∴OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,∠ACD=∠AOB=60°,∵∠AOC=60°,∴△AOC是等边三角形,∴OC=OA=4,∠ACO=60°,∴∠DCE=60°,∴CE=1CD=3,DE=√CD2−CE2=3√3,2∴OE=OC+CE=4+3=7,∴D(7,3√3),故选:A.小提示:本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质.5、如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.1种B.2种C.3种D.4种答案:C分析:根据轴对称图形的概念,找到对称轴即可得答案.解:如下图,∵图形是轴对称图形,对称轴是直线AB,∴把1、2、3三个正方形涂黑,与原来涂黑的小正方形组成的新图案仍然是轴对称图形,故选:C.小提示:本题考查了轴对称图形的概念,解题的关键是找到对称轴.6、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∠DOE=22.5°∴∠OEH=∠OHE=12∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=1(180°-∠CHE)=67.5°2∴△CEH不是等边三角形,故选项错误,符合题意.故选:D.小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.7、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.8、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.9、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.10、已知两点M1(x1,y1),M2(x2,y2),若x1+x2=0,y1+y2=0,则点M1与M2()A.关于y轴对称B.关于x轴对称C.关于原点对称D.以上均不对答案:C分析:首先利用等式求出x1=−x2,y1=−y2,然后可以根据横纵坐标的关系得出结果.∵x1+x2=0,y1+y2=0,∴x1=−x2,y1=−y2,∵两点M1(x1,y1),M2(x2,y2),∴点M1与M2关于原点对称,故选:C.小提示:本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点M1与M2横纵坐标的关系是解题关键.填空题11、如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,AB=5,BC=9,则BD=______.答案:√106分析:连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=9,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=√52+92=√106.所以答案是:√106.小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12、以原点为中心,把M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.答案:(−4,3)分析:建立平面直角坐标系,根据旋转的性质得出N点坐标,由此即可得出答案.解:如图:由旋转的性质可得:M点横坐标等于N点纵坐标的值,M点纵坐标的值等于N点横坐标的绝对值,又∵M(3,4),∴N(-4,3),所以答案是:(-4,3).小提示:此题考查有关点的坐标旋转的性质,结合坐标轴和旋转的特点确定坐标即可.13、如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.答案:2分析:点F 运动所形成的图象是一条直线,当OF ⊥F 1F 2时,垂线段OF 最短,当点F 1在x 轴上时,由勾股定理得:P 1O =F 1O =4√33,进而得P 1A =P 1F 1=AF 1=8√33,求得点F 1的坐标为(4√33,0),当点F 2在y 轴上时,求得点F 2的坐标为(0,-4),最后根据待定系数法,求得直线F 1F 2的解析式为y =√3x -4,再由线段中垂线性质得出F 1F 2=AF 1=8√33,在Rt △OF 1F 2中,设点O 到F 1F 2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×ℎ,即12×4√33×4=12×8√33×ℎ,解得h =2,根据垂线段最短,即可得到线段OF 的最小值为2.解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF =60°,PF =PA ,∴△APF 是等边三角形,∴AP =AF ,如图,当点F 1在x 轴上时,△P 1AF 1为等边三角形,则P 1A =P 1F 1=AF 1,∠AP 1F 1=60°,∵AO ⊥P 1F 1,∴P 1O =F 1O ,∠AOP 1=90°,∴∠P 1AO =30°,且AO =4,由勾股定理得:P 1O =F 1O =4√33, ∴P 1A =P 1F 1=AF 1=8√33, ∴点F 1的坐标为(4√33,0), 如图,当点F 2在y 轴上时,∵△P 2AF 2为等边三角形,AO ⊥P 2O ,∴AO =F 2O =4,∴点F 2的坐标为(0,-4),∵tan∠OF 1F 2=OF 2OF 1=4√33=√3,∴∠OF 1F 2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F 1F 2时,线段OF 最短,设直线F 1F 2的解析式为y =kx +b , 则{4√33k +b =0b =−4,解得{k =√3b =−4, ∴直线F 1F 2的解析式为y =√3x -4,∵AO =F 2O =4,AO ⊥P 1F 1,∴F 1F 2=AF 1=8√33, 在Rt △OF 1F 2中,OF ⊥F 1F 2,设点O 到F 1F 2的距离为h ,则12×OF 1×OF 2=12×F 1F 2×ℎ,∴12×4√33×4=12×8√33×ℎ,解得h =2,即线段OF的最小值为2,故答案为2.小提示:本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.14、已知点P(m−2,m)关于原点对称的点在第三象限,则m的取值范围是_______.答案:m>2分析:根据关于原点对称的点的性质可得点P在第一象限,进而得出不等式组,再解不等式组即可.解:∵点P(m−2,m)关于原点对称的点在第三象限,∴点P(m−2,m)在第一象限,∴{m−2>0,m>0解得:m>2,所以答案是:m>2.小提示:此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.15、如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△AB,则线段B1D的长度为______.A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,OD=12答案:1.5cm##3cm2分析:先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出ODAB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,则问题得解.=12∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=√OA2+OB2=5cm,∴OD=1AB=2.5cm,2∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.所以答案是:1.5cm.小提示:本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握勾股定理是解题的关键.解答题16、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.答案:(1)画图见解析,(2)画图见解析分析:(1)分别确定A,B向右平移4个单位后的对应点A1,B1,再连接A1B1即可;(2)分别确定A,B绕原点O旋转180°后的对应点A2,B2,再连接A2B2即可.解:(1)如图,线段A1B1即为所求作的线段,(2)如图,线段A2B2即为所求作的线段,小提示:本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键. 17、如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.答案:(1)A(-2,0),B(-1,√3),C(0,0)(2)A′(−1,√3),B′(1,√3)分析:(1)作高线BC,根据等边三角形的性质和勾股定理求OC和BC的长,写出三点的坐标,注意象限的符号问题;(2)如图2,由旋转可知:A′与B重合,B与B′关于y轴对称,可得:A′,B′的坐标.(1)解:如图1,过B作BC⊥OA于C,∵△AOB是等边三角形,且OA=2,OA=1,∴OC=12由勾股定理得:BC=√22−12=√3,∴A(−2,0),B(−1,√3),O(0,0);(2)解:如图2,∵∠AOB=60°,OA=OB,∴A′与B重合,∴A′(−1,√3),由旋转得:∠BOB′=60°,OB=OB′,∵∠AOD=90°,∴∠BOD=30°,∴∠DOB′=30°,∴BB′⊥OD,DB=DB′,∴B′(1,√3).小提示:本题考查了坐标与图形变换、等边三角形的性质、旋转的性质,熟练掌握旋转和等边三角形的性质是关键,并注意点所在象限的符号问题.18、如图,一伞状图形,已知∠AOB=120°,点P是∠AOB角平分线上一点,且OP=2,∠MPN=60°,PM与OB交于点F,PN与OA交于点E.(1)如图一,当PN与PO重合时,探索PE,PF的数量关系(2)如图二,将∠MPN在(1)的情形下绕点P逆时针旋转α度(0<α<60°),继续探索PE,PF的数量关系,并求四边形OEPF的面积.答案:(1)PE=PF,证明详见解析;(2)PE=PF,√3分析:(1)根据角平分线定义得到∠POF=60°,推出△PEF是等边三角形,得到PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,根据角平分线的性质得到PQ=PH,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF,S四边形OEPF=S四边形OQPH,求得OQ=1,QP=√3,根据三角形的面积公式即可得到结论.解:(1)∵∠AOB=120°,OP平分∠AOB,∴∠POF=60°,∵∠MPN=60°,∴∠MPN=∠FOP=60°,∴ΔPEF是等边三角形,∴PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,∵OP平分∠AOB,∴PQ=PH,∠PQO=∠PHO=90°,∵∠AOB=120°,∴∠QPH=60°,∴∠QPE+∠FPH+∠EPH,∴∠QPE=∠EPF,在ΔQPE与ΔHPF中{∠EQP=∠FHP ∠QPE=∠HPFPQ=PH,∴ΔQPE≌ΔHPF(AAS),∴PE=PF,S四边形OEPF =S四边形OQPH,∵PQ⊥OA,PH⊥OB,OP平分∠AOB,∴∠QPO=30°,∴OQ=1,QP=√22−12=√3,∴SΔOPQ=12×1×√3=√32,∴四边形OEPF的面积=2SΔOPQ=√3小提示:本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.。
人教版九年级数学上册第二十三章旋转必刷常考题附答案一.选择题(共5小题)1.如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°2.在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)3.如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD4.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°5.如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A 依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)二.填空题(共5小题)6.如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=.7.如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为.8.如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB交B′C′于点D,若∠BAB ′=40°,则∠C′DC的度数是°.9.如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是.10.如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是.三.解答题(共5小题)11.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.12.如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.13.如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D→D经过的路径;(2)所画图形是对称图形;(3)写出所画图形围成的面积.(结果保留π)14.如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.15.在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点A时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.2022-2023学年上学期初中数学人教版九年级期末必刷常考题之旋转参考答案与试题解析一.选择题(共5小题)1.如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.2.在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)【考点】关于原点对称的点的坐标.【专题】平面直角坐标系;平移、旋转与对称;模型思想;应用意识.【分析】根据关于原点对称的两个点的坐标之间的关系,即纵横坐标均互为相反数,可得答案.【解答】解:点P(3,﹣1)关于坐标原点中心对称的点P′的坐标为(﹣3,1),故选:C.【点评】本题考查关于原点对称的点的坐标,掌握关于原点对称的两个点坐标之间的关系是得出正确答案的前提.3.如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD【考点】全等三角形的判定与性质;旋转的性质.【专题】平移、旋转与对称;运算能力;推理能力.【分析】由旋转的性质可得出∠ADC=∠ABE,AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,得出△CAE和△DAB都是等边三角形,可判断A,B,C选项正确,则可得出结论.【解答】解:∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴∠ADC=∠ABE,∵∠ABE+∠ABC=180°,∴∠ADC+∠ABC=180°,故选项正确,不符合题意,∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,∴△CAE和△DAB都是等边三角形,∴∠ACD=∠AEB=60°,∠ACE=60°,∴∠BCD=120°,故B选项正确,不符合题意;∵△ACE为等边三角形,∴AC=CE=BE+BC,又∵BE=CD,∴AC=CD+BC,故C选项正确,不符合题意,∵BD=AB,AB≠AE,∴AE≠BD,故D选项错误,符合题意.故选:D.【点评】本题主要考查旋转的性质,等边三角形的判定与性质,熟练掌握旋转的性质是解题的关键.4.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°【考点】等腰三角形的性质;旋转的性质.【专题】图形的相似;应用意识.【分析】根据图形的旋转性质,得AB=AB′,已知AB′=CB′,结合等腰三角形的性质及三角形的外角性质,得∠B、∠C的关系为解决问题的关键.【解答】解:∵AB′=CB′,∴∠C=CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴C=24°,∴∠C′=∠C=24°,故选:D.【点评】本题主要考查了等腰三角形的性质及图形的旋转性质.5.如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A 依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)【考点】规律型:点的坐标;坐标与图形变化﹣旋转.【专题】规律型;平移、旋转与对称;几何直观;运算能力;推理能力.【分析】分析A1,A2,A3,A4,A5点坐标,找到规律求解.【解答】解:根据图形分析,从A开始旋转,当旋转到A4,时,A回到矩形的起始位置,4次一循环.A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0),A7(9,0),A8(11,2),A9(14,1),A10(15,0),A11(15,0),A12(17,2),A4n+1(6n+2,1),A4n+2(6n+3,0),A4n+3(6n+3,0),A4n+4(6n+5,0),当A2021时,即4n+1=2021,解得n=505,∴横坐标为6n+2=6×505+2=3032,纵坐标为1,则A2021的坐标(3032,1),故选:B.【点评】本题主要考查图形的旋转变换,解题关键是找到图形在旋转的过程中,点坐标变化规律进而求解.二.填空题(共5小题)6.如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=30°.【考点】多边形内角与外角;旋转对称图形.【专题】平移、旋转与对称;几何直观.【分析】依据多边形内角和公式求得正六边形每个角的度数,再根据角的和差关系进行计算即可.【解答】解:由旋转可得,该多边形是正六边形,∴该正六边形每个角为=120°,∴∠ABC=120°﹣90°=30°,故答案为:30°.【点评】本题主要考查了旋转对称图形,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.7.如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】连接FH,由正方形的性质得出∠B=∠C=90°,AB=BC,由旋转的性质得出EF=EH,证明Rt△EBF≌Rt△HCE(HL),得出∠EFB=∠HEC,证出∠FEH=90°,由勾股定理可得出答案.【解答】解:连接FH,∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC,∵AF=2,BF=4,∴AB=6,∵BE=2,∴CE=4,∴BF=CE,∵将△BEF绕点E顺时针旋转,得到△GEH,∴EF=EH,在Rt△EBF和Rt△HCE中,,∴Rt△EBF≌Rt△HCE(HL),∴∠EFB=∠HEC,∵∠EFB+∠BEF=90°,∴∠BEF+∠CEH=90°,∴∠FEH=90°,∵BF=4,BE=2,∴EF===2,∴FH=EF=2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质,勾股定理.8.如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB交B′C′于点D,若∠BAB′=40°,则∠C′DC的度数是40°.【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】由旋转的性质得到∠BAC=∠B′AC′,∠C=∠C′,进而推出∠CAC′=40°,根据三角形内角和定理证得∠C′DC=∠CAC′,即可求得∠C'DC的度数.【解答】解:∵将△ABC绕点A逆时针旋转得到△AB'C',∴△ABC≌△AB'C',∴∠BAC=∠B′AC′,∠C=∠C′,∵∠BAB'=40°,∴∠CAC′=40°,∵∠C'DC=180°﹣∠DEC′﹣∠C′,∠CAC′=180°﹣C﹣∠AEC,∠DEC′=∠AEC,∠C′DC=∠CAC′=40°,故答案为:40.【点评】本题主要考查了旋转的性质,三角形内角和定理,能灵活运用旋转的性质是解决问题的关键.9.如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是4.【考点】正方形的性质;轴对称﹣最短路线问题;旋转的性质.【专题】图形的全等;平移、旋转与对称;推理能力.【分析】连接BF,过点F作FG⊥AB交AB延长线于点G,通过证明∴△AED≌△GFE (AAS),确定F点在BF的射线上运动,作点C关于BF的对称点C',由三角形全等得到∠CBF=45°,从而确定C'点在AB的延长线上,当D,F,C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,求出DC'=4即可.【解答】解:连接BF,过点F作FG⊥AB交AB延长线于点G,∵将ED绕点E顺时针旋转90°到EF,∴EF⊥DE,且EF=DE,∴∠EDA=∠FEG,在△AED与△GFE中,,∴△AED≌△GFE(AAS),∴FG=AE,∴F点在BF的射线上运动,作点C关于BF的对称点C',∵EG=DA,FG=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC'的角平分线,即F点在∠CBC'的角平分线上运动,∴C'点在AB的延长线上,当DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,∴DC'===4,故答案为4.【点评】本题考查了旋转的性质,正方形的性质,轴对称求最短路径,能够将线段和通过轴对称转化为共线线段是解题的关键.10.如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】过点F作FH⊥CD于H,如图,利用正方形的性质得DA=CD,∠D=90°,再根据旋转的性质得EA=EF,∠AEF=90°,接着证明△ADE≌△EHF得到DE=FH=2,AD=EH,所以EH=DC,则DE=CH=2,然后利用勾股定理计算FC的长.【解答】解:过点F作FH⊥于H,如图,∵四边形ABCD为正方形,∴DA=CD,∠D=90°,∵AE绕点E顺时针旋转90°得到EF,∴EA=EF,∠AEF=90°,∵∠DAE+∠AED=90°,∠FEH+∠AED=90°,∴∠EAD=∠FEH,在△ADE和△EHF中,,∴△ADE≌△EHF(AAS),∴DE=FH=2,AD=EH,∴EH=DC,即DE+CE=CH+EC,∴DE=CH=2,在Rt△CFH中,FC===2,【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三.解答题(共5小题)11.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定;旋转的性质.【专题】图形的全等;多边形与平行四边形;推理能力.【分析】(1)由旋转的性质可得CB=CE,AB=DE=BF,由“SSS”可证△ABC≌△CFD;(2)延长BF交CE于点G,可证BF∥ED,由一组对边平行且相等可证四边形BEDF 是平行四边形.【解答】证明:(1)∵点F是边AC中点,∴CF=AC,∵∠BCA=30°,∴BA=AC,∠A=60°,∴AB=CF,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴AC=CD,∠ACD=60°,∴∠ACB=∠DCE,在△ABC和△CFD中,,∴△ABC≌△CFD(SAS);(2)延长BF交CE于点G,由(1)得,FC=BF,∴∠BCF=∠FBC=30°,∵∠BCE=60°,∴∠BCE+∠CBG=∠BGE=90°,∵∠DEC=∠ABC=90°∴∠BGE=∠DEC,∴BF∥ED,∵,AB=DE,∴BF=DE,∴四边形BEDF是平行四边形.【点评】本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定等知识,灵活运用这些知识进行推理是本题的关键.12.如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.【考点】全等三角形的判定与性质;矩形的性质;旋转的性质.【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;推理能力.【分析】证明Rt△BDA≌Rt△BDG,得到∠ABD=∠GBD,再利用矩形性质求解.【解答】证明:∵旋转矩形ABCD得到矩形GBEF,∴AB=BG,∠A=∠DGB=90°,在Rt△BDA和Rt△BDG中,,∴Rt△BDA≌Rt△BDG(HL),∴∠ABD=∠GBD,∵四边形ABCD是矩形,∴∠ABD=∠BDH,∴∠BDH=∠HBD,∴DH=BH.【点评】本题主要考查了旋转的性质、矩形的性质、解题关键是证明Rt△BDA≌Rt△BGA,得到∠ABD=∠GBD,再利用矩形性质求解.13.如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称图形;(3)写出所画图形围成的面积.(结果保留π)【考点】作图﹣旋转变换.【专题】平移、旋转与对称;几何直观;运算能力.【分析】(1)根据要求画出图形即可.(2)根据轴对称图形的定义判断即可.S+S﹣S矩形,利用扇形的面积公式(3)根据所画图形的面积=S计算可得.【解答】解:(1)点D→D1→D2→D经过的路径如图所示.(2)所画图形是轴对称图形;故答案为:轴.S+S﹣S矩形(3)所画图形的面积=S半圆+=•π•42+×2﹣4×8=8π+4π+4π﹣32=16π﹣32.【点评】本题考查作图﹣旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.【考点】全等三角形的判定与性质;等腰三角形的性质;勾股定理;旋转的性质.【专题】图形的全等;等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】(1)先根据∠DBE=∠ABC可知∠ABD+∠CBE=∠DBE=∠ABC,再由图形旋转的性质可知BE=BF,∠ABF=∠CBE,故可得出∠DBF=∠DBE,由全等三角形的性质即可得出△DBE≌△DBF,故可得出结论;(2)把△CBE逆时针旋转90°,由于△ABC是等腰直角三角形,故可知图形旋转后点C与点A重合,∠FAB=∠BCE=45°,所以∠DAF=90°,由(1)证DE=DF,再根据勾股定理即可得出结论.【解答】(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABF由△CBE旋转而成,∴BE=BF,∠ABF=∠CBE,∴∠DBF=∠DBE,在△DBE与△DBF中,,∴△DBE≌△DBF(SAS),∴DF=DE;(2)证明:∵将△CBE按逆时针方向旋转得到△ABF,∴BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AF重合,∴AF=EC,∴∠FAB=∠BCE=45°,∴∠DAF=90°,在Rt△ADF中,DF2=AF2+AD2,∵AF=EC,∴DF2=EC2+AD2,同(1)可得DE=DF,∴DE2=AD2+EC2.【点评】本题考查的是图形的旋转及勾股定理,熟知旋转前、后的图形全等是解答此题的关键.15.在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.【考点】含30度角的直角三角形;坐标与图形变化﹣旋转.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】(1)①根据旋转的性质得到OA=OA',∠A'=∠BAO=60°,推出△OAA'是等边三角形,于是得到α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,根据三角形的内角和定理得到∠OBA=30,根据勾股定理得到,求得,得到,于是得到答案;(2)如图2,等腰三角形的性质得到,推出∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,由垂直的定义得到结论.【解答】解:(1)①由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,∵∠BAO=60°,∴∠OBA=30°,在Rt△OAB中,∠OBA=30°,∴AB=2OA=4,∴,∴,又∵∠AOA'=60°,∴∠B'OC=90°﹣∠AOA'=30°,∵∠B'CO=90°,∴,∴,∴;(2)AA'⊥BB',理由:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴,∵∠BOA'=90°﹣α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB'.【点评】主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和定理,解决问题的关键是熟练掌握旋转的性质.考点卡片1.规律型:点的坐标规律型:点的坐标.2.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从4.含30度角的直角三角形(1)含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.5.直角三角形斜边上的中线(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可以用来判定直角三角形.6.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.7.多边形内角与外角(1)多边形内角和定理:(n﹣2)•180°(n≥3且n为整数)此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.(2)多边形的外角和等于360①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)•180°=360°.8.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.9.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.10.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.11.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.13.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(214.关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.15.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.16.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等。
第3单元旋转压轴精选30题一.选择题(共8小题)1.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75°B.60°C.45°D.15°【答案】B【解答】解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△ABD经旋转后到达△ACE的位置,∴∠BAC等于旋转角,即旋转角等于60°.故选:B.2.如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D 为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1B.2C.3D.不能确定【答案】A【解答】解:如图所示,作EF⊥AD交AD延长线于F,作DG⊥BC,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,在△DCG与△DEF中,,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=2,BC=3,∴CG=BC﹣AD=3﹣2=1,∴EF=1,∴△ADE的面积是:×AD×EF=×2×1=1.故选:A.3.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心(对角线的交点),则图中四块阴影面积的和为()A.2cm2B.4cm2C.6cm2D.8cm2【答案】B【解答】解:如图,连接AP,AN,点A是正方形的对角线的交点.则AP=AN,∠APF=∠ANE=45°,∵∠P AF+∠FAN=∠FAN+∠NAE=90°,∴∠P AF=∠NAE,∴△P AF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选:B.4.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣1【答案】D【解答】方法一:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,=×OD•AD=,∴S△ADO∴四边形AB1OD的面积是=2×=﹣1,方法二:解:∵四边形ABCD是正方形,∴AC=,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=﹣1,=•OB1•CB1=(﹣1)2,∴S△OB1C=AD•AC=×1×1=,∵S△ADC=S△ADC﹣S△OB1C=﹣(﹣1)2=﹣1;∴S四边形AB1OD故选:D.5.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π【答案】D【解答】解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:+2π=6π,2015÷4=503余3顶点A转动2015次经过的路线长为:6π×504=3024π.故选:D.6.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A.1:B.1:2C.:2D.1:【答案】B【解答】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=3x,根据勾股定理,PP′===2x,∴PP′=PB=2x,解得PB=2x,∴P′A:PB=x:2x=1:2.故选:B.7.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°【答案】B【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、C、D都正确,不能与其自身重合的是B.故选:B.8.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤D.①②③【答案】A【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S 四边形AOBO′=S△AOO′+S△OBO′=×3×4+×42=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O 旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32=6+,则S△AOC故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.二.填空题(共16小题)9.如图,在Rt△ABC中,已知∠C=90°,∠B=30°,点D在边AB上,,把△ADC绕点D逆时针旋转m(0°<m<180°)度后,如果点A恰好落在初始Rt△ABC的边上,那么m=60°或120°.【答案】60°或120°.【解答】解:如图,D以为圆心,以AD为半径画圆,分别交AC于A1,交BC于A2、交DB于A3.∵∠B=30°,∠C=90°,∴∠A=60°且AD=A1D,∴△AA1D是等边三角形,∴①旋转角m=∠ADA1=60°.②在Rt△BDA2中,∵BD=AD,且∠B=30°,∴BC与圆相切于A点,∴∠BDA2=60°,旋转角m=∠ADA2=180°﹣∠BDA2=120°.③当旋转到A3时,刚好旋转了180°,不符合题意,.故答案为:60°或120°.10.如图,△ABC中,∠ACB=90°,把△ABC绕点C顺时针旋转到△A1B1C的位置,A1B1交直线CA于点D.若AC=6,BC=8,当线段CD的长为6或5或时,△A1CD是等腰三角形.【答案】见试题解答内容【解答】解:三角形是等腰三角形,有如下三种情况:①当CD=A1C=AC=6时,三角形是等腰三角形;②当CD=A1D时,∵∠B=90°﹣∠BCB1=∠ACB1,∠B=∠B1,∴∠B1=∠B1CD,∴B1D=CD.∵CD=A1D,∴CD=A1B1=5时,三角形是等腰三角形;③当A1C=A1D时,如图.过点C作CE⊥A1B1于E.∵△A1B1C的面积=×6×8=×10×CE,∴CE=4.8.在△A1CE中,∠A1EC=90°,由勾股定理知A1E==3.6,∴DE=6﹣3.6=2.4.在△CDE中,∠CED=90°,由勾股定理知CD==.故当线段CD的长为6或5或时,△A1CD是等腰三角形.11.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△P AC 绕点A逆时针旋转60°后,得到△P′AB,则点P与P′之间的距离为6,∠APB=150°.【答案】见试题解答内容【解答】解:连接PP′,如图,∵△P AC绕点A逆时针旋转60°后,得到△P′AB,∴∠P AP′=60°,P A=P′A=6,P′B=PC=10,∴△P AP′为等边三角形,∴PP′=PA=6,∠P′PA=60°,在△BPP′中,P′B=10,PB=8,PP′=6,∵62+82=102,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.故答案为6,150°.12.如图,边长为1的正方形ABCD绕点A逆时针旋转30°,得到正方形AB′C′D′,则图中阴影部分的面积为.【答案】见试题解答内容【解答】解:设B′C′与CD交于点E,连接AE.在△AB′E与△ADE中,∠AB′E=∠ADE=90°,∵,∴△AB′E≌△ADE(HL),∴∠B′AE=∠DAE.∵∠BAB′=30°,∠BAD=90°,∴∠B′AE=∠DAE=30°,∴DE=AD•tan∠DAE=.=2S△ADE=2××=.∴S四边形AB′ED﹣S四边形AB′ED=1﹣=.∴阴影部分的面积=S正方形ABCD13.如图,在Rt△ABC中,已知:∠C=90°,∠A=60°,AC=3cm,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为cm2.【答案】见试题解答内容【解答】解:设A′B′交BC于D,在直角△DPB中,BP=AP=AC=3,∵∠A=60°设PD=x,则BD=2x,∵DP2+BP2=BD2,∴x2+32=(2x)2,∴DP=x=,∵B′P=BP,∠B=∠B′,∠B′PH=∠BPD=90°,∴△B′PH≌△BPD,∴PH=PD=,∵在直角△BGH中,BH=3+,∴GH=,BG=,=××=,S△BDP=×3×=,∴S△BGH∴S DGHP==cm2.14.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为15度.【答案】见试题解答内容【解答】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°﹣∠DBE=180°﹣30°=150°,∠BDC=(180°﹣∠CBD)=15°.故答案为15°.15.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为42cm.【答案】见试题解答内容【解答】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.16.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′=110°.【答案】见试题解答内容【解答】解:∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°﹣2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°;故答案为:110°.17.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是 1.5.【答案】见试题解答内容【解答】解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG=×3=1.5,∴DF=1.5.故答案为:1.5.18.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 1.6.【答案】见试题解答内容【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.19.如图,在平面直角坐标系中,已知点A(﹣3,0),B(0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O最远距离的坐标是(21,0),第2012个三角形离原点O最远距离的坐标是(8049,0).【答案】见试题解答内容【解答】解:∵点A(﹣3,0),B(0,4),∴OB=4,OA=3,∴AB=5,∵对△OAB连续作如图所示的旋转变换,∴△OAB每三次旋转后回到原来的状态,并且每三次向前移动了3+4+5=12个单位,而2012=3×670+2,∴第⑤个三角形和第2012个三角形都和三角形②的状态一样,∴2012个三角形离原点O最远距离的点的横坐标为670×12+9=8049,纵坐标为0.第⑤三角形离原点O最远距离的点的横坐标为12+9=21,纵坐标为0.故答案为(21,0),(8049,0).20.已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN 交AC边于点N,且满足∠MDN=60°,则△AMN的周长为2.【答案】见试题解答内容【解答】证明:如图,在AC延长线上截取CM1=BM,∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°,∴∠DCM1=90°,∵BD=CD,∵在Rt△BDM≌Rt△CDM1中,BD =CD ∠ABD =∠DCM 1=90°CM 1=BM ,∴Rt △BDM ≌Rt △CDM 1(SAS ),得MD =M 1D ,∠MDB =∠M 1DC ,∴∠MDM 1=120°﹣∠MDB +∠M 1DC =120°,∴∠NDM 1=60°,∵MD =M 1D ,∠MDN =∠NDM 1=60°,DN =DN ,∴△MDN ≌△M 1DN ,∴MN =NM 1,故△AMN 的周长=AM +MN +AN =AM +AN +NM 1=AM +AM 1=AB +AC =2.故答案为:2.21.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC =90°,AB =AC =,则图中阴影部分的面积等于﹣1.【答案】见试题解答内容【解答】解:∵△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,∠BAC =90°,AB =AC =,∴BC =2,∠C =∠B =∠CAC ′=∠C ′=45°,∴AD ⊥BC ,B ′C ′⊥AB ,∴AD =BC =1,AF =FC ′=sin45°AC ′=AC ′=1,∴图中阴影部分的面积等于:S △AFC ′﹣S △DEC ′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.22.已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是40°.【答案】见试题解答内容【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故填:40°.23.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是19.【答案】见试题解答内容【解答】解:∵△ABC是等边三角形,∴AC=AB=BC=10,∵△BAE由△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,∴DE=BD=9,∴△AED的周长=AE+AD+DE=AC+BD=19.故答案为:19.24.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤S四边形AEPF=S△ABC.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的序号有①②③⑤.【答案】见试题解答内容【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=∠BAC=45°,AP=BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②由①知,△AEP≌△CFP,∴∠APE=∠CPF.正确;③由①知,△AEP≌△CFP,∴PE=PF.又∵∠EPF=90°,∴△EPF是等腰直角三角形.正确;④只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;⑤∵△AEP≌△CFP,同理可证△APF≌△BPE.=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.正确.∴S四边形AEPF故正确的序号有①②③⑤.三.解答题(共6小题)25.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据SAS,易证△AFG≌△AFE,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD 上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.【答案】见试题解答内容【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.(3)猜想:DE2=BD2+EC2,证明:把△AEC绕点A顺时针旋转90°得到△ABE′,连接DE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.26.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【答案】见试题解答内容【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.27.阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α(0°≤α≤360°),连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?【答案】见试题解答内容【解答】解:操作与证明:(1)BE=AD.∵△C′DE绕点C按顺时针方向旋转30°,∴∠BCE=∠ACD=30°,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.(2)BE=AD.∵△C′DE绕点C按顺时针方向旋转的角度为α,∴∠BCE=∠ACD=α,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.猜想与发现:当α为180°时,线段AD的长度最大,等于a+b;当α为0°(或360°)时,线段AD的长度最小,等于a﹣b.28.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC 按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.【答案】见试题解答内容【解答】(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABE′由△CBE旋转而成,∴BE=BE′,∠ABE′=∠CBE,∴∠DBE′=∠DBE,在△DBE与△DBE′中,∵,∴△DBE≌△DBE′(SAS),∴DE′=DE;(2)证明:如图所示:把△CBE逆时针旋转90°,连接DE′,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AE′重合,∴AE′=EC,∴∠E′AB=∠BCE=45°,∴∠DAE′=90°,在Rt△ADE′中,DE′2=AE′2+AD2,∵AE′=EC,∴DE′2=EC2+AD2,同(1)可得DE=DE′,∴DE2=AD2+EC2.29.图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB =90°,DE交AC于点G,GM⊥AB于M.(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由.【答案】见试题解答内容【解答】(1)证明:∵∠ACB=90°,D是AB的中点.∴CD=AD=BD,又∵∠B=90°﹣∠A=60°,∴△BCD是等边三角形.又∵CN⊥DB,∴DN=DB.∵∠EDF=90°,△BCD是等边三角形,∴∠ADG=30°,而∠A=30°.∴GA=GD.∵GM⊥AB,∴AM=AD.又∵AD=DB,∴AM=DN.(2)解:(1)的结论依然成立.理由如下:∵DF∥AC,∴∠1=∠A=30°,∠AGD=∠GDH=90°,∴∠ADG=60°.∵∠B=60°,AD=DB,∴△ADG≌△DBH,∴AG=DH.又∵GM⊥AB,HN⊥AB,∴∠GMA=∠HND=90°,∵∠1=∠A,∴Rt△AMG≌Rt△DNH,∴AM=DN.30.如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3时,求PQ的大小;(3)当点P在线段AC上运动时(P不与A重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.【答案】见试题解答内容【解答】解:(1)由题意知,△ABP≌△CQB,∴∠A=∠ACB=∠BCQ=45°,∠ABP=∠CBQ,AP=CQ,PB=BQ,∴∠PCQ=∠ACB+∠BCQ=90°,∠ABP+∠PBC=∠CPQ+∠PBC=90°,∴△BPQ是等腰直角三角形,△PCQ是直角三角形.(2)当AB=4,AP:PC=1:3时,有AC=4,AP=,PC=3,∴PQ==2.(3)存在2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,∴PQ=PB,∵AP=CQ,∴PQ2=PC2+CQ2=P A2+PC2,故有2PB2=PA2+PC2.。
人教版九年级数学上册第23章第1节《图形的旋转》课后练习题(附答案) 第1课时1.填空:如图,钟表的时针在不停地旋转,从3时到5时,时针的旋转中心是点 , 旋转角等于 °,点B的对应点是点 .2.填空:如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点 ,旋转角是∠ ,点A 的对应点是点 .3.如图,扎西坐在旋转的秋千上,请在图中画出点A ,B ,C 的对应点A ′,B ′,C ′.第2课时(一)基本训练,巩固旧知1.填空:把一个平面图形绕着平面内某一点O 转动一个角度,就叫做图形的旋转,点O 叫做旋转 ,转动的角叫做旋转 .如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做旋转的 .2.填空: EDA C B(1)如图,△ABC 绕点A 旋转得到△ADE ,旋转中心 是点 ,点B 的对应点是点 ,点C的对应点是点 ,∠ 等于于旋转角;(2)如图,△ABC 绕点O 旋转得到△DEF ,旋转中心是点 ,点A 的对应点是点 ,点B 的对应点是点 ,点C 的对应点是点 ,∠ 等于于旋转角.3.利用“对应点与旋转中心所连线段的夹角等于旋转角”,画出下图中的旋转角,并用量角器量出旋转角的度数.4.如图,四边形ABCD 是正方形,以点A 为中心,把△ADE 顺时针旋转90°,利用图形旋转的性质,画出旋转后的图形.(先让生做4题,然后师出示旋转后的图形,并利用性质解释点D 转到了点B ,点E 转到了点F )第3课时(一)基本训练,巩固旧知 O .F E D A B C E D CB A1.填空:图形旋转的性质是:(1)旋转前后的图形 ; (2)对应点到旋转中心的距离 ;(3)对应点与旋转中心所连线段的夹角等于 .2.如图,以点O 为中心,把点P 顺时针旋转45°.3.如图,以点O 为中心,把线段AB 逆时针旋转90°.4.如图,以点O 为中心,把△ABC 顺时针旋转120°.5.如图,以点B 为中心,把△ABC 旋转180°.B AC B AC .O A B O ..O P .。
第23章旋转单元测试题一、用心填一填,你一定能填对!1.如图1,△ABC 是等腰直角三角形,D 是AB 上一点,△CBD 经旋转后到达△ACE 的位置,则旋转中心是________;旋转角度是______; 点B 的对应点是_______;点D 的对应点是_______;线段CB 的对应点 是_____;∠B 的对应角是___________;如果点M 是CB 的31, 那么经过上述旋转后,点M 移到了_________.2. 3点12分和3点40分时,时针与分针构成的角各是_______度和_______度.3.请你写出5个成中心对称的汉字,填在下面的横线上__________________________.4.如图2所示的四个图形中,图形(1)与图形________成轴对称;图形(1)与图形______成中心对称.(填写符合要求的图形所对应的符号)5.如图3所示,△ABC 绕点A 逆时针旋转某一角度得到△ADE,若∠1=∠2=∠3=20°,则旋转角为________度.6.如图4所示,线段AB=4cm,且CD ⊥AB 于O,则阴影部分的面积是________.7.如图5①,将字母“V ”沿_______平移________格会得到字母“W ”。
如图5②,将字母“V ”绕点_______旋转_______度后得到字母N,绕点_______旋转_______度后会得到字母X.(图中E 、F 分别是其所在线段的中点)EA BCDEN M 图1 ABCED1 2 3图3A (1)(2)(3)(4)图2AOCBD 图4.. EF A ①②图5图68.如图6是由面积为1的单位正三角形经过平移旋转,拼成由24个相同的三角形组成的正六边形,我们把面积为4的正三角形称为“希望杯”,则图中可数出________个不同的“希望杯”.9.在直角坐标系中,点A(2,-3)关于原点对称的坐标是_______________.10. 在下列图7的四个图案中,既是轴对称图形,又是中心对称图形的有_________个.图7二、精心选一选,你一定能选准!11.观察下列图形,其中是旋转对称图形的有( )A.1个B.2个C.3个D.4个(1) (2) (3) (4)12.你玩过扑克牌吗?你仔细观察过每张扑克牌中的图案吗?请你指出图案是中心对称图形的一组为( )A.黑桃6与黑桃9B.红桃6与红桃9C.梅花6与梅花9D.方块6与方块913.在平面直角坐标系中,点P(2,1)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限14.下列图形中,是.中心对称图形的为()ABC D15.下列图形中是中心对称图形的是A B C D16.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D17.下列图案都是由宁母“m”经过变形、组合而成的.其中不是中心对称图形的是( )18.将下面的直角梯形绕直线l旋转一周,可以得到右边立体图形的.B19.数学课上,老师让同学们观察如图8所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题23.10 《旋转》全章复习与巩固(培优篇)(专项练习)一、单选题1.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是( )A .M (1,﹣3),N (﹣1,﹣3)B .M (﹣1,﹣3),N (﹣1,3)C .M (﹣1,﹣3),N (1,﹣3)D .M (﹣1,3),N (1,﹣3)2.如图,在Rt △ABC 中,∠ACB =90°,AC BC ==△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A B .C D 3.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB Ð等于( ).A .120°B .135°C .150°D .160°4.如图,在Rt ABC V 中,90BAC Ð=°,AB AC =,点D 为BC 的中点,直角MDN Ð绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF V 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .45.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .B 2C .4D 16.如图,在平面直角坐标系中,Y OABC 的顶点A 在x 轴上,定点B 的坐标为(8,4),若直线经过点D (2,0),且将平行四边形OABC 分割成面积相等的两部分,则直线DE 的表达式是( )A .y=x-2B .y=2x-4C .y=x-1D .y=3x-67.如图,已知等腰直角三角形ABC 中,AC=BC ,把AB 绕点B 逆时针旋转一定角度到点D ,连接AD 、DC ,使得∠DAC=∠BDC ,当时,线段AC 的长 ( )A .3B .C .D 8.对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P (2,3)经1次斜平移后的点的坐标为(3,5).已知点A 的坐标为(2,0),点Q 是直线l 上的一点,点A 关于点Q 的对称点为点B ,点B 关于直线l 的对称点为点C ,若点B 由点A 经n 次斜平移后得到,且点C 的坐标为(8,6),则△ABC 的面积是( )A .12B .14C .16D .189.在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---10.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()2,0,()0,2,()2,0-.一个电动玩具从原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称;第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;….电动玩具照此规律跳下去,则点2021P 的坐标是( ).A .()4,-0B .()4,0C .()4,4D .()0,4-二、填空题11.如图,已知△ABC 中,∠C =90°,AC =BC =△ABC 绕点A 逆时针反向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为_____.12.如图,在Rt △ABC 中,90ACB Ð=o ,30BAC Ð=o ,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.13.如图,在平行四边形ABCD 中,2AB =,60ABC Ð=°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是______.14.如图,点P 是等边三角形ABC 内一点,且PA =PB =PC个等边三角形ABC 的边长为________.15.如图,在矩形ABCD 中,5AB =,9BC =,E 是边AB 上一点,2AE =,F 是直线BC 上一动点,将线EF 绕点E 逆时针旋转90°得到线段EG ,连接CG ,DG ,则+CG DG 的最小值是________.16.如图,C 为线段AB 的中点,D 为AB 垂直平分线上一点,连接BD ,将BD 绕点D顺时针旋转60°得到线段DE ,连接AE ,若AB =6AE =,则CD 的长为 __________ .17.如图所示,抛物线y =x 2+2x ﹣3顶点为Q ,交x 轴于点E 、F 两点(F 在E 的右侧),T 是x 轴正半轴上一点,以T 为中心作抛物线y =x 2+2x ﹣3的中心对称图形,交x 轴于点K 、L 两点(L 在K 的右侧),已知∠FQL =45°,则新抛物线的解析式为 __.18.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形AB 1C 1D 1 ;把正方形 A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形 A 2 B 2 C 2 D 2 (如图1(2));以此下去,则正方形 A n B n C n D n 的面积为________.三、解答题19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(1,1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,画出△ABC关于原点O对称的△A2B2C2,并写出点B2的坐标____________;(3)请在x 轴上找一点D 得到▱ACDB ,则点D 的坐标为________,若直线y =32-x +b 平分▱ACDB 的面积,则b =_______.20.如图,一伞状图形,已知120AOB Ð=°,点P 是AOB Ð角平分线上一点,且2OP =,60MPN Ð=°,PM 与OB 交于点F ,PN 与OA 交于点E .(1)如图一,当PN 与PO 重合时,探索PE ,PF 的数量关系(2)如图二,将MPN Ð在(1)的情形下绕点P 逆时针旋转a 度()060a <<°,继续探索PE ,PF 的数量关系,并求四边形OEPF 的面积.21.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB V V ≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE V 的面积,求S 的取值范围(直接写出结果即可).22.[问题提出](1)如图,ABC ADE V V ①、均为等边三角形,点D E 、分别在边AB AC 、上.将ADE V绕点A 沿顺时针方向旋转,连结BD CE 、.在图②中证明△≌△ADB AEC .[学以致用](2)在()1的条件下,当点D E C 、、在同一条直线上时,EDB Ð的大小为 度.[拓展延伸](3)在()1的条件下,连结CD .若6,4,BC AD ==直接写出DBC △的面积S 的取值范围.23.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM Ð=°,求线段AM 长的最大值及此时点P 的坐标.24.(1)观察理解:如图 1,ABC D 中,90,ACB AC BC Ð=°=,直线l 过点C ,点,A B 在直线l 同侧, ,BD l AE l ^^,垂足分别为,D E ,由此可得:90AEC CDB Ð=Ð=°,所 以90CAE ACE Ð+Ð=°, 又 因为90ACB Ð=°, 所以90BCD ACE Ð+Ð=°,所以CAE BCD Ð=Ð,又因为AC BC =,所以AEC CDB D @D ( );(请填写全等判定的方法)(2)理解应用:如图2,AE AB ^,且,AE AB BC CD =^,且BC CD =,利用(1)中的结论,请按照图中所标的数据计算图中实线所围成的图形的面积S =_________;(3)类比探究:如图 3, Rt ABC D 中,90ACB Ð=°,4AC =,将斜边AB 绕点A 逆时针旋转 90°至AB ¢,连接B C ¢,则AB C ¢D 的面积=_________ .(4)拓展提升:如图4,等边EBC D 中,3EC BC ==cm ,点O 在BC 上,且2OC =cm ,动点P 从点E 沿射线EC 以1cm/s 速度运动,连接OP ,将线段OP 绕点O 逆时针旋转 120°得到线段OF ,设点P 运动的时间为t 秒.①当t =________秒时,OF ∥ED ;②当t =________秒时,点F 恰好落在射线EB 上.参考答案1.C解:M 点与A 点关于原点对称,A 点与N 点关于x 轴对称,由平面直角坐标中对称点的规律知:M 点与A 点的横、纵坐标都互为相反数,N 点与A 点的横坐标相同,纵坐标互为相反数.所以M (-1,-3),N (1,-3).2.C【分析】连接EC ,过E 作EH ⊥BC 于H ,先利用勾股定理、旋转的性质可得2,60AB CAE =Ð=°,再根据等边三角形的判定与性质可得AE CE ==,然后根据勾股定理分别求出EH BE 、,由此即可得出答案.解:连接EC ,过E 作EH ⊥BC 于H ,在Rt △ABC 中,AC BC ==∴2AB ===,∴112AB =,由旋转可知:60AC AE CAE ==Ð=°,∴ACE V 是等边三角形,∴60AC AE EC ACE ===Ð=°,∴30BCE Ð=°,∴12EH EC ==∴CH ==∴BH BC CH =-=,∴1BE =====,∴1112BE AB +=+=故选:C.【点拨】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、,通过作辅助线,构造等边三角形是解题关键.3.C【分析】利用旋转变换的性质、勾股定理及其逆定理、等边三角形判定与性质等知识点,通过旋转的性质得出△APM为等边三角形以及△PMB是直角三角形,从而求得∠APB的度数.解:连接PM,如图,由旋转性质可知,△APC≌△AMB,∴AP=AM,MB=PC=10,∵∠MAP=60°,∴△APM是等边三角形,∴PM=AP=6,∵PB=8,∴MB2=PB2+MP2,∴△PMB是直角三角形,∴∠MPB=90°,∵∠MPA=60°,∴∠APB=150°.【点拨】本题主要考查了旋转变换的性质、勾股定理及其逆定理、等边三角形判定与性质等知识点,难度较大.通过旋转的性质得出△APM 为等边三角形以及△PMB 是直角三角形是解答本题的第一个关键.4.C【分析】根据等腰直角三角形的性质可得∠CAD =∠B =45°,根据同角的余角相等求出∠ADF =∠BDE ,然后利用“角边角”证明△BDE 和△ADF 全等,判断出③正确;根据全等三角形对应边相等可得DE =DF 、BE =AF ,从而得到△DEF 是等腰直角三角形,判断出①正确;再求出AE =CF ,判断出②正确;根据BE +CF =AF +AE ,利用三角形的任意两边之和大于第三边可得BE +CF >EF ,判断出④错误.解:∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∠B =45°,∵点D 为BC 中点,∴AD =CD =BD ,AD ⊥BC ,∠CAD =45°,∴∠CAD =∠B ,∠BDE +∠ADE =∠ADB =90°∵∠MDN 是直角,∴∠ADF +∠ADE =90°,∴∠ADF =∠BDE ,在△BDE 和△ADF 中,CAD B AD BD ADF BDE ÐÐìïíïÐÐî===,∴△BDE ≌△ADF (ASA ),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①正确;∵AE =AB -BE ,CF =AC -AF ,∴AE =CF ,故②正确;∵△BDE ≌△ADF∴BDE ADFS S =V V ∴12ADE ADF ADE BDE BDA ABC AEDF S S S S S S S =+=+==△△△△△△四边形故③正确;∵BE +CF =AF +AE >EF ,∴BE +CF >EF ,故④错误;综上所述,正确的是①②③,故选:C.【点拨】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质、三角形的三边关系、同角的余角相等,熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.5.B【分析】连接AE ,过点A 作AG ⊥AE ,截取AG =AE ,连接PG ,GE ,通过SAS 证明△AEF ≌△AGP ,得PG =EF =2,再利用勾股定理求出GE 的长,在△GPE 中,利用三边关系即可得出答案.解:连接AE ,过点A 作AG ⊥AE ,截取AG =AE ,连接PG ,GE ,∵将线段AF 绕着点A 顺时针旋转90°得到AP ,∴AF =AP ,∠PAF =90°,∴∠FAE +∠PAE =∠PAE +∠PAG =90°,∴∠FAE =∠PAG ,在△AEF 和△AGP 中,,AF AP FAE PAG AE AG =ìïÐ=Ðíï=î∴△AEF ≌△AGP (SAS ),∴PG =EF =2,∵BC =3,CE =2BE ,∴BE =1,在Rt △ABE 中,由勾股定理得:AE ==,∵AG =AE ,∠GAE =90°,∴GE =,在△GPE 中,PE >GE -PG ,∴PE 的最小值为GE -PG 2,故选:B .【点拨】本题主要考查了旋转的性质,全等三角形的判定与性质,三角形的三边关系等知识,作辅助线构造出全等三角形是解题的关键.6.A【分析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.解:∵点B 的坐标为(8,4),∴平行四边形的对称中心坐标为(4,2),设直线DE 的函数解析式为y=kx+b ,则4220k b k b +=ìí+=î,解得12k b =ìí=-î,∴直线DE 的解析式为y=x-2.故选:A .【点拨】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.7.D【分析】如图(见分析),先根据等腰直角三角形的性质可得45,BAC AC AB Ð=°=,再根据旋转的性质、等腰三角形的性质可得,45AB BD ADC BAC =Ð=Ð=°,然后根据三角形全等的判定定理与性质可得45,BEC ADC BE AD Ð=Ð=°=,从而可得,2,4BE AD AE DE BE AD ^====,最后利用勾股定理即可得.解:如图,过点C 作CE CD ^,交AD 于点E ,连接BE ,ABC Q V 是等腰直角三角形,AC BC =,45,BAC AB \Ð=°==,即AC AB =,由旋转的性质得:AB BD =,BAD BDA \Ð=Ð,DAC B B C C AC AD D \Ð+=ÐÐ+Ð,DAC BDC Ð=ÐQ ,45ADC BAC \Ð=Ð=°,CDE \V是等腰直角三角形,2,45CE CD DE CED \====Ð=°,又90DCE ACB Ð=Ð=°Q ,DCE ACE ACB ACE \Ð+Ð=Ð+Ð,即ACD BCE Ð=Ð,在BCE V 和ACD △中,BC AC BCE ACD CE CD =ìïÐ=Ðíï=î,()BCE ACD SAS \@V V ,45,BEC ADC BE AD \Ð=Ð=°=,90BED BEC CED \Ð=Ð+Ð=°,即BE AD ^,又AB BD =Q ,2AE DE \==(等腰三角形的三线合一),24BE AD DE \===,在Rt ABE △中,AB ==AC AB \===故选:D .【点拨】本题考查了等腰直角三角形的判定与性质、三角形全等的判定定理与性质、旋转的性质、勾股定理等知识点,通过作辅助线,构造等腰直角三角形和全等三角形是解题关键.8.A【分析】连接CQ ,根据中心和轴对称的性质和直角三角形的判定得到∠ACB =90,延长BC 交x 轴于点E ,过C 点作CF ⊥AE 于点F ,根据待定系数法得出直线的解析式进而解答即可.解:连接CQ ,如图:由中心对称可知,AQ =BQ ,由轴对称可知:BQ =CQ ,∴AQ =CQ =BQ ,∴∠QAC =∠ACQ ,∠QBC =∠QCB ,∵∠QAC +∠ACQ +∠QBC +∠QCB =180°,∴∠ACQ +∠QCB =90°,∴∠ACB =90°,∴△ABC 是直角三角形,延长BC 交x 轴于点E ,过C 点作CF ⊥AE 于点F ,如图,∵A (2,0),C (8,6),∴AF =CF =6,∴△ACF 是等腰直角三角形,∵18090ACE ACB Ð=°-Ð=°,∴∠AEC =45°,∴E 点坐标为(14,0),设直线BE 的解析式为y =kx +b ,∵C ,E 点在直线上,可得:14086k b k b ì+=ïí+=ïî,解得:114k b ì=-ïí=ïî,∴y =﹣x +14,∵点B 由点A 经n 次斜平移得到,∴点B (n +2,2n ),由2n =﹣n ﹣2+14,解得:n =4,∴B (6,8),∴△ABC 的面积=S △ABE ﹣S △ACE =12×12×8﹣12×12×6=12,故选:A .【点拨】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到B 的坐标是解本题的关键.9.A【分析】先求出C 点坐标,再设新抛物线上的点的坐标为(x ,y ),求出它关于点C 对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.解:当x =0时,y =5,∴C (0,5);设新抛物线上的点的坐标为(x ,y ),∵原抛物线与新抛物线关于点C 成中心对称,由20x x ´-=-,2510y y ´-=-;∴对应的原抛物线上点的坐标为(),10x y --;代入原抛物线解析式可得:()()21045y x x -=--×-+,∴新抛物线的解析式为:245y x x =--+;故选:A .【点拨】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.10.A【分析】根据题意,先求出前几次跳跃后1P 、2P 、3P 、4P 、5P 、6P 、7P的坐标,可得出规律,继而可求点2021P 的坐标.解:由题意得:点()14,0P 、()24,4P -、()30,4P -、()44,4P 、()54,0P -、()60,0P 、()74,0P ,∴点P 的坐标的变化规律是6次一个循环,∵20216336...5¸=,∴点2021P 的坐标是()4,-0.故选:A .【点拨】本题主要考查了中心对称及点的坐标的规律,解题的关键是求出前几次跳跃后点的坐标并总结出一般规律.11.1【分析】连接BB ′,设BC ′与AB ′交点为D ,根据∠C =90°,AC =BC =AB=2,根据旋转,得到∠AC ′B ′=∠ACB =90°,AC ′=AC =B ′C ′=BC ,AB =AB ′=2,∠BAB ′=60°,推出BC ′垂直平分AB ′,△ABB ′为等边三角形,得到C ′D 12=AB ′=1,'60ABB Ð=°,推出1''302ABD B BD ABB Ð=Ð=Ð=°,得到BD =′C ′B =C ′D +BD =1.解:连接BB ′,设BC ′与AB ′交点为D ,如图,△ABC中,∵∠C=90°,AC=BC=∴AB===2,∵△ABC绕点A逆时针反向旋转60°到△AB′C′的位置,∴∠AC′B′=∠ACB=90°,AC′=AC=B′C′=BC,AB=AB′=2,∠BAB′=60°,∴BC′垂直平分AB′,△ABB′为等边三角形,∴C′D12=AB′=1,'60ABBÐ=°,∴1''302ABD B BD ABBÐ=Ð=Ð=°,∴BD=∴C′B=C′D+BD=1故答案为1【点拨】本题考查了旋转图形全等的性质,线段垂直平分线判定和性质,等边三角形的判定与性质,等腰直角三角形的性质,含30°角的直角三角形边的性质,作辅助线构造出等边三角形,求出'C D,BD的长是解题的关键.12.3【分析】通过已知求得D在以B为圆心,BD长为半径的圆上运动,∵E为AD的中点,∴E在以BA中点为圆心,12B D长为半径的圆上运动,再运用圆外一定点到圆上动点距离的最大值=定点与圆心的距离+圆的半径,求得CE的最大值.解:∵BC=2,线段BC绕点B旋转到BD,∴BD =2,∴112BD =.由题意可知,D 在以B 为圆心,BD 长为半径的圆上运动,∵E 为AD 的中点,∴E 在以BA 中点为圆心,12B D 长为半径的圆上运动,CE 的最大值即C 到BA 中点的距离加上12BD 长.∵90ACB Ð=o ,30BAC Ð=o ,BC =2,∴C 到BA 中点的距离即122AB =,又∵112BD =,∴CE 的最大值即1121322AB BD +=+=.故答案为3.【点拨】本题考查了与圆相关的动点问题,正确识别E 点运动轨迹是解题的关键.13【分析】以AB 为边向右作等边△ABK ,连接EK ,证明△ABF ≌△KBE (SAS ),推出AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,EK 的值最小,求出EK 即可解决问题.解:如图,以AB 为边向右作等边△ABK ,由60ABC Ð=°可知点K 在BC 上,连接EK ,∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,EK的值最小,即AF的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAK=∠AKB=60°,∴∠AKE=30°,∵AB=AK=2,AK=1,∴AE=12∴EK=,∴AF【点拨】本题考查旋转的性质,平行四边形的性质,等边三角形的性质,全等三角形的判定和性质,垂线段最短,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.14【分析】将三角形BCP绕点B逆时针旋转60°得三角形BDA,过B作BH⊥直线AP于H,先证明三角形BDP为等边三角形,利用勾股定理逆定理得∠DPA=90°,进而得∠BPH=30°,利用勾股定理解直角三角形即可得答案.解:将三角形BCP绕点B逆时针旋转60°,得三角形BDA,BC边落在AB上,过B作BH ⊥直线AP 于H ,如图所示,由旋转知,△BDP 为等边三角形,AD =PC =,∴BP =PD =BD ,∠BPD =60°,∵PA ,∴222PD PA AD +=,∴∠APD =90°,∴∠BPH =30°,∴BH =12BP =,由勾股定理得:AB.【点拨】本题考查了等边三角形的性质与判定、勾股定理逆定理、旋转变换的应用等知识点,解题关键是作旋转变换,将分散的条件集中在同一三角形中.15.13【分析】将FBE V 绕点E 逆时针旋转90°得到GHE △,延长GH 交BC 于点M ,延长CB 至点N ,使CM NM =,连接DN ,由矩形的条件和旋转的性质可得3EH EB ==,90B BEH EHG Ð=Ð=Ð=°,可说明四边形EBMH 是矩形,然后由正方形的性质可得到12CN =,GM CN ^,从而说明GM 是CN 的垂直平分线,进一步推导出CG DG NG DG ND +=+³,当点N ,G ,D 三点共线时,+CG DG 取最小值,最后由勾股定理可求解.解:将FBE V 绕点E 逆时针旋转90°得到GHE △,延长GH 交BC 于点M ,延长CB 至点N ,使CM NM =,连接DN ,∵在矩形ABCD 中,5AB =,9BC =,2AE =,∴3EB AB AE =-=,90B BCD Ð=Ð=°,5CD =,∴3EH EB ==,90B BEH EHG Ð=Ð=Ð=°,∴90EHM Ð=°,∴四边形EBMH 是矩形,∴3BM EH ==,90BMH Ð=°,∴()229312CN CM ==´-=,GM CN ^,∴GM 是CN 的垂直平分线,∴CG NG =,∵F 是直线BC 上一动点,∴CG DG NG DG ND +=+³,∴当点N ,G ,D 三点共线时,+CG DG 取最小值ND ,在Rt NCD V 中,12CN =,5CD =,13ND ===,∴+CG DG 的最小值是13.故答案为:13.【点拨】本题考查了旋转的性质,矩形的性质,垂直平分线,三角形三边的关系,勾股定理等知识,采用了转化的思想方法.确定点C 关于GM 的对称点N 是解题的关键.16.9【分析】连接AD 、BE ,过点E 作EH ⊥AB 于H ,由旋转知,DE =DB ,∠BDE =60°,可证△BDE 是等边三角形,利用等边对等角结合三角形内角和为180°求出18018022ADB ADE BAD EAD °-а-ÐÐ=Ð=,,从而得到3601502BDE BAE °-ÐÐ==°,进而可求出∠HAE =30°.再根据含30度角的直角三角形的性质可求出EH ,AH ,再利用勾股定理即可先后求出BE 和CD .解:如图,连接AD 、BE ,过点E 作EH ⊥AB 于H ,由旋转知,DE =DB ,∠BDE =60°,∴△BDE 是等边三角形,∴BE =BD .∵C 为AB 中点,点D 在AB 的垂直平分线上,∴AD =BD =DE ,12BC AB ==∴18018022ADB ADE BAD EAD °-а-ÐÐ=Ð=,,∴()36036022ADB ADE BDE BAD EAD °-Ð+а-ÐÐ+Ð==,即3602BDE BAE °-ÐÐ=.∵∠BDE =60°,∴∠BAE =150°,∴∠HAE =180°-150°=30°.∵AE =6,∴132EH AE ==,∴AH ==∴BH AH AB =+=∴BE ==,∴BD =,∴9CD ==.故答案为:9.【点拨】本题考查了图形的旋转,三角形内角和定理,线段垂直平分线的性质,勾股定理以及含30°的直角三角形的性质等知识,通过作辅助线构造出直角三角形是解题的关键.17.y=﹣x2+18x﹣77【分析】根据顶点式求得Q点的坐标,进而令0y=求得点,E F的坐标,作QP⊥x轴于P,过F点作FM⊥FQ交QL于M.作MN⊥x轴于N,根据∠FQL=45°,证明△PQF≌△NFM(AAS),进而求得点M的坐标,求得直线QL的解析式为y11133x=-,继而求得L(11,0),T点坐标为(4,0),根据中心对称的性质可得K(7,0),根据交点式即可写出新抛物线的解析式.解:∵y=x2+2x﹣3=(x+1)2﹣4,∴Q(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得x1=﹣3,x2=1,∴E(﹣3,0),F(1,0),作QP⊥x轴于P,过F点作FM⊥FQ交QL于M.作MN⊥x轴于N,如图,∵∠FQL=45°,∴△QFM为等腰直角三角形,∴FQ=FM,∵∠PFQ+∠PQF=90°,∠PFQ+∠MFN=90°,∴∠PQF=∠MFN,∴△PQF≌△NFM(AAS),∴PQ=FN=4,MN=PF=2,∴M(5,﹣2),设直线QL的解析式为y=kx+b,把Q (﹣1,﹣4),M (5,﹣2)代入得452k b k b -+=-ìí+=-î,解得13113k b ì=ïïíï=-ïî,∴直线QL 的解析式为y 11133x =-,当y =0时,11133x -=0,解得x =11,∴L (11,0),∵点E (﹣3,0)和点L (11,0)关于T 对称,∴T 点坐标为(4,0),∵点F 与点K 关于T 点对称,∴K (7,0),∵新抛物线与抛物线y =x 2+2x ﹣3关于T 对称,∴新抛物线的解析式为y =﹣(x ﹣7)(x ﹣11),即y =﹣x 2+18x ﹣77.故答案为y =﹣x 2+18x ﹣77.【点拨】本题考查了二次函数的性质,中心对称的性质,等腰直角三角形的性质与判定,求抛物线的解析式,求得对称中心是解题的关键.18.5n解:根据三角形的面积公式,知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.如图(1),已知小正方形ABCD 的面积为1,则把它的各边延长一倍后,三角形AA 1B 1的面积是1,新正方形A 1B 1C 1D 1的面积是5,从而正方形A 2B 2C 2D 2的面积为5×5=25,正方形A n B n C n D n 的面积为5n .考点:找规律-图形的变化【点拨】解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.19.(1)见分析(2)画图见分析,B 2(-5,-2)(3)(3,0),6【分析】(1)分别作出点A、B以C为中心,顺时针旋转90°后的对应点A1、B1即可解答;(2)根据中心对称的坐标特征:横纵坐标互为相反数;求得A2、B2、C2的坐标即可;(3)C点先向下平移1个单位,再向右平移2个单位,即可得到点D(3,0);求出平行四边形ACDB的中心坐标,根据中心对称图形的性质可得直线y经过中心坐标,进而求得b;(1)解:如图,分别作出点A、B以C为中心,顺时针旋转90°后的对应点A1、B1,连接相应顶点得△A1B1C即为所求;(2)解:∵A(3,3),B(5,2),C(1,1),∴A、B、C关于原点的对称点坐标为:A2(-3,-3),B2(-5,-2),C2(-1,-1),如图,△A2B2C2即为所求,(3)解:如图,C点先向下平移1个单位,再向右平移2个单位,得到点D(3,0),连接相应顶点,四边形ACDB为平行四边形;∵A 点先向下平移1个单位,再向右平移2个单位,可得到点B ,∴BD 可由AB 平移得到,即BD ∥AB ,BD =AB ,∴四边形ACDB 是平行四边形,∵C (1,1),B (5,2),平行四边形是中心对称图形,∴平行四边形ACDB 的中心坐标为(3,32),如图所示,当直线y 经过平行四边形中心时,直线两侧的图形关于中心点对称面积相等,∴(3,32)代入直线y =32-x +b ,可得b =6;【点拨】本题考查了图形旋转,中心对称图形的性质,坐标的平移和对称变换,平行四边形的判定和性质;掌握中心对称图形的性质是解题关键.20.(1)=PE PF ,证明详见分析;(2)=PE PF 【分析】(1)根据角平分线定义得到∠POF=60°,推出△PEF 是等边三角形,得到PE=PF ;(2)过点P 作PQ ⊥OA ,PH ⊥OB ,根据角平分线的性质得到PQ=PH ,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF ,S 四边形OEPF =S 四边形OQPH ,求得OQ=1,解:(1)∵120AOB а=,OP 平分AOB Ð,∴60POF а=,∵60MPN а=,∴60MPN FOP Ðа== ,∴PEF D 是等边三角形,∴=PE PF ;(2)过点P 作PQ OA ^,PH OB ^,∵OP 平分AOB Ð,∴PQ PH =,90PQO PHO Ðа==,∵120AOB а=,∴∠QPH =60°,∴QPE FPH EPH Ð+Ð+Ð,∴QPE EPF ÐÐ=,在QPE D 与HPF D 中EQP FHP QPE HPF PQ PH Ð=ÐìïÐ=Ðíï=î,∴QPE HPF AAS D D ≌(),∴=PE PF ,OEPF OQPH S S 四边形四边形=,∵PQ OA ^,PH OB ^,OP 平分AOB Ð,∴30QPO а=,∴1OQ =,QP=∴112OPQ S D ´´=∴四边形OEPF 的面积=2OPQ S D【点拨】本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.21.(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见分析;②点H 的坐标为17(,3)5.(Ⅲ)S £分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO Ð=Ð,再根据矩形的性质得CBA OAB Ð=Ð.从而BAD CBA Ð=Ð,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(ⅢS ££解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C Ð=Ð=°.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+,∴DC = 4==.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE Ð=°.又点D 在线段BE 上,得90ADB Ð=°.由(Ⅰ)知,AD AO =,又AB AB =,90AOB Ð=°,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO Ð=Ð.又在矩形AOBC 中,//OA BC ,∴CBA OAB Ð=Ð.∴BAD CBA Ð=Ð.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =.∴点H 的坐标为17,35æöç÷èø.(ⅢS ££【点拨】本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.22.(1)见分析;(2)60或120;(3)1212S ££【分析】(1)运用SAS 证明△≌△ADB AEC 即可;(2)分“当点E 在线段CD 上”和“当点E 在线段CD 的延长线上”两种情况求出EDB Ð的大小即可;(3)分别求出DBC △的面积最大值和最小值即可得到结论解:(1),ABC ADE Q V V 均为等边三角形,AD AE \=,AB AC =,DAE BAE BAC BAE \Ð-Ð=Ð-Ð,即BAD CAEÐ=Ð在ADB △和AEC △中AD AE BAD CAEAB AC =ìïÐ=Ðíï=î()ABD ACE SAS \@V V ;(2)当,,D E C 在同一条直线上时,分两种情况:①当点E 在线段CD 上时,如图,∵ADE V 是等边三角形,60ADE AED \Ð=Ð=°,180120AEC AED \Ð=-Ð=°°,由(1)可知,ADB AEC @V V ,120ADB AEC \Ð=Ð=°,1206060EDB ADB ADE \Ð=Ð-=-°=°Ð°②当点E 在线段CD 的延长线上时,如图,ADE Q V是等边三角形,60ADE AED \Ð=Ð=°180120ADC ADE \Ð=-Ð=°°,由(1)可知,ADB AEC@V V 60ADB AEC \Ð=Ð=°,60EDB ADB ADE \Ð=Ð+Ð=° 60120+=°°综上所述,EDB Ð的大小为60°或120°(3)过点A 作AF BC ^于点F ,当点D 在线段AF 上时,点D 到BC 的距离最短,此时,点D 到BC 的距离为线段DF 的长,如图:ABC Q V 是等边三角形,AF BC ^,6BC =6AB BC \==,132BF BC ==AF \==4DF \=此时1164)1222DBC S BC DF =×=´´=V ; 当D 在线段FA 的延长线上时,点D 到BC 的距离最大,此时点D 到BC 的距离为线段DF 的长,如图,ABC Q V 是等边三角形,AF BC ^,6BC =6AB BC \==,132BF BC ==,AF \==4AD =Q4DF AF AD \=+=此时,1164)1222DBC S BC DF =×=´´=V ;综上所述,DBC △的面积S 取值是1212S -££【点拨】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.23.(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见分析;②BE 的最大值是4;(3)AM 的最大值是P 的坐标为()【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN。
一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .平行四边形C .圆D .五角星2.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( ) A .第二象限 B .第三象限 C .第四象限 D .第二或第四象限 3.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒4.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .22B .23C .3D .32 5.如图,正方形ABCD 的边长为1,将其绕顶点C 旋转,得到正方形CEFG ,在旋转过程中,则线段AE 的最小值为( )A 32B 2-1C .0.5D 51-6.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .1 7.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( ) A .m >3 B .0<m≤3 C .m <0 D .m <0或m >3 8.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A .B .C .D .9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .菱形10.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A .4种B .5种C .6种D .7种 11.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( ) A .正方形 B .矩形 C .菱形 D .矩形或菱形 12.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .13.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 14.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 15.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题16.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________.17.已知点(,2)A m m 在直线3y x 上,则点A 关于原点对称点B 的坐标为______. 18.如图,在正方形ABCD 中,3AB =,点E 在CD 边上,1DE =,把ADE 绕点A 顺时针旋转90°,得到ABE '△,连接EE ',则线段EE '的长为______.19.如图,在平面直角坐标系中有一个等边OBA △,其中A 点坐标为()1,0,将OBA △绕顶点A 顺时针旋转120︒,得到11AO B ;将得到的11AO B 绕顶点B 顺时针旋转120︒,得到112B AO ;然后再将得到的112B AO 绕顶点2O 顺时针旋转120︒,得到222O B A …按照此规律,继续旋转下去,则2014A 点的坐标为________.20.如图,点E 在正方形ABCD 的边CB 上,将DCE 绕点D 顺时针旋转90˚到ADF 的位置,连接EF ,过点D 作EF 的垂线,垂足为点H ,于AB 交于点G ,若4AG =,3BG =,则BE 的长为___________.21.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.22.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm 2,则阴影部分的面积为_____cm 2.23.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.24.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.25.如图,正方形ABCD 的边长为2,BE 平分∠DBC 交CD 于点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,延长BE 交DF 于G ,则BF 的长为_____.26.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.三、解答题27.如图,四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求:(1)指出旋转中心和旋转角度;(2)求DE 的长度;(3)BE 与DF 的位置关系如何?28.如图1,等腰Rt ABC 中,90A ∠=︒,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是______,位置关系是______. (2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若8AD =,20AB =,请直接写出PMN 面积的最大值.29.如图,在一个1010⨯的正方形网格中有一个,ABC ABC ∆∆的顶点都在格点上.(1)在网格中画出ABC ∆向下平移4个单位,再向右平移6个单位得到的111A B C ∆. (2)在网格中画出ABC ∆关于点P 成中心对称得到的222A B C ∆.(3)若可将111A B C ∆绕点О旋转得到222A B C ∆,请在正方形网格中标出点O ,连接12A A 和12B B ,请直接写出四边形2211A B A B 的面积.30.如图,已知ABC 和A B C ''''''△及点O .(1)画出ABC 关于点O 对称的A B C ''';(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.。
九年级数学《图形的旋转》单元测试题时间:120分钟总分:120分班级::得分:一、精心选一选(每小题3分,共30分)1、下面的图形中,是中心对称图形的是()A.B.C.D.2、平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A.(3,-2)B.(2,3)C.(-2,-3)D.(2,-3)3、3张扑克牌如图1所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.都有可能4、如图3的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称C.绕AB的中点旋转1800,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格5、在图形旋转中,下列说法中错误的是()A、图形上的每一点到旋转中心的距离相等B、图形上的每一点移动的角度相同C、图形上可能存在不动点D、图形上任意两点的连线与其对应两点的连线相等6、在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()图37、从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X NC.X I H O D.Z D W H8、如图4,C是线段BD上一点,分别以BC、CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的三角形对数有( ).A.1对B.2对C.3对D.4对9、下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.︒30B.︒45C.︒60D.︒9010、如图6,ΔABC和ΔADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,ΔABC绕着A点经过逆时针旋转后能够与ΔADE重合得到图7,再将图6作为“基本图形”绕着A点经过逆时针连续旋转得到图7.两次旋转的角度分别为()CE 图6A BCD E图7图4A.45,90°B.90°,45°C.60°,30°D.30°,60二、耐心填一填(每小题3分,共24分)11、关于中心对称的两个图形,对称点所连线段都经过,而且被___________平分.12、在①平行四边形、②矩形、③菱形、④正方形、⑤等腰梯形这五种图形中,既是轴对称图形,又是中心对称图形的是__ ______.(填番号)13、时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是__________.14、如图8,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是三角形.15、已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第___象限16、如图9,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是.17、如图10,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是___.18、如图11,四边形ABCD中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD=。
图8 O DCBA图9图10EDBA图11三、细心解一解(共46分)19、(6分)如图12,四边形ABCD的∠BAD=∠C=90º,AB=AD,AE⊥BC于E,BEA∆旋转后能与DFA∆重合。
(1)旋转中心是哪一点? (2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?20、(4分)如图13,请画出ABC∆关于点O点为对称中心的对称图形结论:21、(9分)如图14,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC△的顶点均在格点上,点C的坐标为(41)-,.图12图13①把ABC △向上平移5个单位后得到对应的111A B C △,画出111A B C △,并写出1C 的坐标;②以原点O 为对称中心,再画出与111A B C △关于原点O 对称的222A B C △,并写出点2C 的坐标. ③计算ABC △的面积.22、(9分)如图15,方格中有一条美丽可爱的小金鱼. (1)若方格的边长为1,则小鱼的面积为 .(2)画出小鱼向左平移7格后的图形(不要求写作图步骤和过程).(3)画出将小鱼绕点O 后逆时针旋转900后的图形(不要求写作图步骤和过程)。
图1423、(6分)如图16,E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.图1624、(8分)如图17所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.答:(1)这个花瓣图案可以看作是由(画出基本图形)绕点 , (填顺、逆)时针旋转 度而得到的图案。
(2)这个花瓣图案还可以看作是由(画出基本图形)绕点 , (填顺、逆)时针旋转 度而得到的图案。
基本图形一: 基本图形二:25、(8分)已知正方形ABCD 和正方形AEFG 有一个公共点A,点G 、E 分别在线段AD 、AB 上.(1) 如图18, 连接DF 、BF,若将正方形AEFG 绕点A 按顺时针方向旋转,判断命题:“在旋转的过程中线段DF 与BF 的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2) 若将正方形AEFG 绕点A 按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG 的长始终相等.并以图19为例说明理由.GFD C DGFC图1726、(10分)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片ABC △和DEF △.将这两张三角形胶片的顶点B 与顶点E 重合,把DEF △绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .(1)当DEF △旋转至如图②位置,点()B E ,C D ,在同一直线上时,AFD ∠与DCA ∠的数量关系是 . 2分 (2)当DEF △继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由. (3)在图③中,连接BO AD ,,探索BO 与AD 之间有怎样的位置关系,并证明.C A E FDB DOAF B (E )ADO F C B (E )图①图②图③答案一、精心选一选:1.D2.D3.A4.B5.D6.c7.C8.C9.B10.A.二、耐心填一填11.对称中心,对称中心12.矩形、菱形、正方形13.90º14.等边15.三16.60°17.2π18.25三、细心解一解19.(1)点A, (2)90º,(3)点D20.略21.解:①1(44)C,;②2(44)C--,如图:22.解:(1)16(2)23.解:将△BCE 以B 为旋转中心,逆时针旋转90º,使BC 落在BA 边上,得△BAM ,则∠MBE=90º,AM=CE,BM=BE,因为CE +AF =EF ,所以MF =EF ,又BF=BF,所以△FBM ≌△FBE,所以∠MBF=∠EBF, 所以∠EBF=00459021=⨯ 24.解:方法一:可看作整个花瓣的六分之一部分,图案为绕中心O 依次旋转60°、120°、180°、240°、300°而得到整个图案.方法二:可看作是绕中心O 依次旋转60°、120°得到整个图案的. 方法三:可看作整个花瓣的一半绕中心O 旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的25.解:(1)不相等,用图19即可说明;(2)BE=DG 。
理由:连接BE ,在△ADG 和△ABE 中,∵AD=AB ,∠DAG=∠BAE ,AG=AE ,∴ADG ≌ABE (SAS ),∴BE=DG 。
26.【解】(1)AFD DCA ∠=∠(或相等)(2)AFD DCA ∠=∠(或成立),理由如下:由ABC DEF △≌△,得AB DE BC EF ==,(或BF EC =),ABC DEF BAC EDF ∠=∠∠=∠,. ABC FBC DEF CBF ∴∠-∠=∠-∠,ABF DEC ∴∠=∠.在ABF △和DEC △中,AB DE ABF DEC BF EC =⎧⎪∠=∠⎨⎪=⎩,,,ABF DEC BAF EDC ∴∠=∠△≌△,.BAC BAF EDF EDC FAC CDF ∴∠-∠=∠-∠∠=∠,. AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠, AFD DCA ∴∠=∠.(3)如图,BO AD ⊥.由ABC DEF △≌△,点B 与点E 重合,得BAC BDF BA BD ∠=∠=,.∴点B 在AD 的垂直平分线上,且BAD BDA ∠=∠.OAD BAD BAC ∠=∠-∠,ODA BDA BDF ∠=∠-∠,OAD ODA ∴∠=∠.OA OD ∴=,点O 在AD 的垂直平分线上.∴直线BO 是AD 的垂直平分线,BO AD ⊥. A D O F C B (E ) G。