高中19-2放射性元素的衰变学案教案
- 格式:doc
- 大小:128.50 KB
- 文档页数:2
5.2放射性元素的衰变〖教材分析〗本节课也是非常抽象的,而且理解和记忆的成分很多。
因此前半节课应该引导学生进行讨论,加深对相关内容的理解。
后半节课的知识主要是陈述式,可以运用提问式教学,培养学生概括和寻找信息的能力。
对于衰变方程的理解则通过练习来加强训练即可。
〖教学目标与核心素养〗物理观念∶知道放射性元素的衰变原理,理解并掌握放射性应用的原理,并能运用与实际生活。
科学思维∶通过理解ɑ衰变和β衰变,会计算原子核的半衰期。
科学探究:核反应方程的书写,应当尊重实验事实,不能仅仅依靠守恒定律主观臆造。
能面对真实情境,从不同角度提出并准确表述可探究的物理问题,作出科学假设。
科学态度与责任∶知道辐射的危害与防止,养成良好的科学操作习惯,培养学生的安全意识和忧患意识。
〖教学重难点〗教学重点:衰变的规律和方程,半衰期的概念,核反应的概念。
教学难点:衰变的规律和方程。
〖教学准备〗多媒体课件等。
〖教学过程〗一、新课引入在古代无论是东方还是西方,都有一批人追求“点石成金”之术,他们试图利用化学方法将一些普通的矿石变成黄金。
当然,这些炼金术的愿望都破灭了。
那么,真的存在能让一种元素变成另一种元素的过程吗?(动图播放点石成金)二、新课教学(一)天然放射现象 1.原子核的衰变所谓衰变是指一种原子核放出某些粒子变为另一种原子核的过程。
根据放出粒子的不同,可以把衰变分为放出ɑ粒子的ɑ衰变,和放出β粒子的β衰变这里说的ɑ粒子是由两个质子和两个中子构成,其实就是氦He 42核。
而β粒子更简单,就是一个电子e 01-。
1.ɑ衰变U 23892(铀核)具有放射性,让他放出一个ɑ粒子后,质子数会减少二,核子数会减少四,电荷数就变成了90,质量数就变成了234,这样U 23892就变成了h T 23490(钍核)。
He h T U 422349023892+→由于ɑ衰变必然是电荷数减少二,质量数减少四,因此都可以用这个数字来表示He Y X 424M 2Z MZ+→--。
第十九章原子核新课标要求1.内容标准(1)知道原子核的组成,知道放射性和原子核的衰变,会用半衰期描述衰变速度,知道半衰期的统计意义,(2)了解放射性同位素的应用,知道射线的危害和防护,例1 了解放射性在医学和农业中的应用,例2 调查房屋装修材料和首饰材料中具有的放射性,了解相关的国家标准,(3)知道核力的性质,能简单解释轻核与重核内中子数、质子数具有不同比例的原因,会根据质量数守恒和电荷守恒写出核反应方程,(4)认识原子核的结合能,知道裂变反应和聚变反应,关注受控聚变反应研究的进展,(5)知道链式反应的发生条件,了解裂变反应堆的工作原理,了解常用裂变反应堆的类型,知道核电站的工作模式,(6)通过核能的利用,思考科学技术与社会的关系,例3 思考核能开发带来的社会问题,(7)初步了解恒星的演化,初步了解粒子物理学的基础知识,例4 了解加速器在核物理、粒子物理研究中的作用,2.活动建议:(1)通过查阅资料,了解常用的射线检测方法,(2)观看有关核能利用的录像片,(3)举办有关核能利用的科普讲座,新课程学习19.2 放射性元素的衰变★新课标要求(一)知识与技能1、知道放射现象的实质是原子核的衰变2、知道两种衰变的基本性质,并掌握原子核的衰变规律3、理解半衰期的概念(二)过程与方法1、能够熟练运用核衰变的规律写出核的衰变方程式2、能够利用半衰期来进行简单计算(课后自学)(三)情感、态度与价值观通过传说的引入,对学生进行科学精神与唯物史观的教育,不断的设疑培养学生对科学孜孜不倦的追求,从而引领学生进入一个美妙的微观世界,★教学重点原子核的衰变规律及半衰期★教学难点半衰期描述的对象★教学方法教师启发、引导,学生讨论、交流,★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课教师:同学们有没有听说过点石成金的传说,或者将一种物质变成另一种物质,学生讨论非常活跃,孙悟空,八仙,神仙;魔术,街头骗局,点评:通过这样新颖的课题引入,给学生创设情景,能充分调动学生的积极性,挑起学生对未知知识的热情,教师:刚才同学们讲的都很好,但都是假的,孙悟空,八仙,神仙:人物不存在,魔术,街头骗局:就是假的,学生顿时安静,同时也心存疑惑:当然是假的,难道还有真的不成?点评:对于学生来讲要使其相信科学技术反对迷信,同时也要提高警惕小心上当受骗,提高学生自我保护意识,更加吊起了学生学习新知识的胃口,为新课教学的顺利进行奠定了基础,教师:那有没有真的(科学的)能将一种物质变成另一种物质呢?学生愕然,点评:进一步吊起了学生学习新知识的胃口,教师:有(大声,肯定地回答)学生惊讶,议论纷纷,点评:再一次吊起了学生学习新知识的胃口,通过这样四次吊胃口,新课的成功将是必然,教师:这就是我们今天要学习的放射性元素的衰变,点评:及时推出课题,(二)进行新课1.原子核的衰变教师:原子核放出α或β粒子,由于核电荷数变了,它在周期表中的位置就变了,变成另一种原子核,我们把这种变化称为原子核的衰变,学生豁然开朗:科学、真实的将一种物质变成另一种物质,原来就是原子核的衰变,点评:及时给出问题的答案,学生并不会索然无味,相反会对原子核的衰变这一新知识产生浓厚的兴趣,教师:铀238核放出一个α粒子后,核的质量数减少4,核电荷数减少2,变成新核-----钍234核,那这种放出α粒子的衰变叫做α衰变,学生定有这样的想法:放出α粒子的衰变叫做α衰变,那放出β粒子的衰变叫做β衰变?点评:这里一下子会出现了“α衰变”,“衰变方程式”两个新名词,教师要耐心的讲解,学生有插嘴的,如果正确要及时肯定并表扬,教师:这个过程可以用衰变方程式来表示:23892U→23490Th+42He(一边说一边写,不要解释,要请学生来分析其中的奥秘)学生定有这样的想法:衰变方程式和化学反应方程式、离子反应方程式有何联系与区别?点评:理论基础:建构主义认为学习过程是学生在一定条件下,对客观事物反映的过程,是一个主动建构过程,作为认识对象的知识并不像实物一样可以由教师简单地传递给学生,须由学生自己来建构,并纳入他自己原有的知识结构中,别人是无法替代的,在此要充分利用学生原有的知识基础即:化学反应方程式、离子反应方程式,来帮助学生自己来建构衰变方程式,并把它纳入自己原有的知识结构中去,学生充分讨论:衰变方程式和化学反应方程式、离子反应方程式有何联系与区别,并由学生自己表述,点评:可以让学生自己归纳总结,有不到之处教师再帮助总结,教师:衰变方程式遵守的规律:(1)质量数守恒(2)核电荷数守恒(进一步解释:守恒就是反应前后相等)α衰变规律:A Z X→A-4Z-2Y+42He学生进一步理解两个守恒:(1)质量数守恒(2)核电荷数守恒教师:钍234核也具有放射性,它能放出一个β粒子而变成23491Pa(镤),那它进行的是β衰变,请同学们写出钍234核的衰变方程式?学生探究、练习写出钍234核的衰变方程式,点评:写钍234核的衰变方程式是要求学生可以查阅化学书后面的元素周期表,但不可以看物理教材,在此培养学生查阅质料的能力,学生在此会碰到β粒子的表示,教师要及时直接给出结论:β粒子用0-1e表示,教师:钍234核的衰变方程式:234Th→23491Pa+0-1e90衰变前后核电荷数、质量数都守恒,新核的质量数不会改变但核电荷数应加1β衰变规律:A Z X→A Z+1Y+0-1e学生再一次理解两个守恒:(1)质量数守恒(2)核电荷数守恒点评:β衰变如果按衰变方程式的规律来写的话应该没有问题,但并不象α衰变那样容易理解,因为核电荷数要增加,学生会问为什么会增加?哪来的电子?这里就顺理成章的来解释中子转化的过程,教师:原子核内虽然没有电子,但核内的的质子和中子是可以相互转化的,当核内的中子转化为质子时同时要产生一个电子1n→11H+0-1e这个电子从核内释放出来,就形成了β衰变,可以看出新核少了一个中子,却增加了一个质子,并放出一个电子,学生更进一步理解两个守恒:(1)质量数守恒(2)核电荷数守恒教师:γ射线是由于原子核在发生α衰变和β衰变时原子核受激发而产生的光(能量)辐射,通常是伴随α射线和β射线而产生,γ射线的本质是能量,学生理解γ射线的本质,不能单独发生,2.半衰期教师:阅读教材半衰期部分放射性元素的衰变的快慢有什么规律?用什么物理量描述?这种描述的对象是谁?学生带着问题看书,点评:培养学生自学能力、阅读能力、提炼有用信息的能力,教师提供教材上的氡的衰变图的投影:m/m0=(1/2)n学生交流阅读体会:(1)氡每隔3.8天质量就减少一半,(2)用半衰期来表示,(3)大量的氡核,点评:第三个问题:描述的对象是谁?这个问题学生比较难理解,需要教师做引导和类比,培养学生阅读图象的方法和能力,教师:同学们的回答都很精彩(鼓励)教师总结:半衰期表示放射性元素的衰变的快慢放射性元素的原子核,有半数发生衰变所需的时间,叫做这种元素的半衰期半衰期描述的对象是大量的原子核,不是个别原子核,这是一个统计规律,学生进一步整理自己的阅读体会并形成自己的知识,点评:教师做引导和类比可以从统计规律的角度出发,例如:数学上的概率问题(抛硬币)将1万枚硬币抛在地上,那正反两面的个数大概为5000对5000,但就某个硬币来看要么是正面,要么是反面,这个事实告诉我们统计规律的对象仅仅对大量事实适用,对个别不适用,教师:元素的半衰期反映的是原子核内部的性质,与原子所处的化学状态和外部条件无关,简单介绍:镭226→氡222的半衰期为1620年铀238→钍234的半衰期为4.5亿年学生对原子所处的化学状态和外部条件进行理解,点评:一种元素的半衰期与这种元素是以单质形式还是以化合物形式存在,或者加压,增温均不会改变,教师给出课堂巩固练习题例1:配平下列衰变方程23492U→23090Th+( 42He )23490U→23491Pa+( 0-1e )例2:钍232(23290Th)经过________次α衰变和________次β衰变,最后成为铅208(20882Pb)学生独立分析:因为α衰变改变原子核的质量数而β衰变不能,所以应先从判断α衰变次数入手:α衰变次数=u4u208-u232=6.每经过1次α衰变,原子核失去2个基本电荷,那么,钍核经过6次α衰变后剩余的电荷数与铅核实际的电荷数之差,决定了β衰变次数:β衰变次数=(-1)e82e -6)2e-e90(=4点评:这些课堂练习都很基本完全可以由学生自己讨论解决,(三)课堂小结教师引导学生自己进行总结,学生总结,讨论,本堂课研究了放射性元素的衰变,其实质是原子核发生衰变,衰变有二种:α衰变、β衰变,γ辐射伴随α衰变和β衰变而产生,原子核衰变的快慢用半衰期表示,它是放射性元素的原子核有半数发生衰变所用的时间,完全由原子核自身的性质决定,与原子所处的化学状态和外部条件无关,(四)作业:布置学生课后看科学漫步探究:如何利用放射性元素的衰变来测定古物的年代,点评:留给学生课后思考和学习的空间,★教学体会本堂课探究原子核内部的美妙世界,在教学过程中合理的设置疑问来吊学生的胃口是行之有效的方法,要充分运用建构主义的教育理论来指导本课的教学工作,在此基础上把大部分时间留给学生去思考,去讨论、去实践、去练习,从而培养学生的主体意识和创新能力,它的优势主要在以下三个方面:①主体意识:学生在学习中能够自启入境、自学探究、自研交流、自评完善;②独立意识:学生能够根据自身的特点,选择适合自己的方法,独立的解决问题;③创新意识:学生在继承传统,掌握原有知识的基础上学会迁移,能运用原来的知识体系去开拓新的领域,敢于提出新问题、新思想,。
2 放射性元素的衰变●学习目标1.知道放射现象的实质是原子核的衰变.2.知道两种衰变的基本性质,并掌握原子核的衰变规律.3.理解半衰期的概念,并能进行简单的计算.●重点和难点重点:原子核的衰变规律及半衰期难点:半衰期描述的对象课前导学一、原子核的衰变1.定义:原子核自发地放出某种粒子而转变成的变化称为原子核的衰变.可分为、,并伴随着γ射线放出.2.分类:(1)α衰变:铀238发生α衰变的方程为:,每发生一次α衰变,核电荷数减小2,质量数减少4.α衰变的实质是某元素的原子核同时放出由两个和两个组成的粒子(即氦核).(2)β衰变:钍234发生β衰变的方程为:,每发生一次β衰变,核电荷数增加1,质量数不变.β衰变的实质是元素的原子核内的一个变成时放射出一个(核内110011n H e -→+). (3)γ射线是伴随衰变或衰变同时产生的、γ射线不改变原子核的电荷数和质量数.其实质是放射性原子核在发生α衰变或β衰变时,产生的某些新核由于具有过多的能量(核处于激发态)而辐射出.3.规律:原子核发生衰变时,衰变前后的和都守恒.注意:元素的放射性与元素存在的状态无关,放射性表明原子核是有内部结构的.二、半衰期1.定义:放射性元素的原子核有发生衰变所需的时间叫做原子核的半衰期.2.意义:反映了核衰变过程的统计快慢程度.3.特征:半衰期由的因素决定,跟原子所处的或状态无关.新知探究一、原子核的衰变〈情景1〉一个人特别贫穷,一生虔诚地供奉道教吕祖(吕洞宾),吕洞宾被他的诚意所感动,一天忽然从天上降到他家,看见他家十分贫穷,不禁怜悯他,于是伸出一根手指,指向他庭院中一块厚重的石头,立刻,变化成了金光闪闪的黄金.〈情景2〉晋朝初年,南昌人许逊被朝廷任命为旌阳县令,他看到很多老百姓的租税交不了,非常同情他们,用点石成金的法术,免去百姓的租税.〔思考与讨论1〕以上情景都是“点石成金”的传说,那么在我们生活、生产中有没有真的(科学的)能将一种物质变成另一种物质呢?答:.【教师说明】1.衰变:原子核放出 α粒子或 β粒子转变为新核的变化叫做原子核的衰变.2.科学、真实的将一种物质变成另一种物质,原来就是原子核的衰变.3.铀238核放出一个α粒子后,核的质量数减少4,核电荷数减少2,变成新核---钍234核,这种放出α粒子的衰变叫做α衰变.〔思考与讨论2〕铀238核α衰变方程如何表示?答:.【教师说明】1.衰变方程式遵守的规律:(1)质量数守恒(2)核电荷数守恒2.α衰变的一般方程:He Y x 424-A 2A z +→-z3.核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头表示反应方向.4.核反应的生成物要以实验为基础,不能凭空杜撰出生成物来写核反应方程.〔思考与讨论3〕钍234核(Th 23490)也具有放射性,它能放出一个β粒子(e 01-)而变成Pa 23491(镤),那它进行的是β衰变,请同学们写出钍234核的衰变方程式?答:.【教师说明】1.β衰变前后核电荷数、质量数都守恒,新核的质量数不变但核电荷数应加1.2.β衰变的一般方程:e Y x 01A 1A z -++→z〔思考与讨论4〕原子核里没有电子,那么β衰变中的电子来自哪里?答:.【教师说明】1.这个电子从核内释放出来,就形成了β衰变,其转化方程:e H n 011110-+→ .2.γ射线是由于原子核在发生α衰变或β衰变时原子核受激发而产生的光(能量)辐射,通常是伴随α射线和β射线而产生.3.一种元素只能发生一种衰变,但在一块放射性物质中可以同时放出α、β和γ三种射线. ▲典题精析1. 天然放射性元素23290Th(钍)经过一系列α衰变和β衰变之后,变成20882Pb(铅).下列论断中正确的是( )A.铅核比钍核少24个中子B.铅核比钍核少8个质子C.衰变过程中共有4次α衰变和8次β衰变D.衰变过程中共有6次α衰变和4次β衰变[解析]铅核核子数比钍核核子数少24个,而不是中子数少24个,A 项错;铅核质子数为82,钍核质子数为90,故铅核比钍核少8个质子,B 项对;钍核的衰变方程为:23290Th→20882Pb +x 42He +y -10e ,式中x 、y 分别为α和β的衰变次数.由质量数守恒和电荷数守恒有 4x+208=232,2x-y+82=90,联立两式得x=6,y=4,即衰变过程中共有6次α衰变和4次β衰变,C 项错而D 项对.[答案]BD点评:根据β衰变不改变质量数的特点,可依据反应原子核与最终原子核的质量数改变确定α衰变的次数,然后计算出电荷数的改变,由其差值可确定β衰变的次数.二、半衰期〈情景3〉放射性同位素衰变的快慢有一定的规律,即元素的原子核有半数发生衰变有一定的时间.我们有病时服用的不同药物在体内半数发生衰变也有一定的时间,这个时间是决定医生给药剂量、次数的主要依据.〔思考与讨论5〕阅读课本第71页 “半衰期”部分的内容,并思考下列问题:1.放射性元素的衰变有什么规律?2.用什么物理量描述?3.这种描述的对象是什么?(学生可参考课本71页上的氡的衰变图,教师引导)答:.【教师说明】1.放射性元素的原子核,有半数发生衰变所需的时间,叫做这种元素的半衰期.2.半衰期表示放射性元素的衰变的快慢,不同的放射性元素其半衰期不同.3.半衰期描述的对象是大量的原子核,不是个别原子核,这是一个统计规律.〔思考与讨论4〕放射性元素的半衰期是由什么决定的?不同的放射性元素其半衰期相同吗? 答:.▲典题精析2.关于放射性元素的半衰期,下列说法正确的有( )A.是原子核质量减少一半所需的时间B.是原子核有半数发生衰变所需的时间C.把放射性元素放在密封的容器中,可以减慢放射性元素的半衰期D.可以用于测定地质年代、生物年代等[解析]原子核衰变后变成新核,新核与未衰变的核在一起,故半衰期并不是原子核的数量、质量减少一半,故A 错B 正确;衰变快慢由原子核内部因素决定,与原子所处的物理状态或化学状态无关,常用其测定地质年代、生物年代等,故C 错D 正确.[答案]BD点评:一种元素的半衰期与这种元素是以单质形式还是以化合物形式存在,或者加压,增温均不会改变.三、有关半衰期的计算〔思考与讨论6〕用N 0、m 0分别表示衰变前的原子数目和质量,N 、m 分别表示衰变后剩余的原子核的数目和质量,T 为半衰期,t 表示衰变过程所经历的时间,那么这些物理量之间的关系怎样?答:.▲典题精析3.设镭226的半衰期为1.6×103年,质量为100 g 的镭226经过4.8×103年后,有多少克镭发生衰变?若衰变后的镭变为铅206,则此时镭铅质量之比为多少?[解析]经过三个半衰期,剩余镭的质量为g m m Tt 5.12g 81100210=⨯=⎪⎭⎫ ⎝⎛= 已衰变的镭的质量为(100-12.5) g =87.5 g设生成铅的质量为m ,则226∶206=87.5∶m得m =79.8 g所以镭铅质量之比为125∶798[答案] : 125∶798点评:要理解半衰期表达式中各物理量的含义,在表达式021m m T t⎪⎭⎫ ⎝⎛=中,m 是指剩余的原子核的量,而不是衰变的量.。
2 放射性元素的衰变-人教版高中物理选择性必修第三册(2019版)教案一、知识目标1.了解放射性元素的发现历史以及基本概念。
2.掌握放射性元素的三种衰变方式:α衰变、β衰变、γ衰变。
3.理解放射性元素的半衰期及其应用。
二、能力目标1.能够根据原子核衰变方式解释放射性元素的衰变。
2.能够计算放射性元素的衰变速率。
3.能够解释放射性元素衰变规律及其在实际应用中的意义。
三、教学重难点1.教学重点:放射性元素的衰变模式及其计算方法。
2.教学难点:放射性元素衰变规律及其应用。
四、教学内容及教学步骤1. 放射性元素的基本概念1.1 活动度的定义放射性元素有放射线的特性,放射线的强度可以通过活动度表示,活动度单位为贝可(Bq)。
1.2 单位换算活动度的单位还可以用居里(Ci),1 Ci=3.7×10^10 Bq。
2. 放射性元素的衰变模式及计算方法2.1 α衰变α粒子是由2个质子和2个中子组成的重粒子,α衰变是放射性元素放出α粒子的过程。
α放射线在物质中的透射性比β、γ线低得多。
2.2 β衰变β衰变是指放射性元素放出β粒子的过程,β粒子带一个负电荷。
β衰变可以分为β-衰变和β+衰变两种类型。
2.3 γ衰变γ衰变是放射性元素放出γ光线的过程,γ光线是一种高能电磁辐射。
计算方法:放射性元素衰变和衰变速率的计算:N=N0e^(-λt),λ=A(单位时间内放射性核数的变化)/N,A=λN3. 放射性元素的半衰期及应用3.1 半衰期的定义半衰期指放射性元素衰变至原核数的一半所需要的时间。
3.2 半衰期的计算T1/2=ln2/λ 3.3 半衰期的应用半衰期广泛应用于放射性元素的选择、安全及治疗等各方面。
五、教学方法1.讲授和演示相结合的方法。
2.以问题为导向的探究式学习方法。
3.课堂讨论和小组合作的教学方法。
4.讲解和实例演练相结合的教学方法。
六、课后作业1.看视频:了解放射性元素对人体的危害。
2.计算不同放射性元素的半衰期并解释其规律。
2 放射性元素的衰变
教学目标:
知识与技能:1.知道衰变的概念,知道原子核衰变时遵守的规律.
2.知道α、β衰变的实质,知道γ射线是怎样产生的.
3.知道什么是半衰期,知道半衰期的统计意义,会利用半衰期解决相关问题.
过程与方法:1、培养学生从阅读课本中获取知识的能力。
2、培养学生观察分析、归纳总结的能力。
3、经历科学探究的过程、认识探究的意义、尝试探究的方法、培养合作
探究能力。
情感态度与价值观:1、总结连续衰变的规律和计算方法,带给学生自我体验的快乐。
2、通过合作探究培养学生的团队精神。
教学重点:α、β衰变的实质及衰变规律
教学难点:参半衰期概念的理解和利用半衰期解决相关问题
教学手段:探究、自主推导、数学归纳
教学环节:
板书设计(学生填写,用于总结本节知识) 一、α、β衰变的实质
1、α衰变的实质核反应方程 H
e
n H 1
21
01122→+
2、β衰变的实质核反应方程 e H n 0
11
11
0-+→ 二、放射性元素的连续衰变规律
Y X D C B
A
→+m 42He +n 0
-1e
列式:B=D+4m A=C +2m-n 三、元素半衰期的应用
元素原质量m ,剩余质量 T t
m m )21(0=
元素原子核个数N ,剩余原子核数 T t
N N )2
1
(0=。
高中物理 19.2放射性元素的衰变学案新人教选修19、2放射性元素的衰变学案新人教选修3-5新课标要求(一)知识与技能1、知道放射现象的实质是原子核的衰变2、知道两种衰变的基本性质,并掌握原子核的衰变规律3、理解半衰期的概念(二)过程与方法1、能够熟练运用核衰变的规律写出核的衰变方程式2、能够利用半衰期来进行简单计算(课后自学)(三)情感、态度与价值观通过传说的引入,对学生进行科学精神与唯物史观的教育,不断的设疑培养学生对科学孜孜不倦的追求,从而引领学生进入一个美妙的微观世界。
教学重点原子核的衰变规律及半衰期教学难点半衰期描述的对象知识梳理一、原子核的衰变1、概念:原子核由于放出_____、α粒子___或_____β粒子___而转变为___新原子核_______的现象、2、衰变分类:放出α粒子的衰变叫_____α衰变___、放出β粒子的衰变叫__β衰变______,而______ γ射线__是伴随着α射线和β射线产生的、3、衰变方程举例(1)α衰变:U―→Th+He(2)β衰变:Th―→Pa+e二、半衰期(τ)1、概念:放射性元素的原子核有__、半数____发生衰变所需要的时间、描述的是大量原子核的___统计___规律、2、特点:与放射性无素的物理、化学状态__无关____,只由核内部自身的因素决定、不同的元素有____不同__的半衰期、3、应用:利用半衰期非常稳定这一特点,可以测量其衰变程度、推断时间、天然放射现象说明原子核具有复杂的结构、原子核放出α粒子或β粒子,并不表明原子核内有α粒子或β粒子;原子核发生衰变后“就变成新的原子核”、1、衰变规律:原子核衰变时,前后的电荷数和质量数都守恒、2、衰变方程示例:α衰变:X―→Y+He;β衰变:X―→Y+e、3、α衰变和β衰变的实质(1)α衰变:在放射性元素的原子核中,2个中子和2个质子结合得比较牢固,有时会作为一个整体从较大的原子核中抛射出来,这就是放射性元素发生的α衰变现象、(2)β衰变:原子核中的中子转化成一个质子且放出一个电子即β粒子,使核电荷数增加1、但β衰变不改变原子核的质量数、4、衰变次数的确定设放射性元素X经过n次α衰变和m次β衰变后变成稳定的新元素Y,则表示该过程的方程为X―→Y+nHe+me、根据电荷数守恒和质量数守恒可列方程:A=A′+4n,Z=Z′+2n-m、α、β衰变过程中系统的动量守恒,若静止的原子核发生衰变,它们在磁场中运动的轨迹特点如下表:α衰变X―→Y+He两圆外切,α粒子半径大两圆的切点即为原子核起初静止的位置β衰变X―→Y +e两圆内切,β粒子半径大典型例题剖析:例1、(xx宁夏高考)天然放射性元素Pu经过______次α衰变和______次β衰变,最后变成铅的同位素__________、(填入铅的三种同位素Pb、Pb、Pb中的一种)[解题指导]根据衰变规律只有α衰变才能使质量数减少,且每次衰变减少质量数4,故Pu与Pb的质量数之差是4的整数倍,经验证明生成物是Pb;由于质量数减少了239-207=32,故发生=8次α衰变,因每次α衰变核的电荷数减少2,故由于α衰变核的电荷数应减少82=16,而Pb的电荷数仅比Pu核少了94-82=12,说明发生了16-12=4次β衰变、答案:8 4 Pb例2、为测定水库的存水量,将一瓶放射性溶液倒入水库中,已知这瓶溶液每分钟衰变8107次,这种同位素半衰期为2天,10天以后从水库取出1 m3的水,并测得每分种衰变10次,求水库的存水量为多少?[解题指导]设放射性同位素原有质量为m0,10天后的剩余质量为m,水库存水量为Q m3,由每分钟衰变次数与其质量成正比可得=,由半衰期公式得:m=m0(),由以上两式联立代入数据得=(),解得水库存水量为Q=2、5105 m3、答案:2、5105 m3例3、静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44∶1,如图19-2-1所示,则()A、α粒子与反冲粒子的动量大小相等、方向相反B、原来放射性元素原子的核电荷数为90C、反冲核的核电荷数为88D、α粒子和反冲粒子的速度之比为1∶88[解题指导]微粒之间相互作用的过程中动量守恒,由于初始总动量为零,末动量也为零,则α粒子和反冲核的动量大小相等、方向相反、由于释放的α粒子和反冲核均在垂直于磁场的平面内且在洛伦兹力作用下做圆周运动,Bqv=,R=、若原来放射性元素的核电荷数为Q,则对α粒子:R1=对反冲核:R2=由于p1=p2,R1∶R2=44∶1,得Q=90、它们的速度大小与质量成反比,故D错误、综上所述,选项A、B、C正确、自主练习:1、本题中用大写字母代表原子核,E经α衰变变成F,再经β衰变变成G,再经α衰变变成H,上述系列衰变可记为下式:EFGH,另一系列衰变如下:PQRS;已知P与F是同位素,则( )A、Q是G的同位素,R是H的同位素B、R是E的同位素,S是F的同位素C、R是G的同位素,S是H的同位素D、Q是E的同位素,R是F的同位素2、图19-2-4K-介子的衰变方程为K-―→π-+π0,其中K-介子和π-介子是带负电的元电荷,π0介子不带电、如图19-2-4所示,一个K-介子沿垂直于磁场的方向射入匀强磁场中,其轨迹为圆弧AP,衰变后产生的π-介子的轨迹为圆弧PB,两轨迹在P点相切,它们的半径为RK-与Rπ-之比为2∶1,π0介子的轨迹未画出,由此可知,π-、π0介子的动量大小之比为()A、1∶1B、1∶2C、1∶3D、1∶63、一小瓶含有放射性同位素的液体,它每分钟衰变6000次、若将它注射到一位病人的血管中,15 h后从该病人身上抽取10 mL血液,测得此血样每分钟衰变2次、已知这种同位素的半衰期为5 h,则此病人全身血液总量为多少L?4、静止在匀强磁场中的铀238核,发生α衰变时,α粒子与新核的速度方向与磁场方向垂直,若α粒子在磁场中做匀速圆周运动的周期为6、510-18 s,向心加速度为3、01015 m/s2,求衰变后新核的周期、向心加速度各是多少?5钚的同位素离子Pu发生衰变后生成铀(U)的一个同位素离子,同时放出能量为E=0、09 MeV的光子、从静止的钚核中放出的α粒子在垂直通过正交的匀强电场和匀强磁场时做匀速直线运动、已知匀强电场的电场强度为E=2、22104 N/C,匀强磁场的磁感应强度为B=2、0010-4 T(普朗克常量h=6、6310-34 Js,真空中的光速为c=3108 m/s,电子的电荷量为e=1、610-19 C)、(1)写出该衰变方程式:(2)求该光子的波长;(3)求放出的α粒子的速度大小;(4)若不计光子的动量,求α粒子和铀核的动能之比、自主学习答案:1、选B α衰变和β衰变的方程表达式分别为:X―→Y+He(α衰变),X―→Y+e(β衰变)P和F是同位素,设电荷数均为Z,则衰变过程可记为:Z+2EZFZ+1GZ-1H,ZPZ+1QZ+2RZS显然,E和R的电荷数均为Z+2,G和Q的电荷数均为Z+1,F、P 和S的电荷数均为Z,故B正确、2、选C K-介子衰变过程中动量守恒,且π-介子在磁场中做匀速圆周运动、圆弧AP和PB在P处相切,说明衰变前K-介子的速度方向与衰变后π-介子的速度方向相反,设衰变前K-介子的动量大小为p0,衰变后π-介子和π0介子的动量大小分别为p1和p2,根据动量守恒定律可得:p0=p1+p2,K-介子和π-介子在磁场中分别做匀速圆周运动,其轨道半径为:RK-=;Rπ-=-,又由题意知RK-=2Rπ-,qK-=qπ-,解以上联立方程组可得:p1∶p2=1∶3、3、解析:设衰变前原子核的个数为N0,15 h后剩余的原子核个数为N,则:N=N0()=()3N0=N0①设人血液的总体积为V,衰变的次数跟原子核的个数成正比,即=②由①②得=,所以V=3750 mL=3、75 L原子核的个数越多,衰变的次数越多,两者成正比关系、答案:3、754、解析:其衰变方程为U―→Th+He因为T=所以TTh=Tα=6、510-18 s=8、4510-18 s由动量守恒得:mThvTh=mαvα所以=又由r =,mv相等所以=而=()2=()2=()2所以aTh=()231015m/s2≈3、91013 m/s2、答案:8、4510-18 s3、91013 m/s25 解析:(1)Pu―→U+He、(2)由E=hν,λ=c/ν得λ==m≈1、3810-11 m、(3)由qvαB=qE得vα==1、11108 m/s、(4)核反应中系统的动量守恒:mαvα-mUvU =0可知α粒子和铀核的动量大小相等,由Ek=,知动能大小与质量成反比,所以α粒子和铀核的动能之比为=、答案:(1)Pu―→U+He (2)1、3810-11 m(3)1、11108 m/s (4)。
192放射性元素的衰变教案教案:放射性元素的衰变一、教学目标:1.了解放射性元素的概念及其衰变现象;2.掌握放射性元素的衰变方式和衰变速率;3.理解放射性元素的应用及其对环境和人类的影响。
二、教学准备:1.教学课件;2. 实验器材:放射性元素模型、计时器、测量尺、Geiger-Muller 计数管、铅板等。
三、教学过程:1.导入(5分钟)介绍放射性元素的背景知识:放射性元素是指具有放射性衰变现象的元素,可以自发地发射各种类型的粒子和电磁辐射。
2.知识传授(20分钟)a.放射性元素的衰变方式解释放射性元素的衰变方式包括α衰变、β衰变、γ衰变。
通过示意图和实验模型等方式讲解各种衰变方式的原理和示例。
b.放射性元素的衰变速率讲解放射性元素的衰变速率与半衰期的关系,半衰期是指放射性元素衰变到原来数量的一半所需的时间。
通过实验模型和示意图等方式展示不同放射性元素的衰变速率和半衰期。
c.放射性元素的衰变公式介绍放射性元素的衰变公式,讲解如何通过衰变公式计算放射性元素的衰变速率和半衰期,并使用示例进行演示和练习。
3.实验探究(25分钟)将学生分组进行实验:使用Geiger-Muller计数管和计时器测量一个放射性元素模型的衰变速率,并记录实验数据。
根据实验数据,计算该放射性元素的半衰期,并讨论实验过程中的问题和结果。
4.拓展应用(15分钟)a.讨论放射性元素的应用领域,如医疗、能源、科学研究等,了解放射性元素在不同领域中的应用和效果。
b.探讨放射性元素对环境和人类的影响,包括辐射的危害、核能事故的影响等,引导学生思考如何正确应对放射性元素的危害。
5.师生互动(10分钟)回顾本节课的知识点和实验结果,与学生进行互动讨论,解答他们的问题,并提供更多示例和实践活动。
四、教学总结:1.总结本节课讲解的内容,强调放射性元素的衰变方式和衰变速率的重要性;2.向学生普及相关知识,提高他们对放射性元素的认识和正确使用。
五、课后作业:1.根据课上讲解和实验结果,总结放射性元素的衰变方式及其特点;2.阅读相关资料,了解放射性元素在医疗、核能等领域的应用和影响,并写一篇小论文。
放射性元素的衰变★新课标要求(一)知识与技能1、知道放射现象的实质是原子核的衰变2、知道两种衰变的基本性质,并掌握原子核的衰变规律3、理解半衰期的概念(二)过程与方法1、能够熟练运用核衰变的规律写出核的衰变方程式2、能够利用半衰期来进行简单计算(课后自学)(三)情感、态度与价值观通过传说的引入,对学生进行科学精神与唯物史观的教育,不断的设疑培养学生对科学孜孜不倦的追求,从而引领学生进入一个美妙的微观世界。
★教学重点原子核的衰变规律及半衰期★教学难点半衰期描述的对象★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课教师:同学们有没有听说过点石成金的传说,或者将一种物质变成另一种物质。
学生讨论非常活跃,孙悟空,八仙,神仙;魔术,街头骗局。
点评:通过这样新颖的课题引入,给学生创设情景,能充分调动学生的积极性,挑起学生对未知知识的热情。
教师:刚才同学们讲的都很好,但都是假的。
孙悟空,八仙,神仙:人物不存在。
魔术,街头骗局:就是假的。
学生顿时安静,同时也心存疑惑:当然是假的,难道还有真的不成?点评:对于学生来讲要使其相信科学技术反对迷信,同时也要提高警惕小心上当受骗,提高学生自我保护意识。
更加吊起了学生学习新知识的胃口,为新课教学的顺利进行奠定了基础。
教师:那有没有真的(科学的)能将一种物质变成另一种物质呢?学生愕然。
点评:进一步吊起了学生学习新知识的胃口。
教师:有(大声,肯定地回答)学生惊讶,议论纷纷。
点评:再一次吊起了学生学习新知识的胃口。
通过这样四次吊胃口,新课的成功将是必然。
教师:这就是我们今天要学习的放射性元素的衰变。
点评:及时推出课题。
(二)进行新课1.原子核的衰变教师:原子核放出α或β粒子,由于核电荷数变了,它在周期表中的位置就变了,变成另一种原子核。
我们把这种变化称为原子核的衰变。
学生豁然开朗:科学、真实的将一种物质变成另一种物质,原来就是原子核的衰变。
高中物理 19.2 放射性元素的衰变导学案新人教版选修【学习目标】1、了解什么是放射性、天然放射现象、衰变、2、知道原子核的组成及三种射线的特征、3、理解α衰变和β衰变的规律及实质,并能熟练书写衰变方程、4、理解半衰期的概念,学会利用半衰期解决相关问题、【重点难点】重点:原子核的组成及三种射线的特征以及衰变方程难点:半衰期的概念【导学】一、原子核的组成1、天然放射现象(1)1896年法国物理学家________发现、(2)定义:放射性元素自发地发出射线的现象叫做_________现象、(3)原子序数__________的元素,都能自发地发出射线,原子序数______的元素,有的也能放出射线、(4)射线种类:放射性物质发出的射线有三种:______、______、_____,有放射性的元素称为___________2、三种射线的本质(1)α射线:α射线是高速α粒子流,实际就是______,电荷数是___,质量数是____、(2)β射线:β射线是高速______(3)γ射线:γ射线是能量很高的_______(4)如图所示中1是______,2是______,3是_________3、三种射线的特点(1)α射线:α粒子容易使空气_____,但穿透本领很____(2)β射线:β粒子穿透能力____,但电离作用_____(3)γ射线:γ粒子电离作用_____,但穿透能力______二、原子核的组成1、质子的发现:_______用α粒子轰击氮原子核获得了质子、2、中子的发现:________通过实验证实了中子的存在、3、原子核的组成:原子核由______、______组成、4、原子核的电荷数(Z):等于原子核的_______,等于__________5、原子核的质量数(A):等于_______与_______的总和、6、原子核的符号:X(其中X为元素符号,A为原子核的______,Z为原子核的_______)、三、原子核的衰变1、衰变:放射性元素的原子核放出α粒子或β粒子后变成新的________的变化、2、衰变形式:常见的衰变有两种,放出α粒子的衰变为________,放出β粒子的衰变叫_______,而_______经常是伴随α射线和β射线产生的、3、衰变实质和规律(1)实质:原子核变成___________(2)规律:原子核衰变时,________和_________都守恒、4、衰变方程举例:U→Th+He,Th→Pa+e、四、半衰期1、定义放射性元素的原子核有______发生衰变所需的时间、2、决定因素放射性元素衰变的快慢是由__________的因素决定的,跟原子所处的化学状态和外部条件没有关系、不同的放射性元素,半衰期_______【导练】题组一对三种射线的理解1、如图1甲是α、β、γ三种射线穿透能力的示意图,图乙是工业上利用射线的穿透性来检查金属内部伤痕的示意图,请问图乙中的检查利用的射线是()A、α射线B、β射线C、γ射线D、三种射线都可以2、如图所示,铅盒A中装有天然放射性物质,放射线从其右端小孔水平向右射出,在小孔和荧光屏之间有垂直纸面向里的匀强磁场,则下列说法中正确的是()A、打在图中a、b、c三点的依次是α射线、β射线和γ射线B、α射线和β射线的轨迹是抛物线C、α射线和β射线的轨迹是圆弧D、如果在铅盒和荧光屏间再加一竖直向下的匀强电场,则屏上的亮斑可能只剩下b3、如图所示为查德威克实验示意图,用天然放射性元素钋(Po)放射的α射线轰击铍时会产生粒子流A,用粒子流A轰击石蜡时,会打出粒子流B,经研究知道()A、A为中子,B为质子B、A为质子,B为中子C、A为γ射线,B为中子D、A为中子,B为γ射线题组二原子核的组成4、下列说法正确的是()A、X与Y互为同位素B、X与Y互为同位素C、X与Y中子数相差2D、U核内有92个质子,235个中子5、氢有三种同位素,分别是氕(H)、氘(H)、氚(H),则()A、它们的质子数相等B、它们的核外电子数相等C、它们的核子数相等D、它们的中子数相等6、人类探测月球时发现,在月球的土壤中含有较丰富的质量数为3的氦,它可作为未来核聚变的重要原料之一、氦的该种同位素应表示为()A、HeB、HeC、HeD、He题组三对衰变的理解7、对天然放射现象,下列说法中正确的是()A、α粒子带正电,所以α射线一定是从原子核中射出的B、β粒子带负电,所以β射线有可能是核外电子C、γ粒子是光子,所以γ射线有可能是由原子发光产生的D、α射线、β射线、γ射线都是从原子核内部释放出来的8、“朝核危机”引起全球瞩目,其焦点就是朝鲜核电站采用轻水堆还是重水堆、重水堆核电站在发电的同时还可以生产出可供研制核武器的钚239(Pu),这种钚239可由铀239(U)经过n次β衰变产生,则n为()A、2B、239C、145D、929、最近几年,科学家在超重元素的探测方面取得了重大进展、1996年,科学家们在研究某两个重离子结合成超重元素的反应时,发现生成的超重元素的核X经过6次α衰变后的产物是Fm、由此可以判定生成的超重元素的原子序数和质量数分别是( )A、124、259B、124、265C、112、265D、112、27710、氪90(Kr)是不稳定的,它经过一系列衰变最终成为稳定的锆90(Zr),这些衰变是()A、1次α衰变,6次β衰变B、4次β衰变C、2次α衰变D、2次α衰变,2次β衰变题组四半衰期的理解和有关计算11、某放射性元素原为8 g,经6天时间已有6 g发生了衰变,此后它再衰变1 g,还需几天?导练答案:1、C2、C3、A4、B5、AB6、B7、AD8、A9、D10、B11、解析8 g放射性元素已衰变了6 g,还有2 g没有衰变,现在要求在2 g的基础上再衰变1 g,即再衰变一半,故找出元素衰变的半衰期就可得出结论、由半衰期公式m余=m原得8-6=8=2即放射性元素从8 g衰变了6 g余下2 g时需要2个半衰期、因为t=6天,所以τ==3天,即半衰期是3天、而余下的2 g衰变1 g需1个半衰期τ=3天、。
《放射性元素的衰变》学历案(第一课时)一、学习主题本节课的学习主题是“放射性元素的衰变”。
通过学习,学生将了解放射性元素的基本概念、衰变的类型及规律,掌握放射性衰变过程中原子核的转变与衰变速度的测量方法。
二、学习目标1. 掌握放射性元素的概念、种类及对人类的影响;2. 理解并掌握原子核的衰变过程,了解不同类型的衰变及其特征;3. 学会通过实验观察和分析放射性元素的衰变过程,理解衰变速度与放射性元素之间的关系;4. 培养学生的科学探究能力和实验操作能力,增强学生的科学素养。
三、评价任务1. 评价学生对放射性元素基本概念的掌握情况,通过课堂提问和小组讨论的形式进行;2. 评价学生对不同类型的衰变及其特征的理解程度,通过课后作业和课堂互动的方式进行;3. 评价学生实验操作能力和观察能力,通过实验报告和实验过程中的表现进行评价;4. 评价学生的科学探究能力和科学素养,通过小组项目和课堂表现进行综合评价。
四、学习过程1. 导入新课:通过介绍放射性元素在生活中的应用和影响,引导学生进入学习状态;2. 概念介绍:讲解放射性元素的概念、种类及对人类的影响;3. 衰变类型及特征:讲解不同类型的衰变(如α衰变、β衰变等)及其特征;4. 衰变速度与放射性元素的关系:通过实验演示和数据分析,让学生理解衰变速度与放射性元素之间的关系;5. 学生实验:学生分组进行实验操作,观察放射性元素的衰变过程并记录数据;6. 课堂小结:总结本节课所学内容,强化学生对知识点的掌握。
五、检测与作业1. 课堂检测:通过课堂小测验的形式,检测学生对本节课所学内容的掌握情况;2. 课后作业:布置相关课后作业,包括填空题、简答题和实验报告等,巩固学生对知识点的理解和掌握;3. 实验报告:要求学生根据实验过程和结果撰写实验报告,培养学生的实验操作能力和观察能力;4. 小组合作项目:学生分组进行小组合作项目,探讨放射性元素在实际生活中的应用和影响。
六、学后反思1. 学生反思:学生应在学习完本节课后进行自我反思,总结自己在学习过程中的收获和不足;2. 教师反思:教师应对本节课的教学过程进行反思,总结教学过程中的优点和不足,为今后的教学提供参考。
19.2 放射性元素的衰变【学习目标】1.知道衰变的概念,知道原子核衰变时遵守的规律.2.知道α、β衰变的实质,知道γ射线是怎样产生的.3.知道什么是半衰期,知道半衰期的统计意义,会利用半衰期解决相关问题.【重点难点】:1.α、β衰变的实质及衰变规律.2.对半衰期概念的理解和利用半衰期解决相关问题.【易错问题】:因认识不到半衰期是一个统计规律概念而出错.【自主学习】一、原子核的衰变1.衰变:原子核由于放出______或_______而转变为新核的变化.2.衰变形式:常见的衰变有两种,放出α粒子的衰变为______,放出β粒子的衰变叫β衰变,而γ射线是伴随α射线或β射线产生的.3.衰变方程:(1)α衰变:23892U→23490Th+42He(2)β衰变:23490Th→23491Pa+0-1e4.衰变规律原子核衰变时,遵循两个守恒定律,其一是_______守恒,其二是_______守恒.二、半衰期1.概念:放射性元素的原子核有____发生衰变需要的时间叫半衰期,放射性元素的半衰期描述的是大量原子核的统计规律.2.特点:半衰期与放射性元素的物理、化学状态_______,只由核的内部因素决定,不同的元素有____的半衰期.【基础达标】1.关于放射性元素的半衰期,下列说法正确的是( )A.原子核全部衰变所需时间的一半B.原子核有半数发生衰变所需的时间C.相对原子质量减少一半所需的时间D.元素质量减少一半所需的时间2.如果某种元素发生β衰变,则下列说法中正确的是( )A.质量数发生变化B.质子数增加,中子数不变C.质子数不变,中子数增加D.质子数增加,中子数减少3.关于放射性元素的半衰期,以下说法中正确的是( )A.同种放射性原子核在化合物中的半衰期比在单质中长B.升高温度可使放射性元素的半衰期缩短C.氡的半衰期为3.8天,若有四个氡原子核,经过7.6天就只剩1个了D.氡的半衰期为3.8天,若有4 g氡,经过7.6天就只剩1 g了4.近段时间,朝鲜的“核危机”引起了全球的瞩目,其焦点问题是朝鲜核电站采用轻水堆还是重水堆,重水堆核电站在发电的同时还可以生产出可供研制核武器的钚239(239 94Pu),这种239 94Pu可由铀239(239 92U)经过n次β衰变而产生,则n为( )A.2 B.239C.145 D.925.一小瓶含有放射性同位素的液体,它每分钟衰变6000次.若将它注射到一位病人的血管中,15 h后从该病人身上抽取10 mL血液,测得此血样每分钟衰变2次.已知这种同位素的半衰期为5 h,求此病人全身血液总量.。
柳树泉农场学校学案“放射性元素的衰变“目标确定的依据1.课程标准相关要求(1)知道原子核的组成.知道放射性和原子核的衰变.会用半衰期描述衰变速度,知道半衰期的统计意义。
(2)知道放射性,知道天然放射现象中三种射线(射线,射线,射线)的基本特性。
(3)知道放射性,知道天然放射现象中三种射线(射线,射线,射线)的基本特性。
2.教材分析与教学建议本节知识从内容上来讲非常抽象,从掌握知识的角度来讲理解,记忆成分较多。
因此本堂课应该引导学生进行讨论,加深对相关内容的理解。
而对于衰变方程式,半衰期描述的对象,统计规律和知识学习都应引导学生复习前面学过的相关知识,并用类比的方法注重知识迁移。
最后布置学生课后阅读“科学漫步”栏目,以留给学生思考和学习的空间。
本节重点是α衰变,β衰变及其规律和半衰期的概念,引导学生运用质量数守恒和电荷数守恒的规律正确书写衰变方程。
正确理解半衰期的概念是本节的难点,因此教学中应注意讲清半衰期的概念,使学生会计算较简单的有关半衰期的问题。
3.学情分析高中物理尤其是放射性元素概念严密、抽象,规律复杂、互相制约。
所以普遍感到现在的物理比以前学过的物理难得多。
原来物理成绩很好的,现在也要担心是否能及格。
主要难在不会把所学的物理知识用来解题。
听老师分析能懂,自己解题就无从下手,或解题时考虑了这,忽略了那,不会全面地综合分析问题。
少数学生碰到做不出的题,就与别的同学讨论或去问老师。
多数学生做不出就不想做。
所以多动员学生养成自己动脑动手的能力。
4.学习目标(1)了解同位素和天然放射现象及其规律(2)知道三种射线的本质,以及如何利用磁场区分它们(3)知道两种衰变的基本性质,并掌握原子核的衰变规律(4)理解半衰期的概念5.评价任务(1)了解同位素和它的自然放射性本质及其原理(2)正确的了解及应用三种射线(3)能运用各种元素的α衰变,β衰变方程式及产物(4)了解半衰期概念及其实际生活中的应用三种射线α射线,β射线,射线本质是什么?射线大家可以知道原核的种子分裂成一个质子和电子(目标三完成)半衰期:放射性元素的原子核有半数发生衰变所需的时间,叫做这种元素的半衰期。
19.2 放射性元素的衰变【教学目标】1、知道放射现象的实质是原子核的衰变2、知道两种衰变的基本性质,并掌握原子核的衰变规律3、理解半衰期的概念【教学重点】原子核的衰变规律及半衰期【教学过程】自主探究一:什么是衰变,衰变方程应遵循什么规律?质量数守恒是质量守恒吗? 写衰变方程应该有哪些注意事项?1、原子核放出α或β粒子,由于核电荷数变了,它在周期表中的位置就变了,变成另一种原子核。
我们把这种变化称为原子核的衰变。
2、衰变方程式遵守的规律:(1)质量数守恒 (2)核电荷数守恒3、质量数守恒是指核反应前后质子数与中子数的总数是不变的,质量是反应前后物质的总质量。
反应后会出现质量的亏损。
4、注意事项:核反应是不可逆的,用箭头不能用等号;核反应生成物一定要以实验为基础不能凭空杜撰出生成物;核反应是质量数守恒而不是质量守恒;放射物可以发生连续衰变。
探究二:α、β、r 是如何产生的?写出α、β的衰变方程。
1、α衰变是2个质子与2个中子结合在一起被原子核抛射出来。
He n H 42101122=+Β衰变是1个中子转化为一个质子与一个电子。
10n →11H +0-1eγ射线是由于原子核在发生α衰变和β衰变时原子核受激发而产生的光(能量)辐射,通常是伴随α射线和β射线而产生。
γ射线的本质是能量。
2、A Z X →A -4Z -2Y+42He A Z X →A Z +1Y+0-1e探究三:什么是半衰期?半衰期与那些因素有关?如何计算经过一段时间后元素剩余的质量。
1、半衰期表示放射性元素的衰变的快慢放射性元素的原子核,有半数发生衰变所需的时间,叫做这种元素的半衰期半衰期描述的对象是大量的原子核,不是个别原子核,这是一个统计规律。
2、元素的半衰期反映的是原子核内部的性质,与原子所处的化学状态和外部条件无关。
3、τtm m )21(0=剩余合作探究一:衰变方程及衰变次数的计算。
1:配平下列衰变方程()2342304 92 902U Th He →+()2342340 90 911U Pa e -→+2:钍232(232 90Th )经过________次α衰变和________次β衰变,最后成为铅208(20882Pb )。
放射性元素的衰变教案教学设计:复习:1.原子核由什么组成?什么是核子?什么是核力?2.原子核的表示方法什么?质量数、质子数、中子数之间有什么关系?核电荷数、质子数、原子序数、核外电子数之间有什么关系?引入:通过上节课的学习我们知道原子核有复杂的结构,原子核能发生变化吗?如果能发生变化,变化的规律有哪些?本节课我们就来学习天然放射现象。
新课教学:一、天然放射现象1.天然放射现象1896年法国物物理学家贝克勒尔,在实验室无意把磷光物质放在包有黑纸的照相底片上,后来在使用这包照相底片时,发现照相底片已经感光,这一定是某种穿透能力很强的射线穿透黑纸式照相底片感光——思维敏捷的贝克勒尔抓住这一意外“事件”进一步探讨,发现了放射现象。
揭开了探索原子核结构的序幕。
皮埃尔·居里和玛丽·居里夫人在贝克勒尔的建议下,对铀和铀的各种矿石进行了深入研究,发现了放射性极强的新元素:其中一种为了纪念她的祖国——波兰,而命名为钋(Po);另一种命名为镭(Ra)。
物质发射射线的性质称为放射性;具有放射性的元素称为放射性元素;物质自发地放射出射线的现象,叫做天然放射现象;研究发现,原子序数大于83的所有元素都能自发的放出射线;原子序数小于83的有些元素,也具有放射性。
2.放射线的研究阅读课文P64、P67,并回答:研究三种射线的方法、三种射线的组成、性质。
小结:(1)研究三种射线的方法:利用电场和磁场、乳胶照相、威尔逊云室、气泡室、盖革—弥勒计数器等。
(2)三种射线的组成、性质3.说明(1)原子放出α射线或β射线后,就变成另一种元素的原子核——发生了核反应,说明原子核还有其内部结构;通常γ射线是伴随着α射线或β射线放出的。
α射线或β射线不一定同时放出。
(2)放射性与元素存在的状态无关。
如果一种元素具有放射性,那么不论它是以单质形式存在,还是以某种化合物的形式存在,放射性都不受影响。
放射性反映的是元素原子核的特性。
19.2放射性元素的衰变[学习目标]1.了解衰变的概念,知道衰变时质量数和电荷数都守恒.2.理解α衰变和β衰变的规律及实质,并能熟练书写衰变方程.3.理解半衰期的概念,知道半衰期是由原子核本身决定的,学会利用半衰期解决相关问题.[重点难点]1.理解α衰变和β衰变的规律及实质,并能熟练书写衰变方程2.理解半衰期的概念,学会利用半衰期解决相关问题.[教学内容]一、原子核的衰变1.定义:原子核放出α粒子或β粒子变成另一种原子核的过程,由于核电荷数变了,它在周期表中的位置就变了.2.衰变类型(1) α衰变α衰变:放射性元素放出α粒子的衰变过程.放出一个α粒子后,核的质量数减少4,电荷数减少2,成为新核.α衰变的实质:2个中子和2个质子结合在一起形成α粒子.α衰变的方程:A Z X→A-4Z-2Y+42He;如:23892U→23490Th+42He.(2) β衰变β衰变:放射性元素放出β粒子的衰变过程.放出一个β粒子后,核的质量数不变,电荷数增加1.其转化方程为:10n→11H+0-1e.β衰变的实质:核内的中子转化成了一个电子和一个质子.β衰变的方程:A Z X→AZ+1Y+0-1e;如:23490Th→23491Pa+0-1e.γ射线经常是伴随α衰变和β衰变产生的.3.衰变规律:原子核衰变时电荷数和质量数都守恒.4.确定原子核衰变次数的方法与技巧(1)方法:设放射性元素A Z X经过n次α衰变和m次β衰变后,变成稳定的新元素A′Z′Y,则衰变方程为:A Z X→A′Z′Y+n42He+m0-1e根据电荷数守恒和质量数守恒可列方程:A=A′+4n,Z=Z′+2n-m.以上两式联立解得:n=A-A′4,m=A-A′2+Z′-Z.由此可见,确定衰变次数可归结为解一个二元一次方程组.(2)技巧:为了确定衰变次数,一般先由质量数的改变确定α衰变的次数(这是因为β衰变的次数多少对质量数没有影响),然后根据衰变规律确定β衰变的次数.[典型例题]例1(考点:衰变规律的应用)23892U核经一系列的衰变后变为20682Pb核,问:(1)一共经过几次α衰变和几次β衰变?(2)20682Pb与23892U相比,质子数和中子数各少了多少?(3)综合写出这一衰变过程的方程.[技巧点拨]1.衰变方程的书写:衰变方程用“→”,而不用“=”表示,因为衰变方程表示的是原子核的变化,而不是原子的变化.2.衰变次数的判断技巧(1)衰变过程遵循质量数守恒和电荷数守恒.(2)每发生一次α衰变质子数、中子数均减少2.(3)每发生一次β衰变中子数减少1,质子数增加1.针对训练1在横线上填上粒子符号和衰变类型二、半衰期1.定义:放射性元素的原子核有半数发生衰变所需的时间.2.特点(1)不同的放射性元素,半衰期不同,甚至差别非常大.(2)放射性元素衰变的快慢是由核内部自身因素决定的,跟原子所处的化学状态和外部条件无关.3.适用条件:半衰期描述的是统计规律,不适用于少数原子核的衰变.4.半衰期公式:N余=12τ⎛⎫⎪⎝⎭原tN,m余=12mτ⎛⎫⎪⎝⎭原t,其中τ为半衰期.5.半衰期的应用:利用半衰期非常稳定这一特点,可以通过测量其衰变程度来推断时间.[即学即用]1.判断下列说法的正误.(1)原子核在衰变时,它在元素周期表中的位置不变.()(2)发生β衰变是原子核中的电子发射到核外.()(3)同种放射性元素,在化合物中的半衰期比在单质中长.()(4)把放射性元素放在低温处,可以减缓放射性元素的衰变.()(5)放射性元素的半衰期与元素所处的物理和化学状态无关,它是一个统计规律,只对大量的原子核才适用.()(6)氡的半衰期是3.8天,若有4个氡原子核,则经过7.6天后只剩下一个氡原子核.() 2.碘131的半衰期约为8天,若某药物含有质量为m的碘131,经过32天后,该药物中碘131的含量大约还有.例2(考点:半衰期的计算)放射性同位素14C被考古学家称为“碳钟”,它可以用来判定古生物体的年代,此项研究获得1960年诺贝尔化学奖.(1)宇宙射线中高能量的中子碰到空气中的氮原子后,会形成不稳定的146C,它很容易发生衰变,放出β射线变成一个新核,其半衰期为5730年,试写出14C的衰变方程(2)若测得一古生物遗骸中的146C含量只有活体中的25%,则此遗骸距今约有多少年?[特别提醒]1.半衰期由核内部自身的因素决定,与原子所处的化学状态和外部条件都无关.2.半衰期是一个统计规律,适用于对大量原子核衰变的计算,对于少数原子核不适用. [针对训练2]氡222是一种天然放射性气体,被吸入后,会对人的呼吸系统造成辐射损伤,它是世界卫生组织公布的主要环境致癌物质之一.其衰变方程是已知的半衰期约为3.8天,则约经过天,16g的衰变后还剩1g。
19.2 放射性元素的衰变编写:陈海燕 审核:孙俊【知识要点】 一、原子核的衰变1.衰变:放射性元素原子核放出某种粒子后变成新的原子核。
2.a 衰变:放射性元素放出___________,叫a 衰变。
b 衰变:放射性元素放出___________,叫b 衰变。
3.衰变规律:原子核衰变时,衰变前后的________和________都守恒。
衰变方程:a 衰变_________________________。
b 衰变____________________________。
二、半衰期:1.放射性元素的原子核有半数发生衰变所需的时间叫做半衰期。
2.半衰期由核内部本身的因素决定,跟原子所处的物理、化学状态无关。
【典型例题】 例1.铀核23892U 经过______次a 衰变和_______次b 衰变变成稳定的铅核20682.Pb例2.23892U 核经一系列的衰变后变为20682Pb 核,问:(1)一共经过几次a 变和几次b 衰变? (2)20682Pb 与23892U 相比,质子和中子数各少多少?(3)综合写出这一衰变过程的方程。
例3.静止在匀强磁场中的某种放射性元素的原子核,当它放出一个a 粒子后,其速度方向与磁场方向垂直,测得a 粒子和反冲核轨道半径之比为44:1,如图所示,则A .a 粒子与反冲粒子的动量大小相等,方向相反B .原来放射性元素的原子核电荷数为90C .反冲核的核电荷数为88D .a 粒子和反冲粒子的速度之比为1:88例4.地球的年龄到底有多大?科学家利用天然放射性元素的衰变规律,通过对目前发现的最古老的岩石中铀和铅含量的测定,推算出该岩石中含有的铀的岩石形成初期的一半,铀238的相对含量随时间的变化关系如图所示,由此可以判断出 A .铀238的半衰期为90亿年 B .地球的年龄大致为45亿年C .被测定的古老岩石样品在90亿年后的铀、铅比例为1:4D .被测定的古老岩石样品在90亿年后的铀、铅比例大于1:3 【课堂检测】1.关于放射性元素原子核的衰变,下列叙述中正确的是( )A .g 射线是伴随a 射线或b 射线而发射出来的B .某种放射性元素的半衰期不随化学状态、温度等的变化而变化C .某核放出一个b 粒子或a 粒子后,都会变成一种新元素的原子核D .若有10个某种放射性元素的原子核,则经一个半衰期后一定还剩5个原子核 2.一放射性元素的原子核放出一个a 粒子和一个b 粒子后,其核内质子数和中子数的变化是( )A .质子数减少3个,中子数减少1个B .质子数减少2个,中子数减少1个C .质子数减少1个,中子数减少3个D .质子数减少1个,中子数减少2个3.23892U 衰变为22286Rn 要经过m 次a 衰变和n 次b 衰变,则,m n 分别为( ) A .2、4B .4、2C .4、6D .16、64.天然放射现象中,放射性元素放出的射线可分为a 射线、b 射线和g 射线,关于放射性元素的原子核衰变,下列说法中正确的是( ) A .可能同时放出a b g 、、射线 B .可能同时放出a b 、射线C .可能同时放出a g 、射线D .可能只放出g 射线5.在垂直于纸面的匀强磁场中,有一原来静止的原子核,该核衰变后,放出的带电粒子和反冲核的运动轨迹分别如图中,a b 所示,由图可以判定( )A .该核发生的是a 衰变B .该核发生的是b 衰变C .磁场方向一定垂直纸面向里D .磁场方向向里还是向外不能判定6.放射性同位素2411Na 的样品经过6h 还剩下18没有衰变,它的半衰期是( ) A .2h B .1.5h C .1.17h D .0.75h 7.下列说法正确的是 ( )A .氡的半衰期为3.8天,若有4个氡原子核,经7.6天后就剩下一个原子核了B .对放射性元素升温、加压,其半衰期不变C .放射性元素与其他物质进行化学反应,生成一种新的化合物,其半衰期不变D .放射性元素放出a 射线后,得到新的放射性元素,其半衰期不变8.若元素A 的半衰期为4天,元素B 的半衰期为5天,则相同质量的A 和B ,经过20天后,剩下的元素A 、B 的质量之比:A B m m 为( )A.30:31 B.3:30 C.1:2 D.2:1。
【知识要点】 一、原子核的衰变
1.衰变:放射性元素原子核放出某种粒子后变成新的原子核。
2.a 衰变:放射性元素放出___________,叫a 衰变。
b 衰变:放射性元素放出___________,叫b 衰变。
3.衰变规律:原子核衰变时,衰变前后的________和________都守恒。
衰变方程:a 衰变_________________________。
b 衰变____________________________。
二、半衰期:
1.放射性元素的原子核有半数发生衰变所需的时间叫做半衰期。
2.半衰期由核内部本身的因素决定,跟原子所处的物理、化学状态无关。
【典型例题】 例1.铀核23892
U 经过______次a 衰变和_______次b 衰变变成稳定的铅核20682.Pb
例2.
23892
U 核经一系列的衰变后变为20682Pb 核,问:
(1)一共经过几次a 变和几次b 衰变? (2)
20682
Pb 与23892U 相比,质子和中子数各少多少?
(3)综合写出这一衰变过程的方程。
例3.静止在匀强磁场中的某种放射性元素的原子核,当它放出一个a 粒子后,其速度方向
与磁场方向垂直,测得a 粒子和反冲核轨道半径之比为44:1,如图所示,则 A .a 粒子与反冲粒子的动量大小相等,方向相反 B .原来放射性元素的原子核电荷数为90 C .反冲核的核电荷数为88
D .a 粒子和反冲粒子的速度之比为1:88
例4.地球的年龄到底有多大?科学家利用天然放射性元素的衰变规律,通过对目前发现的
最古老的岩石中铀和铅含量的测定,推算出该岩石中含有的铀的岩石形成初期的一半,铀238的相对含量随时间的变化关系如图所示,由此可以判断出 A .铀238的半衰期为90亿年 B .地球的年龄大致为45亿年
C .被测定的古老岩石样品在90亿年后的铀、铅比例为1:4
D .被测定的古老岩石样品在90亿年后的铀、铅比例大于1:3 【课堂检测】
1.关于放射性元素原子核的衰变,下列叙述中正确的是
( )
A .g 射线是伴随a 射线或b 射线而发射出来的
B .某种放射性元素的半衰期不随化学状态、温度等的变化而变化
C .某核放出一个b 粒子或a 粒子后,都会变成一种新元素的原子核
D .若有10个某种放射性元素的原子核,则经一个半衰期后一定还剩5个原子核 2.一放射性元素的原子核放出一个a 粒子和一个b 粒子后,其核内质子数和中子数的变化是( )
A .质子数减少3个,中子数减少1个
B .质子数减少2个,中子数减少1个
C .质子数减少1个,中子数减少3个
D .质子数减少1个,中子数减少2个
3.
23892
U 衰变为22286Rn 要经过m 次a 衰变和n 次b 衰变,则,m n 分别为
( ) A .2、4
B .4、2
C .4、6
D .16、6
4.天然放射现象中,放射性元素放出的射线可分为a 射线、b 射线和g 射线,关于放射性元素的原子核衰变,下列说法中正确的是
( )
A .可能同时放出a b g 、、射线
B .可能同时放出a b 、射线
C .可能同时放出a g 、射线
D .可能只放出g 射线
5.在垂直于纸面的匀强磁场中,有一原来静止的原子核,该核衰变后,放出的带电粒子和反冲核的运动轨迹分别如图中,a b 所示,由图可以判定
( )
A .该核发生的是a 衰变
B .该核发生的是b 衰变
C .磁场方向一定垂直纸面向里
D .磁场方向向里还是向外不能判定
6.放射性同位素24
11Na 的样品经过6h 还剩下
1
8
没有衰变,它的半衰期是
( )
A .2h
B .
C .
D .
7.下列说法正确的是 ( )
A .氡的半衰期为天,若有4个氡原子核,经天后就剩下一个原子核了
B .对放射性元素升温、加压,其半衰期不变
C .放射性元素与其他物质进行化学反应,生成一种新的化合物,其半衰期不变
D .放射性元素放出a 射线后,得到新的放射性元素,其半衰期不变
8.若元素A 的半衰期为4天,元素B 的半衰期为5天,则相同质量的A 和B ,经过20天后,剩下的元素A 、B 的质量之比:A B m m 为
( ) A .30:31 B .3:30 C .1:2 D .2:1。