当前位置:文档之家› 仪器分析 2

仪器分析 2

仪器分析 2
仪器分析 2

第七章 核磁共振波谱分析

NMR(1)它是对各种有机和无机物的成分、结构进行定性分析的最强的工具之一,有时亦可进行定量分析研究,(2)它也可用于医学临床检测,是继CT 后医学影像学的又一重大进步 磁旋比是自旋核的磁矩和角动量之间的比值。每种核有其固定γ 值

角动量 P :物体绕轴的线速度与其距轴线的垂直距离的乘积。 Planck 常数 h (6.624?10-27erg.sec )

磁量子数 m ,描述原子轨道或电子云在空间的伸展方向。其大小由自旋量子数 I 决定,I 的值又与核的质量数和所带电荷数有关(即质子和中子数),m 共有2I+1个取值,即角动量 P 有 2I+1 个状态! 或者说有 2I+1 个核磁矩。

必须注意:在无外加磁场时,核能级是兼并的,各状态的能量相同。对氢核来说,I=1/2,其m 值只能有2?1/2+1=2个取向:+1/2和-1/2。也即表示 H 核在磁场中,自旋轴只有两种取向:与外加磁场方向相同,m=+1/2,磁能级较低;与外加磁场方向相反,m=-1/2,磁能级较高。00B 2πγν=当外来辐射的频率满足上式时就会引起能级跃迁并产生吸收。检测电磁波(射频)被吸收的情况就可得到核磁共振波谱(NMR ),常用的是氢和碳谱。

原子核之经典力学模型 当带正电荷的、且具有自旋量子数的核会产生磁场,该自旋磁场与外加磁场相互作用,将会产生回旋,称为进动 (Procession)。进动频率与自旋核角速度及外加磁场的关系可用 Larmor 方程表示:

00000B 2B 2πγνγπν?===或

ν0 称为进动频率。在磁场中的进动核有两个相反方向的取向,可通过吸收或发射能量而发生翻转。

核在磁场中都将发生分裂,可以吸收一定频率的辐射而发生能级跃迁。

许多现代1HNMR 仪器所使用的磁场强度为4.69T 。请问在此磁场中,氢核可吸收多大频率的辐射? 核磁共振产生的条件1当外来辐射的频率满足上式时就会引起能级跃迁并产生吸收。检测电磁波(射频)被吸收的情况就可得

到核磁共振波谱(NMR ),常用的是氢和碳谱。2磁核在外磁场中做拉摩进动,如果外界电磁波的频率正好等于核进动频率,核就能吸收这一频率电磁波的能量,产生核磁共振现象。

弛豫:处于高能态的核通过非辐射途径释放能量而及时返回到低能态的过程称为弛豫。 由于弛豫现象的发生,使得处于低能态的核数目总是维持多数,从而保证共振信号不会中止。为能连续存在核磁共振信号,必须有从高能级返回低能级的过程,这个过程即称为弛豫过程,弛豫由处于高能级核的寿命决定。弛豫时间长,核磁共振信号窄;反之,谱线宽。非辐射途径的弛豫可分为纵向弛豫和横向弛豫:

两种弛豫的关系:在相同状态样品中,两种弛豫发生的作用刚好相反。1在液态样品中,τ1 和 τ2 大致相当,在 0.5-50s 之间。2两种弛豫过程中,时间短者控制弛豫过程。3 固体样品:τ1大 τ2小,此时弛豫由时间短的控制,因此谱线很宽!4因为液体和气体样品的τ1和τ2均为 1 s 左右,能给出尖锐的谱峰,因此,在NMR 分析中,多须将样品配制成液体!

思考:a) 在 NMR 测量时,要消除氧杂质,为什么? 因为O 为顺磁性物质,其波动磁场会使τ1减小,使谱峰变宽。

b) 在 NMR 测量时,要求将样品高速旋转和采用场频连锁,为什么?原因:质子自旋产生的局部磁场,可通过成键的价电子传递给相邻碳原子上的氢。即,氢核与氢核之间相互影响,使各氢核受到的磁场强度发生变化!或者说,在外磁场中,由于质子有两种自旋不同的取向因此,与外磁场方向相同的取向加强磁场的作用,反之,则减弱磁场的作用。即谱线发生了“分裂”。 CH 3CH 2OH 中有三个不同类型的质子,因此有三个不同位置的吸收峰。

上述这种相邻的质子之间相互干扰的现象称之为自旋-自旋耦合。该种耦合使原有的谱线发生分裂的现象称之为自旋-自旋分裂。 根据耦合常数的大小,可以判断相互耦合的氢核的键的链接关系,并帮助推断化合物的结构和构象。

对于邻碳磁等价核之间的偶合,其偶合裂分规律如下:1)一个(组)磁等价质子与相邻碳上的n 个磁等价质子偶合,将产生n+1重峰。如,CH 3CH 2OH (2+1;3+1;1)2)一个(组)磁等价质子与相邻碳上的两组质子(分别为m 个和n 个质子)偶合,如果该两组碳上的质子性质类似,则将产生m+n+1重峰,如CH 3CH 2CH 3;如果性质不类似,则产生(m+1)(n+1)重峰,如CH 3CH 2CH 2NO 2,(3+1)(2+1)=12;3)裂分峰的强度比符合 (a+b)n 展开式各项系数之比;注意: n+1规律是一种近似的规律,实际分裂的峰强度比并不完全按上述规律分配,而是有一定的偏差。通常是形成的两组峰都是内侧峰高、外侧峰低。4)一组多重峰的中点,就是该质子的化学位移值;5)磁等价质子之间观察不到自旋偶合分裂,如ClCH 2CH 2Cl ,只有单重峰。6)一组磁等价质子与另一组非磁等价质子之间不发生偶合分裂。如对硝基苯乙醚,硝基苯上的质子为非磁等价不产生一级图谱(?νAB /J AB 大于

MHz 200s 1000.22)T 69.4)(s T 1068.2(2B 1811800=?=?==---ππ

γν

20,且自旋偶合的核必须是磁等价的,才产生所谓的一级图谱)因而产生的分裂较复杂,而苯乙基醚上的质子为磁等价,产生较简单的一级图谱。

几个例子:1) ClCH 2CH 2CH 2Cl 峰数及峰面积比分别为,3(1:2:1)-5(1:4:6:4:1)-3(1:2:1)2)ClCH 2CH 2Br :两个三重峰。3) CH 3CHBrCH 3 峰数及峰面积比分别为:2(1:1)-7(1:6:15:20:15:6:1)-2(1:1) 4) CH 3CH 2CH 2Br 峰数及峰面积比分别为:3(1:2:1)-12(……..)-35) CH 3CH 2OCH 3 峰数及峰面积比分别为:3(1:2:1)-4(1:3:3:1)-1 6) Cl-CH 2-O-CH 3:两个单峰,2:3

NMR 一级谱: 从上述讨论可知,自旋-自旋分裂现象对结构分析非常重要,它可用于鉴别分子中的基团和排列顺序。多数NMR 谱都很复杂,需通过复杂计算才能解析,但当满足以下条件或称NMR 谱为“一级谱”时,则可通过上述所讨论的分裂现象直接解析: 1)两组偶合的核之间的化学位移?ν远大于它们之间的偶合常数J ,即: ?ν/J ≥6;如,CH 3CH 2OH 中-CH 3和-CH 2间的化学位移差为140Hz ,而J=7Hz ,因此该分子的NMR 谱为一级谱;2)一组的各质子与另一组所有质子的偶合常数必须相等。 NMR 图谱---相对面积:通过峰面积(阶梯高度)的测量,可确定集团的质子数。在NMR 仪上都装配有电子积分仪,吸收峰的面积在图谱上用阶梯式的积分线表示,曲线阶梯的面积与质子数目呈正比。

提高NMR 仪灵敏度的方法:1)磁场控制:a) 通过磁通稳定器补偿磁场漂移(温度、磁铁内电流的变化); b) 通过场频连锁。

2)匀场线圈:将通有电流的线圈放入磁场中,利用它产生的磁场来补偿磁场本身的微小不均匀性。3)样品的旋转(20-30转/s ) 样品旋转时要注意:在样品管试液上加一塞子,防止产生旋涡;样品旋转产生旋转边带,在信号峰两侧出现对称小峰,引起干扰,可通过改变转速观察边带信号的移动,以识别哪些是边带,哪些不是。

样品处理方法:样品要纯, 不含质子、沸点低、不与样品缔合、溶解度好,TMS 只能在测定时加入,不要加入过早。

谱图中化合物的结构信息: (1) 峰组数:有多少类磁不等价质子(2) 峰的强度(面积):每类质子的数目(相对) (3) 峰的化学位移(δ ):每类质子所处的化学环境 (4) 峰的裂分数:相邻碳原子上质子数 (5) 偶合常数(J ):确定化合物构型

C H 2C H 2O C O

C H 3

第三章 紫外-可见吸收光谱法

UV-Vis 方法是分子光谱方法,它利用分子对外来辐射的选择性吸收特性。UV-Vis 涉及分子外层电子的能级跃迁;光谱区在160~780nm .UV-Vis 主要用于分子的定量分析,但紫外光谱(UV)也是四大波谱之一,是定量分析。 许多化合物,尤其是有机化合物的重要定性工具之一。 (1)不同物质结构不同或者说其分子能级的能量(各种能级能量总和)或能量间隔各异,因此不同物质将选择性地吸收不同波长或能量的外来辐射,这是UV-Vis 定性分析的基础。(2) 定性分析具体做法是让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A ),以吸光度A 为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,据吸收曲线的特性(峰强度、位置及数目等)研究分子结构。(3) 只有π-π*和n-π*两种跃迁的能量小,相应波长出现在近紫外区甚至可见光区,且对光的吸收强烈,是我们研究的重点。

1)乙醛分子在160, 180, 290nm 处产生吸收,它们对应的电子跃迁类型分别是:2)环戊烷(190nm )、甲醚(185nm )、三乙胺(195nm )分别对应的跃迁类型是:3)一化合物可能是=N-CH 2-CH 2-CH 3或=N-CH 2-CH=CH 2其紫外吸收光谱为:该化合物是何种化合物? 1)答案:160nm 处的吸收峰:相对应的电子跃迁类型为:π-π*,因为乙醛中含有不饱和双键,可以发生π-π*跃迁,吸收波长一

般在170-200nm之间,但吸收强度很强. 180nm处的吸收峰:相应的跃迁类型为:n-σ*,因为乙醛的氧原子含有孤对电子,可以发生n-σ*,吸收波长一般低于200nm。吸收强度很弱。290nm处的吸收峰:相应的跃迁类型为:n-π*,同样氧原子的孤对电子也可以发生n-π*,这种跃迁需要的能量低,一般在紫外区,但吸收强度很弱。乙醛的紫外谱图中,会发现160nm的峰比180nm 的高。因为π-π*跃迁比n-π*的跃迁的吸收强度强。2)答案:环戊烷:判定方法:190nm<200nm,当<200nm时,如不含杂原子是烷烃吸收带,跃迁属于σ-σ*跃迁。是不含杂原子的饱和化合物吸收带。甲醚:判定方法:185nm虽然小于200nm,但由于含杂原子O,属于另一种情况,叫做n-σ*跃迁。是不含杂原子的饱和化合物吸收带。三乙胺:195nm,判定同甲醚。

远紫外线又称C波或杀菌紫外线。波长200-280nm,主要用于消毒灭菌。253-257nm 杀菌效果最好.低压汞灯的辐射峰值波长为253.7nm,是理想的杀菌灯。细菌体的核蛋白和DNA 的吸收光谱峰值也在254nm左右,当细菌吸收了200-300nm的紫外线能量以后,引起DNA分子间的交联破裂,使细菌的核蛋白和核酸之间的链断裂,造成细菌的死亡。短波紫外线在有色液体中的穿透力很弱,杀菌作用只发生在表层,所以远紫外线主要用于空气、水和物体表面的灭菌。在蒸馏水中,紫外线杀死90%细菌的有效穿透深度是3m,而在一般饮用水中则减少到0.12m,在葡萄酒、糖汁、果汁中有效穿透深度只有2.5mm。

真空紫外真空紫外的得名是由于该波段的紫外线在空气中被氧气强烈吸收而只能应用于真空,其长波限粗略在150~200nm。由于只有波长大于200nm的紫外线辐射才能在空气中传播,所以通常讨论的紫外辐射效应及其应用均在200~400nm范围内。

中紫外波段为200~300nm光谱区,在此波段,太阳辐射通过地球大气层到达地球表面时,受大气衰减的影响,形成了UV光谱的截止区。其中,波长短于300nm的中紫外辐射由于同温层中的臭氧的吸收,基本上到达不了地球近地表面,造成太阳光中紫外辐射在近地表面形成盲区。习惯上,将200~300nm这段太阳光辐射到达不了地球的中紫外光谱区称作“日盲区”。

生色团:分子中含有非键或π键的电子体系,能吸收特征外来辐射时并引起n-π* 和π-π*跃迁,可产生此类跃迁或吸收的结构单元,称为生色团。助色团:含有孤对电子,可使生色团吸收峰向长波方向移动并提高吸收强度的一些官能团,称之为助色团。如,一些含未共享n电子对的氧原子、卤素、烷氧基、烷硫基、羟基等基团,它们本身在200nm以上范围没有吸收,当与发色团连接时,形成非键电子与π电子的共轭而使吸收增强。

常见助色团助色顺序为:-F<-CH3<-Br<-OH<-OCH3<-NH2<-NHCH3<-NH(CH3)2<-NHC6H5<-O-

在分子中引入一些基团或受到其它外界因素影响,吸收峰向长波方向(红移)或短波方向移动(蓝移)的现象。

促使分子发生红移或蓝移的因素:1)共轭体系的存在----红移.如CH2=CH2的π-π*跃迁,λmax=165~200nm;而1,3-丁二烯,λmax=217nm2)异构现象:使异构物光谱出现差异。如CH3CHO含水化合物有两种可能的结构:CH3CHO-H2O及CH3CH(OH)2; 在己烷中,λmax=290nm,表明有醛基存在,结构为前者;而在水中,此峰消失,结构为后者。3)空间异构效应---红移如CH3I(258nm), CH2I2(289nm), CHI3(349nm)4)取代基:红移或蓝移。取代基为含孤对电子,如-NH2、-OH、-Cl,可使分子红移;取代基为斥电子基,如-R,-OCOR,则使分子蓝移。苯环或烯烃上的H 被各种取代基取代,多产生红移。5)pH值:红移或蓝移苯酚在酸性或中性水溶液中,有210.5nm及270nm两个吸收带;在碱性溶液中,则分别红移到235nm和287nm(p-π共轭).6)溶剂效应:红移或蓝移由n-π*跃迁产生的吸收峰,随溶剂极性增加,基态n电子与溶剂形成H 键的能力增加,发生蓝移;由π-π*跃迁产生的吸收峰,随溶剂极性增加,激发态比基态能量有更多的下降,发生红移。随溶剂极性增加,吸收光谱变得平滑,精细结构消失。解离性----极性大非解离型—极性小

当强度为I0的入射光束(Incident beam) 通过装有均匀待测物的介质时,该光束将被部分吸收,未被吸收的光将透过(Emergent)待测物溶液以及通过散射(Scattering)、反射(Reflection),包括在液面和容器表面的反射)而损失,这种损失有时可达10%,那么,I0=Ie + Is +I r 因此,在样品测量时必须同时采用参比池和参比溶液扣除这些影响!

偏离L-B 定律的因素:样品吸光度A 与光程 b 总是成正比。但当b 一定时,A 与 c 并不总是成正比,即有时会偏离L-B 定律!这种偏离由样品性质和仪器决定。其原因有:1. 样品性质影响a)待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射的吸收能力发生变化---ε变化;b)试液中各组份的相互作用,如缔合、解离、光化反应、异构化、配体数目改变等,会引起待测组份吸收曲线的变化;c)溶剂的影响:对待测物生色团吸收峰强度及位置产生影响;d)胶体、乳状液或悬浮液对光的散射损失。2. 仪器因素仪器因素包括光源稳定性以及入射光的单色性等。

紫外-可见光度计仪器组成1对光源基本要求:足够光强、稳定、连续辐射且强度随波长变化小2与原子吸收光度仪不同,在UV-Vis光度计中,单色器通常置于吸收池的前面!(可防止强光照射引起吸收池中一些物质的分解)

仪器测量条件由于光源不稳定性、读数不准等带来的误差。当分析高浓度的样品时,误差更大。通常可通过调节溶液浓度或改变光程b来控制A的读数在0.15~1.00范围内。

干扰消除 1. 控制酸度2选择掩蔽剂:掩蔽剂是利用络合反应、氧化还原反应,消除干扰离子的试剂。3. 合适测量波长4. 干

扰物分离5. 导数光谱及双波长技术

第四章原子吸收光谱法

AAS与AES之比较:相似之处—产生光谱的对象都是原子,而且都是利用原子外层电子跃迁.不同之处—AAS是基于“基态原子”选择性吸收同种元素发射的特征辐原子化能定义是将处于气态下基态的一个多原子分子分解成原子的状态所对应的能量变化。一般来说这个过程要吸收热量。即ΔE>0。

原理:将分子分解成其组成原子,需要打破原子间的化学键,这个过程往往需要施加能量给分子,这个能量就是原子化能。它是一个分子包含的所有化学键能的总和。

原子吸收光谱分析是测定基态原子对谱线吸收的强弱程度

谱线变宽因素可观测到的吸收线宽度1×10-3nm,原子吸收线的自然宽度仅与原子能发射能级跃迁时的激发态原子寿命有关,寿命长自然宽度窄。1自然宽度比光谱仪本身产生的宽度要小得多,只有极高分辨率的仪器才能测出,故可勿略不计。2Doppler 变宽由于原子的无规则热运动使吸收谱线变宽可见,Doppler变宽?λ与谱线波长、相对原子质量和温度有关,?λ多在10-3nm数量级3. 压变宽吸收原子与外界气体分子之间的相互作用引起的变宽,又称为碰撞变宽4. 场致变宽火焰原子化器—压变宽为主;石墨炉原子化器—热变宽为主。

1. 积分吸收在原子吸收光谱中,无论是光源辐射的发射线还是吸收线都有一定的宽度,亦即吸收定律(A=Kνl)中的吸收系数Kν不是常数,而是一定频率范围内的积分值,或称其为积分吸收:积分吸收”只与基态原子数N0成正比而与频率及产生吸收线的轮廓无关。只要测得积分吸收值,即可求出基态原子数或浓度。因此AAS 法是一种不需要标准比较的绝对分析方法。积分吸收就是将原子吸收线轮廓所包含的吸收系数进行积分(即吸收曲线下的总面积)。但积分吸收的测定非常困难。因为原子吸收线的半宽度很小,只有0.001-0.005 nm。要分辨如此窄的谱线,其分辨率应为(假设波长为500 nm):500000如此高的分辨率,现代仪器几乎不可能达到!如果用连续光谱作光源,所产生的吸收值将是微不足道的,仪器也不可能提供如此高的信噪比!

2. 峰值吸收当用锐线光源作原子吸收测定时,所得A与原子蒸气中待测元素的基态原子数成正比。峰值吸收是指基态原子蒸气对入射光中心频率线的吸收。

3. 锐线光源锐线光源需要满足的条件:1)锐线半宽很小,锐线可以看作一个很“窄”的矩形;2)二者中心频率相同,且发射线宽度被吸收线完全“包含”,即在可吸收的范围之内;由于只有同种元素的原子才能发射中心波长相同的发射线,原子吸收分光光度计不得不为每一种待测元素配备一个能发射较窄谱线的特制灯,叫空心阴极灯。

单光束:1)结构简单,体积小,价格低;2)易发生零漂移,空心阴极灯要预热双光束:1)零漂移小,空心阴极灯不需预热,降低了方法检出限;2)仍不能消除火焰的波动和背景的影响

1. 空心阴极灯影响谱线性质之因素:电极材料、电流、充气种类及压力。电流越大,光强越大,但过大则谱线变宽且强度不稳定;充入低压惰性气体可防止与元素反应并减小碰撞变宽。

问题1:为什么HCL会产生低背景的锐线光源?答:低压-原子密度低,Lorentz Broadening小;小电流-温度低Doppler Broadening小,故产生锐线光源!惰性气体难于激发且谱线相对简单——低背景问题2:为何HCL的灯电流过大,反而对测定不利?答:灯电流增加,谱线热变宽增加,自吸和自蚀增加,使谱线强度减弱,因而对测定不利。问题3:何为双光束原子吸收光谱仪?有何优点?答:(提示)可克服光源输出信号的不稳定性。

光源调制定义:将入射光所产生的直流信号转换成交流信号,通过电学方法将其与来自火焰的直流信号滤掉(RC电路),从而避免火焰背景干扰。燃烧速度:混合气着火点向其它部分的传播速度。当供气速度大于燃烧速度时,火焰稳定。但过大则导致火焰不稳或吹熄火焰,过小则可造成回火。

问题1:选择火焰类型时,应从哪几个方面考虑?请具体加以说明?答:火焰温度:(见前表)火焰对光的吸收:不同火焰对在短波长范围内对光的吸收不同,因此应考虑火焰对光的吸收(如Se196.1nm,应采用H2-Air或H2-Ar,而不能用C2H2-Air)燃烧速度:因要求火焰稳定,因此要根据燃烧速度控制供气速度,通常要求供气速度大于燃烧速度。但过大会火焰不稳甚至吹熄火焰,过小则火焰回闪。问题2:化学计量型、富燃型和贫燃型火焰各有何特点?分别可用于何种性质的样品分析?

2)氢化物原子化原理:共价氢化物原子化装置:砷、硒、铅等元素强还原剂作用下能与氢形成共价氢化合物。优点:大量基体中分离出来,检测限比火焰法低1-3个数量级,选择性好且干扰也小

在原子吸收光度计中,单色器通常位于光焰之后,这样可分掉火焰的杂散光并防止光电管疲劳。由于锐线光源的谱线简单,故对单色器的色散率要求不高(线色散率为10~30?/mm)。

基态原子在火焰中失去电子后形成离子,不产生吸收。光谱发射和吸收干扰效应,来源于原子化器和光源。

火焰背景干扰1来自燃烧气的背景干扰,光的散射宽带吸收:火焰生成物的分子受激发产生的宽带光谱对入射光的吸收;粒子散射:火焰中粒子质对光的散射。

消除:以上两种干扰方式都产生正误差(A增加)。干扰主要来自燃烧气,因此可通过空白进行校正。2来自样品基质的背景干扰消除:更换燃气(如用N2O);改变测量参数(T,燃助比);加入辐射缓冲剂(Radiation buffer)。如果知道干扰来源,可在标准液和样品中加入同样且大量的干扰物质。

3. 灯电流选择选用最小灯电流

2. 标准加入法:标样中加入待测样主要是为了克服标样与试样基质不一致所引起的误差(基质效应)。注意事项:须线性良好;至少四个点(在线性范围内可用两点直接计算);只消除基体效应,不消除分子和背景吸收;斜率小时误差大。

3. 内标法:标准样和内标样比值-----待测样和内标样的比值

优点:消除气体流量、进样量、火焰湿度、样品雾化率、溶液粘度以及表面张力等的影响,适于双波道和多波道的AAS。

原子荧光光谱特点 1)灵敏度高,检出限较低。采用高强度光源可进一步降低检出限2)谱线干扰少;可以做成非色散AFS;3)校正曲线范围宽(3-5个数量级);4)易制成多道仪器---多元素同时测定;5)荧光猝灭效应、复杂基质效应等可使测定灵敏度降低;6)散射光干扰;7)可测量的元素不多,应用不广泛(主要因为AES和AAS的广泛应用,与它们

相比,AFS没有明显的优势)定义通过测定原子在光辐射能作用下发射的荧光强度进行定量分析的一种发射光谱分析方法。荧光的产生气态原子吸收光源的特征辐射后,原子外层电子跃迁到激发态,然后返回到基态或较低能态,同时发射出与原激发波长相同或不同的辐射即为原子荧光,是光致二次发光。AFS本质上仍是发射光谱 . 荧光类型共振荧光和非共振荧光

光源与检测器成900C:防止激发光源发射的辐射对原子荧光信号测定的影响。

第五章红外光谱法

定义:红外光谱又称分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。

它只对红外光谱辐射的选择性吸收,能反映分子内部结构在振动-转动光谱区域内吸收能力的分布情况,可以从红外光谱的波形、波峰的强度和位置及其数目,研究物质的内部结构。主要用于化合物鉴定及分子结构表征,有时也用于定量分析

注意换算公式:P73(5.1)

红外光谱特点1)红外吸收只有振-转跃迁,能量低;2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;紫外、可见吸收光谱常用于研究不饱和有机物,特别是共轭体系的有机物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物。因此,除了单原子和同核原子如Ne、He、O2、H2等之外几乎所有有机化合物在红外光谱区均有吸收。3)分子结构更为精细的表征:通过IR谱的波数位置、波峰数目及强度确定分子基团、分子结构;4)定量分析;5)固、液、气态样均可用,且用量少、不破坏样品;6)分析速度快;7)与色谱等联用(GC-FTIR)具有强大的定性功能。

基频峰:分子吸收一定频率的红外线,若振动能级由基态跃迁至第一激发态时,所产生的吸收峰称为基频峰。泛频峰:在红外吸收光谱上,除基频峰外,还有振动能级由基态跃迁至第二振动激发态、第三激发态等现象,所产生的峰称为泛频峰。

二者的异同点二者都是红外光谱上的峰。基频峰是振动能级由基态跃迁至第一激发态;泛频峰是振动能级由基态跃迁至第二振动激发态、第三激发态等。基频峰一般都较大,因而基频峰是红外光谱上最主要的一类吸收峰。泛频峰可以观察到,但很弱,可提供分子的“指纹”,是红外光谱中的峰跃迁禁阻峰。

1)基团频率中红外光谱区可分为4000~1300(1800)cm-1和1800(1300)~600cm-1两个区域。基团频率区位于4000~1300cm-1之间,又称官能团区,或特征区,是由伸缩振动产生的吸收带。基团频率区可分为三个区:1区:X-H伸缩振动区(4000-2500cm-1)2区:叁键及累积双键区(2500~1900cm-1)3区:双键伸缩振动区(1900~1200cm-1)

酸酐的C=O :两个羰基振动偶合裂分出现双吸收峰(1820~1750 cm -1 )。对称性酸酐,两吸收峰高度接近,高波数峰稍强;对环形结构,在低波数出现强峰。羧酸的C=O :1820~1750 cm -1,氢键,二分子缔合体;指纹区(可分为两个区)

在红外分析中,通常一个基团有多个振动形式,同时产生多个谱峰(基团特征峰及指纹峰),各类峰之间相互依存、相互佐证。通过一系列的峰才能准确确定一个基团的存在。 =C-H

因此,查阅标准红外图谱时,应注意试样状态和制样方法。因此,红外光谱通常需在非极性溶剂中测量。

3)单色器 由色散元件、准直镜和狭缝构成。其中可用几个光栅来增加波数范围,狭缝宽度应可调。一般不用透镜,避免色差。 狭缝越窄,分辨率越高,但光源到达检测器的能量输出减少,这在红外光谱分析中尤为突出。为减少长波部分能量损失,改善

检测器响应,通常采取程序增减狭缝宽度的办法,即随辐射能量降低,狭缝宽度自动增加,保持到达检测器的辐射能量的恒定。 以光栅为分光元件的色散型红外光谱仪不足之处:1)需采用狭缝,光能量受到限制;2)扫描速度慢,不适于动态分析及和其它仪器联用;3)不适于过强或过弱的吸收信号的分析。

检测器及记录仪 红外光能量低,因此常用热电偶、测热辐射计、热释电检测器和碲镉汞检测器等。不使用光电管和光电倍增管。 液体或溶液试样: 1)沸点低易挥发的样品:液体池法。2)高沸点的样品:液膜法(夹于两盐片之间)。 3)固体样品可溶于CS 2或CCl 4等无强吸收的溶液中。

如何分析红外谱图(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度 (Ω) = 1+n 4+(n 3-n 1)/2 其中,n 4:化合价为4价的原子个数(主要是C 原子);n 3:化合价为3价的原子个数(主要是N 原子);n 1:化合价为1价的原子个数(主要是H 原子)。例如:比如苯:C 6H 6,不饱和度=6+1+ (0-6)/2=4,3个双键加一个环,正好为4个不饱和度;

(2)分析3300~2800 cm -1区域C-H 伸缩振动吸收;以3000 cm -1为界:高于3000 cm -1为不饱和碳C-H 伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000 cm -1一般为饱和C-H 伸缩振动吸收;(3)若在稍高于3000 cm -1有吸收,则应在 2250~1450 cm -1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔 2200~2100 cm -1;烯 1680~1640 cm -1;芳环 1600, 1580, 1500, 1450 cm -若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650 cm -1的频区,以确定取代基个数和位置(顺反,邻、间、对);

(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700 cm -1的三个峰,说明醛基的存在。

常用健值:a. 烷烃:C-H 伸缩振动(3000-2850 cm -1);C-H 弯曲振动(1465-1340 cm -1);一般饱和烃C-H 伸缩均在3000 cm -1以下,接近3000 cm -1的频率吸收;b. 烯烃:烯烃C-H 伸缩(3100~3010 cm -1);C=C 伸缩(1675~1640 cm -1);烯烃C-H 面外弯曲振动(1000~675 cm -1);c. 炔烃:C ≡C 伸缩振动(2250~2100 cm -1);炔烃C-H 伸缩振动(3300 cm -1附近);d.芳烃:3100~3000 cm -1 芳环上C-H 伸缩振动;1600~1450 cm -1 C=C 骨架振动。

. C 8H 7N ,确定结构

:1) Ω =1-(1-7)/2+8=62)峰归属 3)可能的结构

拉曼光谱与红外光谱分析方法比较

第九章 色谱分析方法导论

色谱分析的定义:组分在固定相和流动相之间被分离的一种物理方法。因此,色谱法是一种利用样品中各组分在固定相与流动相中受到的作用力不同,而将待分析样品中各组分依次分离,然后按顺序检测各组分的分离分析方法。

色谱流出曲线的意义:色谱峰数 = 样品中单组份的最少个数;色谱保留值——定性依据;色谱峰高或面积——定量依据; 色谱H 3C CN

保留值或区域宽度——色谱柱分离效能评价指标;色谱峰间距——固定相或流动相选择是否合适的依据。

在一定温度和压力下,组分在两相间的分配达平衡时,分配在固定相和流动相中的质量比,称为分配比。它反映了组分在柱中的迁移速率。又称保留因子。

颗粒越细,板高H 越小 分离度(Resolution, R )同时反映色谱柱效能和选择性的一个综合指标。也称总分离效能指标或分辨率。

分析时间t

23

22r k )k 1()1(u H R 16t +-=αα 例1 在一定条件下,两个组分的调整保留时间分别为85 s 和100 s ,要达到完全分离,即R =1.5。计算需要多少块有效塔板。

若填充柱的塔板高度为0.1 cm ,柱长是多少? 解: r 21 = 100 / 85 = 1.18 n 有效 = 16R 2 [r 21 / (r 21 —1) ]2 = 16×1.52 ×(1.18 / 0.18 ) 2 = 1547(块)

L 有效 = n 有效·H 有效 = 1547×0.1 = 155 cm 即柱长为1.55米时,两组分可以得到完全分离。

例2 在一定条件下,两个组分的保留时间分别为12.2s 和12.8s ,计算分离度。要达到完全分离,即R =1.5 ,所需要的柱长。 解:

8533.036008.12448133.03600

2.12442211=?===?==n t W n t W R b R b 72.08133

.08533.0)2.128.12(2=+-?=R m L R R L 34.4172.05.12

12122=???? ??=????? ??=

例3 两物质A 和B 在30cm 长的色谱柱上的保留时间分别为16.4和17.63min ,有一不与固定相作用的物质,其在此柱上的保留时间为1.30 min 。物质A 和B 的峰底宽分别为1.11和1.21min 。试问:1)柱分辨率R ;2)柱平均理论塔板数n av 3)平均塔板高度H av 4)若要求R 达到1.5,则柱长至少应为多少?5)使用上述较长的柱进行分析时,其分析时间为多长?6)不增加柱长,要求在原来的分析时间内R 达到1.5,该柱的塔板高度应为多少?

2r 22/1r )W t (16)W t (54.5n ==n

L

H =

第10章高效液相色谱

解决分析时间及柱效问题的方法:减小填充物的粒径(3~10 m )!

1. 高效液相色谱与经典液相色谱方法的比较高速:HPLC采用高压输液设备,流速大大增加,分析速度极快,只需数分钟;而经典方法靠重力加料,完成一次分析需时数小时。高效:填充物颗粒极细且规则,固定相涂渍均匀、传质阻力小,因而柱效很高。可以在数分钟内完成数百种物质的分离。

高灵敏度:检测器灵敏度极高:UV——10-9g, 荧光检测器——10-11g。根据使用匀浆试剂的性质不同可分为:

平衡密度法:使溶剂密度和填充颗粒密度相近,此时颗粒沉降速度趋于0。常用的匀浆试剂有四氯乙烯、四溴乙烷和二碘甲烷等;非平衡密度法:采用粘度较大的试剂,如CCl4,CH3OH, 丙酮等。HPLC分析中,约有80%的物质可以在254 nm或280nm处产生紫外吸收。因此该类检测器应用很广在选择测量波长时注意:溶剂必须能让所选择的光透过,即所选波长不能小于溶剂的最低使用波长。通用型检测器,灵敏度为10-7g/mL对温度变化敏感,且不适于梯度淋洗

理想的溶剂应有下列特性:1)对待测物具一定极性和选择性;2)使用UV检测器时,溶剂截止波长要小于测量波长(为什么?);使用折光率检测器,溶剂的折光率要与待测物的折光率有较大差别;3)高纯度。否则基线不稳或产生杂峰,同时可使截止波长增加;4)化学稳定性好;5)适宜的粘度。粘度过高,柱压增加;过低,易产生气泡。

高效液相色谱方法原理:根据各待测物在互不相溶的两溶液中的溶解度不同,因而具有不同的分配系数。在色谱柱中,随着流动相的移动,这种分配平衡需进行多次,造成各待测物的迁移速率不同,从而实现分离的过程。

2. 流动相:为防止固定相的流失,流动相与固定液应尽量不互溶,或者说二者的极性相差越大越好。

根据流动相与固定相极性的差别程度,可将液液色谱分为:正相分配色谱(流动相极性小于固定相极性,极性小的先流出,适于极性组分分离)反相分配色谱(流动相极性大于固定相极性,极性大的先流出,适于非极性组分分离)

为减少固定液的流失,通常在柱前加一根很短的前置柱,该柱涂有与分析柱相同但有更高含量的固定液,使流动相进入分析柱之前,预先被固定液饱和。

1、在HPLC分析中,有时要在流动相中加入适量的盐(碳酸铵、四烷基铵盐)或酸,为什么?答:加入盐类是为了减少待测物与键合相表面的残留硅醇基作用;加入酸是抑制酸类待测物的离解,使其以游离酸在柱内分离。这些措施均可防止峰形拖尾。

2、何为正相色谱,何为反相色谱?可见:反相键合色谱中,键合相碳链越长(极性越小),分离效果越好。

例如:分析阳离子时,以无机酸为流动相,分离柱则采用阳离子交换剂,抑制柱为高容量的强碱性阴离子交换树脂,同样,若样品为阴离子,以无机碱为流动相,分离柱则采用阴离子交换剂,抑制柱为高容量强酸性阳离子交换剂。

离子对色谱主要用来分离强极性有机酸或有机碱。

阴离子分离:常采用烷基铵类,如氢氧化四丁基铵或氢氧化十六烷基三甲铵作为对离子;阳离子分离:常采用烷基磺酸类,如己烷磺酸钠作为对离子;

反相离子对色谱:非极性的疏水固定相(C-18柱),含有对离子Y+的甲醇-水或乙腈-水作为流动相,试样离子X-进入流动相后,生成疏水性离子对Y+ X -后;在两相间分配。尺寸排阻色谱又称凝胶色谱,主要用于大分子的分子分离

亲合色谱主要用于生物大分子与固定相之间的特异亲合力进行选择性分离及纯化的方法。液相色谱的柱子通常分为正相柱和反相柱。

1、样品的前处理:a)最好使用流动相溶解样品;b)使用预处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质c)

使用0.45μm的过滤膜过滤除去微粒杂质。

注意:a)含水流动相最好在实验前配制,尤其是夏天使用缓冲溶液作为流动相不要过夜。最好加入叠氮化钠,防止细菌生长。b)流动相要求使用0.45 μm滤膜过滤,除去微粒杂质。c)使用HPLC级溶剂配制流动相,使用合适的流动相可延长色谱柱的使用寿命,提高柱性能。

反相色谱柱由工厂测试后是保存在乙腈/水中的.

注意:*在对NH2改性的色谱柱进行再生时,由于NH2可能以铵根离子的形式存在,因此应该在水洗后用0.1M的氨水冲洗,然后再用水冲洗至碱溶液完全流出;**0.05M稀硫酸可以用来清洗已污染的色谱柱,如果简单的用有机溶剂/水的处理不能够完全洗去硅胶表面吸附的杂质,在水洗后加用0.05M稀硫酸冲洗非常有效。

仪器分析试题库及答案解析

仪器分析试题库

1、在测定20%C 2H 5OH 粘度的实验中,下列说法不正确的是 A .该实验需在恒温槽内进行是因为液体的粘度与温度关系很大 B .液体的粘度是指液体的一部分对液体的另一部分流动时表现出来的阻力 C .测定时必须使用同一支粘度计 D .粘度计内待测液体的量可以随意加入 2、测定粘度时,粘度计在恒温槽内固定时要注意 A .保持垂直 B .保持水平 C .紧靠恒温槽内壁 D .可任意放置 3、在测定醋酸溶液的电导率时,使用的电极是 A .玻璃电极 B .甘汞电极 C .铂黑电极 D .光亮电极 4、在测定醋酸溶液的电导率时,测量频率需调到( ) A .低周档 B .高周档 C .×102档 D .×103 档 5、在电动势的测定中,检流计主要用来检测( ) A .电桥两端电压 B .流过电桥的电流大小 C .电流对消是否完全 D .电压对消是否完全 6、在电动势的测定中盐桥的主要作用是( ) A .减小液体的接界电势 B .增加液体的接界电势 C .减小液体的不对称电势 D .增加液体的不对称电势 7、在测量电池电动势的实验中,下列说法不正确的是( ) A .可逆电池的电动势不能直接用指针式伏特计来测量 B .在铜—锌电池中,铜为正极 C .在甘汞—锌电池中,锌为负极 D .在甘汞—铜电池中,甘汞为正极 8、在H 2O 2分解反应动力学方程式的建立实验中,如果以()t V V -∞lg 对t 作图得一直线则 ( ) A .无法验证是几级反应 B .可验证是一级反应 C .可验证是二级反应 D .可验证是三级反应 9、在摩尔气体常数的测定中,所用锌片( ) A .称量后必须用砂纸擦去表面氧化膜 B .称量前必须用砂纸擦去表面氧化膜 C .称量后必须用纸擦净表面 D .称量前必须用纸擦净表面 10、在摩尔气体常数的测定中,量气管液面下降的同时,下移水平管,保持水平管水面大致与量气管水面在同一水平位置,主要是为了 ( ) A .防止压力的增大造成漏气

中南大学仪器分析经典习题总结

中南大学仪器分析各章节经典习题 第2章气相色谱分析 一.选择题 1.在气相色谱分析中, 用于定性分析的参数是 (保留值保留值) 2. 在气相色谱分析中, 用于定量分析的参数是 ( D ) A 保留时间 B 保留体积 C 半峰宽 D 峰面积 3. 使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好? ( A ) A H2 B He C Ar D N2 4. 热导池检测器是一种 (浓度型检测器) 5. 使用氢火焰离子化检测器, 选用下列哪种气体作载气最合适? ( D ) A H2 B He C Ar D N2 6、色谱法分离混合物的可能性决定于试样混合物在固定相中( D )的差别。 A. 沸点差, B. 温度差, C. 吸光度, D. 分配系数。 7、选择固定液时,一般根据( C )原则。 A. 沸点高低, B. 熔点高低, C. 相似相溶, D. 化学稳定性。 8、相对保留值是指某组分2与某组分1的(调整保留值之比)。 9、气相色谱定量分析时( B )要求进样量特别准确。 A.内标法; B.外标法; C.面积归一法。 10、理论塔板数反映了(柱的效能。 11、下列气相色谱仪的检测器中,属于质量型检测器的是( B ) A.热导池和氢焰离子化检测器; B.火焰光度和氢焰离子化检测器; C.热导池和电子捕获检测器; D.火焰光度和电子捕获检测器。 12、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?( D ) A. 改变固定相的种类 B. 改变载气的种类和流速 C. 改变色谱柱的柱温 D. (A)、(B)和(C) 13、进行色谱分析时,进样时间过长会导致半峰宽(变宽)。 14、在气液色谱中,色谱柱的使用上限温度取决于( D ) A.样品中沸点最高组分的沸点, B.样品中各组分沸点的平均值。 C.固定液的沸点。 D.固定液的最高使用温度 15、分配系数与下列哪些因素有关( D ) A.与温度有关; B.与柱压有关; C.与气、液相体积有关; D.与组分、固定液的热力学性质有关。 二、填空题 1.在一定温度下, 采用非极性固定液,用气-液色谱分离同系物有机化合物, 低碳数的有机化合物先流出色谱柱, _____高碳数的有机化合物____后流出色谱柱。 2.气相色谱定量分析中对归一化法要求的最主要的条件是试样中所有组分都要在一定时间内分离流出色谱柱,且在检测器中产生信号。 3.气相色谱分析中, 分离非极性物质, 一般选用非极性固定液, 试样中各组分按沸点的高低分离, 沸点低的组分先流出色谱柱,沸点高的组分后流出色谱柱。 4.在一定的测量温度下,采用非极性固定液的气相色谱法分离有机化合物, 低沸点的有机化合物先流出色谱柱, 高沸点的有机化合物后流出色谱柱。 5.气相色谱分析中, 分离极性物质, 一般选用极性固定液, 试样中各组分按极性的大小分离, 极性小的组分先流出色谱柱, 极性大的组分后流出色谱柱。 6、在气相色谱中,常以理论塔板数(n)和理论塔板高度(H)来评价色谱柱效能,有时也用单位柱长(m) 、有效塔板理论数(n有效)表示柱效能。

仪器分析第四版课后参考答案

第二章 习题解答 1.简要说明气相色谱分析的基本原理 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、 挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2.气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统、进样系统、分离系统、温控系统以及检测和记录系统。气相色谱仪具有一个让载气连续运行、管路密闭的气路系统;进样系统包括进样装置和气化室,其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中;分离系统包括分离柱和柱箱;温控系统;检测系统包括检测器和放大器;记录和数 据处理系统用积分仪或色谱工作站。 16.色谱定性的依据是什么?主要有那些定性方法? 解:根据组分在色谱柱中保留值的不同进行定性。 主要的定性方法主要有以下几种: (1)直接根据色谱保留值进行定性 (2)利用相对保留值r21进行定性 (3)保留指数法 17.何谓保留指数?应用保留指数作定性指标有什么优点? 用两个紧靠近待测物质的标准物(一般选用两个相邻的正构烷烃)标定被测物质,并使用均一标度(即不用对数), 用下式定义: X 为保留值(tR’, VR ’,或相应的记录纸距离),下脚标i 为被测物质,Z ,Z+1为正构烷烃的碳原子数,XZ < Xi < XZ+1,IZ = Z × 100 优点:准确度高,可根据固定相和柱温直接与文献值对照而不必使用标准试样。 19.有哪些常用的色谱定量方法? 试比较它们的优缺点和使用范围? 1.外标法(标准曲线法) 外标法是色谱定量分析中较简易的方法.该法是将欲测组份的纯物质配制成不同浓度的标准溶液。使浓度与待测组份相近。然后取固定量的上述溶液进行色谱分析.得到标准样品的对应色谱团,以峰高或峰面积对浓度作图(取直线部分)。分析样品时,在上述完全相同的色谱条件下,取制作标准曲线时同 样量的试样分析、测得该试样的响应讯号后.由标谁曲线即可查出其百分含量. 此法的优点是操作简单,适用基体简单的样品;结果的准确度取决于进样量的重现性和操作条件的稳定性. 2.内标法 当只需测定试样中某几个组份,或试样中所有组份不可能全部出峰时,可采用内标法。具体做法是:准确称取样品,加入一定量某种纯物质作为内标物,然后进行色谱分析.根据被测物和内标物在色谱图上相应的 峰面积(或峰高))和相对校正因子.求出某组分的含量. 内标法是通过测量内标物与欲测组份的峰面积的相对值来进行计算的,因而可以在—定程度上消除操作条件等的 变化所引起的误差. 内标法的要求是:内标物必须是待测试样中不存在的;内标峰应与试样峰分开,并尽量接近欲分析的组份. 内标法的缺点是在试样中增加了一个内标物,常常会对分离造成一定的困难。 3.归一化法 归一化法是把试样中所有组份的含量之和按100%计算,以它们相应的色谱峰面积或峰高为定量参 数.通过下列公式计算各组份含量: % 100%%100%11?=?=∑ ∑==n i h is h is i n i A is A is i hf hf m or Af Af m

仪器分析习题解答第二版化学工业出版社

北京化工大学 仪器分析习题解答 董慧茹编 2010年6月

第二章 电化学分析法习题解答 25. 解: pHs = 4.00 , Es = 0.209V pHx = pHs +059 .0Es Ex - (1) pHx 1 = 4.00 + 059.0209 .0312.0- = 5.75 (2) pHx 2 = 4.00 +059 .0209 .0088.0- = 1.95 (3) pHx 3 = 4.00 +059 .0209 .0017.0-- = 0.17 26. 解: [HA] = 0.01mol/L , E = 0.518V [A -] = 0.01mol/L , ΦSCE = 0.2438V E = ΦSCE - Φ2H+/H2 0.518 = 0.2438 - 0.059 lg[H +] [H +] = k a ][] [- A HA = 01.001.0k a 0.518 = 0.2438 - 0.059 lg 01 .001 .0k a lg k a = - 4.647 k a = 2.25×10-5 27. 解: 2Ag + + CrO - 24 = Ag 2CrO 4 [Ag +]2 = ] [24- CrO Ksp

Ag CrO Ag SCE E /42φφ-= - 0.285 = 0.2438 - [0.799 + 2 24)] [lg(2059.0-CrO Ksp ] ][lg 24-CrO Ksp = - 9.16 , ] [24- CrO Ksp = 6.93×10-10 [CrO - 24 ] = 10 1210 93.6101.1--?? = 1.59×10-3 (mol/L) 28. 解:pBr = 3 , a Br- = 10-3mol/L pCl = 1 , a Cl- = 10-1mol/L 百分误差 = - - --?Br Cl Cl Br a a K ,×100 = 3 1 31010106---??×100 = 60 因为干扰离子Cl -的存在,使测定的a Br- 变为: a -Br = a -Br +K --Cl Br .×a -Cl = 10-3+6×10-3×10-1=1.6×10-3 即a -Br 由10-3mol/L 变为1.6×10-3mol/L 相差3.0 - 2.8 = 0.2 pBr 单位 29. 解:

仪器分析试题及答案 ()

《仪器分析》期末考试试题 及答案 一、单项选择题(每小题1分,共15分) 1.在一定柱长条件下, 某一组分色谱峰的宽窄主要取决于组分在色谱柱中的( ) A: 保留值 B: 扩散速度 C: 分配系数 D: 容量因子 2. 衡量色谱柱选择性的指标是( ) A: 理论塔板数 B: 容量因子 C: 相对保留值 D: 分配系数 3. 不同类型的有机化合物, 在极性吸附剂上的保留顺序是( ) A: 饱和烃、烯烃、芳烃、醚 B: 醚、烯烃、芳烃、饱和烃 C: 烯烃、醚、饱和烃、芳烃 D: 醚、芳烃、烯烃、饱和烃 4.在正相色谱中,若适当增大流动相极性, 则:() A:样品的k降低,t R降低 B: 样品的k增加,t R增加 C: 相邻组分的α增加 D: 对α基本无影响 5.在发射光谱中进行谱线检查时,通常采取与标准光谱比较的方法来确定谱线位置,通常作为标准的是() A: 铁谱 B: 铜谱 C: 碳谱 D: 氢谱 6.不能采用原子发射光谱分析的物质是() A: 碱金属和碱土金属 B: 稀土金属 C: 有机物和大部分的非金属元素 D: 过渡金属 7. 严重影响经典极谱分析检测下限的因素是() A: 电解电流 B: 扩散电流 C: 极限电流 D: 充电电流 8. 氢化物原子化法和冷原子原子化法可分别测定() A: 碱金属元素和稀土元素 B: 碱金属和碱土金属元素 C: Hg和As D: As和 Hg 9. 铜离子选择性电极测定含Cu2+、Cu(NH3)22+、Cu(NH3)42+的溶液,测得的活度为() 的活度。 A: Cu2+ B: Cu(NH3)22+ C: Cu(NH3)42+ D: 三种离子之和 10. 若在溶液中含有下列浓度的离子,以Pt为电极进行电解,首先在阴极上析出的是()

仪器分析各个章节小结

第八章电位法和永停滴定法- 章节小结 1.基本概念 指示电极:是电极电位值随被测离子的活(浓)度变化而变化的一类电极。 参比电极:在一定条件下,电极电位基本恒定的电极。 膜电位:跨越整个玻璃膜的电位差。 不对称电位:在玻璃电极膜两侧溶液pH相等时,仍有1mV~3mV的电位差,这一电位差称为不对称电位。是由于玻璃内外两表面的结构和性能不完全相同,以及外表面玷污、机械刻划、化学腐蚀等外部因素所致的。 酸差:当溶液pH<1时,pH测得值(即读数)大于真实值,这一正误差为酸差。 碱差:当溶液pH>9时,pH测得值(即读数)小于真实值,这一负误差为碱差,也叫钠差。 转换系数:指当溶液pH每改变一个单位时,引起玻璃电极电位的变化值。 离子选择电极:一般由电极膜(敏感膜)、电极管、内充溶液和内参比电极四个部分组成。 电位选择性系数:在相同条件下,同一电极对X和Y离子响应能力之比,亦即提供相同电位响应的X和Y离子的活度比。 可逆电对:电极反应是可逆的电对。 此外还有相界电位、液接电位、原电池、残余液接电位。 2.基本理论 (1)pH玻璃电极: -浓度一定)、内参比电极(Ag-AgCl电极)、绝缘套; ①基本构造:玻璃膜、内参比溶液(H+与 Cl ②膜电位产生原理及表示式:; ③玻璃电极作为测溶液pH的理论依据。 (2)直接电位法测量溶液pH: ①测量原理。 ②两次测量法。pHs 要准,而且与pHx差值不大于3个pH单位,以消除液接电位。(3)离子选择电极: ①基本构造:电极膜、电极管、内参比溶液、内参比电极; ②分类:原电极、敏化电极; ③响应机理及电位选择性系数; ④测量方法:两次测量法、校正曲线法、标准加入法。 (4)电位滴定法:以电位变化确定滴定终点(E-V曲线法、曲线法、曲线法)。 (5)永停滴定法:以电流变化确定滴定终点,三种电流变化曲线及终点确定。 第九章光谱分析法概论- 章节小结 1.基本概念 电磁辐射:是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流。 磁辐射性质:波动性、粒子性 电磁波谱:所有的电磁辐射在本质上是完全相同的,它们之间的区别仅在于波长或频率不同。若把电磁辐射按波长长短顺序排列起来,即为电磁波谱。 光谱和光谱法:当物质与辐射能相互作用时,物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长(或相应单位)的变化,所得的图谱称为光谱。利用物质的光谱进行定性、定量和结构分析的方法称光谱法。 非光谱法:是指那些不以光的波长为特征讯号,仅通过测量电磁辐射的某些基本性质(反射、折射、干涉、衍射和偏振)的变化的分析方法。 原子光谱法:测量气态原子或离子外层电子能级跃迁所产生的原子光谱为基础的成分分析方法。为线状光谱。 分子光谱法:以测量分子转动能级、分子中原子的振动能级(包括分子转动能级)和分子电子能级(包括振-转能级

《现代仪器分析》_第二版-刘约权-课后习题答案

现代仪器分析习题解答 2009年春 第12章电位分析及离子选择性电极分析法 P216 1.什么是电位分析法?什么是离子选择性电极分析法? 答:利用电极电位和溶液中某种离子的活度或浓度之间的关系来测定待测物质活度或 浓度的电化学分析法称为电位分析法。 以离子选择性电极做指示电极的电位分析,称为离子选择性电极分析法。 2.何谓电位分析中的指示电极和参比电极?金属基电极和膜电极有何区别? 答:电化学中把电位随溶液中待测离子活度或浓度变化而变化,并能反映出待测离子 活度或浓度的电极称为指示电极。电极电位恒定,不受溶液组成或电流流动方向变化 影响的电极称为参比电极。 金属基电极的敏感膜是由离子交换型的刚性基质玻璃熔融烧制而成的。膜电极的敏感 膜一般是由在水中溶解度很小,且能导电的金属难溶盐经加压或拉制而成的单晶、多 晶或混晶活性膜。 4. 何谓TISAB溶液?它有哪些作用? 答:在测定溶液中加入大量的、对测定离子不干扰的惰性电解质及适量的pH缓冲剂和一定的掩蔽剂,构成总离子强度调节缓冲液(TISAB)。 其作用有:恒定离子强度、控制溶液pH、消除干扰离子影响、稳定液接电位。 5. 25℃时,用pH=4.00的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.814V,那么在c(HAc)=1.00×10-3 mol?L-1的醋酸溶液中,此电池的电动势为多少?(KHAc=1.8×10-5,设aH+=[H+]) 解:∵E1=φ(+)--φ(-)=φ(+)-(K-0.0592pH1) E2=φ(+)--φ(-)=φ(+)-(K-0.0592pH2)

仪器分析试题及答案

第一章、绪论 一、选择题 1、利用电流-电压特性进行分析的相应分析方法是(C) A、点位分析法 B、电导法 C、极谱分析法 D、库仑法 2、利用两相间分配的分析方法是(D) A、光学分析法 B、电化学分析法 C、热分析法 D、色谱分析法 3、下列哪种分析方法是以散射光谱为基础的?(D) A、原子发射光谱 B、X荧光光谱法 C、原子吸收光谱 D、拉曼光谱法 4、下列分析方法中,哪一个不属于电化学分析法?(D) A、电导分析法 B、极谱法 C、色谱法 D、伏安法 5、仪器分析与化学分析比较,其灵敏度一般(A) A、比化学分析高 B、比化学分析低 C、相差不大 D、不能判断 6、仪器分析与化学分析比较,其准确度一般(B) A、比化学分析高 B、比化学分析低 C、相差不大 D、不能判断 7、仪器分析法与化学分析法比较,其优点是(ACDE) A、灵敏度高 B、准确度高 C、速度快 D、易自动化 E、选择性高 8、下列分析方法中,属于光学分析法的是(AB) A、发射光谱法 B、分光光度法 C、电位分析法 D、气相色谱法 E、极谱法 9、对某种物质进行分析,选择分析法时应考虑的因素有(ABCDE) A、分析结果要求的准确度 B、分析结果要求的精确度 C、具有的设备条件 D、成本核算 E、工作人员工作经验

10、仪器分析的发展趋势是(ABCDE) A、仪器结构的改善 B、计算机化 C、多机连用 D、新仪器分析法 E、自动化 二、填空题 1、仪器分析法是以测量物质的物理性质为基础的分析方法。 2、仪器分析具有简便、快捷、灵敏,易于实现自动操作等特点。 3、测量物质试液的电化学性质及其变化来进行分析的方法称电化学分析法。 4、属于电化学分析法的有电导分析法、电位分析法、极谱、电解、库伦分析法。 5、光学分析法是一类重要的仪器分析法。它主要根据物质发射和吸收电磁波以及物质与电磁辐射的相互作用来进行分析。 三、名词解释 1、化学分析是基于化学反应和它的计量关系来确定被测物质组成和含量的一类分析方法。 2、仪器分析是基于测量某些物质的物理性质或物理化学性质、参数及其变化来确定被测物质组成与含量的一类分析方法。 四、简答题 1、定量分析方法的评定指标有哪些? 答:精密度、准确度、检出限、灵敏度、标准曲线的线性范围等指标。 2、检出限的定义及意义? 答:定义,某一方法在给定的置信水平上能够检出被测物质的最小浓

现代仪器分析 第二版 刘约权 课后习题答案

---------------------考试---------------------------学资学习网---------------------押题------------------------------ 现代仪器分析习题解答20xx年春 第12章电位分析及离子选择性电极分析法P216 1.什么是电位分析法?什么是离子选择性电极分析法? 答:利用电极电位和溶液中某种离子的活度或浓度之间的关系来测定待测物质活度或浓度的电化学分析法称为电位分析法。 以离子选择性电极做指示电极的电位分析,称为离子选择性电极分析法。 2.何谓电位分析中的指示电极和参比电极?金属基电极和膜电极有 何区别? 答:电化学中把电位随溶液中待测离子活度或浓度变化而变化,并能反映出待测离子活度或浓度的电极称为指示电极。电极电位恒定,不受溶液组成或电流流动方向变化影响的电极称为参比电极。 金属基电极的敏感膜是由离子交换型的刚性基质玻璃熔融烧制而成的。膜电极的敏感膜一般是由在水中溶解度很小,且能导电的金属难溶盐经加压或拉制而成的单晶、多晶或混晶活性膜。 4. 何谓TISAB溶液?它有哪些作用? 答:在测定溶液中加入大量的、对测定离子不干扰的惰性电解质及适量的pH缓冲剂和一定的掩蔽剂,构成总离子强度调节缓冲液(TISAB)。其作用有:恒定离子强度、控制溶液pH、消除干扰离子影响、稳定 液接电位。

5. 25℃时,用pH=4.00的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.814V,那么在c(HAc)=1.00×10-3 mol?L-1的醋酸溶液中,此电池的电动势为多少?(KHAc=1.8×10-5,设aH+=[H+]) 解:∵E1=φ(+)--φ(-)=φ(+)-(K-0.0592pH1) E2=φ(+)--φ(-)=φ(+)-(K-0.0592pH2) 1 / 15 ∴E2- E1= E2-0.814=0.0592(pH2- pH1) ∴E2=0.814+0.0592(-lg√Kc-4.00)=0.806(V) 6.25℃时,用pH=5.21的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.209V,若用四种试液分别代替标准缓冲溶液,测得电动势分别为①0.064V;②0.329V;③0.510V; ④0.677V,试求各试液的pH和H+活度 解:(1)ΔE1=0.064-0.209=0.0592(pH1-pHs) ∵pHs=5.21 ∴pH1=2.76 aH+=1.74×10-3 mol?L-1 (2)ΔE2=0.329-0.209=0.0592(pH2-pHs) ∵pHs=5.21 ∴pH2=7.24 aH+=5.75×10-8 mol?L-1

仪器分析试题及答案20141

页眉 A 、紫外检测器 B 、荧光检测器 C 安培检测器 20. 高效液相色谱仪中高压输液系统不包括 A 、贮液器 B 、高压输液泵 C 过滤器 D 、蒸发光散射检测器 D 、梯度洗脱装置 E 、进样器 高效液相色谱习题及参考答案 一、单项选择题 10. 液相色谱中通用型检测器是( ) A 、紫外吸收检测器 B 、示差折光检测器 C 、热导池检测器 D 、氢焰检测器 11. 在环保分析中,常常要监测水中多环芳烃,如用高效液相色谱分析,应选用下述哪种检波器 16. 在高效液相色谱仪中保证流动相以稳定的速度流过色谱柱的部件是( ) A 、贮液器 B 、输液泵 C 、检测器 D 、温控装置 17. 高效液相色谱、原子吸收分析用标准溶液的配制一般使用( )水 A.国标规定的一级、二级去离子水 B ?国标规定的三级水 C.不含有机物的蒸馏水 D.无铅(无重金属)水 18. 高效液相色谱仪与普通紫外-可见分光光度计完全不同的部件是( ) A 、流通池 B 、光源 C 、分光系统 D 、检测系统 19. 下列哪种是高效液相色谱仪的通用检测器 1. A 、 在液相色谱法中,按分离原理分类,液固色谱法属于( 分配色谱法 B 、排阻色谱法 C 、 )。 离子交换色谱法 、吸附色谱法 2. A 、 在高效液相色谱流程中,试样混合物在( 检测器 中被分离。 3. A 、 4. A 、 C 、 5. A 、 6. A 、 7. 、记录器 C 色谱柱 、进样器 液相色谱流动相过滤必须使用何种粒径的过滤膜? 0.5 卩 m B 、0.45 卩 m C 在液相色谱中,为了改变色谱柱的选择性,可以进行如下哪些操作? 改变流动相的种类或柱子 B 、改变固定相的种类或柱长 改变固定相的种类和流动相的种类 0.6 卩 m 、0.55 D 、改变填料的粒度和柱长 一般评价烷基键合相色谱柱时所用的流动相为( 甲醇/水(83/17 ) B 、甲醇/水(57/43 ) C 、正庚烷/异丙醇(93/7 ) 下列用于高效液相色谱的检测器, ( ) 紫外检测器 B 、荧光检测器 检测器不能使用梯度洗脱。 D 、 乙腈 / 水( 1.5/98.5 ) 在高效液相色谱中,色谱柱的长度一般在( C 、蒸发光散射检测器 )范围内。 示差折光检测器 A 、 10~ 30cm 20 ?50m C 、 1~ 2m 2?5m 8. A 、 在液相色谱中 , 某组分的保留值大小实际反映了哪些部分的分子间作用力( 组分与流动相 B 、组分与固定相 C 、组分与流动相和固定相 D 、 ) 组分与组分 9. A 、 在液相色谱中,为了改变柱子的选择性,可以进行( )的操作 改变柱长 B 、改变填料粒度 C 、改变流动相或固定相种类 D 改变流动相的流速 A 、荧光检测器 B 、示差折光检测器 C 12. 在液相色谱法中,提高柱效最有效的途径是( A 、提高柱温 B 、降低板高 C 13. 在液相色谱中,不会显著影响分离效果的是( A 、改变固定相种类 B 、改变流动相流速 C 14. 不是高液相色谱仪中的检测器是( ) A 、紫外吸收检测器 B 、红外检测器 C 15. 高效液相色谱仪与气相色谱仪比较增加了( A 、恒温箱 B 、进样装置 C 、电导检测器 ) 、降低流动相流速 ) 、改变流动相配比 D 、吸收检测器 D 、减小填料粒度 D 、改变流动相种类 、差示折光检测 ) 、程序升温 D 、电导检测器 D 、梯度淋洗装置

现代仪器分析总结

σ分析化学:是研究获取物质的组成、形态、结构等信息及其相关理论的科学。 分析化学分为化学分析和仪器分析 化学分析:利用化学反应及其计量关系进行分析的一类分析方法。 仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。 动化4相对误差较大5需要价格比较昂贵的专用仪器6能进行无损分析7 组合能力适应性强,能在线分析 仪器分析方法的评价指标:1.精密度2.准确度3.选择性4.灵敏度5.检出限6.标准曲线 仪器分析应用领域:1社会:体育(兴奋剂)、生活产品质量(鱼新鲜度、食品添加剂、农药残留量)、环境质量(污染实时检测)、法庭化学(DNA技术,物证)2化学:新化合物的结构表征;分子层次上的分析方法;3生命科学:DNA测序;活体检测;4环境科学:环境监测;污染物分析;5材料科学:新材料,结构与性能;6药物:天然药物的有效成分与结构,构效关系研究;7外层空间探索:微型、高效、自动、智能化仪器研制。 仪器分析发展趋势:1 引进当代科学技术的新成就,革新原有仪器分析方法,开发新仪器分析方法2 分析仪器实现小型化、自动化、数学化和计算机化3 发挥各种仪器分析方法的特长,实现不同仪器分析方法的联用。如气-质谱联用4各学科互相渗透,与各学科所提出的新要求、新任务紧密结合,促进仪器分析的发展5仪器分析的发展,可为新理论、新技术的研究提供强有力的研究手段,推动其飞速发展 光学分析法:以物质的光学性质为基础建立的分析方法 物质对光的吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱 光与物质的相互作用:1.光的吸收、发射2.光的透射、散射和折射3.光的干涉、衍射和偏振分子吸光分析法:基于物质分子对光的选择性吸收而建立的分析方法。它包括比色法和分子吸收分光光度法 分子吸光分析法:1.比色法(基于比较待测溶液颜色的分子吸光分析法称为比色法,它分为目视比色和光电比色法)2.分子吸收光谱法(紫外吸收分光光度法、可见吸收分光光度法和

仪器分析考试题及答案(整理).

气相色谱分析 一.选择题 1.在气相色谱分析中, 用于定性分析的参数是( ) A 保留值 B 峰面积 C 分离度 D 半峰宽 2. 在气相色谱分析中, 用于定量分析的参数是( ) A 保留时间 B 保留体积 C 半峰宽 D 峰面积 3. 使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好?( ) A H2 B He C Ar D N2 4. 热导池检测器是一种( ) A 浓度型检测器 B 质量型检测器 C 只对含碳、氢的有机化合物有响应的检测器 D 只对含硫、磷化合物有响应的检测器 5. 使用氢火焰离子化检测器, 选用下列哪种气体作载气最合适?( ) A H2 B He C Ar D N2 6、色谱法分离混合物的可能性决定于试样混合物在固定相中()的差别。 A. 沸点差, B. 温度差, C. 吸光度, D. 分配系数。 7、选择固定液时,一般根据()原则。 A. 沸点高低, B. 熔点高低, C. 相似相溶, D. 化学稳定性。 8、相对保留值是指某组分2与某组分1的()。 A. 调整保留值之比, B. 死时间之比, C. 保留时间之比, D. 保留体积之比。 9、气相色谱定量分析时()要求进样量特别准确。 A.内标法; B.外标法; C.面积归一法。 10、理论塔板数反映了()。 A.分离度; B. 分配系数;C.保留值;D.柱的效能。 11、下列气相色谱仪的检测器中,属于质量型检测器的是() A.热导池和氢焰离子化检测器; B.火焰光度和氢焰离子化检测器; C.热导池和电子捕获检测器;D.火焰光度和电子捕获检测器。 12、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?() A. 改变固定相的种类 B. 改变载气的种类和流速 C. 改变色谱柱的柱温 D. (A)、(B)和(C) 13、进行色谱分析时,进样时间过长会导致半峰宽()。 A. 没有变化, B. 变宽, C. 变窄, D. 不成线性 14、在气液色谱中,色谱柱的使用上限温度取决于() A.样品中沸点最高组分的沸点, B.样品中各组分沸点的平均值。 C.固定液的沸点。 D.固定液的最高使用温度 15、分配系数与下列哪些因素有关() A.与温度有关; B.与柱压有关; C.与气、液相体积有关; D.与组分、固定液的热力学性质有关。 二、填空题 1.在一定温度下, 采用非极性固定液,用气-液色谱分离同系物有机化合物, ____________先流出色谱柱,

仪器分析光谱法总结

AES 原子发射光谱:原子的外层由高层能及向底层能级,能量以电磁辐射的形式发射出去, 这样就得到了发射光谱。原子发射一般是线状光谱。 原理:原子处于基态,通过电至激发,热至激发或者,光至激发等激发作用下,原子获得能 量,外层电子从基态跃迁到较高能态变成激发态,经过10-8s ,外层电子就从高能级向较低 能级或基态跃迁,多余能量的发射可得到一条光谱线。 光谱选择定律:①主量子数的变化△n 为包括零的整数,②△L=±1,即跃迁只能在S 项与P 项间,P 与S 或者D 间,D 到P 和F 。③△S=0,即不同多重性状间的迁移是不可能的。 ③△J=0,±1。但在J=0时,J=0的跃迁是允许的。 N 2S+1L J 影响谱线强度的主要因素:1激发电位2跃迁概率3 统计权重4激发温度(激发温度↑离子 ↑原子光谱↓离子光谱↑)5原子密度 原子发射光谱仪组成:激发光源,色散系统,检测系统, 激发光源:①火焰:2000到3000K ,只能激发激发电位低的原子:如碱性金属和碱土金属。 ② 直流电弧:4000到7000K ,优点:分析的灵敏度高,背景小,适合定量分析和低含量的 测定。缺点:不宜用于定量分析及低熔点元素的分析。 ③交流电弧:温度比直流高,离子线相对多,稳定性比直流高,操作安全,但灵敏度差 ④火花:一万K ,稳定性好,定量分析以及难测元素。每次放电时间间隔长,电极头温度低。 适合分析熔点低。缺点:灵敏度较差,背景大,不宜做痕量元素分析(金属,合金等组成均 匀的试样)⑤辉光 激发能力强,可以激发很难激发的元素,(非金属,卤素,一些气体)谱 线强度大,背景小,检出限低,稳定性好,准确度高(设备复杂,进样不方便)⑥电感耦合 等离子体10000K 基体效应小,检出限低,限行范围宽⑦激光 一万K ,适合珍贵样品 分光系统:单色器:入射狭缝,准直装置,色散装置,聚焦透镜,出射狭缝。 棱镜:分光原理:光的折射,由于不同的光有不同的折射率,所以分开。 光栅:光的折射与干涉的总效果,不同波长的光通过光栅作用各有不同的衍射角。 分辨率: 原子发射检测法:①目视法,②光电法, ③摄谱法:用感光板来记录光谱,感光板:载片(光学玻璃)和感光乳剂(精致卤化 银精致明胶)。 曝光量H=Et E 感光层接受的照度、 黑度:S=lgT -1=lg io/i io 为没有谱线的光强,i 通过谱线的光强度i ,透过率T 定性分析:铁光谱比较法,标样光谱比较法,波长测定法。 定量法:①基本原理②内标法 ⑴内标元素和被测元素有相近的物理化学性质,如沸点,熔 点近似,在激发光源中有相近的蒸发性。⑵内标元素和被测元素有相近的激发能,如果选用 离子线组成分析线对时,则不仅要求两线对的激发电位相等,还要求内标元素的电离电位相 近。⑶内标元素是外加的,样品中不应有内标元素,⑷内标元素的含量必须适量且固定,⑸ 汾西线和内标线无自吸或者自吸很小,且不受其他谱线干扰。⑹如采用照相法测量谱线强度, 则要求两条谱线的波长应尽量靠近。 简述内标法基本原理和为什么要使用内标法。 答:内标法是通过测量谱线相对强度进行定量分析的方法。通常在被测定元素的谱线中选一 条灵敏线作为分析线,在基体元素(或定量加入的其它元素)的谱线中选一条谱线为比较线, 又称为内标线。分析线与内标线的绝对强度的比值称为分析线对的相对强度。在工作条件相 对变化时,分析线对两谱线的绝对强度均有变化,但对分析线对的相对强度影响不大,因此 可准确地测定元素的含量。从光谱定量分析公式a c b I lg lg lg +=,可知谱线强度I 与元素 的浓度有关,还受到许多因素的影响,而内标法可消除工作条件变化等大部分因素带来的影 响。 激发电位:原子中某一外层电子由基态激发到高能级所需要的能量。共振线:由激发态像基 态跃迁所发射的谱线。(共振线具有最小电位,最容易被激发,最强谱线) 火花线:火法激发产生的谱线,激发能量大,产生的谱线主要是离子线。又称共振线。

仪器分析第四版课后答案

仪器分析第四版课后答 案 Revised as of 23 November 2020

第二章习题解答 1.简要说明气相色谱分析的基本原理 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2.气相色谱仪的基本设备包括哪几部分各有什么作用 气路系统、进样系统、分离系统、温控系统以及检测和记录系统。气相色谱仪具有一个让载气连续运行、管路密闭的气路系统;进样系统包括进样装置和气化室,其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中;分离系统包括分离柱和柱箱;温控系统;检测系统包括检测器和放大器;记录和数据处理系统用积分仪或色谱工作站。 16.色谱定性的依据是什么主要有那些定性方法 解:根据组分在色谱柱中保留值的不同进行定性。 主要的定性方法主要有以下几种: (1)直接根据色谱保留值进行定性 (2)利用相对保留值r21进行定性 (3)保留指数法 17.何谓保留指数应用保留指数作定性指标有什么优点 用两个紧靠近待测物质的标准物(一般选用两个相邻的正构烷烃)标定被测物质,并使用均一标度(即不用对数),用下式定义: X为保留值(tR’, VR ’,或相应的记录纸距离),下脚标i为被测物质,Z,Z+1为正构烷烃的碳原子数,XZ < Xi < XZ+1,IZ = Z × 100 优点:准确度高,可根据固定相和柱温直接与文献值对照而不必使用标准试样。 19.有哪些常用的色谱定量方法试比较它们的优缺点和使用范围 1.外标法(标准曲线法)外标法是色谱定量分析中较简易的方法.该法是将欲测组份的纯物质配制成不同浓度的标准溶液。使浓度与待测组份相近。然后取固定量的上述溶液进行色谱分析.得到标准样品的对应色谱团,以峰高或峰面积对浓度作图(取直线部分)。分析样品时,在上述完全相同的色谱条件下,取制作标准曲线时同样量的试样分析、测得该试样的响应讯号后.由标谁曲线即可查出其百分含量. 此法的优点是操作简单,适用基体简单的样品;结果的准确度取决于进样量的重现性和操作条件的稳定性. 2.内标法当只需测定试样中某几个组份,或试样中所有组份不可能全部出峰时,可采用内标法。具体做法是:准确称取样品,加入一定量某种纯物质作为内标物,然后进行色

仪器分析(第2版)魏培海 ,曹国庆,第七章 习题答案

第七章习题答案 1. (1) 2. (4) 3. (4) 4. (1) 5. (3) 6. (1) 7. (4) 8. (1) 9. (4) 10. (3) 11. (4)12. (2) 13. 选择性总分离效能 14. 相对分子质量较大的气体适当增加流动相的平均线速度柱温 15. 速率H=A+B/u+Cu 16. 氢火焰离子化检测器和火焰光度检测器 17. 答:气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 18. 答:气相色谱仪由气路系统、进样系统、分离系统、温控系统以及检测记录系统。 气相色谱仪具有一个让载气连续运行、管路密闭的气路系统。进样系统包括进样装置和气化室,其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中。分离系统完成物质的分离;温控系统主要控制汽化室、色谱柱和检测器恒温箱的温度。检测记录系统由检测器、放大器和记录仪三部分组成。 19. 答:对担体的要求: (1)多孔性,即表面积大,使固定液与试样的接触面积较大。担体的表面积越大,固定液的含量可以越高。 (2)表面化学惰性,即表面没有吸附性或吸附性很弱,更不能与被测物质起化学反应。 (3)热稳定性高,有一定的机械强度,不易破碎。 (4)对担体粒度的要求,要均匀、细小,从而有利于提高柱效。但粒度过小,会使柱压降低,对操作不利。一般选择40-60目,60-80目及80-100目等。 对固定液的要求: (1)挥发性小,在操作条件下有较低的蒸气压,以避免流失。 (2)热稳定性好,在操作条件下不发生分解,同时在操作温度下为液体。 (3)对试样各组分有适当的溶解能力,否则,样品容易被载气带走而起不到分配作用。 (4)具有较高的选择性,即对沸点相同或相近的不同物质有尽可能高的分离能力。 (5)化学稳定性好,不与被测物质起化学反应。 20. 答:柱温对组分分离的影响较大。提高柱温,可以使保留时间减少,加快分析速度。但各组分的挥发靠扰,不利于分离。降低柱温,样品有较大的分配系数,选择性高,有利于分离。但温度过低,被测组分在两相中的扩散速度大大减小,分配不能迅速达到平衡,引起峰扩张使柱效下降,并延长了分析时间。 选择柱温的原则是:在使最难分离的组分有尽可能好的分离的前提下,尽可能采取较低的柱温,但以保留时间适宜,峰形不拖尾为度。具体操作条件的选择应根据不同的实际情况而定,并与固定液用量,担体的种类相配合。对于组分沸点差别较大的样品,通常采用程序

仪器分析试卷及答案

仪器分析试卷及答案(9) 一、选择题 ( 共15 题 30 分 ) 1.在法庭上,涉及到审定一种非法的药品,起诉表明该非法药品经气相色谱分析测得的保留时间在相同条件下,刚好与已知非法药品的保留时间相一致,而辨护证明有几个无毒的化合物与该非法药品具有相同的保留值,最宜采用的定性方法为( )。 A.用加入已知物增加峰高的方法; B.利用相对保留值定性; C.用保留值双柱法定性; D。利用保留值定性。 2.双光束分光光度计与单光束分光光度计相比,其突出优点是 ( )。 A.可以扩大波长的应用范围; B。可以采用快速响应的检测系统; C.可以抵消吸收池所带来的误差;D。可以抵消因光源的变化而产生的误差。 3.若在一个 1m 长的色谱柱上测得两组分的分离度为 0.68,若要使它们完全分离,则柱长 (m) 至少应为 ( ) A.0.5; B。 2 ; C。 5; D。 9。 4.某摄谱仪刚刚可以分辨 310.0305 nm 及 309.9970 nm 的两条谱线,则用该摄谱仪可以分辨出的谱线组是 ( ) A. Si 251.61 ─ Zn 251.58 nm; B. Ni 337.56 ─ Fe 337.57 nm; C. Mn 325.40 ─ Fe 325.395 nm ; D. Cr 301.82 ─ Ce 301.88 nm。

5.化合物在1HNMR 谱图上有( ) A. 3 组峰: 1 个单峰, 1 个多重峰, 1 个三重峰; B. 3 个单峰; C. 4 组峰: 1 个单峰, 2 个多重峰, 1 个三重峰; D. 5 个单峰。 6.一种酯类(M =116), 质谱图上在m/z 57(100%), m/z 29(27%)及m/z 43(27%)处均有离子峰, 初步推测其可能结构如下, 试问该化合物结构为 ( ) A. (CH 3) 2 CHCOOC 2 H 5 ; B. CH 3 CH 2 COOCH 2 CH 2 CH 3 ; C. CH 3(CH 2 ) 3 COOCH 3 ; D. CH 3 COO(CH 2 ) 3 CH 3 ; 7. pH 玻璃电极产生的不对称电位来源于 ( ) A. 内外玻璃膜表面特性不同; B. 内外溶液中 H+ 浓度不同; C. 内外溶液的 H+ 活度系数不同; D. 内外参比电极不一样。 8.分析线和内标线符合均称线对的元素应该是 ( ) A. 波长接近; B. 挥发率相近; C.激发温度相同; D.激发电位和电离电位相近。 9.在气-液色谱分析中, 当两组分的保留值很接近, 且峰很窄, 其原因是( ) A. 柱效能太低; B. 容量因子太大; C. 柱子太长; D.固定相选择性不好。 10.对原子发射光谱法比对原子荧光光谱法影响更严重的因素是 ( ) A. 粒子的浓度; B. 杂散光; C. 化学干扰; D. 光谱线干扰。

仪器分析总结

1仪器分析概述 1、1分析化学 1、1、1定义 分析化学就是指发展与应用各种方法、仪器与策略,获得有关物质在空间与时间方面组成与性质信息的一门科学,就是化学的一个重要分支。 1、1、2任务 分析化学的主要任务就是鉴定物质的化学组成(元素、离子、官能团、或化合物)、测定物质的有关组分的含量、确定物质的结构(化学结构、晶体结构、空间分布)与存在形态(价态、配位态、结晶态)及其与物质性质之间的关系等,属于定性分析、定量分析与结构分析研究的范畴。 ①确定物质的化学组成——定性分析 ②测量试样中各组份的相对含量——定量分析 ③表征物质的化学结构、形态、能态——结构分析、形态分析、能态分析 ④表征组成、含量、结构、形态、能态的动力学特征——动态分析 1、1、3 分类 根据分析任务、分析对象、测定原理、操作方法与具体要求的不同,分析方法可分为许多种类。 ①定性分析、定量分析与结构分析 ②无机分析与有机分析

③化学分析与仪器分析 ④常量分析、半微量分析与微量分析 ⑤例行分析与仲裁分析 1、1、4 特点 分析化学就是一门信息的科学,现代分析化学学科的发展趋势与特点可归纳为如下几个方面: ①提高分析方法的灵敏度; ②提高分析方法的选择性及解决复杂体系的分离问题; ③扩展物质的时间空间多维信息; ④对微型化及微环境的表征与测定; ⑤对物质形态、状态分析及表征; ⑥对生物活性及生物大分子物质的表征与测定; ⑦对物质非破坏性检测及遥测;

⑧分析自动化及智能化。 1、2 仪器分析 仪器分析就是化学学科得到一个重要分支,以物质的物理与物理化学性质为基础建立起来的一种分析方法。 1、2、1分类 仪器分析分为电化学分析、光化学分析、色谱分析、质谱分析、热分析法与放射化学分析法,详见下表。 1、2、2特点 ①灵敏度高:大多数仪器分析法适用于微量、痕量分析。如原子吸收分光光度法测定某些元素的绝对灵敏度可达10-14g,电子光谱甚至可达10-18g; ②取样量少:化学分析法需用10-1~10-4g,而仪器分析试样常在10-2~10-8g;

相关主题
文本预览
相关文档 最新文档