一元函数积分的基本概念及解析方法
- 格式:docx
- 大小:37.32 KB
- 文档页数:2
三.一元函数积分学3-1.不定积分与定积分的概念与性质一.原函数与不定积分1-1.定义为任意常数数的任意一个确定的原函是其中记作的不定积分称为的原函数的一般表达式上的原函数在区间为则称设C x f x F Cx F dx x f x f C x F x f b a x f x F b a x x f x F ,)()(,)()(,)()()(),()()(),(),()('⎰+=+∈=1-2.性质⎰⎰⎰⎰⎰⎰⎰⎰⎰=±=±+=+===的常数是不为则有以下性质在所讨论的区间上连续与以下均设被积函数0,)()(.4)()())()((.3)()(;)()('.2)()();()')('.(1,)()(k dx x f k dx x kf dxx g dx x f dx x g x f Cx f x df C x f dx x f dxx f dx x f d x f dx x f x g x f 二.定积分1.原始定义本部分详见教材2.几何意义梯形面积的负值其几何意义是表示曲边时当梯形的面积其几何意义是表示曲边时当上的连续函数对于在区间,0)(,0)()(],[≤≥x f x f x f b a3.性质))(()(),,(],[)(.8)()()()(],,[)()(,],[)(.7)()(),()(.6)()()(.5,)()(.4)()())()((.30)(.2)()(.1,)(),(,111a b f dx x f b a b a x f dx x g dx x f x g x f b a x x g x f b a x f dx x g dx x f ba x g x f dx x f dx x f dx x f k dx x f k dx x kf dx x g dx x f dx x g x f dx x f dx x f dx x f x g x f ba b a ba b a ba b a bc c a b a ba ba b a b a aa b a ab -=∈<<∈≤≤≤≤+==±=±=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ξξ使下面的等式成立则至少存在一点上连续在区间设积分中值定理加强版:则使且至少存在一点上连续在区间积分中值定理:若则比较定理:若为常数则有以下性质在讨论的区间上可积均设以下除特别声明外4.存在定理4-1.定积分存在定理⎰⎰ba ba dx x fb a x f x f b a x f 存在则且只有有限个间断点上有界在区间设存在则上连续在区间设)(,,],[)(.2)(,],[)(.14-2.原函数存在定理上必存在原函数则在区间上连续在设],[,],[)(b a b a x f5.变限积分称为变上限定积分为自变量的函数定义了一个以有以下关系上可积在区间对上可积在区间设,],[,)()(,],[)(],,[,],[)(x b a x dt t f x x a x f b a x b a x f xa ⎰∈=Φ∈类似的,可以定义变下限定积分,这里不再赘述求导法则详见第二章知识点6.牛顿——莱布尼兹定理)()(|)()(,)()(,],[)(a F b F x F dx x f x f x F b a x f b a b a -==⎰则有的一个原函数是上连续在区间设3-2.不定积分与定积分的计算一.基本积分公式详见教材二.不定积分的基本积分方法1.第I 类换元法(凑微分法)⎰⎰+==Cx F x d x f dx x x f ))(())(())(()('))((ϕϕϕϕϕ2.第II 类换元法(换元积分法)的函数代回成的反函数积分之后再以其中右边表示对则有换元公式且具有连续导数连续设x x t t x t dt t t f dx x f t t t x x f x t )()())('))((()(,0)(')(')(,)()(ψψϕϕϕϕϕψ===≠==⎰⎰3.分部积分法 ⎰⎰⎰⎰-=-=dxvu uv dx uv vdu uv udv v u x v x u ''),,()(),(或则有分部积分公式函数以下简称均有连续导数设注:口诀“反对幂指三”先说到哪个类型的函数,哪个类型的函数就要留下来,剩下的函数去凑微分三.定积分的基本积分方法与不定积分类似,定积分的基本积分方法与不定积分的大体相同,但与不定积分的基本积分方法有区别注:定积分在换元时,积分上下限应该跟着换,直接将新的上下限写在积分号上即可四.几个有用的定积分公式⎪⎪⎩⎪⎪⎨⎧------===+∞-∞=-=-⎰⎰⎰⎰⎰⎰⎰+--的正奇数为大于当为正偶数,当华里士公式则有为周期的连续函数内是以在区间设则有上是个连续的奇函数在区间设则有上是个连续的偶函数在区间设1,1.32 (2)3.1,2.21.....12.1cos sin .4)()(,),()(.30)(,],[)(.2)(2)(,],[)(.1202000n n n n n n n n n n xdx xdx dx x f dx x f T x f dx x f a a x f dx x f dx x f a a x f n n Ta a T a a a a a πππ3-3.广义积分及其计算一.广义积分1.无穷区间上的广义积分就说此广义积分发散存在只要等号右侧有一项不对于该式其中以及可定义类似的反之称此广义积分发散称此广义积分收敛若等号右端的极限存在上的广义积分在区间为称上连续在区间设,,)()()(,)()(,;,),[)()(lim )(,),[)(⎰⎰⎰⎰⎰⎰⎰∞-∞+∞+∞-∞-∞+∞-∞++∞→+=+∞=+∞c c b ba ab dxx f dx x f dx x f dx x f dx x f a x f dx x f dx x f a x f 2.无界函数的广义积分则称此广义积分发散有一个不存在若等号右端的积分只要对于上式则应分成为瑕点内部的点若在开区间则称此广义积分发散有一个不存在若等号右端的积分只要对于上式则应分成都是瑕点点若点类似的可定义的一个瑕点是若点的一个瑕点称为此时点上的广义积分在区间为称且上连续在区间设,,)()()(,),(,,),(,)()()(,,)(lim )(,)()(,),[)()(lim )(,)(lim ,),[)(000⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+=∈+===∞=+--→→→ba c a bc ba x a bx b a b a a ba b bx dx x f dx x f dx x f c b a b a x dx x f dx x f dx x f b a dx x f dx x f x f a x f b b a x f dx x f dx x f x f b a x f ααββ二.对称区间上奇,偶函数的广义积分⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--∞+∞-∞+∞+∞+∞-+∞=∈±=±=-=∈±=±=-==aa aa aa a dx x f dx x f dx x f x f a c x f c x c x a a x f dx x f dx x f x f a c x f c x c x a a x f dxx f dx x f dx x f R x f dx x f dx x f R x f 00000)(2)(,)(,)(],0[,)(,],[)(.40)(,)(,)(],0[,)(,],[)(.3)(2)(,)(,,)(.20)(,)(,,)(.1则有结论收敛且是偶函数又设的瑕点为外均连续上除在区间设则有结论收敛且是奇函数又设的瑕点为外均连续上除在区间设则有结论收敛又设且为偶函数上连续在设则有结论收敛又设且为奇函数上连续在设注:一个重要的广义积分π=⎰+∞∞--dx e x 23-4.定积分的应用一.定积分在几何上的应用1.平面图形面积⎰⎰⎰=≤-<===-===≥==-===≥==βαθθπαββθαθθd r A r r dy y x y x A d y c y y x y x y x x y x x dx x y x y A b x a x x y x y x y y x y y dc ba )(21)20()(.3))()((,))()()(()(.2))()((,))()()(()(.12121212121212之间曲边扇形面积为与介于两射线极坐标曲线围成的平面图形面积为及与曲线围成的平面图形面积为及与曲线 2.平面曲线弧长θθθθθβαθθβαβαβαd r r s r r r r dx x y s t y b a x x y y dt t y t x s t y t x t t y y t x x b a ⎰⎰⎰+=∈=+=∈=+=∈⎩⎨⎧==)()(')0,)('),((],[),(.3)('1))('(],[),(.2)(')(')0,)('),('(],[,)()(.122222且不同时为连续其中的弧长为极坐标曲线连续其中的弧长为直角坐标且不同时为均连续其中的弧长为参数方程曲线3.旋转体体积dx x y x y x V y x y x y a b b x a x x y y x y y b a dx x y x y V x x y x y b x a x x y y x y y b aba ))()((2))()(,0(,),(),(.2,))()(()0)()((,),(),(.112121*********-=≥≥>====<-=≥≥====⎰⎰ππ转体体积为轴旋转一周所形成的旋围成的图形绕曲线转体体积为轴旋转一周所形成的旋围成的图形绕曲线4.旋转曲面面积b a dx x f y S x x f y b a b a <+==⎰,)('12)(],[2π转曲面面积为轴旋转一周所形成的旋绕的弧段上的曲线在区间5.在区间[a,b]上平行截面面积A(x)为已知的立体体积 ⎰<=ba b a dx x A V ,)(6.函数平均值⎰-=∈b adx x f a b f b a x f b a x )(1],[)(],,[上的平均值为在区间函数设二.定积分在物理上的应用10322,,24,,)(,,,,:,100,0,4,:302102002200+============⎰⎰⎰⎰⎰⎰t x dt t dx t v tdt dv dtdt a x dtx d dt dv a dt dx v x v t t a x tx v tx x x 解得得由题意可得到运动方程积分对速度解析式再次进行解得得由题意可得到速度解析式行一次积分解:对加速度解析式进即析式连续积分两次求得运动方程可由加速度解所以我们知道由高中物理知识分析写出质点的运动方程坐标为初速度时初始条件为已知轴运动设质点沿着引例。
一元函数的定积分与定积分的计算定积分是微积分中的重要概念,用于计算一元函数在给定区间上的面积、曲线长度、体积等问题。
本文将介绍一元函数的定积分以及常见的定积分计算方法。
一、一元函数的定积分在介绍定积分之前,我们先来回顾一下导数的概念。
对于一元函数f(x),它的导数f'(x)表示函数在某一点处的瞬时变化率。
类似地,定积分可以看作是函数在一定区间上的累积变化量。
设函数f(x)在区间[a, b]上连续,把[a, b]分成n个小区间,每个小区间的长度为Δx。
在每个小区间上选择一个点ξi,并计算出f(ξi)。
将Δx 逐渐趋近于0,ξi逐渐靠近区间[a, b]的端点,可以得到如下极限:∑f(ξi)Δx → ∫f(x)dx其中∑表示求和,Δx表示小区间的长度,ξi表示取点的位置,∫表示定积分,f(x)dx表示被积函数。
定积分∫f(x)dx的几何意义是曲线y=f(x)与x轴以及直线x=a、x=b所围成的区域的面积。
根据定积分的定义,我们可以将定积分分为两种情况:1. 当被积函数f(x)为非负函数时,定积分的值表示函数曲线与x轴及两条垂直直线x=a、x=b所围成的面积;2. 当被积函数f(x)为有正负之分的函数时,定积分的值表示函数曲线与x轴及两条垂直直线x=a、x=b所围成的有向面积,即正面积减去负面积。
二、定积分的计算方法计算定积分的方法多种多样,这里介绍几种常见的方法。
1. 几何法:根据定积分的几何意义,可以通过几何图形的面积公式计算定积分的值。
具体步骤是将被积函数对应的图形分割成几何形状简单的子图形,计算每个子图形的面积,然后将这些面积相加得到定积分的近似值。
2. 基本积分法:定积分的计算可以通过求导的逆操作——积分来实现。
根据函数的导数与原函数的关系,可以利用一些基本积分公式对被积函数进行积分。
常见的基本积分公式包括多项式函数、指数函数、三角函数等。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式是定积分与不定积分之间的重要关系。
一元函数微积分的基本原理与方法微积分是数学中非常重要的一门学科,是数学中的一种基础理论,又是现代科学的一种重要工具。
一元函数微积分是微积分中最基本的部分之一,掌握一元函数微积分的基本原理与方法是学习微积分的第一步。
一、导数与微分导数是微积分的核心概念之一,是函数在一个点上的变化率或斜率。
在一元函数微积分中,导数有多种不同的定义方式,但它们都是等价的。
设 $f(x)$ 在点 $x_0$ 的某个邻域内有定义,当 $x$ 充分接近$x_0$ 时,$$f'(x_0)=\lim\limits_{x\rightarrow x_0}\dfrac{f(x)-f(x_0)}{x-x_0}$$如果这个极限存在,则称 $f(x)$ 在 $x_0$ 处可导,并把它的导数记为 $f'(x_0)$。
导数的几何意义是曲线在 $x_0$ 点处的斜率。
对于一元函数 $y=f(x)$,如果在某一点 $x_0$ 处导数$f'(x_0)$ 存在,则称 $f(x)$ 在 $x_0$ 处可导。
函数在 $x_0$ 处的导数 $f'(x_0)$ 也可以表示为$$\dfrac{dy}{dx}\bigg|_{x=x_0}$$它表示在点 $x_0$ 处函数 $y=f(x)$ 的每单位 $x$ 的变化量,也就是函数的瞬时变化率。
微分是导数的一种应用。
设 $y=f(x)$,$x$ 发生一个无限小的增量 $\Delta x$,相应地 $y$ 也发生了一个无限小的增量 $\Delta y=f(x+\Delta x)-f(x)$,则称 $dy=f'(x)dx$ 为 $y=f(x)$ 的微分。
它表示在 $x$ 处函数值的微小增量与 $x$ 的微小增量之比。
在微积分中,微分是一种将无限小的变化转换为实际的数值计算的技术方法。
二、函数的基本性质函数是微积分的基础,掌握函数的基本性质对学习微积分非常重要。
1. 连续性一个函数如果在某一点连续,则表明函数在该点的值可以通过函数在该点的极限来确定。
一元函数微积分的基本概念与运算微积分是数学中十分重要的一个分支。
其中,一元函数微积分是微积分的基础,也是我们初次接触微积分时需要理解和掌握的概念和运算。
本文将为大家简单介绍一元函数微积分的基本概念与运算。
一、函数的基本概念在学习一元函数微积分之前,我们需要先了解函数的基本概念。
所谓函数,就是一种描述变化关系的数学规律。
从输入值到输出值,函数都有严格的对应关系。
而这个对应关系就是函数的核心。
函数可以用数学符号表示,常见的符号为 y=f(x),其中 y 代表输出值,x 代表输入值,f 表示函数名称。
例如 y=x²就是一个函数的表达式,它的输出值是输入值的平方。
我们可以通过绘制函数图像的方式来更直观地理解函数的定义和特点。
以 y=x²为例,当输入值 x=0 时,输出值 y=0,对应的点为坐标系的原点;当 x 取正值时,输出值 y 会随着 x 的增加而增加,图像呈现右侧开口的 U 形曲线;当 x 取负值时,输出值 y 也会增加,但函数的图像则向下移动。
二、导数的概念及计算方法导数是微积分的重要概念之一。
它表示一个函数在某一点处的变化速率,也就是函数斜率的大小。
导数可以用公式表示为:f'(x)=lim(f(x+Δx)-f(x))/Δx (Δx->0)其中 f(x) 是函数在 x 点处的值,Δx 表示 x 增加的微小量,lim 表示取极限。
可以理解为,当Δx 足够小的时候,(f(x+Δx)-f(x))/Δx 的值就趋近于 x 点处的斜率,也就是导数。
导数有许多重要的应用,如求解函数的最值、曲线的凸凹性、速度加速度等。
因此掌握导数的计算方法是学习微积分的必要前提。
常见的导数计算方法有以下两种:1. 利用求导法则求导法则是一元函数微积分中常用的计算导数的方法。
它包括以下几条规则:(1)和差法则:(f+g)'=f'+g',(f-g)'=f'-g'(2)积法则:(f.g)'=f.g'+g.f'(3)商法则:(f/g)'=[f'g-fg']/g²(4)反函数法则:f⁻¹(x)'=1/f'(f⁻¹(x))通过组合这些法则,我们可以对各种函数求导,例如对y=x³+2x-1 求导:y'=3x²+22. 利用几何意义导数还有一个重要的几何意义,即为函数图像在某一点处的切线斜率。
高等数学1:一元函数微积分学
一元函数微积分学是一门具有普遍价值的数学课程,它是描述数学中一元函数的变化趋势以及求解相关问题的一种数学方法。
一元函数微积分学的基础是微积分学,它是由法国数学家库仑发明的一种数学方法,主要是研究函数的微小变化。
微积分学的结果就是一元函数微积分学,它是一种研究函数变化趋势的方法,可以描述函数在各个点的变化状态,也可以用来求解函数的极值和极限,从而获得函数的全局特征。
研究一元函数微积分学需要掌握一些基本概念,如函数极限、微分、导数、极值等,这些概念可以帮助我们更好地理解函数的变化趋势,有助于求解函数的极值、极限等问题。
在研究一元函数微积分学时,除了要掌握一些基本概念外,还要掌握一些解决问题的方法,如泰勒公式、换元法和求积分等。
这些方法可以帮助我们研究函数的变化趋势,从而更好地理解函数的特征。
总之,一元函数微积分学是一门十分重要的数学课程,它能够帮助我们更好地理解函数的变化趋势,有助于求解函数的极值和极限,从而获得函数的全局特征。
研究一元函数微积分学时,除了要掌握一些基本概念外,还要掌握一些解决问题的
方法,如泰勒公式、换元法和求积分等。
只有掌握了这些方法,才能更好地理解函数的特征,并能够解决函数相关的问题。
第三章 一元函数的积分学§1 不定积分【考试要求】1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式.2.掌握不定积分的换元积分法和分部积分法.3.会求有理函数、三角函数有理式的积分和简单无理函数的积分.一、基本概念1.原函数与不定积分定义若()()F x f x '=,(,)x a b ∈,则称()F x 是()f x 在(,)a b 内的一个原函数.(一般地,“在区间(,)a b 内”几个字常省略).若()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数(其中C 为任意常数),()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰.若()F x 是()f x 的一个原函数,则()d ()f x x F x C =+⎰.2.不定积分与原函数的关系(1)不定积分与原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素,因此()d ()f x x F x ≠⎰.(2)设()F x ,()G x 是()f x 的任意两个原函数,则()()F x G x C =+((,)x a b ∈).(3)原函数的几何意义:称()y F x C =+为()f x 的积分曲线,其上横坐标为x 处的切线互相平行.3.原函数存在定理设()f x 在(,)a b 内连续,则在(,)a b 内必有原函数.4.不定积分的基本性质(1)()d ()d kf x x k f x x =⎰⎰ (k 为常数);(2)[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰;(3)求导与求不定积分互为逆运算① (()d )()f x x f x '=⎰ ,d ()d ()d f x x f x x =⎰;② ()d ()f x x f x C '=+⎰,d ()()f x f x C =+⎰;5.基本积分公式(熟练掌握)(1)d k x kx C =+⎰;(2)11d 1x x x C μμμ+=++⎰; (3)1d ln ||x x C x=+⎰; (4)d ln x x a a x C a=+⎰; (5)e d e x x x C =+⎰;(6)sin d cos x x x C =-+⎰;(7) cos d sin x x x C =+⎰;(8) 2sec d tan x x x C =+⎰;(9)2csc d cot x x x C =-+⎰;;(10)sec tan d sec x x x x C ⋅=+⎰;(11)csc cot d csc x x x x C ⋅=-+⎰;(12)d arcsin xx C =+⎰;(13)2d arc ta n 1x x C x=++⎰; (14)tan d ln |cos |x x x C =-+⎰;(15)cot d ln |sin |x x x C =+⎰;(16)d arcsin xx C a =+⎰; (17)22d 1arctan x x C a x a a=++⎰; (18)sec d ln |sec tan |x x x x C =++⎰;(19)csc d ln |csc cot |x x x x C =-+⎰;(20)22d 1ln 2x a x C a x a a x +=+--⎰;(21)d ln x x C =++⎰; (22)21arcsin 22a x x C a =++⎰. 6.初等函数的原函数初等函数在其定义区间内必有原函数,但它的原函数不一定是初等函数.不能用初等函数来表示(积不出来)的不定积分如下:2e d x x ⎰, 2e d x x -⎰, sin d x x x ⎰, cos d x x x⎰, 2sin d x x ⎰, 2cos d x x ⎰, d ln x x ⎰,e d x x x⎰,e ln d x x x ⎰,ln |sin |d x x ⎰等.二、不定积分的积分法1.公式法 将被积函数变形,直接利用公式.2.换元法 引入新的变量,再积分.第一类换元法(凑微分法)设()f u 的原函数为()F u ,()u x ϕ=有连续的导数,则[()]()d f x x x ϕϕ'⋅⎰ [()]d ()f x x ϕϕ=⎰()u x ϕ=()()d [()][()]u x f u u F u C F x C ϕϕ==+=+⎰凑微分 换元 积分 变量还原常见的凑微分公式(1)1()d ()d()f ax b x f ax b ax b a+=++⎰⎰,0a ≠;(2)11()d ()d()n n n n f x x x f x x n -=⎰⎰; (3)(e )e d (e )d(e )x x x x f x f =⎰⎰;(4)d 1(ln )(ln )d(ln )x f x f x x x n =⎰⎰;(5)21111()d ()d()f x f x x x x=-⎰⎰; (6)12f x f =⎰⎰; (7)(sin )cos d (sin )d(sin )f x x x f x x =⎰⎰;(8)(cos )sin d (cos )d(cos )f x x x f x x =-⎰⎰;(9)2(tan )sec d (tan )d(tan )f x x x f x x =⎰⎰;(10)2(cot )csc d (cot )d(cot )f x x x f x x =-⎰⎰;(11)21(arctan )d (arc tan )d(arc tan )1f x x f x x x ⋅=+⎰⎰; (12)1(arcsin )d (arcsin )d(arcsin )f x x f x x ⋅=⎰⎰; (13)d xf x f ⋅=⎰⎰;(14)()d ()d ln |()|()()f x f x x f x C f x f x '==+⎰⎰. 第二类换元法设()x t ϕ=单调,有连续的导数,且()0t ϕ'≠,如果[()]()d ()f t t t F t C ϕϕ'=+⎰,则()d f x x =⎰ ()x x ϕ=[()]()d f t t t ϕϕ'⎰1()[()]t x F t C ϕ-==+1[()]F x C ϕ-=+.换元 积分 变量还原3.分部积分法 设()u u x =,()v v x =具有连续的导数,则d d uv x uv u v x ''=-⎰⎰ 或 d d u v uv v u=-⎰⎰称为分部积分公式.4.特殊函数类的积分有理函数:先化为多项式与简单分式,再逐项积分.三角函数有理式:令tan 2x u =,化为有理函数的积分.简单无理函数:引入代换去掉根号,化为有理函数的积分.常用的分项公式如下:(1)111(1)1x x x x=-++; (2)111(1)1x x x x=+--; (3)2211(1)1x x x x x=-++; (4)22211111(1)(1)(1)1(1)x x x x x x x x x =-=--+++++; (5)2222111(1)1x x x x=-++. 常用的三角公式如下:(1)21cos 2cos 2x x +=;(2)21cos 2sin 2x x -=;(3)21sin (sin cos )22x x x ±=±三、典型例题题型1 直接积分法 (即将被积函数分解为几个简单函数的代数和再分项积分)例1 求下列不定积分(1) 231d 5x xx x ++⎰; (2)10d (2)x x x +⎰;(3) 42d x x x +⎰; 解 原式2222d 111d arctan (1)1x x x C x x xx x ⎡⎤==-=--+⎢⎥++⎣⎦⎰⎰.(4)2222+sin sec d 1x x x x x ⋅+⎰; 解 原式精品文档()()2222221+sin 11sec d sec d d 11xx x x x x xx x +-=⋅=-++⎰⎰⎰tan arctan x x C =-+.题型2 换元积分法(第一类和第二类)例1 求下列不定积分(1)2sin cos d 1sin x xx x ⋅+⎰; (2)d x⎰解原式ln dln d u x x u ========⎰⎰⎰11d()2arcsin arc 12u u C --==+=⎰ .(3)3xx ⎰;解原式23221122u x x x x x u========⎰⎰⎰32111(1(1)d(1)222u u u u =+-=++-⎰⎰⎰535222212211[(1)(1)](1)(125353u u C x =+-++=+-+ . (4)sin 222esin d exxxx ⋅⎰; 解 原式sin 222sin 22sin11esin d e d(sin 22)e44x xx x x x x x --=⋅=--=-⎰⎰(5)1d (1e )xxx x x ++⎰; (6)ln(tan )d sin cos x x x x ⋅⎰.例2 求x ⎰.解:原式2[ln()3x x =+=+⎰例3 求 342e ed e 2e 1x xx xx +-+⎰. 解:原式2222e (e e )d(e e )1d e (e e )(e e )e ex x x x x x x x x x x x x C -----+-===-+---⎰⎰ 例4 求 241d 1x x x ++⎰.解:原式22221111d()1d arctan 11()2x x x x x C x x x x+--===++-+⎰⎰例5 求下列不定积分(1)xx ⎰;(2)3d x x ⎰; 解 令π323sec ,0,d sec tan d 22x t t x t t t ⎛⎫=<<=⋅ ⎪⎝⎭ ,原式23233tan 34tan 4sec tan d d sin 23sec 33sec 2t t t t t t t t =⋅⋅==⎛⎫ ⎪⎝⎭⎰⎰⎰241231sin 2arccos 324322t t C x x ⎛⎫=-+=- ⎪⎝⎭.(3)d x ⎰.解 令2tan ,d sec d x t x t t ==,原式2222sec d cos d dsin arcta (2tan 1)sec 1sin 1sin t t t t tt t t t ====+++⎰⎰⎰arctanx C =+.注 1ο,令s i n x a t = 或 cos x a t =;2ο,令sec x a t = 或 csc x a t =或 ch x a t =;3ο,令tan x a t = 或 cot x a t =或 sh x a t =;4ο三角代换变量还原时利用辅助三角形. 例6 求下列不定积分(1)d x⎰;解 原式()d31d13xx-==⎰⎰1ln|31|3x C=-++.(2)21d446xx x-+⎰.解原式()()2111212d21arctan221xx C x-=-=⋅+ -+⎰.(注对二次三项式2ax bx c++或其平方根,配方后使用公式).例7求下列不定积分(1)d x⎰(2)21lnd(ln)xxx x--⎰.(注1xt=称为倒代换,当分母的次数高于分子的次数时,可考虑用此代换).例8 求e (1e )d x xx +⎰(注 可考虑指数代换e xu =或e sin xt =).例9 求d x x⎰,(令:t =)解令t =,22tan 1tan d 2tan sec d .t x t x t t t =⇒=+⇒=⋅原式(2222arctan 2sec tan d 2tan d 2sec 1tan t t t t t t t t t t t ⋅=⋅⋅=⋅=⋅+⎰⎰⎰()222sec 1d 2d(tan )2tan tt t t t t t t t =⋅-=-=⋅-⎰⎰⎰22tan 2ln |cos |t t t t C =⋅+-+212ln ||arctan x=⋅+-+22ln ||arctanx =⋅--+.题型3 分部积分法关键:正确地选择u 和v ,选择u ,v 的原则:1οv 好求; 2οd v u ⎰要比d u v ⎰简单.例1 求下列不定积分(1)2(22)e d xx x x +-⎰; (2)2(1)ln d xx x +⎰;(3)e cos d xx x x ⎰; (4)sin ln d x x ⎰ 解 原式1sinln dsinln sinln cosln d x x x x x x x x xx=-=-⋅⋅⎰⎰sinln cosln d sinln cox x x x x x x ⎡=-=-⋅⎣⎰()()1sinln cosln sinln d x x x x x xx=-+-⎰()sinln cosln sinln d x x x x x =--⎰所以 原式()sinln cosln 2xx x C =-+.(5)22arctan d (1)xx x x +⎰; 解 原式22arctan arctan 1d d arctan d(-)arctan d 1x x x x x x x x x =-=-+⎰⎰⎰⎰()221111arctan d arctan 12x x x x x x =-+⋅-+⎰()()22221111arctan d arctan 221x x x x x x =-+-+⎰ 22211111arctan d 212x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎰()()22111arctan ln ln 122x x x x =-+-+-()22111arctan ln arctan 212x x x x x =-+-+.(6)ln(x x x +⎰.解原式ln(x x x =+⋅⎰dln(x =⋅+-⋅⎰ln(d x x =⋅+-=⎰.例2 求 22sin d (cos sin )xx x x x -⎰. 解 原式2sin sin sin 1d d (cos sin )cos sin x x x x x x x x x x x x x ⎛⎫=⋅= ⎪--⎝⎭⎰⎰sin 11cos sin cos sin x x x x x x x x ⎛⎫=⋅-⋅ ⎪--⎝⎭⎰2sin 11s d cos sin (cos x x x x x x x x x ⎛⎫=⋅-=⎪-⎝⎭⎰.例3 求ed xx x ⎰.(先换元,后分部积分) 解: 原式222222d d 12ln(1)d 2[ln(1)2d ]1tt x t t ttt t t t t =++=+-+⎰⎰24arctan C =-++.题型4 分项--分部积分法(将积分分成两项(或多项)的积分和,然后利用分部积分抵消不可积部分)例1 求 2ln 1d ln x x x-⎰; 例2求 22e (tan 1)d x x x +⎰. 题型5 有理函数积分例1 求25d 613x x x x +-+⎰; 例2 求221d (1)x x x +⎰.题型6 三角有理函数积分例1 求 d sin 22sin xx x+⎰ 例2 求d 1sin cos xx x --⎰题型7 简单无理函数积分例1求d x⎰; 例2 求d x⎰.例3求d x⎰(0,0)a b x <<>.解:原式2=⎰2arcsin C =+;题型8 分段函数的积分例1 求|1|ed x x -⎰.例2 求2()max(1,)x x ϕ=的一个原函数()F x ,且(0)1F =.题型9 含有抽象函数的不定积分例1设()d arcsin xf x x x C =+⎰,求1d ()x f x ⎰.例2设()f x 为非负连续函数,当0x ≥时,有20()()d e 1xxf x f x t t ⋅-=-⎰,求()d f x x ⎰. 解 方程化为20()()d ()()d =e 1xxxf x f x t t f x f x t t ⋅-=--⎰⎰,()d ()d u x txxf x t t f u u =--====⎰⎰,代入原方程得()20()d e 1xxf x f u u ⋅=-⎰,令()()()()()20()d exxF x f u u F x f x F x F x ''=⇒=⇒⋅=⎰,两边积分()()()2d e 1d xF x F x x x '⋅=-⎰⎰,得()2211e 22xF x x C =-+, 又()()22100,e 212xF C F x x =⇒=-∴=--,()()(F x F x ∴=≥.()()d f x x F x C =+=⎰.例3设(,)f x y 可微,且(,)ff x y x∂=-∂,e cos xf y y-∂=∂,(0,0)0f =,求(,)d f x x x ⎰. 例4设()f x 在[0,)+∞上可导,(0)1f =,且满足01()()()d 01xf x f x f t t x '-+=+⎰,求[()()]e d xf x f x x -'''-⎰.四、不定积分常用的计算技巧总结(考生自看)1.加减常数法例1 求 cos d 1cos xx x-⎰. 解:原式2cos 111()d (1)d 1cos 1cos 2sin (/2)x x x x x x x -=+=-+=----⎰⎰.2.加减函数法例2 求 21d 1exx +⎰. 解:原式2222221e e e 1d (1)d ln(1e )1e 1e 2x x xx x xx x x C +-==-=-++++⎰⎰.例3 求 d (1)nxx x +⎰. 解:原式1111d d d ln ||ln |1(1)1nnn n n nx x x x x x x x x x x x n -+-==-=-+++⎰⎰⎰.3.乘除函数法例4 求 d e ex x x-+⎰.解:原式22e d de arctane 1(e )1(e )x xxx x x C ===+++⎰⎰. 4.分母整体化法例5 求 2100d (1)xx x +⎰. 解:原式2219899100100100(1)(1)d d (2)d u xu u u u u u u uu u=+-----=====-+⎰⎰⎰9798991212979899u u u C ---=-+-+.例6 求 2sin d (sin cos )xx x x +⎰.解:原式π4222πsin()sin csin 114d d π2sin 2sin ()4u x u x u x x u u x =+-=====+⎰⎰⎰2d d(sin )()[l n |csc(4sin sin 4u u x u u =-=+⎰⎰.5.依分母分解法例7 求 3cos 4sin d cos 2sin x xx x x-+⎰. 解:因为cos x 与sin x 的导数互相转化,所以 可设3cos 4sin (cos 2sin )(cos 2s x x A x x B x -=+++(2)cos (2)sin A B x A B x =++- 故得:231,224A B A B A B +=⎧⇒=-=⎨-=-⎩. 原式cos 2sin (cos 2sin )d 2d cos 2sin cos 2sin x x x x x x x x x x '++=-+=-++⎰⎰.6.还原法例8 求 11(1)ed x xx x x++-⎰.解:11121ed (1)ed ed d(ex x x x xxx x x x x x+++=+-=+⎰⎰⎰⎰1111ed eed ex x x x xxxxx x x x C ++++=+-=+⎰⎰.7.待定函数法 例9 (上例)解:因为被积函数是一个函数与1ex x+的乘积,它的一个原函数必定也是某一个函数与1e x x+的乘积.令 111(1)ed ()ex x xxx x F x C x +++-=+⎰,其中()F x 为待定函数, 两边求导数11211(1)e[()()(1)]ex x xxx F x F x xx++'+-=+-,22111(1)()()(1)()x F x F x F x x x'∴+-=+-⇒=, 故 原式1ex xx C +=+.8.相关积分法例10 求 221e sin d x I x x =⎰,221e cos d xI x x =⎰.解:221222211e d e ,21e cos2d e (cos2sin 2),4xx x x I I x C I I x x x x C ⎧+==+⎪⎪⎨⎪-==++⎪⎩⎰⎰ 1I ∴=22111e e (cos2sin 2)224x x x x C⎡⎤-++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =-++; 2I =22111e e (cos2sin 2)224x x x x C⎡⎤+++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =+++.五、练习题31-1.若()f x 的导函数是e cos xx -+,则()f x 的一个原函数为( ).(A) e cos xx -- (B) esin x x --+ (C)ecos xx --- (D) esin xx -+2.若()f x '为连续函数,则(2)d f x x '=⎰( ).(A) (2)f x C + (B) ()f x C + (C)1(2)2f x C + (D) 2(2)f x C + 3.若()f x 是以l 为周期的连续函数,则其原函数( ).(A) 是以l 为周期的连续函数 (B)是周期函数,但周期不是l(C) 不是周期函数 (D)不一定是周期函数4.设cos x x 是()f x 的一个原函数,求()d xf x x '⎰. 5.2222221sin cos d d sin cos sin cos x x x x x x x x +=⋅⋅⎰⎰. 6. 22e 1e (1)d (e )d sin sin xxxx x x x--=-⎰⎰.7.11e ed d 1e 1e xxx xx x +-=++⎰⎰. 8.45422sincos d sin (1sin )dsin x x x x x x =⋅-⎰⎰.9.1515sin cos d (sin cos )d(sin cos )(sin cos )x xx x x x x x x +=---⎰⎰.10.21111d d d(1)111n n n nnn n n x x x x x x x x x x --⋅+-==++++⎰⎰⎰. 11.cos sin d(sin cos )d cos sin cos sin x x x x x x x x x-+=++⎰⎰.12.321()arctan d arctan d()33x x x x x x x ++=⎰⎰. 13.2d x x⎰. 14.d 1d(3)3xx =⎰⎰ 15.22222d 2ln 2d d 2d 1d 12(14)2(12)ln 2(1)ln 2xxxu x x x x u x x x u u u =========+++⎰⎰⎰.16.22sin d x x x ⎰.17.arcsin 2arcsin x =-⎰⎰.18.2arctan tan 3d sec d 22ed sin d (1)xx ttx t tx x e t t x ==+====⎰⎰. 19.241d 1x x x -+⎰. 20.421d (1)x x x +⎰21. 1183848282821d d d (1)(1)4(1)x x x x x x x x x x ⋅==+++⎰⎰⎰42221d 4(1)x tt t t =+===⎰2tan 24d sec d 1tan sec d 4sec t u t u u u u u u ======⎰.22. 112d d x x x x +-+=⎰⎰22112d[(1)3]2x =-++⎰⎰.23. 2d d d x xx x x =+⎰⎰⎰.24.313(1)4d d x x x x +-+=⎰⎰.25.d 4sin 3cos 5x x x ++⎰(可令tan 2xt =);26. 3sin 2cos d 2sin 3cos x x x x x ++⎰(可令tan 2xt =或依分母分解法);27.设(cos )sin f x x '=(0)x π<<,求()f x . 28.设()F x 是()f x 的一个原函数,且当0x ≥时,有2e()()2(1)xx f x F x x ⋅=+,又(0)1F =, ()0F x >, 求()f x .29.()d ()f x x F x C =+⎰,且当0x ≥时,有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .30.求2[ln ()ln ()][()()()]d f x f x f x f x f x x ''''++⎰.31.设ln(1)(ln )x f x x +=,计算()d f x x ⎰.32.2()(1)()d exxf x x f x x x '-+⎰. 33.1e (ln )d x x x x +⎰.3-1参考答案1.A2.C3.D 4.2cos sin xx C x--+. 5.tan cot x x C -+.6.e cot xx C ++. 7.ln(1e )xx C -++.8.579111sin sin sin 579x x x C -++9.455(sin cos )4x x C -+.10.1[(1)ln |1|]n nx x C n+-++.11.ln|cos sin|x x C++.12.32arctan36x x xx C+-+.13.arcsin x Cx--+14.1ln|3|3x C++. 15.11(arctan2)ln22xxC-++.16.321sin2cos2sin26448x x xx x x C --++.17.arcsin C-++.18arctan1e+xxC-.1ln C+. 20.311arctan 3x C x x-+++. 21. 44811arctan 881x x C x-⋅++. 22. 2ln |1|x C +-++.23. 1arcsin 22x x C --+. 244ln |1|x C +-++.25. 1tan 22C x -++. 26.125ln |2sin 3cos |1313x x x C -++.27. 1()arcsin 22x f x x C =++. 28.232e()2(1)xx f x x =+.29.2sin 2()xf x =.30.()()[ln ()()1]f x f x f x f x C ''-+. 31.e ln(1e )ln(1e )xxxx C --++-++.32.()ex f x C x +. 33.e ln xx C +.§2 定 积分【考试要求】 1.理解定积分的概念,掌握定积分的基本性质及定积分中值定理.2.掌握定积分的换元积分法和分部积分法.3.理解积分上限函数,会求它的导数,掌握牛顿 –莱布尼茨公式.4.了解反常(广义)积分的概念,会计算反常(广义)积分.一、基本概念 1.定积分定义设()f x 在[,]a b 上有定义且有界,做下述四步:(1)分割:用1n -个分点分割区间[,]a b011i ia x x x x -=<<<<;(2)作乘积:()i i f x ξ∆,其中1[,]i i i x x ξ-∈,1i i i x x x -∆=-;(3)求和:1()ni i i f x ξ=∆∑;(4)取极限:01lim ()ni i i f x λξ→=∆∑,其中1max ||i i nx λ≤≤=∆,如果上述极限存在,则称()f x 在[,]a b 上可积,并称上述极限为()f x 在[,]a b 上的定积分,记作1lim ()()d nbi i ai f x f x x λξ→=∆=∑⎰.注 ()d baf x x ⎰的值与对区间[,]a b 的分法无关,与i ξ的取法无关,与积分变量用什么字母表示无关;与[,]a b 有关,与()f x 有关, 即()d ()d bbaaf x x f t t =⎰⎰.2.定积分的存在性定理设()f x 在[,]a b 上连续,或在[,]a b 上有界且只有有限个第一类间断点,则()d ba f x x ⎰一定存在.3.几何意义定积分()d baf x x ⎰表示由曲线()y f x =,,x a x b ==及x 轴所围平面图形面积的代数和.4.定积分的运算性质:(1)()d ()d a abbf x x f x x =-⎰⎰. (4)[()()]d ()d ()d bb baaaf xg x x f x x g x x ±=±⎰⎰⎰.(2)()d 0aaf x x =⎰. (5)()d ()d b baakf x x k f x x =⎰⎰.(3)d bax b a =-⎰. (6)()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.5.定理定理1 (定积分的比较定理)若在[,]a b 上恒有()()f x g x ≤,则()d ()d bbaaf x xg x x ≤⎰⎰.推论1 若()f x 与()g x 在[,]a b 上连续,()()f x g x ≤,且至少有一点0[,]x a b ∈,使00()()f x g x <,则()d ()d bbaaf x xg x x<⎰⎰.推论2 若在[,]a b 上恒有()0f x ≥,则()d 0baf x x ≥⎰.推论3 ()d ()d bbaaf x x f x x ≤⎰⎰. 定理2(估值定理)若在[,]a b 上,()m f x M ≤≤,则()()d ()ba mba f x x Mb a -≤≤-⎰.定理3(积分中值定理)(1)若()f x 在[,]a b 上连续,则[,]a b ξ∃∈,使()d ()()baf x x f b a ξ=-⎰.(2)若()f x 在[,]a b 上连续,()g x 在[,]a b 上不变号,且在[,]a b 上可积,则[,]a b ξ∃∈,使()()d ()baf xg x x f ξ=⎰⎰.定理4(变上限积分函数及其导数) 设()f x 在[,]a b 上连续,()()d xa F x f t t =⎰称为变上限积分函数,则导数为d ()()d ()()d xt x aF x f t t f t f x x ='===⎰.推论1 设()()()d x aF x f t t ϕ=⎰,则()d ()()d [()]()d x aF x f t t f x x x ϕϕϕ''==⋅⎰.推论2 设21()()()()d x x F x f t t ϕϕ=⎰,则21()2211()d ()()d [()]()[()](d x x F x f t t f x x f x x x ϕϕϕϕϕϕ'''==⋅-⋅⎰.推论3 设()()()()d x aF x f t g x t ϕ=⎰,则()()()()d x a F x g x f t t ϕ'⎡⎤'=⎢⎥⎣⎦⎰()()()d ()[()](x ag x f t t g x f x ϕϕϕ''=+⎰.定理5(变上限积分函数与不定积分的关系) 设()f x 在[,]a b 上连续,则变上限积分函数()()d xaF x f t t =⎰是()f x 的一个原函数, 即()d ()d xaf x x f t t C =+⎰⎰.注:不定积分()d f x x ⎰只能作为运算符号,不能表示一个具体的原函数,特别当()f x 为一个抽象的函数时,无法用()d f x x ⎰来讨论它的某一原函数的性质;而()d xa f t t ⎰为某一确定的原函数,可以用它来讨论此原函数的性质.定理6(牛顿-莱布尼兹公式)设()f x 在[,]a b 上连续,()F x 是()f x 的一个原函数,则()d ()()()bb aaf x x F x F b F a ==-⎰. 6.定积分的计算方法(1) 换元法:设()f x 在[,]a b 上连续,()x t ϕ=在[,]αβ上有连续的导数,且当t 从α变到β时,()t ϕ从()a ϕα=单调地变到()b ϕβ=,则()d [baf x x f βαϕ=⎰⎰要点:换元要换限,变量不还原,不换元则不换限.(2)分部积分法:设()u x ,()v x 在[,]a b 上有连续的导数,则d d bbb aaauv x uv u v x ''=-⎰⎰或 d d b b b aaau v uv v u =-⎰⎰.注:求不定积分时适用的积分法,相应地也适用定积分的求法.7.广义积分的概念与计算 (1)无穷限的广义积分ο1 设()f x 在[,)a +∞上连续,则()d lim()d baab f x x f x x +∞→+∞=⎰⎰;ο2 设()f x 在(,]b -∞上连续,则()d lim()d b baa f x x f x x -∞→-∞=⎰⎰;ο3 设()f x 在(,)-∞+∞上连续,则()d lim()d lim ()d bbaaa b f x x f x x f x x +∞-∞→-∞→+∞=+⎰⎰⎰.仅当等式右边的两个极限都存在时,左边的无穷限广义积分收敛,否则发散.注意: ο3式中等式右边的两个极限若有一个不存在,则()d f x x +∞-∞⎰发散.(2)无界函数的广义积分(瑕积分) ο1 设()f x 在(,]a b 上连续,lim ()x af x +→=∞, 则()d lim ()d bbaa f x x f x x εε++→=⎰⎰,x a =称为瑕点.ο2 设()f x 在[,)a b 上连续,lim ()x bf x -→=∞, 则0()d lim ()d bb aaf x x f x x εε+-→=⎰⎰,x b =称为瑕点.ο3 设()f x 在[,]a b 上除点c 外均连续,lim ()x cf x →=∞,则()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰12120lim ()d lim ()d c bac f x x f x x εεεε++-+→→=+⎰⎰.x c =称为瑕点.仅当等式右边的极限存在时,瑕积分收敛,否则发散.注意:ο3式中等式右边的两个极限若有一个不存在,则瑕积分()d ba f x x ⎰发散.二、重要结论(1)利用定积分定义求n 项和的极限 设()f x 连续,则ο1 1()d lim ()nban k b a b af x x f a k n n →∞=--=+⋅∑⎰.ο2 111()d lim ()nn k k f x x f n n →∞==⋅∑⎰.(2)奇、偶函数的积分ο1 设()f x 连续,若()f x 为偶函数,则()d xf t t ⎰为奇函数;若()f x 为奇函数,则对任意a ,()d xaf t t ⎰为偶函数.ο2 设()f x 在[,]a a -上连续,则()d [()()]d aaaf x x f x f a x-=+-⎰⎰(3)周期函数的积分设()f x 在(,)-∞+∞上连续,且以T 为周期,则ο1 202()d ()d ()d T a TTT af x x f x x f x x +-==⎰⎰⎰;ο2 0()d ()d nTT a f x x n f x x =⎰⎰;ο3 0()d ()d a nT Taf x x n f x x +=⎰⎰.即:周期函数在每个周期长度区间上的积分均相等,与起点无关.(4)常用结论ο1 ππ22(sin )d (cos )d f x x f x x =⎰⎰, 令π2x t =-;ο2 ππ00π(sin )d (sin )d 2xf x x f x x =⎰⎰, 令πx t =-;ο3 ππ2(sin )d 2(sin )d f x x f x x =⎰⎰,。
第四部分 一元函数微积分第11章 函数极限与连续[内容提要]一、函数:(138-141页)1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。
2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反三角函数的统称);复合函数([()]y f x ϕ=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。
3、函数的特性:奇偶性;单调性;周期性;有界性.二、极限:1、极限的概念:(141-142页)定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞→lim ,若{}n x 没有极限,则称数列{}n x 发散。
定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,)U x δo内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0。
左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作00(0)lim ()x x f x f x A -→-==。
右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作00(0)lim ()x x f x f x A +→+==。
第四章 一元函数积分学导学一、学习要求1、理解原函数与不定积分概念,弄清两者之间的关系。
会求当曲线的切线斜率已知时,满足一定条件的曲线方程。
知道不定积分与导数(微分)之间的关系。
了解定积分的定义设f(x)在[a,b]上连续,存在F (x )使得F‘(x )=f(x),则2、熟记积分基本公式,熟练掌握不定积分的直接积分法。
了解不定积分和定积分的性质,尤其是:3、熟练掌握第一换元积分法(凑微分法)注意:不定积分换元,要还原回原变量的函数;定积分换元,一定要换上、下限,直接计算其值。
4、熟练掌握分部积分法。
分部积分公式为:会求被积函数是以下类型的不定积分和定积分(1)幂函数与指数函数相乘。
(2)幂函数与对数函数相乘。
(3)幂函数与正(余)弦函数相乘。
5、知道无穷限积分的收敛性,会求无穷限积分。
6、知道变上限定积分概念,知道 是f(x)的原函数,即7、记住奇偶函数在对称区间上的定积分性质,即 (1)若 f(x) 是奇函数,则有)())((x f dx x f dxd=⎰)())((x f dx x f dxd=⎰⎰⎰-=baabdxx f dx x f )()(⎰⎰⎰+=bcc abadxx f dx x f dx x f )()()(⎰⎰⎰⎰-=-=vduuv udv dx vu uv dx uv 或''⎰⎰⎰⎰-=-=bab ab ab ababavduuv udv dx vu uv dx uv ||''或⎰-==babaa Fb F x F dx x f )()()()(|)()()(x f dt t f x xa是⎰=Φ⎰-=aadx x f 0)((2)若 f(x) 是偶函数,则有本章重点不定积分、原函数概念,积分的计算二、学习方法 看例子、尝试做、不懂就问 三、学习内容(一)、原函数概念定义一:设 f(x)是定义在区间D 上的函数,若存在函数F(x)对任何x ∈D,都有F(x)’=f(x)(或df(x)=f(x)dx)则称F(x)为f(x)在区间D 上的原函数(简称为f(x)的原函数) 如:已知函数f(x)=sinx函数F 1(x)=-cosx 和F 2(x)=-cosx+2都是f(x)=sinx 的原函数。
第三章一元函数积分学一、常见的考试知识点1.不定积分(1)原函数与不定积分的概念及关系,不定积分的性质.(2)不定积分的基本公式.(3)不定积分的第一换元法,第二换元法(限于三角代换与简单的根式代换).(4)不定积分的分部积分法.(5)简单有理函数的不定积分.2.定积分(1)定积分的概念及其几何意义,函数可积的充分条件.(2)定积分的基本性质.(3)变上限积分的函数,变上限积分求导数的方法.(4)牛顿一莱布尼茨公式.(5)定积分的换元积分法与分部积分法.(6)无穷区间反常积分的概念及其计算方法.(7)直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积.3.试卷内容比例本章内容约占试卷总分的32%,共计48分左右.二、常用的解题方法与技巧1.不定积分(1)原函数.已知ƒ(x)是定义在某区间上的一个函数,如果存在一个函数F(x),使得在该区间上的每一点,都有F ˊ(x)=ƒ(x),或dF(x)=ƒ(x)dx,则称F(x)是ƒ(x)在该区间上的一个原函数.如果ƒ(x)在某区问上连续,则在这个区间上ƒ(x)的原函数F(x)一定存在.(2)不定积分的定义.(3)不定积分的性质.①②③④(4)第一类换元积分法.(5)分部积分法.(6)一些简单有理函数的积分.这里所说的简单有理函数,是指如下的分式有理函数:它可以直接写成两个分式之和,或通过分子加、减一项之后,很容易将其写成一个整式与一个分式之和或两个分式之和,然后再求出其不定积分.2.定积分(1)定积分的性质.①②③④⑤⑥设M和m分别是ƒ(x)在区间[α,b]上的最大值和最小值,则有(2)变上限积分.(3)牛顿一莱布尼茨公式.如果ƒ(x)是连续函数ƒ(x)在区间[a,b]上的任意一个原函数,则有(4)定积分的换元积分法.(5)定积分的分部积分法.(6)反常积分.(7)计算平面图形的面积.如果某平面图形是由两条连续曲线y2=ƒ(x),y1=g(x)及两条直线x1=a和x2=b所围成的(其中y1是下面的曲线,y2是上面的曲线,即f(x)≥g(x)),则其面积A可由下式求出:(8)计算旋转体的体积.上面(7)中的平面图形绕x轴旋转一周所得旋转体的体积为三、常见的考试题型与评析(一)不定积分的概念和性质本部分内容1994--2013年共考了19次,考到的概率为95%,基本为必考题.1.典型试题(1)(0403)A.B.C.D.(2)(0505)A.cos xB.-cosxC.cosx+CD.-cos x+C(3)(0607)A.B.x2C.2xD.2(4)(0706)设ƒ(x)的一个原函数为x3,则ƒˊ(x)=( ).A.3x2B.C.4x4D.6x(5)(0806)A.sin x+x+CB.-sinx+x+CC.cos x+x+CD.-cosx+x+C(6)(0905)A.B.C.D.(7)(0917)(8)(1017)(9)(1116)(10)(1206)A.B.C.x+CD.(11)(1305)A.B.C.D.2.解题方法与评析【解析】不定积分的概念和基本性质是高等数学(二)考试中的一个重要题型,是每年试卷中必考的内容之一,希望考生能认真理解并掌握之.(1)选D.利用不定积分性质.(2)选D.利用不定积分公式.(3)选C.利用原函数的定义ƒ(x)=(x2)ˊ=2x.(4)选D.利用原函数的定义:ƒ(x)=(x3)ˊ,则ƒˊ(x)=(x3)″=6x.(5)选A.利用不定积分的性质和不定积分公式.(6)选A.同题(5).(7)(8)(9)(10)选D.(11)选C.【评析】不定积分的概念和性质以及基本的积分公式是专升本试卷中每年必考的内容之一,考生一定要牢记!(二)定积分的概念和性质本部分内容1994--2013年共考了19次,考到的概率为95%,基本为必考题.1.典型试题(1)(0618)(2)(0707)A.-2B.0C.2D.4(3)(0717)(4)(0818)(5)(0906)A.B.C.D.0(6)(1118)(7)(1218)(8)(1318)2.解题方法与评析【解析】这些试题主要考查定积分的概念以及奇、偶函数在对称区间上积分的性质:若(1)(2)(3)(4)填2.(5)选D.同题(3).(6)(7)填sin 1.(8)填0.因为x3+3x是奇函数.【评析】奇、偶函数在对称区间上的定积分是考试重点题型之一,请考生务必熟练掌握.(三)变上限定积分的概念及导数本部分内容1994—2013年共考了9次,考到的概率为45%.1.典型试题(1)A.ƒˊ(x)的一个原函数B.ƒˊ(x)的全体原函数C.ƒ(x)的一个原函数D.ƒ(x)的全体原函数(2)(9509)A.一1B.0C.1D.2(3)(0413)(4)(0507)A.0B.C.D.(5)(0817)(6)(1007)A.B.C.D.(7)(1117)(8)(1306)A.B.0C.D.2(x+1)2.解题方法与评析【解析】利用变上限定积分的定义及求导公式进行计算.(1)选C.根据变上限定积分的定义及原函数存在定理可知选项C正确.(2)选C.利用洛必达法则及变上限定积分的导数,则有本题也可先求出定积分,然后再用洛必达法则求极限,显然不如直接用洛必达法则快捷.(3)填1.(4)选C.(5)(6)选C.(7)填x+arctan x.(8)选A.(四)凑微分后用积分公式本部分内容1994--2013年共考了14次,考到的概率为70%.1.典型试题(1)(0011)(2)(0111)(3)(0213)(4)(0605)A.B.C.D.(5)(0823)(6)(0918)(7)(1017)(8)(1217)(9)(1317)2.解题方法与评析(1)(2)(3)(4)选C.(5)(6)(7)(8)(9)【评析】利用凑微分法化为不定积分公式的试题是每年必考的内容之一,希望考生牢记常用的凑微分法.常用的凑微分公式主要有:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(五)第一换元积分法(凑微分法)本部分内容1994—2013年共考了13次,考到的概率为65%.1.典型试题(1)(0219)(2)(0523)(3)(0623)(4)(0723)(5)(0921)(6)(1023)(7)(1123)(8)(1223)2.解题方法与评析【解析】由于第一类换元积分法实质上是复合函数求导的逆运算,因此,注意到被积表达式的ƒ(x)dx中除了复合函数外的哪些函数与dx的乘积可写成某一函数的微分的事实,就得到了凑微分的过程.利用所给的凑微分公式就可以得到所给的结果.换元的一个基本原则是:将被积函数中的复合函数部分用变量代换的方法换成简单函数再(1) 或(2) 或(3) 或(4) 或(5) 或或(6) 或(7)或(8)【评析】第一换元积分法(凑微分法)是高等数学(二)必考的内容之一,由于凑微分法省略了变量代换的过程,所以更为简捷.如果对被积函数中复合函数部分的中间变量(如题(2)的(六)第二换元积分法由于2000--2013年的专升本高等数学(二)试卷中没有出现过第二换元积分法的试题,所以建议考生知道有此解题方法即可.(七)分部积分法本部分内容1994--2013年共考了7次,考到的概率为35%.1.典型试题(1)(0021)(2)(0224)(3)(0728)(4)(0924)(5)(1224)2.解题方法与评析【解析】分部积分的关键是如何将被积表达式写成udυ或vdu的形式,因此正确地选取u 和υ是难点.如果选取不当,分部积分后的积分会比原积分更不容易求解.专升本试卷中常见的分部积分试题的类型主要有:①②③上述三类积分中,u和υ的选法如下:(1)(2)(3)(4)(5)(八)定积分的计算本部分内容1994—2013年共考了17次,考到的概率为85%.1.典型试题(1)(0124)(2)(0220)(3)(0324)(4)(0423)(5)(0518)(6)(0524)(7)(0624)(8)(0718)(9)(0919)(10)(1024)(11)(1218)(12)(1324)2.解题方法与评析【解析】不定积分的第一换元积分法(凑微分法)和分部积分法都适用于定积分,只需在所求的积分中加上积分的上、下限即可.在定积分计算中一定要注意:用换元积分法时,积分的上、下限一定要一起换;用凑微分法计算时,积分的上、下限不用换.(1)(2)分段函数需分段积分:(3)(4)(5)填1/2.(6)(7)(8)(9)填1/2.(10)(11)(12)【评析】分部积分的题目在专升本高等数学(二)试卷中属于较难的试题,考生可根据自己对知识的掌握程度作出安排.如果被积函数中含有根式,一般情况下应考虑用换元法去根号,再进行积分,如题(1)与题(10).(九)反常积分本部分内容1994--2013年共考了10次,考到的概率为50%.1.典型试题(1)(0013)(2)(0112)(3)(0424)(4)(1019)(5)(1219)(6)(1319)2.解题方法与评析【解析】反常积分实质上是先计算定积分再取极限,即(1)填π/2.(2)填1/2.(3)(4)填π/2.(5)填1.(6)填1.(十)平面图形的面积与旋转体的体积本部分内容1994——2013年共考了14次,考到的概率70%. 1.典型试题(1)(0326)已知曲线C为y=2x2及直线L为y=4x.①求由曲线C与直线L所围成的平面图形的面积S;②求曲线C的平行于直线L的切线方程.(2)(0527)①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S;②求①中的平面图形绕y轴旋转一周所得旋转体的体积V y.(3)(0627)①求由曲线y=x,y=1/x,x=2与y=0所围成的平面图形的面积S;②求①中的平面图形绕x轴旋转一周所得旋转体的体积V x.(4)(0827)①求曲线y=e x及直线x=1,x=0,y=0所围成的图形D的面积S;②求平面图形D绕x轴旋转一周所成旋转体的体积V x.(5)(0927)①求在区间(0,π)上的曲线),=sinx与x轴所围成图形的面积S;②求①中的平面图形绕x轴旋转一周所得旋转体的体积V x.(6)(1006)曲线y=1-x2与x轴所围成的平面图形的面积S=().A.2B.4/3C.1D.2/3(7)(1128)设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1—3—1所示).①求平面图形的面积;②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.(8)(1227)已知函数ƒ(x)=-x2+2x.①求曲线y=ƒ(x)与x轴所围成的平面图形面积S;②求①的平面图形绕x轴旋转一周所得旋转体体积K.(9)(1326)求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.2.解题方法与评析【解析】求平面图形面积的关键是根据已知条件中的曲线方程画出封闭的平面区域,根据积分的难易程度选择积分变量和确定积分的上、下限.平面区域的确定原则是:已知条件中给出的曲线方程有几个,则该区域的边界曲线就是所给的几条曲线.否则所得的平面区域一定不合题意.专升本试卷中围成平面区域的常用曲线是:y=kx+b,Y=αx2+6,y=ex,y=e-x,y=Inx,y=sinx 或y=cosx,考生一定要能熟练地画出它们的图像.求旋转体的体积时一定要注意是绕x轴还是绕y轴旋转.而且要注意的是,旋转体的体积往往是两个旋转体的体积之差.如图1—3—2所示的平面图形绕x轴旋转所成旋转体的体积为(1)画出平面图形如图1—3—3阴影所示.①②方程为y-2=4(x-1),即4x-y-2=0.(2)①由已知条件画出平面图形如图1-3-4阴影所示.②旋转体的体积(3)①如图1一3-5所示,由已知条件可得②旋转体体积(4)画出平面图形如图1-3-6阴影所示.①②(5)①②(6)选B.(7)①②(8)①②(9)(十一)证明题本部分内容1994—2013年共考了7次,考到的概率为35%.1.典型试题(1)(0127)(2)(0428)设函数ƒ(x)在区间[0,1]上连续,证明(3)(0727)设ƒ(x)为连续函数,证明2.解题方法与评析【解析】证明题的关键是要充分利用已知条件写出需要证明的内容.题(1)的关键是要正确写出ƒ(3)+ƒ(5),再进行计算.题(2)与题(3)的关键是要注意到等式两边的差异,这里的核心差异是被积函数的不同,因此需用变量代换进行换元,由此可得到证明.(1)(2)(3)设3-x=t,则dx=一dt.【评析】定积分的证明题与平面图形的面积及旋转体的体积均属于试卷中的较难题.文章来源:/p/ck.html 更多成考资源资料下载完全免费。
一、一元函数积分的概念、性质与基本定理1、原函数、不定积分在区间Ⅰ上,如()()x f x F /=,称()x f 为()x F 的导函数,称()x F 为()x f 的原函数,原函数与导函数是一种互逆关系。
如()x F 为()x f 的一个原函数,则()C x F +为()x f 的全体原函数。
记为⎰f(x)dx ,即⎰f(x)dx =()C x F + 不定积积分性质 (1) f(x))f(x)dx (/=⎰或 ()dx x f f(x)dx d =⎰(2) C F(x)(x)dx F /+=⎰ (3) ⎰⎰=f(x)dx k f(x)dx k(4) ⎰⎰⎰±=±g(x)dx f(x)dx g(x))dx f(x) (∵原函数与导函数有互逆关系,∴由导数表可得积分表。
例、P98 例3.1 已知()x F 是xxln 的一个原函数,求:()x sin dF 解:xlnx(x)F /=cosxdx sinxlnsinxdsinx dsinx dF(sinx)dF(sin x)==例、()x f 的导函数是x sin ,则()x f 的原函数21c x c x sin ++-,(1c 、2c 为任意常数)例、在下列等式中,正确的结果是 C A 、()⎰=x f (x)dx f /B 、⎰=f(x)df(x)C 、⎰=f(x)(x)dx f dxdD 、⎰=f(x)(x)dx f d 例、)dx x1(1x x )dx x 1(1x x 241212-⋅=-⎰⎰dx )x -(x 4543⎰-=C 4x x 744147++=-2、计算方法 10 换元法第一类换元法(凑微分法)常用凑微分形式kdx dkx = ()dx c x d =+xxde dx e = dlnx dx x1=x sin d x cos = x1d dx x 12=-x d dx x 21= x tan d xdx sec 2=sin x arc d dx x -112=22x 1d dx x 1x +=+22x 1d dx x -1x --= x sin d dx x 2sin 2=x cos d dx x 2sin 2-=-例、⎰⎰+--=---=-c 2x 3ln 212x)d(32x 3121dx 2x 317、⎰⎰+==c (lnx)32ln x d lnx dx x ln x 238、⎰⎰+==c x sin 41sin x d x sin xdx sin x cos 4339、⎰⎰+-=-=c x 1x -1d 21 x d x-1x22210、⎰⎰+-=-=c e 31d(-x)e 31dx e x 3x -33x -3x -211、⎰⎰+=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=+c a x tan arc a1a x d a x 11a1dx x a 1222 12、⎰⎰+=+=+c a2xarctan 61d2x (2x)3121 x d 4x 91222 13、⎰⎰+++=++c 1)d(x 41)(x 1x d 5x 2x 122 c 21x arctan 21++=14、⎰+=c a xarcsin x d x-a 122 15、⎰⎰--=+223x)(25dx 9x -2x 11dx 31-=c 53x 2sin arc +- 16、c 1tanx 21)d(tanx 1tan x 11tan x x sec 2++=++=+⎰⎰17、⎰⎰-=dx )1x (sec x tan xdx tan 224dx )1x (sec x tan xd tan 22⎰⎰--=C x x tan x tan 313++-=18、x arcsin d x arcsin dx x 1x arcsin 424⎰⎰=-C x arcsin 515+= 19、⎰⎰++=+)1e (d )1e sin(dx )1e sin(e xxxxC )1e cos(x ++-=20、⎰⎰=x d x cos 2ds xx cosC x sin 2+=21、x d x 1xarctan 2dx x)x 1(x arctan ⎰⎰+=+ ⎰=x arctan d x arctan 2 C x arctan 2+=22、dx e1e e 1dx e 11xxx x ⎰⎰+-+=+⎰+-=dx e1e 1xx()⎰++-=x x e1e 1d x ()C e1ln x x++-=23、⎰⎰⎰+-+=+-)4e (e de 4e de dx 4e 1e x 2x xx 2x x 2xxx 2x x x de 4e e e 1412e arctan 21⎰⎪⎭⎫ ⎝⎛+--=C )4e ln(814x 2e arctan 21x 2x +++-=P100, (9),(10), (14)21x -除了凑微分法外其它常用变量代换 (1)被积函数中含有二次根式22x a -,令t sin a x = 22x a +,令t tan a x = 22a x -,令t sec a x =如是C bx ax 2++配方221212212u a ,a u ,a u --+→例1、dx xx 122⎰- 令tdt cos dx ,t sin x ==解:原式 ⎰⋅=tdt cos tsin tcos 2⎰⎰-==dt )1t (csc tdt cot 22C t t cot +--=C x arcsin xx 12+---=例2、dx 4x x122⎰- P105例4 二种解法(2)被积函数中含一般根式例3、⎰++32x 1dxP106 (6)解:令dt t 3dx 2t x t2x 233=-==+原式⎰⎰++-=+=dt )t111t (3dt t 1t 32()C 2x 1ln 32x 32x 233332+++++-+=例4、⎰+dx x x 132令 dt t 6dx t x 56==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x 1ln 6x 6x 3663+++-=例5、⎰+dx 1e x解:令 1t e t1e 2x x-==+dt 1t t2dx )1t ln(x 22-=-= 原式 ⎰⎰⎪⎭⎫ ⎝⎛-+=-⋅=dt 1t 112dt 1t t 2t 22 C 1t 1t lnt 2++-+=C)11e ln()11e ln(1e 2x x x +++--+++=20分部积分<定理> 如()x u 、()x v 均具有连续的导函数,则⎰⎰-=vdu uv dv u例1、⎰⎰=xdsin x dx x xcos⎰=dx sin x -sin x xc x cos sin x x ++=例2、⎰⎰---=xxxde dx xe⎰--+-=dx e xe x xC e xe x x+--=--例3、()⎰⎰⋅-=dx x-11sin x 2arc x sinx arc x dx sin x) (arc 222()⎰+=22x -1sinxd arc 2sinx arc x()⎥⎦⎤⎢⎣⎡-⋅-+=⎰dx x 11x -1-sinx arc x 12sinx arc x 2222()C 2x -sinx arc x 12sinx arc x 22+-+=例4、⎰⎰⎪⎭⎫⎝⎛-=x 1d ln x dx x ln x 2 ⎰+-=dx x 1x lnx 2c x1-x lnx +-=例5、⎰⎰=ln x d ln x ln dx xlnxln ⎰⋅⋅⋅=dx x1ln x 1ln x -ln x ln ln xc ln x -ln x ln ln x +=例6、⎰⎰-=dx )1x (sec x xdx xtan 22⎰-=2x xdtanx 22x dx tan x xtanx 2--=⎰c 2x - x cos ln x tan x 2++=例7、⎰⎰+-+=+xdx arctan x111x dx x 1x arctan x 2222⎰+-=dx )x1xarctan x (arctan 2⎰⎰-=x arctan xd arctan xdx arctan22)x (arctan 21dx x 1x x arctan x -+-=⎰c )x (arctan 21)x 1ln(21x arctan x 22+-+-=例8、⎰⎰++-++=++c x 1dx )x 1xln(x )dx x 1ln(x 222 c x 1)x 1xln(x 22++-++=例9、⎰⎰=x x x 2x dsine e dx cose e⎰-=x x x x de sine sine ec cose sine e x x x ++=例10、⎰⎰-=dx )x 2cos 1(21x xdx sin x 222 ⎰-=dsin2x x 416x 23 ⎰+-=dx 2x xsin 21sin2x x 416x 23 ⎰--=x 2cos xd 41x 2sin 4x 6x 23c x 2sin 81x 2cos x 41sin2x x 416x 23++--=例11、⎰⎰--=-22x 1arcsinxd dx x 1xarcsinxc x arcsinx x 12++--=例12、P109 例3.5友情提示:方案范本是经验性极强的领域,本范文无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用。
曲线积分的计算总结简介曲线积分是微积分中的重要概念,用于计算沿着曲线的函数值的累积。
本文总结了曲线积分的计算方法和基本原理。
1. 一元函数的曲线积分- 定义:一元函数沿着曲线的积分可以表示为∫f(ds),其中 f 是函数,ds 是曲线元素。
- 计算方法:将曲线分为若干小段,然后将每个小段的函数值与曲线长度相乘,并对所有小段的结果求和即可。
- 示例:计算函数 y = x^2 在曲线 x = 0 到 x = 1 上的积分。
- 将曲线分为小段:[0,0.1],[0.1,0.2],...,[0.9,1]- 计算每个小段中函数值与曲线长度的乘积,并求和- 得到最终的积分结果2. 向量函数的曲线积分- 定义:向量函数沿着曲线的积分可以表示为∫F · dr,其中 F 是向量函数,dr 是微小位移的向量。
- 计算方法:将曲线分为若干小段,然后将每个小段上向量函数与微小位移的乘积求和即可。
- 示例:计算向量函数 F = <x, y> 在曲线 y = x^2 上的积分。
- 将曲线分为小段:[0,0.1],[0.1,0.2],...,[0.9,1]- 计算每个小段上向量函数与微小位移的乘积,并求和- 得到最终的积分结果3. 应用举例曲线积分在物理学、工程学和经济学等领域有广泛的应用,例如计算流体的涡量和物体的质心坐标等。
总结曲线积分是计算沿着曲线函数值的累积的方法,可以用于一元函数和向量函数。
通过将曲线分为小段,然后对每个小段的函数值或向量函数与曲线段长度的乘积进行求和,就可以计算曲线积分。
曲线积分在各个领域具有重要应用价值。
以上是曲线积分的计算总结。
参考资料:。
一元函数的积分与应用在微积分中,积分是函数的导数的逆运算,用于求解函数的面积、体积、平均值等问题。
本文将讨论一元函数的积分及其在实际问题中的应用。
一、不定积分不定积分是指在求解函数的原函数时所使用的积分方法。
设函数f(x)在区间[a, b]上连续,则其不定积分记作∫f(x)dx。
不定积分的结果是一个包含常数项的函数,即可以表示为F(x) + C,其中F(x)是f(x)的一个原函数,而C为任意常数。
不定积分主要通过一些基本积分公式和常见的积分技巧来求解。
其中,基本积分公式包括常数函数的积分公式、幂函数的积分公式、三角函数的积分公式等。
通过熟练掌握这些公式,可以简化积分运算的过程。
二、定积分定积分是求解函数在一个区间上的面积的方法。
设函数f(x)在区间[a, b]上连续,则其定积分记作∫[a,b]f(x)dx。
定积分的结果是一个数值,表示函数曲线下的面积。
定积分的求解可以利用黎曼积分的定义,即将区间[a, b]等分成n个小区间,然后分别取各小区间上的一点,计算出这些小区间上的面积,并将其累加起来,当n趋向于无穷大时,即可得到函数在区间[a, b]上的定积分的近似值。
三、积分应用1. 面积计算定积分可用于计算曲线与坐标轴之间的面积。
具体方法是将函数曲线下的面积分成若干个小矩形或三角形的面积,然后将这些小面积相加得到总面积。
2. 几何体体积计算通过旋转曲线可得到一些几何体,如旋转曲线所围成的旋转体、圆锥体等。
利用定积分可求解这些几何体的体积。
3. 物理问题分析在物理学中,很多问题可以用积分方法求解。
例如,通过速度函数求位移函数、通过加速度函数求速度函数等。
积分可以帮助我们进一步了解物理规律与过程。
4. 概率密度函数计算统计学中,概率密度函数是描述随机变量的概率分布的函数。
通过对概率密度函数的积分,可以计算出某个区间内随机变量的概率。
除了以上几个方面,积分还有很多实际应用。
总的来说,积分是微积分的重要内容之一,对于解决实际问题具有广泛的应用。
一元函数积分的基本概念及解析方法
积分是微积分学中的重要概念之一,它广泛应用于各个领域中的计算和解决问题。
而其中一元函数积分是最基础也是最常见的类型之一。
在本篇回答中,我们将介绍一元函数积分的基本概念和解析方法。
一、一元函数积分的基本概念
1. 定义:一元函数的积分是对给定函数在某一区间上进行求和的一种运算。
通
常用∫f(x)dx表示,其中∫是积分符号,f(x)是被积函数,dx表示自变量。
2. 不定积分与定积分:一元函数积分可以分为不定积分和定积分两种形式。
- 不定积分:表示对被积函数进行积分得到的一类函数。
不定积分的结果常
常带有一个不确定的常数C,称为积分常数。
不定积分通常表示为F(x) + C的形式。
- 定积分:表示对被积函数在某一区间上进行积分得到的一个具体的数值。
定积分的结果是一个确定的数值。
3. 基本性质:一元函数积分具有以下基本性质:
- 线性性质:若f(x)和g(x)是连续函数,a和b是常数,则有∫(af(x)+bg(x))dx = a∫f(x)dx + b∫g(x)dx。
- 区间可加性:若f(x)在区间[a, b]上连续,则有∫[a, b]f(x)dx = ∫[a, c]f(x)dx + ∫[c, b]f(x)dx。
- 基本运算法则:常见函数的不定积分有一些基本的运算法则,如幂函数积分、三角函数积分等,可以通过表格或特定的公式进行求解。
二、一元函数积分的解析方法
1. 基本积分公式:一些基本的不定积分可以通过积分表格中的基本积分公式进
行求解。
例如:
- ∫x^ndx = x^(n+1)/(n+1) + C,其中n≠-1。
- ∫1/xdx = ln|x| + C。
2. 埃尔米特法则:该方法适用于只有有限个特殊点的函数。
根据积分的线性性
质和区间可加性,将被积函数划分为若干个小区间,然后对每个小区间使用基本积分公式求解。
3. 分部积分法:对于两个函数相乘,可以通过分部积分法求解。
该方法得到的
结果通常需要通过多次应用分部积分法得到。
4. 代换法:也被称为换元积分法,通过对积分变量进行适当的代换,将原有的
积分转化为一个更容易求解的形式。
常见的代换变量有三角函数的角度替换、指数函数替换等。
5. 部分分式分解法:适用于有理函数的分解。
将有理函数进行部分分式分解后,可以将原问题转化为常见的基本积分公式。
6. 曲线下面积法:定积分可以表示函数f(x)在区间[a, b]上的曲线下面积,可以
通过几何图形的面积计算公式求解。
总之,一元函数积分是微积分学的重要内容之一。
通过学习一元函数积分的基
本概念和解析方法,我们可以更好地理解函数的积分运算和应用,并能够应用积分解决实际问题。
掌握这些基本概念和方法后,进一步学习多元函数积分和应用积分的各种技巧将变得更加容易。