西师版小学数学六年级知识点
- 格式:doc
- 大小:51.00 KB
- 文档页数:4
西师版小学数学六年级(上)教学知识点
一、分数乘、除法(第1、3单元):
(一)分数乘法
1、分数乘法的意义:
(1)与整数乘法相同,是求几个相同加数的和的简便计算【如:×5表示5个的和是多少或的5倍是多少】;
(2)求一个数的几分之几是多少【8×表示8的是多少】。
强调:根据意义写算式可以交换因数的位置(可列两个算式),但根据算式说意义不能交换因数的位置来说意义,只能像上面那样说。
2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的要先约分再计算,这样更简便;遇到整数,把整数看作分母是1的分数。
3、两个因数的积与其中一个因数比较大小,关键看另一个因数:另一个因数大于1,积就更大;另一个因数小于1,积就更小。
4、打折:如一折表示现价是原价的(或),3.5折表示现价是原价的。
(二)分数除法:
1、倒数的认识:
(1)倒数的意义:乘积是1的两个数互为倒数。【强调:倒数表示两个数之间的关系,它们具有相互依存的特点,不能单独说一个数是倒数。】
(2)求一个数的倒数的方法:分子、分母调换位置。【若遇到小数、带分数时,要先化成假分数,再求它的倒数;遇到整数就把整数看作分母是1的分数。】
(3)1的倒数是1,0没有倒数。
2、分数除法的意义:与整数除法相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】
4、两个数的商与被除数比较大小,关键看除数:除数大于1,商就更小;除数小于1,商就更大。【与乘法恰好相反】
二、分数混合运算及解决问题(第6单元):
(一)分数混合运算的运算顺序与整数混合运算的运算顺序相同(加减法为第一级运算,乘除法为第二级运算)
1、只有加减法或只有乘除法,要从左往右依次计算;
2、既有加减法又有乘除法,先算乘除法后算加减法;
3、如果有括号,先算小括号里的,再算中括号里的,最后算括号外的。
(二)分数加减乘除法的计算方法:
1、分数加减法计算:如果分母不同,要先通分,然后分母不变,把分子相加减。
2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母(能约分的要先约分再计算)。
3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】
(三)简便计算:主要是掌握好五大运算定律和两大运算性质的运用
1、运算定律:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
加法交换律:a×b=b×a 加法结合律:(a×b)×c=a×(b×c)
加法分配律:(a+b)×c= a×b+ a×c或(a-b)×c= a×b-a×c 【重点】
2、运算性质:
减法运算性质:a-(b+c)=a-b-c 除法运算性质:a÷(b×c)=a÷b÷c
(四)解决问题:(方法)【重中之重】
1、熟悉题意(至少要读两遍题)
2、分析题意(这是重点,必须进行,不能马虎,草稿本上完成。)
关键在于:(1)寻找题里的单位“1”;(2)写出相应的等量关系,注意标出已知与未知
3、列式解答(注意选择合适的方法,不能反推的一定要用方程进行解答,这样才不容易错;注意要单位、答语要及时、准确写上。)
4、检验(养成检验的好习惯)
三、比和按比例分配(第4单元):
1、比的意义:两数相除又叫做这两个数的比。
2、比各部分的名称 3 :4=3÷4=
前项比号后项比值(注意:比的后项不能为0)
3、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。【比的基本性质和商不变性质、分数基本性质具有一致性】
4、比与除法、分数的关系:
5、求比值与化简比
6、
例分配。
解题思路:(1)求出总份数;(2)求各占总数的几分之几;(3)根据分数的意义求出各是多少。[或用“份数方法”解决]
四、负数的初步认识(第7单元):
1、像+3,+15,+8844.43……这样的数都是正数。“+3”读作“正3”,“+”是正号。通常“+”号省略不写。
像-6,-10,-155……这样的数都是负数。“-6”读作“负6”,“-”是负号。“-”号不可以省略不写。
0既不是正数,也不是负数。
2、正数和负数可用来表示相反意义的量。
五、圆(第2单元):
(一)圆的认识
1、圆是由曲线围成的一种平面图形。
2、圆各部分的名称:
(1)圆心(O):画圆时,固定的点是圆心。
(2)半径(r):圆上任意一点到圆心的线段是半径。
(3)直径(d):通过圆心且两端都在圆上的线段是直径。
3、圆的特征:
(1)在同一个圆里,半径有无数条,长度都相等。
(2)在同一个圆里,直径有无数条,长度都相等。
(3)在同一个圆里,d=2r或r=。
(4)圆是轴对称图形,每条直径所在的直线都是圆的对称轴。
(二)扇形的认识
1、扇形:由圆心角的两条半径和圆心角所对的弧围成的图形,叫做扇形。
2、在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
(三)圆的周长
1、圆的周长除以直径的商是一个固定的数,把它叫做圆周率,用字母π表示。
2、圆的周长公式:C=πd或C=2πr
【计算时,通常取π的近似值,π≈3.14。注意π≠3.14】
3、半圆的周长=圆周长×+直径
(四)圆的面积
1、圆的面积公式:S=πr2
2、半圆面积=圆面积×
3、圆环面积=外圆(大圆)面积-内圆(小圆)面积
S圆环=S外圆-S内圆
=πR2-πr2
(五)解决问题
注意区分“周长”和“面积”:“周长”指的是长度,“面积”指的是大小,注意单位描述的是“周长”还是“面积”。
六、图形的变换和确定位置(第5单元):
1、放大和缩小图形:指的是“形状相同,大小不同”。
2、1:2指的是缩小图形,把图形缩小2倍;2:1指的是放大图形,把图形放大2倍。【前项指现在图形,后项指原来图形】
3、比例尺:
(1)比例尺是图上距离与实际距离的比,就是“图上距离:实际距离=比例尺”。
【注意:比例尺是一个长度比,不是面积比,它没有单位。】
(2)比例尺分为“数字比例尺和线段比例尺”、“放大比例尺和缩小比例尺”。
4、如何求图上距离和实际距离:
思路一:图上距离=实际距离×比例尺实际距离=图上距离÷比例尺
思路二:找倍数关系
如1:1000(1代表图上距离,1000代表实际距离)表示图上1厘米代表实际距离1000厘米,即“实际距离=图上距离×1000”。
注:某两地之间的实际距离是不会变的,但比例尺不同,图上距离也就不同。
5、确定观测点后,知道物体的“方向和距离”就能确定物体的位置。
七、可能性(第8单元):
可能性的大小可以用真分数来表示,可能性不同就意味着游戏规则的不公平。