一元函数积分的基本概念及解析方法
- 格式:docx
- 大小:37.32 KB
- 文档页数:2
三.一元函数积分学3-1.不定积分与定积分的概念与性质一.原函数与不定积分1-1.定义为任意常数数的任意一个确定的原函是其中记作的不定积分称为的原函数的一般表达式上的原函数在区间为则称设C x f x F Cx F dx x f x f C x F x f b a x f x F b a x x f x F ,)()(,)()(,)()()(),()()(),(),()('⎰+=+∈=1-2.性质⎰⎰⎰⎰⎰⎰⎰⎰⎰=±=±+=+===的常数是不为则有以下性质在所讨论的区间上连续与以下均设被积函数0,)()(.4)()())()((.3)()(;)()('.2)()();()')('.(1,)()(k dx x f k dx x kf dxx g dx x f dx x g x f Cx f x df C x f dx x f dxx f dx x f d x f dx x f x g x f 二.定积分1.原始定义本部分详见教材2.几何意义梯形面积的负值其几何意义是表示曲边时当梯形的面积其几何意义是表示曲边时当上的连续函数对于在区间,0)(,0)()(],[≤≥x f x f x f b a3.性质))(()(),,(],[)(.8)()()()(],,[)()(,],[)(.7)()(),()(.6)()()(.5,)()(.4)()())()((.30)(.2)()(.1,)(),(,111a b f dx x f b a b a x f dx x g dx x f x g x f b a x x g x f b a x f dx x g dx x f ba x g x f dx x f dx x f dx x f k dx x f k dx x kf dx x g dx x f dx x g x f dx x f dx x f dx x f x g x f ba b a ba b a ba b a bc c a b a ba ba b a b a aa b a ab -=∈<<∈≤≤≤≤+==±=±=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ξξ使下面的等式成立则至少存在一点上连续在区间设积分中值定理加强版:则使且至少存在一点上连续在区间积分中值定理:若则比较定理:若为常数则有以下性质在讨论的区间上可积均设以下除特别声明外4.存在定理4-1.定积分存在定理⎰⎰ba ba dx x fb a x f x f b a x f 存在则且只有有限个间断点上有界在区间设存在则上连续在区间设)(,,],[)(.2)(,],[)(.14-2.原函数存在定理上必存在原函数则在区间上连续在设],[,],[)(b a b a x f5.变限积分称为变上限定积分为自变量的函数定义了一个以有以下关系上可积在区间对上可积在区间设,],[,)()(,],[)(],,[,],[)(x b a x dt t f x x a x f b a x b a x f xa ⎰∈=Φ∈类似的,可以定义变下限定积分,这里不再赘述求导法则详见第二章知识点6.牛顿——莱布尼兹定理)()(|)()(,)()(,],[)(a F b F x F dx x f x f x F b a x f b a b a -==⎰则有的一个原函数是上连续在区间设3-2.不定积分与定积分的计算一.基本积分公式详见教材二.不定积分的基本积分方法1.第I 类换元法(凑微分法)⎰⎰+==Cx F x d x f dx x x f ))(())(())(()('))((ϕϕϕϕϕ2.第II 类换元法(换元积分法)的函数代回成的反函数积分之后再以其中右边表示对则有换元公式且具有连续导数连续设x x t t x t dt t t f dx x f t t t x x f x t )()())('))((()(,0)(')(')(,)()(ψψϕϕϕϕϕψ===≠==⎰⎰3.分部积分法 ⎰⎰⎰⎰-=-=dxvu uv dx uv vdu uv udv v u x v x u ''),,()(),(或则有分部积分公式函数以下简称均有连续导数设注:口诀“反对幂指三”先说到哪个类型的函数,哪个类型的函数就要留下来,剩下的函数去凑微分三.定积分的基本积分方法与不定积分类似,定积分的基本积分方法与不定积分的大体相同,但与不定积分的基本积分方法有区别注:定积分在换元时,积分上下限应该跟着换,直接将新的上下限写在积分号上即可四.几个有用的定积分公式⎪⎪⎩⎪⎪⎨⎧------===+∞-∞=-=-⎰⎰⎰⎰⎰⎰⎰+--的正奇数为大于当为正偶数,当华里士公式则有为周期的连续函数内是以在区间设则有上是个连续的奇函数在区间设则有上是个连续的偶函数在区间设1,1.32 (2)3.1,2.21.....12.1cos sin .4)()(,),()(.30)(,],[)(.2)(2)(,],[)(.1202000n n n n n n n n n n xdx xdx dx x f dx x f T x f dx x f a a x f dx x f dx x f a a x f n n Ta a T a a a a a πππ3-3.广义积分及其计算一.广义积分1.无穷区间上的广义积分就说此广义积分发散存在只要等号右侧有一项不对于该式其中以及可定义类似的反之称此广义积分发散称此广义积分收敛若等号右端的极限存在上的广义积分在区间为称上连续在区间设,,)()()(,)()(,;,),[)()(lim )(,),[)(⎰⎰⎰⎰⎰⎰⎰∞-∞+∞+∞-∞-∞+∞-∞++∞→+=+∞=+∞c c b ba ab dxx f dx x f dx x f dx x f dx x f a x f dx x f dx x f a x f 2.无界函数的广义积分则称此广义积分发散有一个不存在若等号右端的积分只要对于上式则应分成为瑕点内部的点若在开区间则称此广义积分发散有一个不存在若等号右端的积分只要对于上式则应分成都是瑕点点若点类似的可定义的一个瑕点是若点的一个瑕点称为此时点上的广义积分在区间为称且上连续在区间设,,)()()(,),(,,),(,)()()(,,)(lim )(,)()(,),[)()(lim )(,)(lim ,),[)(000⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+=∈+===∞=+--→→→ba c a bc ba x a bx b a b a a ba b bx dx x f dx x f dx x f c b a b a x dx x f dx x f dx x f b a dx x f dx x f x f a x f b b a x f dx x f dx x f x f b a x f ααββ二.对称区间上奇,偶函数的广义积分⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--∞+∞-∞+∞+∞+∞-+∞=∈±=±=-=∈±=±=-==aa aa aa a dx x f dx x f dx x f x f a c x f c x c x a a x f dx x f dx x f x f a c x f c x c x a a x f dxx f dx x f dx x f R x f dx x f dx x f R x f 00000)(2)(,)(,)(],0[,)(,],[)(.40)(,)(,)(],0[,)(,],[)(.3)(2)(,)(,,)(.20)(,)(,,)(.1则有结论收敛且是偶函数又设的瑕点为外均连续上除在区间设则有结论收敛且是奇函数又设的瑕点为外均连续上除在区间设则有结论收敛又设且为偶函数上连续在设则有结论收敛又设且为奇函数上连续在设注:一个重要的广义积分π=⎰+∞∞--dx e x 23-4.定积分的应用一.定积分在几何上的应用1.平面图形面积⎰⎰⎰=≤-<===-===≥==-===≥==βαθθπαββθαθθd r A r r dy y x y x A d y c y y x y x y x x y x x dx x y x y A b x a x x y x y x y y x y y dc ba )(21)20()(.3))()((,))()()(()(.2))()((,))()()(()(.12121212121212之间曲边扇形面积为与介于两射线极坐标曲线围成的平面图形面积为及与曲线围成的平面图形面积为及与曲线 2.平面曲线弧长θθθθθβαθθβαβαβαd r r s r r r r dx x y s t y b a x x y y dt t y t x s t y t x t t y y t x x b a ⎰⎰⎰+=∈=+=∈=+=∈⎩⎨⎧==)()(')0,)('),((],[),(.3)('1))('(],[),(.2)(')(')0,)('),('(],[,)()(.122222且不同时为连续其中的弧长为极坐标曲线连续其中的弧长为直角坐标且不同时为均连续其中的弧长为参数方程曲线3.旋转体体积dx x y x y x V y x y x y a b b x a x x y y x y y b a dx x y x y V x x y x y b x a x x y y x y y b aba ))()((2))()(,0(,),(),(.2,))()(()0)()((,),(),(.112121*********-=≥≥>====<-=≥≥====⎰⎰ππ转体体积为轴旋转一周所形成的旋围成的图形绕曲线转体体积为轴旋转一周所形成的旋围成的图形绕曲线4.旋转曲面面积b a dx x f y S x x f y b a b a <+==⎰,)('12)(],[2π转曲面面积为轴旋转一周所形成的旋绕的弧段上的曲线在区间5.在区间[a,b]上平行截面面积A(x)为已知的立体体积 ⎰<=ba b a dx x A V ,)(6.函数平均值⎰-=∈b adx x f a b f b a x f b a x )(1],[)(],,[上的平均值为在区间函数设二.定积分在物理上的应用10322,,24,,)(,,,,:,100,0,4,:302102002200+============⎰⎰⎰⎰⎰⎰t x dt t dx t v tdt dv dtdt a x dtx d dt dv a dt dx v x v t t a x tx v tx x x 解得得由题意可得到运动方程积分对速度解析式再次进行解得得由题意可得到速度解析式行一次积分解:对加速度解析式进即析式连续积分两次求得运动方程可由加速度解所以我们知道由高中物理知识分析写出质点的运动方程坐标为初速度时初始条件为已知轴运动设质点沿着引例。
一元函数的定积分与定积分的计算定积分是微积分中的重要概念,用于计算一元函数在给定区间上的面积、曲线长度、体积等问题。
本文将介绍一元函数的定积分以及常见的定积分计算方法。
一、一元函数的定积分在介绍定积分之前,我们先来回顾一下导数的概念。
对于一元函数f(x),它的导数f'(x)表示函数在某一点处的瞬时变化率。
类似地,定积分可以看作是函数在一定区间上的累积变化量。
设函数f(x)在区间[a, b]上连续,把[a, b]分成n个小区间,每个小区间的长度为Δx。
在每个小区间上选择一个点ξi,并计算出f(ξi)。
将Δx 逐渐趋近于0,ξi逐渐靠近区间[a, b]的端点,可以得到如下极限:∑f(ξi)Δx → ∫f(x)dx其中∑表示求和,Δx表示小区间的长度,ξi表示取点的位置,∫表示定积分,f(x)dx表示被积函数。
定积分∫f(x)dx的几何意义是曲线y=f(x)与x轴以及直线x=a、x=b所围成的区域的面积。
根据定积分的定义,我们可以将定积分分为两种情况:1. 当被积函数f(x)为非负函数时,定积分的值表示函数曲线与x轴及两条垂直直线x=a、x=b所围成的面积;2. 当被积函数f(x)为有正负之分的函数时,定积分的值表示函数曲线与x轴及两条垂直直线x=a、x=b所围成的有向面积,即正面积减去负面积。
二、定积分的计算方法计算定积分的方法多种多样,这里介绍几种常见的方法。
1. 几何法:根据定积分的几何意义,可以通过几何图形的面积公式计算定积分的值。
具体步骤是将被积函数对应的图形分割成几何形状简单的子图形,计算每个子图形的面积,然后将这些面积相加得到定积分的近似值。
2. 基本积分法:定积分的计算可以通过求导的逆操作——积分来实现。
根据函数的导数与原函数的关系,可以利用一些基本积分公式对被积函数进行积分。
常见的基本积分公式包括多项式函数、指数函数、三角函数等。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式是定积分与不定积分之间的重要关系。
一元函数微积分的基本原理与方法微积分是数学中非常重要的一门学科,是数学中的一种基础理论,又是现代科学的一种重要工具。
一元函数微积分是微积分中最基本的部分之一,掌握一元函数微积分的基本原理与方法是学习微积分的第一步。
一、导数与微分导数是微积分的核心概念之一,是函数在一个点上的变化率或斜率。
在一元函数微积分中,导数有多种不同的定义方式,但它们都是等价的。
设 $f(x)$ 在点 $x_0$ 的某个邻域内有定义,当 $x$ 充分接近$x_0$ 时,$$f'(x_0)=\lim\limits_{x\rightarrow x_0}\dfrac{f(x)-f(x_0)}{x-x_0}$$如果这个极限存在,则称 $f(x)$ 在 $x_0$ 处可导,并把它的导数记为 $f'(x_0)$。
导数的几何意义是曲线在 $x_0$ 点处的斜率。
对于一元函数 $y=f(x)$,如果在某一点 $x_0$ 处导数$f'(x_0)$ 存在,则称 $f(x)$ 在 $x_0$ 处可导。
函数在 $x_0$ 处的导数 $f'(x_0)$ 也可以表示为$$\dfrac{dy}{dx}\bigg|_{x=x_0}$$它表示在点 $x_0$ 处函数 $y=f(x)$ 的每单位 $x$ 的变化量,也就是函数的瞬时变化率。
微分是导数的一种应用。
设 $y=f(x)$,$x$ 发生一个无限小的增量 $\Delta x$,相应地 $y$ 也发生了一个无限小的增量 $\Delta y=f(x+\Delta x)-f(x)$,则称 $dy=f'(x)dx$ 为 $y=f(x)$ 的微分。
它表示在 $x$ 处函数值的微小增量与 $x$ 的微小增量之比。
在微积分中,微分是一种将无限小的变化转换为实际的数值计算的技术方法。
二、函数的基本性质函数是微积分的基础,掌握函数的基本性质对学习微积分非常重要。
1. 连续性一个函数如果在某一点连续,则表明函数在该点的值可以通过函数在该点的极限来确定。
一元函数微积分的基本概念与运算微积分是数学中十分重要的一个分支。
其中,一元函数微积分是微积分的基础,也是我们初次接触微积分时需要理解和掌握的概念和运算。
本文将为大家简单介绍一元函数微积分的基本概念与运算。
一、函数的基本概念在学习一元函数微积分之前,我们需要先了解函数的基本概念。
所谓函数,就是一种描述变化关系的数学规律。
从输入值到输出值,函数都有严格的对应关系。
而这个对应关系就是函数的核心。
函数可以用数学符号表示,常见的符号为 y=f(x),其中 y 代表输出值,x 代表输入值,f 表示函数名称。
例如 y=x²就是一个函数的表达式,它的输出值是输入值的平方。
我们可以通过绘制函数图像的方式来更直观地理解函数的定义和特点。
以 y=x²为例,当输入值 x=0 时,输出值 y=0,对应的点为坐标系的原点;当 x 取正值时,输出值 y 会随着 x 的增加而增加,图像呈现右侧开口的 U 形曲线;当 x 取负值时,输出值 y 也会增加,但函数的图像则向下移动。
二、导数的概念及计算方法导数是微积分的重要概念之一。
它表示一个函数在某一点处的变化速率,也就是函数斜率的大小。
导数可以用公式表示为:f'(x)=lim(f(x+Δx)-f(x))/Δx (Δx->0)其中 f(x) 是函数在 x 点处的值,Δx 表示 x 增加的微小量,lim 表示取极限。
可以理解为,当Δx 足够小的时候,(f(x+Δx)-f(x))/Δx 的值就趋近于 x 点处的斜率,也就是导数。
导数有许多重要的应用,如求解函数的最值、曲线的凸凹性、速度加速度等。
因此掌握导数的计算方法是学习微积分的必要前提。
常见的导数计算方法有以下两种:1. 利用求导法则求导法则是一元函数微积分中常用的计算导数的方法。
它包括以下几条规则:(1)和差法则:(f+g)'=f'+g',(f-g)'=f'-g'(2)积法则:(f.g)'=f.g'+g.f'(3)商法则:(f/g)'=[f'g-fg']/g²(4)反函数法则:f⁻¹(x)'=1/f'(f⁻¹(x))通过组合这些法则,我们可以对各种函数求导,例如对y=x³+2x-1 求导:y'=3x²+22. 利用几何意义导数还有一个重要的几何意义,即为函数图像在某一点处的切线斜率。
高等数学1:一元函数微积分学
一元函数微积分学是一门具有普遍价值的数学课程,它是描述数学中一元函数的变化趋势以及求解相关问题的一种数学方法。
一元函数微积分学的基础是微积分学,它是由法国数学家库仑发明的一种数学方法,主要是研究函数的微小变化。
微积分学的结果就是一元函数微积分学,它是一种研究函数变化趋势的方法,可以描述函数在各个点的变化状态,也可以用来求解函数的极值和极限,从而获得函数的全局特征。
研究一元函数微积分学需要掌握一些基本概念,如函数极限、微分、导数、极值等,这些概念可以帮助我们更好地理解函数的变化趋势,有助于求解函数的极值、极限等问题。
在研究一元函数微积分学时,除了要掌握一些基本概念外,还要掌握一些解决问题的方法,如泰勒公式、换元法和求积分等。
这些方法可以帮助我们研究函数的变化趋势,从而更好地理解函数的特征。
总之,一元函数微积分学是一门十分重要的数学课程,它能够帮助我们更好地理解函数的变化趋势,有助于求解函数的极值和极限,从而获得函数的全局特征。
研究一元函数微积分学时,除了要掌握一些基本概念外,还要掌握一些解决问题的
方法,如泰勒公式、换元法和求积分等。
只有掌握了这些方法,才能更好地理解函数的特征,并能够解决函数相关的问题。
第三章 一元函数的积分学§1 不定积分【考试要求】1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式.2.掌握不定积分的换元积分法和分部积分法.3.会求有理函数、三角函数有理式的积分和简单无理函数的积分.一、基本概念1.原函数与不定积分定义若()()F x f x '=,(,)x a b ∈,则称()F x 是()f x 在(,)a b 内的一个原函数.(一般地,“在区间(,)a b 内”几个字常省略).若()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数(其中C 为任意常数),()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰.若()F x 是()f x 的一个原函数,则()d ()f x x F x C =+⎰.2.不定积分与原函数的关系(1)不定积分与原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素,因此()d ()f x x F x ≠⎰.(2)设()F x ,()G x 是()f x 的任意两个原函数,则()()F x G x C =+((,)x a b ∈).(3)原函数的几何意义:称()y F x C =+为()f x 的积分曲线,其上横坐标为x 处的切线互相平行.3.原函数存在定理设()f x 在(,)a b 内连续,则在(,)a b 内必有原函数.4.不定积分的基本性质(1)()d ()d kf x x k f x x =⎰⎰ (k 为常数);(2)[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰;(3)求导与求不定积分互为逆运算① (()d )()f x x f x '=⎰ ,d ()d ()d f x x f x x =⎰;② ()d ()f x x f x C '=+⎰,d ()()f x f x C =+⎰;5.基本积分公式(熟练掌握)(1)d k x kx C =+⎰;(2)11d 1x x x C μμμ+=++⎰; (3)1d ln ||x x C x=+⎰; (4)d ln x x a a x C a=+⎰; (5)e d e x x x C =+⎰;(6)sin d cos x x x C =-+⎰;(7) cos d sin x x x C =+⎰;(8) 2sec d tan x x x C =+⎰;(9)2csc d cot x x x C =-+⎰;;(10)sec tan d sec x x x x C ⋅=+⎰;(11)csc cot d csc x x x x C ⋅=-+⎰;(12)d arcsin xx C =+⎰;(13)2d arc ta n 1x x C x=++⎰; (14)tan d ln |cos |x x x C =-+⎰;(15)cot d ln |sin |x x x C =+⎰;(16)d arcsin xx C a =+⎰; (17)22d 1arctan x x C a x a a=++⎰; (18)sec d ln |sec tan |x x x x C =++⎰;(19)csc d ln |csc cot |x x x x C =-+⎰;(20)22d 1ln 2x a x C a x a a x +=+--⎰;(21)d ln x x C =++⎰; (22)21arcsin 22a x x C a =++⎰. 6.初等函数的原函数初等函数在其定义区间内必有原函数,但它的原函数不一定是初等函数.不能用初等函数来表示(积不出来)的不定积分如下:2e d x x ⎰, 2e d x x -⎰, sin d x x x ⎰, cos d x x x⎰, 2sin d x x ⎰, 2cos d x x ⎰, d ln x x ⎰,e d x x x⎰,e ln d x x x ⎰,ln |sin |d x x ⎰等.二、不定积分的积分法1.公式法 将被积函数变形,直接利用公式.2.换元法 引入新的变量,再积分.第一类换元法(凑微分法)设()f u 的原函数为()F u ,()u x ϕ=有连续的导数,则[()]()d f x x x ϕϕ'⋅⎰ [()]d ()f x x ϕϕ=⎰()u x ϕ=()()d [()][()]u x f u u F u C F x C ϕϕ==+=+⎰凑微分 换元 积分 变量还原常见的凑微分公式(1)1()d ()d()f ax b x f ax b ax b a+=++⎰⎰,0a ≠;(2)11()d ()d()n n n n f x x x f x x n -=⎰⎰; (3)(e )e d (e )d(e )x x x x f x f =⎰⎰;(4)d 1(ln )(ln )d(ln )x f x f x x x n =⎰⎰;(5)21111()d ()d()f x f x x x x=-⎰⎰; (6)12f x f =⎰⎰; (7)(sin )cos d (sin )d(sin )f x x x f x x =⎰⎰;(8)(cos )sin d (cos )d(cos )f x x x f x x =-⎰⎰;(9)2(tan )sec d (tan )d(tan )f x x x f x x =⎰⎰;(10)2(cot )csc d (cot )d(cot )f x x x f x x =-⎰⎰;(11)21(arctan )d (arc tan )d(arc tan )1f x x f x x x ⋅=+⎰⎰; (12)1(arcsin )d (arcsin )d(arcsin )f x x f x x ⋅=⎰⎰; (13)d xf x f ⋅=⎰⎰;(14)()d ()d ln |()|()()f x f x x f x C f x f x '==+⎰⎰. 第二类换元法设()x t ϕ=单调,有连续的导数,且()0t ϕ'≠,如果[()]()d ()f t t t F t C ϕϕ'=+⎰,则()d f x x =⎰ ()x x ϕ=[()]()d f t t t ϕϕ'⎰1()[()]t x F t C ϕ-==+1[()]F x C ϕ-=+.换元 积分 变量还原3.分部积分法 设()u u x =,()v v x =具有连续的导数,则d d uv x uv u v x ''=-⎰⎰ 或 d d u v uv v u=-⎰⎰称为分部积分公式.4.特殊函数类的积分有理函数:先化为多项式与简单分式,再逐项积分.三角函数有理式:令tan 2x u =,化为有理函数的积分.简单无理函数:引入代换去掉根号,化为有理函数的积分.常用的分项公式如下:(1)111(1)1x x x x=-++; (2)111(1)1x x x x=+--; (3)2211(1)1x x x x x=-++; (4)22211111(1)(1)(1)1(1)x x x x x x x x x =-=--+++++; (5)2222111(1)1x x x x=-++. 常用的三角公式如下:(1)21cos 2cos 2x x +=;(2)21cos 2sin 2x x -=;(3)21sin (sin cos )22x x x ±=±三、典型例题题型1 直接积分法 (即将被积函数分解为几个简单函数的代数和再分项积分)例1 求下列不定积分(1) 231d 5x xx x ++⎰; (2)10d (2)x x x +⎰;(3) 42d x x x +⎰; 解 原式2222d 111d arctan (1)1x x x C x x xx x ⎡⎤==-=--+⎢⎥++⎣⎦⎰⎰.(4)2222+sin sec d 1x x x x x ⋅+⎰; 解 原式精品文档()()2222221+sin 11sec d sec d d 11xx x x x x xx x +-=⋅=-++⎰⎰⎰tan arctan x x C =-+.题型2 换元积分法(第一类和第二类)例1 求下列不定积分(1)2sin cos d 1sin x xx x ⋅+⎰; (2)d x⎰解原式ln dln d u x x u ========⎰⎰⎰11d()2arcsin arc 12u u C --==+=⎰ .(3)3xx ⎰;解原式23221122u x x x x x u========⎰⎰⎰32111(1(1)d(1)222u u u u =+-=++-⎰⎰⎰535222212211[(1)(1)](1)(125353u u C x =+-++=+-+ . (4)sin 222esin d exxxx ⋅⎰; 解 原式sin 222sin 22sin11esin d e d(sin 22)e44x xx x x x x x --=⋅=--=-⎰⎰(5)1d (1e )xxx x x ++⎰; (6)ln(tan )d sin cos x x x x ⋅⎰.例2 求x ⎰.解:原式2[ln()3x x =+=+⎰例3 求 342e ed e 2e 1x xx xx +-+⎰. 解:原式2222e (e e )d(e e )1d e (e e )(e e )e ex x x x x x x x x x x x x C -----+-===-+---⎰⎰ 例4 求 241d 1x x x ++⎰.解:原式22221111d()1d arctan 11()2x x x x x C x x x x+--===++-+⎰⎰例5 求下列不定积分(1)xx ⎰;(2)3d x x ⎰; 解 令π323sec ,0,d sec tan d 22x t t x t t t ⎛⎫=<<=⋅ ⎪⎝⎭ ,原式23233tan 34tan 4sec tan d d sin 23sec 33sec 2t t t t t t t t =⋅⋅==⎛⎫ ⎪⎝⎭⎰⎰⎰241231sin 2arccos 324322t t C x x ⎛⎫=-+=- ⎪⎝⎭.(3)d x ⎰.解 令2tan ,d sec d x t x t t ==,原式2222sec d cos d dsin arcta (2tan 1)sec 1sin 1sin t t t t tt t t t ====+++⎰⎰⎰arctanx C =+.注 1ο,令s i n x a t = 或 cos x a t =;2ο,令sec x a t = 或 csc x a t =或 ch x a t =;3ο,令tan x a t = 或 cot x a t =或 sh x a t =;4ο三角代换变量还原时利用辅助三角形. 例6 求下列不定积分(1)d x⎰;解 原式()d31d13xx-==⎰⎰1ln|31|3x C=-++.(2)21d446xx x-+⎰.解原式()()2111212d21arctan221xx C x-=-=⋅+ -+⎰.(注对二次三项式2ax bx c++或其平方根,配方后使用公式).例7求下列不定积分(1)d x⎰(2)21lnd(ln)xxx x--⎰.(注1xt=称为倒代换,当分母的次数高于分子的次数时,可考虑用此代换).例8 求e (1e )d x xx +⎰(注 可考虑指数代换e xu =或e sin xt =).例9 求d x x⎰,(令:t =)解令t =,22tan 1tan d 2tan sec d .t x t x t t t =⇒=+⇒=⋅原式(2222arctan 2sec tan d 2tan d 2sec 1tan t t t t t t t t t t t ⋅=⋅⋅=⋅=⋅+⎰⎰⎰()222sec 1d 2d(tan )2tan tt t t t t t t t =⋅-=-=⋅-⎰⎰⎰22tan 2ln |cos |t t t t C =⋅+-+212ln ||arctan x=⋅+-+22ln ||arctanx =⋅--+.题型3 分部积分法关键:正确地选择u 和v ,选择u ,v 的原则:1οv 好求; 2οd v u ⎰要比d u v ⎰简单.例1 求下列不定积分(1)2(22)e d xx x x +-⎰; (2)2(1)ln d xx x +⎰;(3)e cos d xx x x ⎰; (4)sin ln d x x ⎰ 解 原式1sinln dsinln sinln cosln d x x x x x x x x xx=-=-⋅⋅⎰⎰sinln cosln d sinln cox x x x x x x ⎡=-=-⋅⎣⎰()()1sinln cosln sinln d x x x x x xx=-+-⎰()sinln cosln sinln d x x x x x =--⎰所以 原式()sinln cosln 2xx x C =-+.(5)22arctan d (1)xx x x +⎰; 解 原式22arctan arctan 1d d arctan d(-)arctan d 1x x x x x x x x x =-=-+⎰⎰⎰⎰()221111arctan d arctan 12x x x x x x =-+⋅-+⎰()()22221111arctan d arctan 221x x x x x x =-+-+⎰ 22211111arctan d 212x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎰()()22111arctan ln ln 122x x x x =-+-+-()22111arctan ln arctan 212x x x x x =-+-+.(6)ln(x x x +⎰.解原式ln(x x x =+⋅⎰dln(x =⋅+-⋅⎰ln(d x x =⋅+-=⎰.例2 求 22sin d (cos sin )xx x x x -⎰. 解 原式2sin sin sin 1d d (cos sin )cos sin x x x x x x x x x x x x x ⎛⎫=⋅= ⎪--⎝⎭⎰⎰sin 11cos sin cos sin x x x x x x x x ⎛⎫=⋅-⋅ ⎪--⎝⎭⎰2sin 11s d cos sin (cos x x x x x x x x x ⎛⎫=⋅-=⎪-⎝⎭⎰.例3 求ed xx x ⎰.(先换元,后分部积分) 解: 原式222222d d 12ln(1)d 2[ln(1)2d ]1tt x t t ttt t t t t =++=+-+⎰⎰24arctan C =-++.题型4 分项--分部积分法(将积分分成两项(或多项)的积分和,然后利用分部积分抵消不可积部分)例1 求 2ln 1d ln x x x-⎰; 例2求 22e (tan 1)d x x x +⎰. 题型5 有理函数积分例1 求25d 613x x x x +-+⎰; 例2 求221d (1)x x x +⎰.题型6 三角有理函数积分例1 求 d sin 22sin xx x+⎰ 例2 求d 1sin cos xx x --⎰题型7 简单无理函数积分例1求d x⎰; 例2 求d x⎰.例3求d x⎰(0,0)a b x <<>.解:原式2=⎰2arcsin C =+;题型8 分段函数的积分例1 求|1|ed x x -⎰.例2 求2()max(1,)x x ϕ=的一个原函数()F x ,且(0)1F =.题型9 含有抽象函数的不定积分例1设()d arcsin xf x x x C =+⎰,求1d ()x f x ⎰.例2设()f x 为非负连续函数,当0x ≥时,有20()()d e 1xxf x f x t t ⋅-=-⎰,求()d f x x ⎰. 解 方程化为20()()d ()()d =e 1xxxf x f x t t f x f x t t ⋅-=--⎰⎰,()d ()d u x txxf x t t f u u =--====⎰⎰,代入原方程得()20()d e 1xxf x f u u ⋅=-⎰,令()()()()()20()d exxF x f u u F x f x F x F x ''=⇒=⇒⋅=⎰,两边积分()()()2d e 1d xF x F x x x '⋅=-⎰⎰,得()2211e 22xF x x C =-+, 又()()22100,e 212xF C F x x =⇒=-∴=--,()()(F x F x ∴=≥.()()d f x x F x C =+=⎰.例3设(,)f x y 可微,且(,)ff x y x∂=-∂,e cos xf y y-∂=∂,(0,0)0f =,求(,)d f x x x ⎰. 例4设()f x 在[0,)+∞上可导,(0)1f =,且满足01()()()d 01xf x f x f t t x '-+=+⎰,求[()()]e d xf x f x x -'''-⎰.四、不定积分常用的计算技巧总结(考生自看)1.加减常数法例1 求 cos d 1cos xx x-⎰. 解:原式2cos 111()d (1)d 1cos 1cos 2sin (/2)x x x x x x x -=+=-+=----⎰⎰.2.加减函数法例2 求 21d 1exx +⎰. 解:原式2222221e e e 1d (1)d ln(1e )1e 1e 2x x xx x xx x x C +-==-=-++++⎰⎰.例3 求 d (1)nxx x +⎰. 解:原式1111d d d ln ||ln |1(1)1nnn n n nx x x x x x x x x x x x n -+-==-=-+++⎰⎰⎰.3.乘除函数法例4 求 d e ex x x-+⎰.解:原式22e d de arctane 1(e )1(e )x xxx x x C ===+++⎰⎰. 4.分母整体化法例5 求 2100d (1)xx x +⎰. 解:原式2219899100100100(1)(1)d d (2)d u xu u u u u u u uu u=+-----=====-+⎰⎰⎰9798991212979899u u u C ---=-+-+.例6 求 2sin d (sin cos )xx x x +⎰.解:原式π4222πsin()sin csin 114d d π2sin 2sin ()4u x u x u x x u u x =+-=====+⎰⎰⎰2d d(sin )()[l n |csc(4sin sin 4u u x u u =-=+⎰⎰.5.依分母分解法例7 求 3cos 4sin d cos 2sin x xx x x-+⎰. 解:因为cos x 与sin x 的导数互相转化,所以 可设3cos 4sin (cos 2sin )(cos 2s x x A x x B x -=+++(2)cos (2)sin A B x A B x =++- 故得:231,224A B A B A B +=⎧⇒=-=⎨-=-⎩. 原式cos 2sin (cos 2sin )d 2d cos 2sin cos 2sin x x x x x x x x x x '++=-+=-++⎰⎰.6.还原法例8 求 11(1)ed x xx x x++-⎰.解:11121ed (1)ed ed d(ex x x x xxx x x x x x+++=+-=+⎰⎰⎰⎰1111ed eed ex x x x xxxxx x x x C ++++=+-=+⎰⎰.7.待定函数法 例9 (上例)解:因为被积函数是一个函数与1ex x+的乘积,它的一个原函数必定也是某一个函数与1e x x+的乘积.令 111(1)ed ()ex x xxx x F x C x +++-=+⎰,其中()F x 为待定函数, 两边求导数11211(1)e[()()(1)]ex x xxx F x F x xx++'+-=+-,22111(1)()()(1)()x F x F x F x x x'∴+-=+-⇒=, 故 原式1ex xx C +=+.8.相关积分法例10 求 221e sin d x I x x =⎰,221e cos d xI x x =⎰.解:221222211e d e ,21e cos2d e (cos2sin 2),4xx x x I I x C I I x x x x C ⎧+==+⎪⎪⎨⎪-==++⎪⎩⎰⎰ 1I ∴=22111e e (cos2sin 2)224x x x x C⎡⎤-++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =-++; 2I =22111e e (cos2sin 2)224x x x x C⎡⎤+++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =+++.五、练习题31-1.若()f x 的导函数是e cos xx -+,则()f x 的一个原函数为( ).(A) e cos xx -- (B) esin x x --+ (C)ecos xx --- (D) esin xx -+2.若()f x '为连续函数,则(2)d f x x '=⎰( ).(A) (2)f x C + (B) ()f x C + (C)1(2)2f x C + (D) 2(2)f x C + 3.若()f x 是以l 为周期的连续函数,则其原函数( ).(A) 是以l 为周期的连续函数 (B)是周期函数,但周期不是l(C) 不是周期函数 (D)不一定是周期函数4.设cos x x 是()f x 的一个原函数,求()d xf x x '⎰. 5.2222221sin cos d d sin cos sin cos x x x x x x x x +=⋅⋅⎰⎰. 6. 22e 1e (1)d (e )d sin sin xxxx x x x--=-⎰⎰.7.11e ed d 1e 1e xxx xx x +-=++⎰⎰. 8.45422sincos d sin (1sin )dsin x x x x x x =⋅-⎰⎰.9.1515sin cos d (sin cos )d(sin cos )(sin cos )x xx x x x x x x +=---⎰⎰.10.21111d d d(1)111n n n nnn n n x x x x x x x x x x --⋅+-==++++⎰⎰⎰. 11.cos sin d(sin cos )d cos sin cos sin x x x x x x x x x-+=++⎰⎰.12.321()arctan d arctan d()33x x x x x x x ++=⎰⎰. 13.2d x x⎰. 14.d 1d(3)3xx =⎰⎰ 15.22222d 2ln 2d d 2d 1d 12(14)2(12)ln 2(1)ln 2xxxu x x x x u x x x u u u =========+++⎰⎰⎰.16.22sin d x x x ⎰.17.arcsin 2arcsin x =-⎰⎰.18.2arctan tan 3d sec d 22ed sin d (1)xx ttx t tx x e t t x ==+====⎰⎰. 19.241d 1x x x -+⎰. 20.421d (1)x x x +⎰21. 1183848282821d d d (1)(1)4(1)x x x x x x x x x x ⋅==+++⎰⎰⎰42221d 4(1)x tt t t =+===⎰2tan 24d sec d 1tan sec d 4sec t u t u u u u u u ======⎰.22. 112d d x x x x +-+=⎰⎰22112d[(1)3]2x =-++⎰⎰.23. 2d d d x xx x x =+⎰⎰⎰.24.313(1)4d d x x x x +-+=⎰⎰.25.d 4sin 3cos 5x x x ++⎰(可令tan 2xt =);26. 3sin 2cos d 2sin 3cos x x x x x ++⎰(可令tan 2xt =或依分母分解法);27.设(cos )sin f x x '=(0)x π<<,求()f x . 28.设()F x 是()f x 的一个原函数,且当0x ≥时,有2e()()2(1)xx f x F x x ⋅=+,又(0)1F =, ()0F x >, 求()f x .29.()d ()f x x F x C =+⎰,且当0x ≥时,有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .30.求2[ln ()ln ()][()()()]d f x f x f x f x f x x ''''++⎰.31.设ln(1)(ln )x f x x +=,计算()d f x x ⎰.32.2()(1)()d exxf x x f x x x '-+⎰. 33.1e (ln )d x x x x +⎰.3-1参考答案1.A2.C3.D 4.2cos sin xx C x--+. 5.tan cot x x C -+.6.e cot xx C ++. 7.ln(1e )xx C -++.8.579111sin sin sin 579x x x C -++9.455(sin cos )4x x C -+.10.1[(1)ln |1|]n nx x C n+-++.11.ln|cos sin|x x C++.12.32arctan36x x xx C+-+.13.arcsin x Cx--+14.1ln|3|3x C++. 15.11(arctan2)ln22xxC-++.16.321sin2cos2sin26448x x xx x x C --++.17.arcsin C-++.18arctan1e+xxC-.1ln C+. 20.311arctan 3x C x x-+++. 21. 44811arctan 881x x C x-⋅++. 22. 2ln |1|x C +-++.23. 1arcsin 22x x C --+. 244ln |1|x C +-++.25. 1tan 22C x -++. 26.125ln |2sin 3cos |1313x x x C -++.27. 1()arcsin 22x f x x C =++. 28.232e()2(1)xx f x x =+.29.2sin 2()xf x =.30.()()[ln ()()1]f x f x f x f x C ''-+. 31.e ln(1e )ln(1e )xxxx C --++-++.32.()ex f x C x +. 33.e ln xx C +.§2 定 积分【考试要求】 1.理解定积分的概念,掌握定积分的基本性质及定积分中值定理.2.掌握定积分的换元积分法和分部积分法.3.理解积分上限函数,会求它的导数,掌握牛顿 –莱布尼茨公式.4.了解反常(广义)积分的概念,会计算反常(广义)积分.一、基本概念 1.定积分定义设()f x 在[,]a b 上有定义且有界,做下述四步:(1)分割:用1n -个分点分割区间[,]a b011i ia x x x x -=<<<<;(2)作乘积:()i i f x ξ∆,其中1[,]i i i x x ξ-∈,1i i i x x x -∆=-;(3)求和:1()ni i i f x ξ=∆∑;(4)取极限:01lim ()ni i i f x λξ→=∆∑,其中1max ||i i nx λ≤≤=∆,如果上述极限存在,则称()f x 在[,]a b 上可积,并称上述极限为()f x 在[,]a b 上的定积分,记作1lim ()()d nbi i ai f x f x x λξ→=∆=∑⎰.注 ()d baf x x ⎰的值与对区间[,]a b 的分法无关,与i ξ的取法无关,与积分变量用什么字母表示无关;与[,]a b 有关,与()f x 有关, 即()d ()d bbaaf x x f t t =⎰⎰.2.定积分的存在性定理设()f x 在[,]a b 上连续,或在[,]a b 上有界且只有有限个第一类间断点,则()d ba f x x ⎰一定存在.3.几何意义定积分()d baf x x ⎰表示由曲线()y f x =,,x a x b ==及x 轴所围平面图形面积的代数和.4.定积分的运算性质:(1)()d ()d a abbf x x f x x =-⎰⎰. (4)[()()]d ()d ()d bb baaaf xg x x f x x g x x ±=±⎰⎰⎰.(2)()d 0aaf x x =⎰. (5)()d ()d b baakf x x k f x x =⎰⎰.(3)d bax b a =-⎰. (6)()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.5.定理定理1 (定积分的比较定理)若在[,]a b 上恒有()()f x g x ≤,则()d ()d bbaaf x xg x x ≤⎰⎰.推论1 若()f x 与()g x 在[,]a b 上连续,()()f x g x ≤,且至少有一点0[,]x a b ∈,使00()()f x g x <,则()d ()d bbaaf x xg x x<⎰⎰.推论2 若在[,]a b 上恒有()0f x ≥,则()d 0baf x x ≥⎰.推论3 ()d ()d bbaaf x x f x x ≤⎰⎰. 定理2(估值定理)若在[,]a b 上,()m f x M ≤≤,则()()d ()ba mba f x x Mb a -≤≤-⎰.定理3(积分中值定理)(1)若()f x 在[,]a b 上连续,则[,]a b ξ∃∈,使()d ()()baf x x f b a ξ=-⎰.(2)若()f x 在[,]a b 上连续,()g x 在[,]a b 上不变号,且在[,]a b 上可积,则[,]a b ξ∃∈,使()()d ()baf xg x x f ξ=⎰⎰.定理4(变上限积分函数及其导数) 设()f x 在[,]a b 上连续,()()d xa F x f t t =⎰称为变上限积分函数,则导数为d ()()d ()()d xt x aF x f t t f t f x x ='===⎰.推论1 设()()()d x aF x f t t ϕ=⎰,则()d ()()d [()]()d x aF x f t t f x x x ϕϕϕ''==⋅⎰.推论2 设21()()()()d x x F x f t t ϕϕ=⎰,则21()2211()d ()()d [()]()[()](d x x F x f t t f x x f x x x ϕϕϕϕϕϕ'''==⋅-⋅⎰.推论3 设()()()()d x aF x f t g x t ϕ=⎰,则()()()()d x a F x g x f t t ϕ'⎡⎤'=⎢⎥⎣⎦⎰()()()d ()[()](x ag x f t t g x f x ϕϕϕ''=+⎰.定理5(变上限积分函数与不定积分的关系) 设()f x 在[,]a b 上连续,则变上限积分函数()()d xaF x f t t =⎰是()f x 的一个原函数, 即()d ()d xaf x x f t t C =+⎰⎰.注:不定积分()d f x x ⎰只能作为运算符号,不能表示一个具体的原函数,特别当()f x 为一个抽象的函数时,无法用()d f x x ⎰来讨论它的某一原函数的性质;而()d xa f t t ⎰为某一确定的原函数,可以用它来讨论此原函数的性质.定理6(牛顿-莱布尼兹公式)设()f x 在[,]a b 上连续,()F x 是()f x 的一个原函数,则()d ()()()bb aaf x x F x F b F a ==-⎰. 6.定积分的计算方法(1) 换元法:设()f x 在[,]a b 上连续,()x t ϕ=在[,]αβ上有连续的导数,且当t 从α变到β时,()t ϕ从()a ϕα=单调地变到()b ϕβ=,则()d [baf x x f βαϕ=⎰⎰要点:换元要换限,变量不还原,不换元则不换限.(2)分部积分法:设()u x ,()v x 在[,]a b 上有连续的导数,则d d bbb aaauv x uv u v x ''=-⎰⎰或 d d b b b aaau v uv v u =-⎰⎰.注:求不定积分时适用的积分法,相应地也适用定积分的求法.7.广义积分的概念与计算 (1)无穷限的广义积分ο1 设()f x 在[,)a +∞上连续,则()d lim()d baab f x x f x x +∞→+∞=⎰⎰;ο2 设()f x 在(,]b -∞上连续,则()d lim()d b baa f x x f x x -∞→-∞=⎰⎰;ο3 设()f x 在(,)-∞+∞上连续,则()d lim()d lim ()d bbaaa b f x x f x x f x x +∞-∞→-∞→+∞=+⎰⎰⎰.仅当等式右边的两个极限都存在时,左边的无穷限广义积分收敛,否则发散.注意: ο3式中等式右边的两个极限若有一个不存在,则()d f x x +∞-∞⎰发散.(2)无界函数的广义积分(瑕积分) ο1 设()f x 在(,]a b 上连续,lim ()x af x +→=∞, 则()d lim ()d bbaa f x x f x x εε++→=⎰⎰,x a =称为瑕点.ο2 设()f x 在[,)a b 上连续,lim ()x bf x -→=∞, 则0()d lim ()d bb aaf x x f x x εε+-→=⎰⎰,x b =称为瑕点.ο3 设()f x 在[,]a b 上除点c 外均连续,lim ()x cf x →=∞,则()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰12120lim ()d lim ()d c bac f x x f x x εεεε++-+→→=+⎰⎰.x c =称为瑕点.仅当等式右边的极限存在时,瑕积分收敛,否则发散.注意:ο3式中等式右边的两个极限若有一个不存在,则瑕积分()d ba f x x ⎰发散.二、重要结论(1)利用定积分定义求n 项和的极限 设()f x 连续,则ο1 1()d lim ()nban k b a b af x x f a k n n →∞=--=+⋅∑⎰.ο2 111()d lim ()nn k k f x x f n n →∞==⋅∑⎰.(2)奇、偶函数的积分ο1 设()f x 连续,若()f x 为偶函数,则()d xf t t ⎰为奇函数;若()f x 为奇函数,则对任意a ,()d xaf t t ⎰为偶函数.ο2 设()f x 在[,]a a -上连续,则()d [()()]d aaaf x x f x f a x-=+-⎰⎰(3)周期函数的积分设()f x 在(,)-∞+∞上连续,且以T 为周期,则ο1 202()d ()d ()d T a TTT af x x f x x f x x +-==⎰⎰⎰;ο2 0()d ()d nTT a f x x n f x x =⎰⎰;ο3 0()d ()d a nT Taf x x n f x x +=⎰⎰.即:周期函数在每个周期长度区间上的积分均相等,与起点无关.(4)常用结论ο1 ππ22(sin )d (cos )d f x x f x x =⎰⎰, 令π2x t =-;ο2 ππ00π(sin )d (sin )d 2xf x x f x x =⎰⎰, 令πx t =-;ο3 ππ2(sin )d 2(sin )d f x x f x x =⎰⎰,。
一元函数积分的基本概念及解析方法
积分是微积分学中的重要概念之一,它广泛应用于各个领域中的计算和解决问题。
而其中一元函数积分是最基础也是最常见的类型之一。
在本篇回答中,我们将介绍一元函数积分的基本概念和解析方法。
一、一元函数积分的基本概念
1. 定义:一元函数的积分是对给定函数在某一区间上进行求和的一种运算。
通
常用∫f(x)dx表示,其中∫是积分符号,f(x)是被积函数,dx表示自变量。
2. 不定积分与定积分:一元函数积分可以分为不定积分和定积分两种形式。
- 不定积分:表示对被积函数进行积分得到的一类函数。
不定积分的结果常
常带有一个不确定的常数C,称为积分常数。
不定积分通常表示为F(x) + C的形式。
- 定积分:表示对被积函数在某一区间上进行积分得到的一个具体的数值。
定积分的结果是一个确定的数值。
3. 基本性质:一元函数积分具有以下基本性质:
- 线性性质:若f(x)和g(x)是连续函数,a和b是常数,则有∫(af(x)+bg(x))dx = a∫f(x)dx + b∫g(x)dx。
- 区间可加性:若f(x)在区间[a, b]上连续,则有∫[a, b]f(x)dx = ∫[a, c]f(x)dx + ∫[c, b]f(x)dx。
- 基本运算法则:常见函数的不定积分有一些基本的运算法则,如幂函数积分、三角函数积分等,可以通过表格或特定的公式进行求解。
二、一元函数积分的解析方法
1. 基本积分公式:一些基本的不定积分可以通过积分表格中的基本积分公式进
行求解。
例如:
- ∫x^ndx = x^(n+1)/(n+1) + C,其中n≠-1。
- ∫1/xdx = ln|x| + C。
2. 埃尔米特法则:该方法适用于只有有限个特殊点的函数。
根据积分的线性性
质和区间可加性,将被积函数划分为若干个小区间,然后对每个小区间使用基本积分公式求解。
3. 分部积分法:对于两个函数相乘,可以通过分部积分法求解。
该方法得到的
结果通常需要通过多次应用分部积分法得到。
4. 代换法:也被称为换元积分法,通过对积分变量进行适当的代换,将原有的
积分转化为一个更容易求解的形式。
常见的代换变量有三角函数的角度替换、指数函数替换等。
5. 部分分式分解法:适用于有理函数的分解。
将有理函数进行部分分式分解后,可以将原问题转化为常见的基本积分公式。
6. 曲线下面积法:定积分可以表示函数f(x)在区间[a, b]上的曲线下面积,可以
通过几何图形的面积计算公式求解。
总之,一元函数积分是微积分学的重要内容之一。
通过学习一元函数积分的基
本概念和解析方法,我们可以更好地理解函数的积分运算和应用,并能够应用积分解决实际问题。
掌握这些基本概念和方法后,进一步学习多元函数积分和应用积分的各种技巧将变得更加容易。