北师大版数学高二-高中数学《导数的计算》教案5 选修2-2
- 格式:doc
- 大小:91.50 KB
- 文档页数:4
§4.1导数的加减法法则学习目标1,了解导数的加法和减法法则的证明过程2,通过对导数的加法与减法法则的应用,掌握函数和(差)的求导法则学习重点:函数和(差)的求导法则学习重点:函数和(差)的求导法则自主检测[]_____________)()(,1='+x g x f []______________)()(,2='-x g x f3, 求下列函数的导数 (1)y=x3-2x+3 (2)x x y 12+=(3)x x y ln 31+= (4)21x e y x -=知识点拨法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 )'()'()]'()([x g x f x g x f ±=±证明:令)()()(x g x f x F y ±==,)]()([)]()([x g x f x x g x x f y ±-∆+±∆+=∆g f x g x x f x g x x f ∆±∆=-∆+±-∆+=)]()([)]()([,∴ x g x f x y ∆∆±∆∆=∆∆,x g x f x g x f x y x x x x ∆∆±∆∆=⎪⎭⎫ ⎝⎛∆∆±∆∆=∆∆→∆→∆→∆→∆0000lim lim lim lim 即 )()()]()(['''x g x f x g x f ±=±.例1,求下列函数的导数xx y 2)1(2+= (2)2)1(x x y -= (3)x x y tan 3-=例2,求曲线x x y 13-=上点(1,0)处的切线方程例3,过点(2,1)作曲线22)(2+-=xxxf的切线,求切线方程课堂探究1,已知曲线2)(3++=axxxf,且曲线y=f(x)在x=2处的切线与直线x+9y+4=0互相垂直,求常数a的值.经典体验例题1 . 已知函数x b x a x y ))((++=在处的函数值为90,导数值为63,求a 、b解析:ab x b a x abx bx ax x y +++='+++=')(23)(2223,所以⎩⎨⎧=⨯++==+++='905)5)(5()5(63)(1075)5(b a f ab b a f ,解得⎩⎨⎧-==21b a 或⎩⎨⎧=-=12b a例2. 已知两曲线2221)2(:,:--==x y C x y C 都与直线l 相切,求l 的方程。
导数的计算课时分配:第一课 几个常用函数的导数 1个课时 第二课 基本初等函数的导数公式及导数的运算法则1个课时第三课 牛顿法— 用导数方法求方程的近似解 1个课时1.2.1几个常用函数的导数【教学目标】1.知识与技能:用导数的定义求函数x y xy x y x y c y =====,1,,,2的导数。
2.过程与方法:在教学过程中,注意培养学生归纳、类比的能力。
3.情感、态度与价值观:通过学生的主动参与,激发学生的求知欲。
【教学重点难点】1.教学重点:能用导数的定义,求函数x y xy x y x y c y =====,1,,,2的导数。
2.教学难点:导数的意义及几个函数的应用。
【学前准备】:多媒体,预习例题1.2.2基本初等函数的导数公式及导数的运算法则【教学目标】1、知识与技能(1)理解函数的和、差、积、商的求导法则(2)能综合运用导数公式和导数运算法则求函数的导数(3)能运用复合函数的求导法则进行复合函数的求导2.过程和方法通过让学生复习回顾函数的求导法则,理解记忆公式,并结合导数的定义,理解四则运算法则。
3.情感态度和价值观通过对问题的探究活动,获得成功的体验和克服困难的经历,增进学习数学的信心,优化数学思维品质。
【教学重点难点】教学重点:(1)掌握导数公式和运算法则;(2)利用公式解决切线问题;教学难点:复合函数的拆分及求导【学前准备】:多媒体,预习例题【学法分析】:在教学中始终坚持“以学生为主体,教师为主导”的原则,通过问题设置让学生主动参与思考和探究,让学生在合作交流、共同探讨的氛围中,认识公式的推导过程及知识的运用,逐步将知识内化为自身的认识结构。
总之,本堂课倡导的是:以“主动参与、乐于探究、交流合作”为主要特征的学习方式牛顿法—用导数方法求方程的近似解【教学目标】(一)知识与能力:1.得出牛顿法求近似解的一般规律,会用牛顿法求方程的近似解;2.通过实例分析牛顿法求方程近似解的要求;3.比较二分法与牛顿法求方程近似解的优劣.(二)方法与过程:1.学生通过前两个数学实验,采用合作探究,分组讨论,动手操作的学习方法,得出牛顿法对初始值的选取要求高的结论;2.学生通过第三个数学采用合作探究,分组讨论,动手操作的学习方法,找出二分法和牛顿法各自的优劣性.(三)情感、态度和价值观:1.通过同学们分析问题,解决问题的过程增强学生获取成就的喜悦感;2.通过计算机,动画技术的演示增强同学们对数学学习的兴趣和探索新知识的渴望.【教学重点难点】1.得出牛顿法求近似解的一般规律,会用牛顿法求方程的近似解.2.通过实例分析牛顿法求方程近似解的要求;比较二分法与牛顿法求方程近似解的优劣.【学前准备】:多媒体,预习例题对零点作一个估计;。
复合函数的求导1.判断复合函数的复合关系的一般方法是:从外向里分析,最外层的主体函数结构是以基本函数为主要形式,各层的中间变量结构也都是基本函数关系,这样一层一层分析,最里层应是关于自变量的基本函数或关于自变量的基本函数经过有限次四则运算而得到的函数.如函数,由,复合而成;函数由,,复合而成.2.复合函数的求导法则:复合函数的导数和函数,的导数间的关系为.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.注:(1)分清复合函数的复合关系是由哪些基本函数复合而成,适当选定中间变量.(2)分步计算中的每一步都要明确是对哪个变量求导,而其中要特别注意的是变量的系数.如,而.(3)根据基本初等函数的求导公式及导数的运算法则,求出各函数的导数,并把中间变量换成自变量的函数.(4)复合函数的求导熟练后,中间步骤可省略不写.例1 指出下列函数的复合关系:(1),;(2),,. 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构.【解析】:函数的复合关系分别是:(1),;(2),,. 评注:解决复合关系问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程.例2 求下列函数的导数:(1); 51(13)y x =-5y u -=13u x =-y =ln y u =12u v =21v x =+(())f g x ()y f u =()u g x =x u x y y u '''=(sin 3)3cos3x x '=(sin 3)cos3x x '≠m y u =n u a bx =+ln y u =13u v =2x u e =+m y u =n u a bx =+ln y u =13u v =2x u e =+4312y x x x ⎛⎫=-+ ⎪⎝⎭(2). 分析:选择中间变量是复合函数求导的关键.求导时需要记住中间变量,注意逐层求导,不遗漏.其中还应特别注意中间变量的关系,求导后,要把中间变量转换成自变量的函数.【解析】:(1)方法1:设,,则 。
[];、差的导数:)()()()(2x g x f x g x f '-'='-精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
§3 计算导数 课时目标 1.会计算函数在一个点处的导数.2.理解导函数的概念.3.了解导数公式表.1.计算函数y =f (x )在点x =x 0处的导数的步骤:(1)计算函数的增量:Δy =f (Δx +x 0)-f (x 0);(2)确定平均变化率:Δy Δx =f (x 0+Δx )-f (x 0)Δx; (3)当Δx 趋于0时,得到导数:f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx . 2.导函数一般地,如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ): f ′(x )=________________,则f ′(x )为f (x )的__________,简称导数. 3.导数公式表函数 导函数 函数 导函数y =c (c 是常数)y ′=0 y =sin x y ′=cos x y =x α (α为实数)y ′=αx α-1 y =cos x y ′=-sin x y =a x (a >0,a ≠1) y ′=a x ln a 特别地(e x )′=e xy =tan x y ′=1cos 2x y =log a x (a >0,a ≠1) y ′=1x ln a 特别地 (ln x )′=1xy =cot x y ′=-1sin 2x 一、选择题1.已知函数f (x )=13,则f ′(x )等于( ) A .-33 B .0 C.33D. 3 2.曲线y =-1x在点⎝⎛⎭⎫2,-12处的切线方程为( ) A .x -4y -4=0 B .x -y -4=0C .x -4y =0D .2x -4y -4=03.函数y =3x 2+2x +1在点x =1处的导数为( )A .3B .7C .8D .14.曲线y =x 2上切线倾斜角为π4的点是( ) A .(0,0) B .(2,4)C.⎝⎛⎭⎫14,116D.⎝⎛⎭⎫12,14 5.函数y =(x -1)2的导数是( )A .(x -1)2B .2(x -1)C .2(1-x )D .-2。
§3 计算导数第一课时 计算导数(一)一、教学目标:1、能根据导数的定义求简单函数的导数,掌握计算一般函数)(x f y =在0x 处的导数的步骤;2、理解导函数的概念,并能用它们求简单函数的导数。
二、教学重点:根据导数的定义计算一般函数)(x f y =在0x 处的导数;教学难点:导数的定义运用三、教学方法:探析归纳,讲练结合四、教学过程(一)复习导入新课导函数的定义.)()()()()(''''0y x f x f x x f x x f x x x f 或的导函数,记作为的一个函数,我们称它便是化时,变当是一个确定的数,那么到处求导数的过程可以看在从求函数= x x f x x f y x f x ∆-∆+==→∆)()(lim)(0''即注 意 .)(1'量的比值的极限,不是变变量该变量该点的函数该变量与自是一个定值,是函数在数)函数在某一点处的导(x f .2而言的一区间内任一点)函数的导数:是指某(x那么,如何利用导数的定义求函数的导数?从而导入新课。
(二)、探析新课计算函数)(x f y =在0x x =处的导数的步骤如下:(1)通过自变量在0x 处的Δx ,确定函数在0x 处的改变量:)()(00x f x x f y -∆+=∆;(2)确定函数)(x f y =在0x 处的平均变化率:xx f x x f x y ∆-∆+=∆∆)()(00; (3)当Δx 趋于0时,得到导数xx f x x f x f x ∆-∆+='→∆)()()(0000lim 。
例1、求函数x xx f y +==2)(在下列各点的导数 (1)0x x =; (2)1=x ; (3)2-=x 。
解:(1)∵x x x x x x x x x x x x f x x f y ∆+∆+∆-=⎪⎪⎭⎫ ⎝⎛+-∆++∆+=-∆+=∆02000000022)(2)()(. ∴122020020+∆+-=∆∆+∆+∆-=∆∆x x x x x x x x x x y 。
4.1 导数的加法与减法法则-北师大版选修2-2教案一、知识要点本节课主要讲解的是导数的加法与减法法则。
通过本节课的学习,我们将会了解以下知识要点:1.导数的加法法则;2.导数的减法法则;3.导数的混合运算;4.导数与函数图象的关系。
二、教学流程2.1 导数的加法法则1.前置知识:求导法则(加法法则);2.通过例题,讲解导数的加法法则;3.练习题。
2.2 导数的减法法则1.前置知识:求导法则(减法法则);2.通过例题,讲解导数的减法法则;3.练习题。
2.3 导数的混合运算1.前置知识:求导法则(加减法则);2.通过例题,讲解导数的混合运算;3.练习题。
2.4 导数与函数图象的关系1.前置知识:求导法则(导数定义);2.通过例题,讲解导数与函数图象的关系;3.练习题。
三、教学重点1.掌握导数的加法法则和减法法则;2.熟练掌握导数的混合运算;3.理解导数与函数图象的关系。
四、教学难点1.理解导数与函数图象的关系。
五、教学方法本节课可以采用讲授法、练习法等多种教学方法来进行讲解和练习。
六、教学建议1.提前准备好教材和教具;2.注意学生的听力和阅读理解能力,注重引导和解答;3.课后可以布置课外作业和参考题。
七、教学评价1.学生的听课态度;2.学生的学习理解程度;3.课堂练习和课后作业完成情况。
八、教学反思1.教学效果是否达到预期;2.学生学习需要哪些方面的支持和指导;3.明确下一步的教学目标和计划。
2.4 导数的四则运算法则【教学目标】学问与技能:1.能依据定义求函数的导数。
2.能依据导数公式和四则运算法则,求简洁函数的导数。
过程与方法:通过求导公式的推导,培育同学从具体到抽象,从特殊到一般的概括力气。
情感态度与价值观:进展同学擅长质疑,擅长沟通,擅长协作的情感。
【学问重点与难点】重点:导数公式和导数的四则运算。
难点:机敏运用导数公式和导数的四则运算进行相关运算。
【课前预习】1.基本初等函数的导数公式:(1)='C (C 为常数); (2)=)'(αx (为常数α); (3)=)'(sin x ; (4)=)'(cos x ; (5)=)'(xe ; (6)=)'(xa ; (7)=)'(ln x ; (8)=)'(log x a 。
2.导数的运算法则:(1)])()(['±x g x f = ; (2) ])(['x cf = ; (3) ])()(['•x g x f = ; (4) ])()(['x g x f = 。
【典型例题】例1:求下列函数的导数:(1)x x x f sin )(2+=; (2)x x x h sin )(=; (3)tt t s 1)(2+=;(4)2623)(23+--=x x x x g ; (5)x x x x x f cos 1sin 2)(•+•=;(6)123)(2+--=x x x x f ; (7))3)(2)(1()(+++=x x x x f 。
例2.已知曲线x x x f 3)(3-=,过点A(0,16)作曲线)(x f 的切线,求曲线的切线方程.互动探究:已知在曲线x x x f 3)(3-=上的点P 处的切线平行于直线9x-y=0,求点P 的坐标.例3.已知抛物线c bx ax y ++=2通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a,b,c 的值.【课后作业】 1. 求下列函数的导数:(1) x x y cos 2+=; (2) x y x ln 22-=; (3) 2cos 2sin x x x y •-=; (4) )23)(32(2-+=x x y ;(5) 21xy =; (6) 32+=x x y ; (7) 2sin x x y =.。
北师大版高中数学选修2-2第三章《 导数应用》全部教案§1 函数的单调性与极值第一课时 导数与函数的单调性(一)一、教学目标:1、知识与技能:⑴理解函数单调性的概念;⑵会判断函数的单调性,会求函数的单调区间。
2、过程与方法:⑴通过具体实例的分析,经历对函数平均变化率和瞬时变化率的探索过程;⑵通过分析具体实例,经历由平均变化率及渡到瞬时变化率的过程。
3、情感、态度与价值观:让学生感悟由具体到抽象,由特殊到一般的思想方法。
二、教学重点:函数单调性的判定 教学难点:函数单调区间的求法 三、教学方法:探究归纳,讲练结合 四、教学过程 (一).创设情景函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. (二).新课探究1.问题:图3.3-1(1),它表示跳水运动 中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图 像.运动员从起跳到最高点,以及从最高点到入 水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减. 结论:函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.3.求解函数()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域;(2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间;(4)解不等式'()0f x <,解集在定义域内的部分为减区间.(三).典例探析例1、已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2、判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+解:(1)因为3()3f x x x =+,所以,'22()333(1)0f x x x =+=+> 因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()1,2,3,4B A D C →→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数()y f x =在()0,b 或(),0a 内的图像“陡峭”,在(),b +∞或(),a -∞内的图像“平缓”. 例4、求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.证明:因为()()()'22661262612y x x x x x x =+-=+-=-+当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.说明:证明可导函数()f x 在(),a b 内的单调性步骤:(1)求导函数()'f x ;(2)判断()'f x 在(),a b 内的符号;(3)做出结论:()'0f x >为增函数,()'0f x <为减函数. (四).课堂练习:课本P59页练习1(1);2(五).回顾总结:(1)函数的单调性与导数的关系;(2)求解函数()y f x =单调区间;(3)证明可导函数()f x 在(),a b 内的单调性(六).布置作业:课本P62页习题3-1A 组1、2 五、教后反思:第二课时 导数与函数的单调性(二)一、教学目标:1、知识与技能:⑴理解函数单调性的概念;⑵会判断函数的单调性,会求函数的单调区间。
§ 3 计算导数第二课时计算导数(二)一、教学目标:掌握初等函数的求导公式,并能熟练运用。
二、教学重难点:用定义推导常见函数的导数公式.三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习1、导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的流程图。
(1)求函数的改变量弓二f (x rx) 一f(X)(2)求平均变化率卫」x rx)-f(x)Z A x(3)取极限,得导数y = f (x)二1叫-y本节课我们将学习常见函数的导数。
首先我们来求下面几个函数的导数。
(1)、y=x (2)、y=x2(3)、y=f问题:y=x」,y=x^ , y=x」呢?问题:从对上面几个幕函数求导,我们能发现有什么规律吗?(二)、新课探析1基本初等函数的求导公式:⑴(kx • b)丄k (k,b为常数)⑵(C)丄0 (C为常数)⑶(x)旨⑷(X2)〉2X⑸(x3/-3x2⑹(丄)'-^x x坂)"=—尸由⑶~⑹你能发现什么规律?2 Jx⑻(x J (〉为常数)⑼(a x)二a x lna (a 0, a=1)1 1⑽(log a x) log a e (a 0,且 a = 1)x xl na(11) (e x) = e x (12) (Inx) (13) (sinx) = cosx (14) (cosx) = — sinxx从上面这一组公式来看,我们只要掌握幕函数、指对数函数、正余弦函数的求导就可以了。
2、例题探析例1、求下列函数导数。
(1)y=x“(2)y = 4x(3) y= x x x(4)y=log3x ( 5)y=sin( +x) (6) y=sin2 3(7) y=cos(2冗—x) (8) y= f (1)例2、已知点P在函数y=cosx上, (0<x<2n在P处的切线斜率大于0,求点P的横坐标的取值范围。
1例3、若直线y = -x • b为函数y =-图象的切线,求b的值和切点坐标.x变式1、求曲线y=x2在点(1,1)处的切线方程.总结切线问题:找切点求导数得斜率变式2、求曲线y=«过点(0,-1)的切线方程变式3、求曲线曲过点(1,1)的切线方程变式4、已知直线y =x-1,点P为豪上任意一点,求P在什么位置时到直线距离最短.(三)、课堂小结:(1)基本初等函数公式的求导公式(2)公式的应用导数公式表(四)、课堂练习:假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p o(1 • 5%)七,其中p o为t 0时的物价•假定某种商品的p o =1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有p'(t)=1.0El n1.05所以p'(10) =1.0引1 n1.05 0.08 (元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨。
2.1 实际问题中导数的意义-北师大版选修2-2教案
一、教学目标
•理解导数的概念及其作用;
•掌握求导数的方法;
•理解导数的物理意义;
•能够运用导数解决实际问题。
二、教学内容
本课时主要探讨导数的意义及其应用,包括以下几个方面:
1.导数定义的引入;
2.导数的物理意义;
3.导数的计算方法;
4.应用于实际问题,如最优化问题、极值问题等。
三、教学重点与难点
1.理解导数的概念及其作用;
2.掌握求导数的方法;
3.理解导数的物理意义。
四、教学方法
通过引入实例、图像等方式,引导学生探究导数的概念、物理意义及其应用,同时配合小组讨论等方式,提高学生互动性和课堂效率。
五、教学流程
5.1 热身(5分钟)
复习前几节课所学内容,如函数的极限、连续性等。
5.2 引入(10分钟)
引入导数定义,引导学生观察函数图像,并通过观察、思考,引入导数的概念。
5.3 实验探究(20分钟)
将学生分为小组,探究导数的物理意义,通过实例、图像等方式,引导学生理解导数在实际问题中的应用。
5.4 讲解(20分钟)
讲解导数的计算方法,包括基本公式、求导法则等。
5.5 练习(20分钟)
布置练习题,要求学生运用导数解决实际问题,如最优化问题、极值问题等。
5.6 总结(5分钟)
回顾本节课所学内容,引导学生总结导数的概念及其应用。
六、教学资源
1.教师课件;
2.学生练习册。
七、教学评估
1.课堂讨论及小组合作情况的观察;
2.练习题及作业的完成情况。
感悟导数的运算法则问题熟练掌握导数的运算是学好导数的前提,也是近年高考考查的一个方面,这部分主要考查公式的运用和运算法则以及综合应用。
一、求导公式以及导数运算法则的应用例1 求下列函数的导数:(1)sin y x x =(2)ln 21x x y x =-+; 分析:仔细观察和分析所给函数表达式的结构规律,紧扣求导运算法则,联系基本函数的求导公式可以迅速解决一类简单函数的求导问题。
若不直接具备求导法则条件,可先进行适当的恒等变形。
解析:(1)///(sin )y x x =+sin cos x x x =++。
(2)///21(1)ln ln ()(2)2ln 21(1)x x x x x x y x x +-=-=-++ 211ln 2ln 2(1)x x x x +-=-+。
评注:运用可导函数求导法则和导数公式求可导函数的导数的基本步骤如下:(1)分析函数()y f x =的结构和特征;(2)选择恰当的求导法则和导数公式求导;(3)整理得结果。
二、导数运算在解析几何中的应用例2 在抛物线21y x x =+-上取横坐标分别为11x =与23x =的两点,过这两点引割线,在抛物线上哪一点处的切线平行于所引的割线?分析:要求平行于所引割线的切线,则切线的斜率应与所引割线的斜率相等。
解析:将11x =与23x =代入抛物线方程,得11y =211y =,则所引割线的斜率与切线斜率均为2121y y k x x -=-11131-=-=5。
设符合题意的切点坐标为00(,)x y ,∵/21y x =+,∴0215x +=,∴02x =,代入抛物线方程得05y =, 故在抛物线上过点(2,5)处的切线平行于所引的割线。
评注:导数不仅有求斜率的功能,而且还有求点的坐标的功能。
三、导数计算的创新应用例3 求满足下列条件的函数()f x 。
(1)()f x 是三次函数,且(0)3f =,/(0)0f =,/(1)3f =-,/(2)0f =;(2)/()f x 是一次函数,2/()(21)()1x f x x f x --=。
§3 计算导数(教师用书独具)●三维目标1.知识与技能(1)引导学生探究导函数的定义,理解导数的含义;(2)会用导数定义求简单函数的导数,记住基本初等函数的求导公式.2.过程与方法通过对具体问题的求解,培养学生提出问题、发现数学规律的思维方法与能力;通过对基本初等函数导数公式的应用,培养学生独立解决问题的能力.3.情感、态度与价值观(1)通过具体函数的求导,经历数学的解题过程,通过比较、辨别,体会由特殊到一般,再由一般到特殊的认识事物规律,培养探索精神和创新意识;(2)通过本节学习和运用实践,体会数学的科学价值、应用价值.●重点难点重点:理解导数的概念,会用导数公式求导数.难点:导数概念的理解.教学时可借助用导数定义求具体函数的导数,在自变量以“定”到“变”的过程中,让学生发现问题、提出问题,并引入导数的概念.通过大量实例让学生归纳导数的定义,从而突出重点,化解难点.(教师用书独具)●教学建议本节课内容安排在学习了导数的概念及几何意义之后,是对导数概念的应用,同时也是再探究和延伸.使学生在具体问题求解f′(x0)的过程中,发现x0是可变的,进而引出导函数的概念.由于求导函数在中学阶段要求较低,故本节课以应用为主,在应用中发现问题,在问题的解决中熟练应用.●教学流程创设情境,提出问题:f′(x0)中,x0是否可变?⇒引导学生通过实例归纳导函数定义.⇒通过例1及变式训练,使学生掌握求f′(x),f′(x0)的方法、步骤.⇒通过例2及变式训练,强化求导公式.⇒通过例3及变式训练,将求导与几何意义结合,增强综合运用能力.⇒归纳整理,课堂小结,整体认识本节所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.能根据导数的定义求简单函数的导数.(重点)2.理解导函数的概念.(难点)3.记忆导数公式,并能用它们求简单函数的导数.(重点)导函数的概念【问题导思】1.已知函数f (x )=-x 2,求f ′(-2),f ′(1),f ′(2). 【提示】 f ′(-2)=4,f ′(1)=-2,f ′(2)=-4. 2.对1中的函数f (x ),试求f ′(x 0). 【提示】 f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 -(x 0+Δx )2-(-x 0)2Δx=-2x 0. 3.对2中的x 0可以取任意实数吗?当x 0变化时,f ′(x 0)的值变化吗?【提示】 可以;变化. 导数的概念一般地,如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx ,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.用基本初等函数的求导公式求导数 【问题导思】1.已知函数f (x )=x 5,求导数f ′(x ).【提示】 f ′(x )=5·x 5-1=5x 4.2.对于1中的函数,求f ′(-1),f ′(2).【提示】 f ′(-1)=5·(-1)4=5,f ′(2)=5·(2)4=20. 导数公式表函数 导函数 y =c (c 是常数) y ′=0y =x α(α为实数) y ′=αx α-1 y =a x (a >0,a ≠1) y ′=a x ln_a ,特别地(e x )′=e xy =log a x (a >0,a ≠1) y ′=1x ln a ,特别地(ln x )′=1xy =sin x y ′=cos x y =cos x y ′=-sin_xy =tan x y ′=1cos 2 xy =cot x y ′=-1sin 2x利用定义求函数的导数求y =f (x )=2x-x 的导函数f ′(x ),并利用导函数f ′(x )求导数值:f ′(-1),f ′(2),f ′(4).【思路探究】 用定义求导函数f ′(x )→求增量Δy →求ΔyΔx→当Δx →0时取极限→令x =-1,2,4求函数值【自主解答】 ∵Δy =f (x +Δx )-f (x )=2x +Δx -(x +Δx )-(2x -x )=2x +Δx -2x -Δx =2[x -(x +Δx )](x +Δx )x -Δx =-2Δx(x +Δx )x -Δx ,∴Δy Δx =-2x 2+x Δx-1, ∴当Δx →0时,Δy Δx →-2x 2-1,即f ′(x )=lim Δx →0 Δy Δx =lim Δx →0 (-2x 2+x Δx -1)=-2x 2-1. 分别将x =-1,2,4代入可得:f ′(-1)=-2-1=-3;f ′(2)=-24-1=-32;f ′(4)=-216-1=-98.求一个函数f (x )的导函数f ′(x )的步骤: (1)求函数值的变化量:Δy =f (x +Δx )-f (x );(2)求平均变化率:Δy Δx =f (x +Δx )-f (x )Δx;(3)取极限得导数:f ′(x )=lim Δx →0 ΔyΔx.已知函数f (x )=x 2-x ,求f ′(x ),并求f ′(2),f ′(-2). 【解】 ∵Δy =f (x +Δx )-f (x ) =(x +Δx )2-(x +Δx )-x 2+x=(2x -1)Δx +(Δx )2. ∴ΔyΔx=2x -1+Δx . ∴f ′(x )=lim Δx →0 ΔyΔx =lim Δx →0(2x -1+Δx )=2x -1. ∴f ′(2)=2×2-1=3,f ′(-2)=2×(-2)-1=-5.利用公式求导数求下列函数的导数.(1)y =x 12;(2)y =1x4;(3)y =5x 3;(4)y =log 2 x .【思路探究】 解答本题可先将解析式化为基本初等函数,再利用公式求导. 【自主解答】 (1)y ′=(x 12)′=12x 11.(2)y ′=(1x 4)′=(x -4)′=-4x -5=-4x 5.(3)y ′=(5x 3)′=(x 35)′=35x -25=355x 2.(4)y ′=(log 2x )′=1x ln 2.1.解答本题时首先要确认函数类型,如y =5x 3=x 35,然后选择公式.2.对基本初等函数的求导公式要熟练、准确记忆,并能灵活运用.求下列函数的导数.(1)y =π+1;(2)y =1x 2;(3)y =x x ;(4)y =2x ;(5)y =log 12x ;(6)y =(sin x 2+cos x2)2-1.【解】 (1)y ′=(π+1)′=0.(2)y ′=(1x2)′=(x -2)′=-2x -3.(3)y ′=(x x )′=(x 32)′=32x 12=32x .(4)y ′=(2x )′=2x ln 2.(5)y ′=(log 12x )′=1x ln 12=-1x ln 2.(6)∵y =(sin x 2+cos x 2)2-1=sin 2x 2+2sin x 2·cos x 2+cos 2x2-1=sin x ,∴y ′=(sin x )′=cos x .求切线方程求曲线y =sin x 在点(π6,12)处的切线方程.【思路探究】 利用导数先求切线的斜率,再求出切线方程.【自主解答】 ∵y ′=cos x ,∴曲线y =sin x 在点(π6,12)处的切线的斜率为cos π6=32,∴曲线y =sin x 在点(π6,12)处的切线方程为y -12=32(x -π6),即y =32x -3π12+12.1.本题的易错点是(sin x )′=-cos x .错误原因是记混了(sin x )′与(cos x )′.一定要记准、记熟公式.2.如果y =f (x )在点x =x 0处可导,则曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).求曲线y =lg x 在点(1,0)处的切线方程.【解】 ∵y ′=(lg x )′=1x ln 10,∴曲线y =lg x 在点(1,0)处的切线斜率为1ln 10,∴曲线y =lg x 在(1,0)处的切线方程为y -0=1ln 10(x -1) 即y =x ln 10-1ln 10.用错公式而致误已知函数f (x )=e -x ,则曲线y =f (x )在点(1,f (1))处的切线方程为( ) A .x -e y =0 B .x +e y -2=0 C .x -e y -2=0 D .x +e y -2=0【错解】 ∵f (1)=e -1=1e,又f ′(x )=e -x ,∴f ′(1)=e -1=1e,∴切线方程为y -1e =1e(x -1),即x -e y =0,故选A.【答案】 A【错因分析】 本题解答中忽视函数f (x )=e -x 不是以e 为底的指数函数,从而用错公式.【防范措施】 应用基本初等函数的求导公式求导时,应先辨认函数类型,并将函数转化为基本初等函数后,再用公式求导.【正解】 ∵f (1)=e -1=1e ,又f (x )=(1e)x ,∴f ′(x )=(1e )x ·ln 1e =-(1e )x ,∴f ′(1)=-1e .故切线方程为y -1e =-1e(x -1),即x +e y -2=0,选B.【答案】 B1.函数f (x )的导数有两个含义:一是函数f (x )在点x 0处的导数值,它是一个常数;二是函数f (x )的导函数f ′(x ),它是一个函数.求f ′(x 0)时,可先求f ′(x )再将x =x 0代入.2.应用基本初等函数的求导公式求导时,要先确定函数类型(有时要先将函数作等价变。
授课内容及过程:知识解析——导数的概念1.函数的平均变化率:一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ∆=-, 10y y y ∆=-10()()f x f x =-00()()f x x f x =+∆-,则当0x ∆≠时,商00()()f x x f x yx x+∆-∆=∆∆称作函数()y f x =在区间00[,]x x x +∆(或00[,]x x x +∆)上的平均变化率.2.函数的瞬时变化率、函数的导数:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变00()()y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率00()()f x x f x y x x+∆-∆=∆∆趋近于一个常数l ,那么常数l 称为函数()f x 在点0x 的瞬时变化率.“当x ∆趋近于零时,00()()f x x f x x+∆-∆趋近于常数l ”可以用符号“→”记作:“当0x ∆→时,00()()f x x f x l x +∆-→∆”,或记作“000()()lim x f x x f x l x∆→+∆-=∆”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ∆→时,000()()()f x x f x f x x+∆-'→∆”或“0000()()lim()x f x x f x f x x ∆→+∆-'=∆”. 考点1: 导数的定义【铺垫】求下列函数在区间[]22x +∆,和[]33x +∆,上的平均变化率①()f x x = ①2()f x x =【例1】 平均变化率与瞬时变化率① 求下列函数在区间00[]x x x +∆,上的平均变化率.① ()f x x = ① 2()f x x = ① 3()f x x = ④1()f x x= ⑤()f x x =① 求下列函数分别在1x =,2x =和3x =处的瞬时变化率. ① ()f x x = ① 2()f x x = ① 3()f x x = ④ 1()f x x= ⑤ ()f x x = ①()sin f x x = ⑦()cos f x x =常用函数的导数推导过程如下:()()00lim lim 0x x f x x f x C CC xx ∆→∆→+∆--'===∆∆;()()()00lim lim 1x x f x x f x x x x x x x∆→∆→+∆-+∆-'===∆∆;()()()()()222limlimlim 22x x x f x x f x x x x x x x x xx∆→∆→∆→+∆-+∆-'===+∆=∆∆;()()()2000111111lim lim lim x x x f x x f x x x x x x x x x x x ∆→∆→∆→'+∆--⎛⎫⎛⎫==-==- ⎪ ⎪∆∆+∆+∆⎝⎭⎝⎭; ()()()()0001lim lim lim 2x x x f x x f x x x x x x x x x x x x x∆→∆→∆→+∆-+∆-∆'====∆∆∆+∆+.3.基本初等函数的导数公式①若()f x C =(C 为常数),则()0f x '=; ①若()()f x x αα*=∈Q ,则()1f x x αα-'=;①若()x f x a =,则()ln x f x a a '=;特别地, 若()e x f x =,则()e x f x '=; ①若()log a f x x =,则()1ln f x x a '=;特别地,若()ln f x x =,则()1f x x'=; ①若()sin f x x =,则()cos f x x '=;①若()cos f x x =,则()sin f x x '=-.4.导数的四则运算法则:其中()()f x g x ,都是可导函数,C 为常数:(()())()()f x g x f x g x '''±=±;[()()]()()()()f x g x f x g x f x g x '''=+;[()]()Cf x Cf x ''=;2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦(()0g x ≠).这里只证一个加法的四则运算设()()y f x g x =+,则()()()()y f x x g x x f x g x ∆=+∆++∆-+⎡⎤⎣⎦()()()()f x x f x g x x g x =+∆-++∆-⎡⎤⎡⎤⎣⎦⎣⎦f g =∆+∆y f g x x x ∆∆∆=+∆∆∆∴,0000lim lim lim lim x x x x y f g f g x x x x x ∆→∆→∆→∆→∆∆∆∆∆⎛⎫=+=+ ⎪∆∆∆∆∆⎝⎭∴,即()y f g f g ''''=+=+ 我们也可以换一种方式来解释这个公式基本上所有学生都学过“水上行舟”问题,我们可以把x 看做是时间,()f x 看做是船的位移,()g x 看做是水的位移,那么()f x '和()g x '分别指的就是船和水的瞬时变化率,也就是速度.这样我们的公式也就很好理解了.()()f x g x +总的位移,()()()f x g x '+就是总的速度,自然等于右边()()f x g x ''+,也就是船速加水速.四则运算记忆法则:①加法的导数等于导数的加法;①常数与函数之积的导数等于常数乘以函数的导数;①乘法的导数等于第一个导数乘以第二个+第二个导数乘以第一个;①除法的导数等于分母不动乘以分子导数减去分子不动乘以分母导数,再除以分母平方.考点2: 导数的运算【例2】导数的运算① 求下列函数的导数①2012y x = ①2x y = ①e x y = ①ln y x =【例3】()f a '实际是一个数①已知()()33215f x x f x '=--+,则()2f '-=______①已知函数()πcos sin 4f x f x x ⎛⎫'=+ ⎪⎝⎭,则π4f ⎛⎫⎪⎝⎭的值为 .①已知函数()πsin 23f x x xf ⎛⎫'=+ ⎪⎝⎭,则π3f ⎛⎫- ⎪⎝⎭与π3f ⎛⎫⎪⎝⎭的大小关系是( )A .ππ33f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭B .ππ33f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭C .ππ33f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D . 不能确定三★小结:(与学生一起)回顾本堂课的内容率.2.函数的瞬时变化率、函数的导数:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变00()()y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率00()()f x x f x y x x+∆-∆=∆∆趋近于一个常数l ,那么常数l 称为函数()f x 在点0x 的瞬时变化率.“当x ∆趋近于零时,00()()f x x f x x+∆-∆趋近于常数l ”可以用符号“→”记作:“当0x ∆→时,00()()f x x f x l x +∆-→∆”,或记作“000()()lim x f x x f x l x∆→+∆-=∆”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ∆→时,000()()()f x x f x f x x+∆-'→∆”或“0000()()lim()x f x x f x f x x ∆→+∆-'=∆”. 考点1: 导数的定义【铺垫】求下列函数在区间[]22x +∆,和[]33x +∆,上的平均变化率①()f x x = ①2()f x x =【解析】 ①()f x x =在区间[]22x +∆,上的平均变化率为(2)(2)221y f x f x x x x ∆+∆-+∆-===∆∆∆; ()f x x =在区间[]33x +∆,上的平均变化率为(3)(3)331y f x f x x x x∆+∆-+∆-===∆∆∆;①()2f x x =在区间[]22x +∆,上的平均变化率为()2222(2)(2)4x y f x f x x x x+∆-∆+∆-===+∆∆∆∆; ()2f x x =在区间[]33x +∆,上的平均变化率为()2233(3)(3)6x y f x f x x x x+∆-∆+∆-===+∆∆∆∆; 【例4】 平均变化率与瞬时变化率① 求下列函数在区间00[]x x x +∆,上的平均变化率.① ()f x x = ① 2()f x x = ① 3()f x x = ④1()f x x=⑤()f x x = 【备注】:次幂函数的导数(学求导公式后再回头看看这道题) ① 求下列函数分别在1x =,2x =和3x =处的瞬时变化率.① ()f x x = ① 2()f x x = ① 3()f x x = ④ 1()f x x= ⑤ ()f x x =①()sin f x x = ⑦()cos f x x =【解析】 ① ①0000()()1f x x f x x x x y x x x+∆-+∆-∆===∆∆∆ ; ② ()2200000()()2x x x f x x f x y x x x x x+∆-+∆-∆===+∆∆∆∆; ③ ()3300220000()()33()x x x f x x f x y x x x x x x x+∆-+∆-∆===+∆+∆∆∆∆; ④000020011()()1f x x f x x x x y x x x x x x-+∆-+∆∆===-∆∆∆+⋅∆; ⑤000000()()1x x x f x x f x y x xxx x x +∆-+∆-∆===∆∆∆+∆+.①①1y x∆=∆∵,∴在1x =处的瞬时变化率为()00(1)lim lim 11x x y f x ∆→∆→∆'===∆;同理在2x =处的瞬时变化率为(2)1f '=;在3x =处的瞬时变化率为(3)1f '=.y f g x x x ∆∆∆=+∆∆∆∴,0000lim lim lim lim x x x x y f g f g x x x x x ∆→∆→∆→∆→∆∆∆∆∆⎛⎫=+=+ ⎪∆∆∆∆∆⎝⎭∴,即()y f g f g ''''=+=+ 我们也可以换一种方式来解释这个公式基本上所有学生都学过“水上行舟”问题,我们可以把x 看做是时间,()f x 看做是船的位移,()g x 看做是水的位移,那么()f x '和()g x '分别指的就是船和水的瞬时变化率,也就是速度.这样我们的公式也就很好理解了.()()f x g x +总的位移,()()()f x g x '+就是总的速度,自然等于右边()()f x g x ''+,也就是船速加水速.四则运算记忆法则:①加法的导数等于导数的加法;①常数与函数之积的导数等于常数乘以函数的导数;①乘法的导数等于第一个导数乘以第二个+第二个导数乘以第一个;①除法的导数等于分母不动乘以分子导数减去分子不动乘以分母导数,再除以分母平方.关于复合函数求导知识点,老师们可以根据学生情况进行选择.我们例题中没有相关试题.具体将在同步讲解.复合函数的求导:对于可导函数()()y f u u u x ==,,x u x df df duf f u dx du dx'''==⋅=.考点2: 导数的运算【例5】导数的运算① 求下列函数的导数①2012y x = ①2x y = ①e x y = ①ln y x = ① 求下列函数的导数①3cos y x x =+ ①()231e x y x x =-+ ①e sin x y x = ①ln xy x=①()tan f x x = ① 求下列函数的导数① ()2211f x x x x x ⎛⎫=++ ⎪⎝⎭ ① ()111y x x ⎛⎫=+- ⎪⎝⎭①()sin cos 22x xf x x =-【解析】 ① ①20112012y x '=; ①2ln 2x y '=; ①e x y '=; ①1y x'=.① ①23sin y x x '=-;①()()()2223e 31e 2e x x x y x x x x x '=-+-+=-- ;①()e sin e cos e sin cos x x x y x x x x '=+=+;①2ln 1ln x y x-'=; ①()22222sin (sin )cos sin (cos )cos sin 1cos cos cos cos x x x x x x x f x x x x x '''-+⎛⎫'==== ⎪⎝⎭① ① ①()311f x x x =++,①()2213f x x x'=-;①先化简,1122111y x x x x x x-=⋅-+-=-+, ①13221122y x x --'=--. ①先使用三角公式进行化简.()1sin cos sin 222x x f x x x x =-=-①()111sin (sin )1cos 222f x x x x x x '⎛⎫'''=-=-=- ⎪⎝⎭.【挑战十分钟】让学生熟练的掌握求导公式以及导数的运算法则求下列函数的导数①313y x =;①21y x =;①42356y x x x =--+;①2cos y x x =+;①2sin y x x =+;①sin cos y x x =-;①1y x x =+;①1y x x =-;①e x y x =;①sin y x x =;①2ln y x x =①cos sin y x x x =-;①121y x =+;①21x y x =+;①11x y x -=+;①sin x y x=;①()22πy x =;①()22y x =-;①()()22331y x x =+-;①()()211y x x x =+-+.【解析】 ①2y x '=;①32y x'=-;①3465y x x '=--;①2sin y x '=-;①2cos y x x '=+; ①cos sin y x x '=+;①211y x '=-;①2112y x x'=--;①()1e x y x '=+;①sin cos y x x x '=+;①2ln y x x x '=+;①sin y x x '=-;①()2221y x -'=+;①()22211x y x -'=+;①()221y x '=+; ①2cos sin x x x y x -'=;①28πy x '=;①21y x'=-;①21849y x x '=-+;①23y x '=.【拓1】设函数()322f x x ax x =++,()19f '=,则a = .【解析】 1 ()2621f x x ax '=++∵且()19f '=,6219a ++=∴,解得1a =【拓2】已知()ln xf x x=,若()0f a '=,则ln a = .【解析】 1 ()2ln 1ln x x f x x x '-⎛⎫'== ⎪⎝⎭,由()0f a '=得21ln 0a a -=,ln 1a =∴.【例6】()f a '实际是一个数 ①已知()()33215f x x f x '=--+,则()2f '-=______①已知函数()πcos sin 4f x f x x ⎛⎫'=+ ⎪⎝⎭,则π4f ⎛⎫⎪⎝⎭的值为 .①已知函数()πsin 23f x x xf ⎛⎫'=+ ⎪⎝⎭,则π3f ⎛⎫- ⎪⎝⎭与π3f ⎛⎫⎪⎝⎭的大小关系是( )A .ππ33f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭B .ππ33f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭C .ππ33f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D . 不能确定【解析】 ①30求导得()()2921f x x f ''=--,所以()()1921f f ''-=--,()13f '-=.所以()296f x x '=-.所以()230f '-=. ① 1()()πsin cos 4f x f x x ⎛⎫''=-+ ⎪⎝⎭,ππππsin cos 4444f f ⎛⎫⎛⎫⎛⎫''=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,解得π214f ⎛⎫'=- ⎪⎝⎭.()π22211422f ⎛⎫=-+= ⎪⎝⎭. ①B因为()πcos 23f x x f ⎛⎫''=+ ⎪⎝⎭,πππcos 2333f f ⎛⎫⎛⎫''=+ ⎪ ⎪⎝⎭⎝⎭,所以π132f ⎛⎫'=- ⎪⎝⎭,则()sin f x x x =-,所以π3π323f ⎛⎫-=-+ ⎪⎝⎭,π3π323f ⎛⎫=- ⎪⎝⎭, 经比较可知ππ33f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭.三★小结:(与学生一起)回顾本堂课的内容授课内容及过程:知识解析——利用导数分析函数的单调性利用导数判断函数的单调性的方法如果函数()y f x =在x 的某个开区间内,总有()0f x '>,则()f x 在这个区间上是增函数; 如果函数()y f x =在x 的某个开区间内,总有()0f x '<,则()f x 在这个区间上是减函数.考点1:函数单调性与其导函数正负的关系【铺垫】老师可以以此铺垫给学生讲解导函数的正负与原函数单调性的关系求下列函数的导函数,并画出导函数的图象,观察导函数的正负与原函数单调性的关系【解析】 导函数的图象为:从导函数的图象我们可以看出,当导函数大于零时,原函数是单调递增的;当导函数小于零 时,原函数是单调递减的.【例1】 根据导函数图象判断原函数图象(2010石景山一模文理7)已知函数()f x 的导函数()f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( ).考点2:从导数x y O x y O O y x (3)(2)(1)【解析】函数图象如图1、2所示,由图3、4可知,当自变量x ∆逐次增加一个单位增量x ∆时,函数()g x 的相应增量1y ∆,2y ∆,3y ∆,…越来越大;函数()f x 的相应增量1y ∆,2y ∆,3y ∆,…越来越小.图1 图2 图3 图4从导数的角度来看:()0g x '>,()g x '为增函数;()0f x '>,()f x '为减函数.图象特点:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,函数的图象就比较“陡峭”如果一个函数在某一区间内导数的绝对值越来越大,那么对应的函数图象就越来越陡峭.反之,就越来越平缓. 【铺垫】如图,水以恒速(即单位时间内注水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图象.【例2】函数的增长速度① 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路 程s 看作时间t 的函数,其图象可能是( )⑵ 如左图所示,液体从球形漏斗漏入一圆柱形烧杯中,开始时漏斗中盛满液体,经过3 分钟漏完,已知烧杯中液面上升的速度是一个常量,H 是漏斗中液面下落的距离,则H 与下落时间t (分)的函数关系用图象表示可能是右图中的( ).考点3:求函数的单调区间【解析】求可导函数单调区间的一般步骤和方法D.C.B.A.O ts O t s s t O O t s第二步:求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实根;第三步:把函数()f x 在间断点(即()f x 的无定义点)的横坐标和上面的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间;第四步:确定()f x '在各个小区间的符号,根据()f x '的符号判断函数()f x 在每个相应小区间的增减性.【注意】①函数的单调区间不能用不等式表示,必须写成区间形式;②当一个函数具有相同单调性的单调区间不止一个时,这些单调区间不能用“∪”连接,可用“,”或“和”连接.【铺1】 确定函数()33f x x x =-在哪个区间内是增函数?哪个区间内是减函数?【铺2】已知函数()e x f x x =.求函数()f x 的单调区间.【例3】 求单调区间求下列函数的单调区间⑴ 32()395f x x x x =--+; ⑵()22ln f x x x =-.【拓3】 已知函数()e 1xf x x =-,求函数()f x 的定义域及单调区间.【随堂】求函数()()2ln f x x ax a =-∈R 的单调区间.【铺1】 若y ax =与by x=-在()0+∞,上都是减函数,对函数3y ax bx =+的单调性描述正确的是( ) A .在()-∞+∞,上是增函数 B .在()0+∞,上是增函数 C .在()-∞+∞,上是减函数 D .在()0-∞,上是增函数,在()0+∞,上是减函数 【例4】 已知函数单调性,求参数范围设函数2()ln f x x x ax =++在其定义域内为增函数,求a 的取值范围.考点4:与极值相关的图象问题【例5】 与极值相关的图象问题⑴函数()f x 的导函数图象如图所示,则函数()f x 在图示区间上 ( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 ⑵(2010朝阳二模6)函数321()2f x x x =-+的图象大致是( ).考点5:求函数的极值与最值【铺垫】用导数法求函数2()f x x x=+的极值.【例6】 求函数的极值与最值已知函数()()32231f x x x x =-+∈R .⑴求()f x 的极值;⑵求函数()f x 在闭区间[]12-,上的最值.【拓1】已知函数()()3222213f x x x a x =-+-+,其中0a >.求()f x 在区间[]23,上的最小值. D .O xyC .O x yB .O x yA .O yx O yx【拓2】已知函数()()3222213f x x x a x =-+-+,其中a ∈R .求()f x 在区间[]23,上的最大值和最小值.【铺垫】设函数3()32f x ax x =++有极值,求a 的取值范围.【例7】 已知函数存在极值,求参数范围设函数()f x 的导函数为()f x ',若()()32112f f x ax ax x a '⎡⎤=-+-∈⎢⎥⎣⎦R ,. ⑴用a 表示()1f ';⑵若函数()f x 在R 上存在极值,求a 的范围.【追问】若函数在R 上不存在极值,则a 的取值范围是多少?【拓3】 (2010北京卷18)设函数()()3203af x x bx cx d a =+++>,且方程()90f x x '-=的两个根分别为1,4.① 当3a =且曲线()y f x =过原点时,求()f x 的解析式;① 若()f x 在()-∞,+∞内无极值点,求a 的取值范围.【易错】右图是导函数()y f x '=的图象,试找出函数 ()y f x =的极值点,并指出哪些是极大值点,哪些是极小值点.随堂训练【演练1】 已知函数()f x 的导函数()f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( )【演练2】 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如左图所示,那么水瓶的形状是( ).【演练3】 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ).【演练4】 函数214y x x=+的单调增区间为( ) A .(0)+∞, B .12⎛⎫+∞ ⎪⎝⎭, C .(1)-∞-, D .12⎛⎫-∞- ⎪⎝⎭,yxO yx O yx O DC B A O x y2.已知导函数()f x '的下列信息:当14x <<时,()0f x '>;当1x <或4x >时,()0f x '<;当1x =或4x =时,()0f x '=.试画出函数()f x 的大致形状.【教师备案】选修2-2B 版教材引入方式函数()y f x =在区间[]x x x +∆,上的平均变化率为yx∆∆.依据函数单调性的定义:若0y x ∆>∆,则函数在给定区间上为增函数;若0yx ∆<∆,则函数在给定区间上为减函数.从导数的角度看: ()00()()lim lim x x y f x x f x f x x x∆→∆→∆+∆-'==∆∆.若()0f x '>,则函数在给定区间上为增函数;若()0f x '<,则函数在给定区间上为减函数. 因此我们可以用导数作工具来研究函数的性质.【铺垫】老师可以以此铺垫给学生讲解导函数的正负与原函数单调性的关系求下列函数的导函数,并画出导函数的图象,观察导函数的正负与原函数单调性的关系【解析】 导函数的图象为:从导函数的图象我们可以看出,当导函数大于零时,原函数是单调递增的;当导函数小于零 时,原函数是单调递减的.【例8】 根据导函数图象判断原函数图象(2010石景山一模文理7)已知函数()f x 的导函数()f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( ).【解析】 A 由()f x '的图象知()y f x =在(2)-∞-,与(0)+∞,上单调递减,在(20)-,上单调递增.x y O x y O O y x (3)(2)(1)【教师备案】函数图象如图1、2所示,由图3、4可知,当自变量x ∆逐次增加一个单位增量x ∆时,函数()g x 的相应增量1y ∆,2y ∆,3y ∆,…越来越大;函数()f x 的相应增量1y ∆,2y ∆,3y ∆,…越来越小.图1 图2 图3 图4从导数的角度来看:()0g x '>,()g x '为增函数;()0f x '>,()f x '为减函数.图象特点:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,函数的图象就比较“陡峭”如果一个函数在某一区间内导数的绝对值越来越大,那么对应的函数图象就越来越陡峭.反之,就越来越平缓. 【铺垫】如图,水以恒速(即单位时间内注水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图象.【解析】 以容器⑵为例,由于容器上细下粗,所以水以恒速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图象上,(A )符合上述变化情况,同理可知其他三种容器的情况. ⑴→B ; ⑵→A ; ⑶→D ; ⑷→C .【例9】 函数的增长速度① 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路 程s 看作时间t 的函数,其图象可能是( )⑵ 如左图所示,液体从球形漏斗漏入一圆柱形烧杯中,开始时漏斗中盛满液体,经过3 分钟漏完,已知烧杯中液面上升的速度是一个常量,H 是漏斗中液面下落的距离,则H 与下落时间t (分)的函数关系用图象表示可能是右图中的( ).D.C.B.A.O ts O t s s t O O t s【解析】 ⑴ A 曲线的切线的斜率()s t '表示汽车的速度,由题意知,速度先增加,再保持不变,最后减小,故由曲线的斜率变化知选A .也可根据汽车匀加速行驶2112s v t at =+()0a >,匀速行驶0s s vt =+,减速行驶2212s v t at =-()0a >,结合函数图象得到.⑵D 每当t 增加一个单位增量t ∆,H 的变化开始增量H ∆越来越小,经过中截面后越来越大,故H 关于t 的函数图象是增加先变缓后变陡,因此选D .考点3:求函数的单调区间【教师备案】求可导函数单调区间的一般步骤和方法第一步:确定函数()f x 的定义域;第二步:求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实根;第三步:把函数()f x 在间断点(即()f x 的无定义点)的横坐标和上面的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间;第四步:确定()f x '在各个小区间的符号,根据()f x '的符号判断函数()f x 在每个相应小区间的增减性.【注意】①函数的单调区间不能用不等式表示,必须写成区间形式;②当一个函数具有相同单调性的单调区间不止一个时,这些单调区间不能用“∪”连接,可用“,”或“和”连接.【铺1】 确定函数()33f x x x =-在哪个区间内是增函数?哪个区间内是减函数?【解析】 ()233f x x '=-,令2330x ->,解此不等式,得1x >或1x <-.因此,已知函数在区间()1+∞,和()1-∞-,内是增函数;令2330x -<,解此不等式,得11x -<<.因此,已知函数在区间()11-,内是减函数.【铺2】已知函数()e x f x x =.求函数()f x 的单调区间. 【解析】 函数()f x 的定义域为R .()()1e x f x x '=+.由()0f x '>,解得1x >-.由()0f x '<,解得1x <-.∴()f x 的单调递增区间为()1-+∞,,单调递减区间为()1-∞-,.【例10】 求单调区间求下列函数的单调区间⑴32()395f x x x x =--+;⑵()22ln f x x x =-. 【解析】 ⑴2()3693(1)(3)f x x x x x '=--=+-,令()0f x '>得3x >或1x <-,∴函数()f x 的单调递增区间为(1)-∞-,和(3)+∞,,令()0f x '<,得13x -<<,∴函数()f x 的单调递减区间为(13)-,. ⑵ 函数()f x 的定义域为()0+∞,,又()()()()22212112222x x x x f x x x x x x--+-'=-===, 令()0f x '>得1x >,()f x ∴的单调递增区间为()1+∞,,令()0f x '<得01x <<,()f x ∴的单调递减区间为()01,.【拓3】 已知函数()e 1xf x x =-,求函数()f x 的定义域及单调区间.【解析】 函数()f x 的定义域为{}1x x ≠.()()()()()22e 1e 1e 211x x x x xf x x x --⋅-'==--.由()0f x '>,解得2x >.由()0f x '<,解得2x <且1x ≠.①()f x 的单调递增区间为()2+∞,,单调递减区间为()1-∞,和()12,.求函数()()2ln f x x ax a =-∈R 的单调区间.【解析】 函数()y f x =的定义域为()0+∞,.∵()2ln f x x ax =-,∴()2f x a x'=-. 当0a ≤时,因为0x >,所以()0f x '>,所以()y f x =在()0+∞,上单调递增; 当0a >时,令()20f x a x '=->,解得20x a<<;令()20f x a x '=-<,解得2x a >. 此时函数()y f x =的单调递增区间是20a ⎛⎫ ⎪⎝⎭,,单调递减区间是2a ⎛⎫+∞ ⎪⎝⎭,.综上所述:当0a ≤时, ()y f x =的单调递增区间为()0+∞,;当0a >时,函数()y f x =的单调递增区间是20a ⎛⎫ ⎪⎝⎭,,单调递减区间是2a ⎛⎫+∞ ⎪⎝⎭,.【铺1】 若y ax =与by x=-在()0+∞,上都是减函数,对函数3y ax bx =+的单调性描述正确的是( ) A .在()-∞+∞,上是增函数 B .在()0+∞,上是增函数 C .在()-∞+∞,上是减函数 D .在()0-∞,上是增函数,在()0+∞,上是减函数 【解析】 C 由题意知:0a <,0b <,于是230y ax b '=+<对任意x ∈R 成立,故选C .【例11】 已知函数单调性,求参数范围设函数2()ln f x x x ax =++在其定义域内为增函数,求a 的取值范围.【解析】 2121()2x ax f x x a x x++'=++=,()f x 的定义域为()0+∞,. 若()f x 在其定义域内为增函数,所以221()0x ax f x x++'=≥对()0x ∈+∞,恒成立(﹡). 方法一:分离参量法(﹡)可以转化为2210x ax ++≥对()0x ∈+∞,恒成立,即12a x x ⎛⎫-+ ⎪⎝⎭≥,对()0x ∈+∞,恒成立.令1222x x +≥,()0x ∈+∞,.故12x x ⎛⎫-+ ⎪⎝⎭的最大值为22-,即22a -≥.方法二:分类讨论方程2210x ax ++=的判别式28a ∆=-,①当0∆≤,即2222a -≤≤时,2210x ax ++≥,()0f x '≥在()0+∞,内恒成立,此时()f x 为增函数.①当0∆>,即22a <-或22a >时,要使()f x 在定义域()0+∞,内为增函数, 只需在()0+∞,内有2210x ax ++≥即可,设2()21h x x ax =++, 由(0)10022h a=>⎧⎪⎨-<⎪⎩⨯,得0a >,所以22a >. 由①①可知,若()f x 在其定义域内为增函数,a 的取值范围是)22⎡-+∞⎣,. 【拓2】 已知函数21()2(02]f x ax x x =-∈,,,若()f x 在(01]x ∈,上是增函数,则a 的取值范围 为 .【解析】 1a ≥-.3321()22f x a a x x ⎛⎫'=+=+ ⎪⎝⎭,2.求函数()y f x =的极值的方法 ⑴确定函数定义域 ⑵求导数()f x '; ⑶求方程()0f x '=的根;⑷检查()f x '在方程根左右的值的符号,如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值【教师备案】①使()f x '无意义的点也要讨论.即可先求出()'0f x =的根和使()f x '无意义的点,这些点都称为可疑点,再用定义去判断.②极大值点可以看成是函数单调递增区间与递减区间的分界点,极大值是极大值点附近曲线由上升到下降的过渡点的函数值.极小值则是极小值点附近曲线由下降到上升的过渡点的函数值.3.求函数()y f x =在[]a b ,上的最大值与最小值的步骤如下:① 求函数()y f x =在()a b ,内的极值; ① 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.【教师备案】老师在讲最值时,也可以继续以【铺垫】为例,问学生在一个区间上的最值,并提出需要注意的几点.在理解函数最值时,需要注意以下几点: ①函数的最大值和最小值是一个整体性概念,最大值必是整个区间上所有函数值中的最大者,最小值必是整个区间上的所有函数值中的最小者.②函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极大值、极小值是比较极值点附近的函数值得出的.函数的极值可以有多个,但最值只能有一个;极值只能在区间内取得,最值可以在端点取得;有极值未必有最值,有最值也未必有极值;极值有可能成为最值,最值只要不在端点处必定是极值;极值不一定是最值,比如说,某位同学在班里的成绩最好,可以认为是班里的极大值,但在全校不一定是最好的,即使在全校最好,也不一定在全国最好,所以极大值不一定是最大值,老师也可以以此为例讲解极小值不一定是最小值.【铺垫】如图所示,函数()y f x =在a b c d e f g h ,,,,,,,等点的函数值与这些点附近的函数值有什么大小关系?()y f x =在这些点的导数值是多少?在这些点附近,()y f x =的导数的符号有什么规律?【解析】 以a b ,两点为例,我们可以发现,函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都小,()0f a '=;而且在点x a =附近的左侧()0f x '<,右侧()0f x '>.类似地,函数()y f x =在点x b =的函数值()f b 比它在点x b =附近其他点的函数值都大,()0f b '=;而且在点x b =附近的左侧()0f x '>,右侧()0f x '<.其它的点老师可以自由发挥,随便问学生.经典精讲考点4:与极值相关的图象问题【例12】 与极值相关的图象问题⑴函数()f x 的导函数图象如图所示,则函数()f x 在图示区间上 ( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 ⑵(2010朝阳二模6)函数321()2f x x x =-+的图象大致是( ).【解析】 ⑴C 因为导函数的图象与x 轴的四个交点处都是穿过的,所以都是极值点,根据正负变化情况知,第一个与第三个交点对应极大值点,第二个与第四个交点对应极小值点(从左到右),故选C .⑵A 由2()32f x x x '=-,于是()f x 在203x =,点取得极值.A ,B ,C ,D 中仅A 符合.另外此题也可以根据单调性和极值点来分析.考点5:求函数的极值与最值【铺垫】用导数法求函数2()f x x x=+的极值. 【解析】 函数定义域为{}22210()1(2)(2)x x f x x x x x'≠=-=-+,.令()0f x '>,得2x >或2x <-.①函数()f x 的单调递增区间为(2)-∞-,和(2)+∞,; 令()0f x '<,得22x -<<且0x ≠,①函数()f x 的单调递减区间是(20)-,和(02),. ∴()f x ',()f x 的变化情况如下表:x()2-∞-,2-()20-, ()02,2()2+∞,()f x ' +0 --+()f x① 极大值 ① ① 极小值①∴()f x 在2x =-时取得极大值22-,在2x =时,取得极小值22.【例13】 求函数的极值与最值已知函数()()32231f x x x x =-+∈R .⑴求()f x 的极值;⑵求函数()f x 在闭区间[]12-,上的最值.【解析】 ⑴()266f x x x '=-.令()2660f x x x '=-=,解得1201x x ==,.x()0-∞,()01, 1()1+∞,()f x ' +0 -0 +()f x① 极大值 ① 极小值①所以()f x 的极小值为()10f =;极大值为()01f =.⑵由①知()f x 在区间()12-,上的极小值为()10f =;极大值为()01f =.计算得:()()1425f f -=-=,.所以函数()f x 在闭区间[]12-,上的最小值为4-,最大值为5.【拓1】已知函数()()3222213f x x x a x =-+-+,其中0a >.求()f x 在区间[]23,上的最小值.【解析】 ()()()2224221f x x x a x a '=-+-=--,()7223f a =-,()373f a =-,D .O xyC .O x yB .O x yA .O yx O yx【铺垫】设函数3()32f x ax x =++有极值,求a 的取值范围. 【解析】 ()233f x ax '=+.当0a ≥时,()0f x '>,()f x 为实数集上的增函数,()f x 没有极值. 当0a <时, ()0f x '=有两个不相等的实根, ()f x 有极值. 所以a 的取值范围为0a <.【例14】已知函数存在极值,求参数范围设函数()f x 的导函数为()f x ',若()()32112f f x ax ax x a '⎡⎤=-+-∈⎢⎥⎣⎦R ,. ⑴用a 表示()1f ';⑵若函数()f x 在R 上存在极值,求a 的范围.【追问】若函数在R 上不存在极值,则a 的取值范围是多少?【解析】 ⑴()()213212f f x ax ax ''=-+-,把1x =代入上式,得()()1112f f a ''=+-,①()122f a '=-.⑵()2322f x ax ax a '=-+-当0a =时,()20f x '=-<,无极值,∴不满足假设.当0a ≠时,要满足存在极值,则()0f x '=必须有两个相异实根, 故0∆>,即()244320a a a -⋅->,得03a <<.【追问】(][)03-∞+∞,∪,【拓3】 (2010北京卷18)设函数()()3203a f x x bx cx d a =+++>,且方程()90f x x '-=的两个根分别为1,4. ① 当3a =且曲线()y f x =过原点时,求()f x 的解析式;① 若()f x 在()-∞,+∞内无极值点,求a 的取值范围.【解析】 由()323a f x x bx cx d =+++得()22f x ax bx c '=++. 因为()29290f x x ax bx c x '-=++-=的两个根分别为1,4,所以290168360a b c a b c ++-=⎧⎨++-=⎩①① 当3a =时,由①式得2608120.b c b c +-=,⎧⎨++=⎩解得3b =-,12c =.又因为曲线()y f x =过原点,所以0d =.故()32312f x x x x =-+. ① 由于0a >,所以“()323a f x x bx cx d =+++在()-∞,+∞内无极值点”等价于 “()220f x ax bx c '=++≥在()-∞,+∞内恒成立”.由①式得295b a =-,4c a =.又()()()224919b ac a a ∆=-=--.解()()09190a a a >,⎧⎪⎨∆=--⎪⎩≤得[]19a ∈,,即a 的取值范围是[]19,.【易错】右图是导函数()y f x '=的图象,试找出函数 ()y f x =的极值点,并指出哪些是极大值点,哪些是极小值点. 【解析】 根据导函数的正负,我们可以判断原函数的单调性,由此,我们可以得到,函数在2x x =处取得极大值,即2x 为极大值点;函数在4x x =处取得极小值,即4x 为极小值点.【点评】一方面,学生在看到此图时,第一反应会默认为1x 和3x 分别为极值点,但是我们要审清题意,这里给的是导函数的图象,不是原函数的图象,我们要根据导函数的图象画出原函数的图象;另一方面,学生也会误认为6x 为函数的一个极值点,我们从图象上就可以看出原函数在()5x +∞,一直是单调递增的,所以6x 不是函数的极值点.所以原函数的单调性只与导函数的正负有关,与导函数的单调性无关.随堂训练【演练6】 已知函数()f x 的导函数()f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( )【解析】 A 由()f x '的图象知()y f x =在(0)-∞,与(2)+∞,上单调递增,在(02),上单调递减.【演练7】 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如左图所示,那么水瓶的形状是( ).【解析】 B 因为容器中总的水量(即注水量)V 关于h 的函数图象是增加越来越缓的,即每当h 增加一个单位增量h ∆,V 的相应增量V ∆越来越小.这说明容器的上升的液面越来越小,故选B .【演练8】 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ).【解析】 D【演练9】 函数214y x x=+的单调增区间为( ) A .(0)+∞, B .12⎛⎫+∞ ⎪⎝⎭, C .(1)-∞-, D .12⎛⎫-∞- ⎪⎝⎭,【解析】 B 令32218180x y x x x -'=-=>,得12x >.【演练10】 已知0a ≥,函数2()(2)e x f x x ax =-.设()f x 在[]11-,上是单调函数,求a 的取值范围. 【解析】 对函数()f x 求导数,得22()(2)e (22)e [2(1)2]e .x x x f x x ax x a x a x a '=-+-=+--令()0f x '=,得2[2(1)2]e 0x x a x a +--=,从而22(1)20x a x a +--=, 解得2111x a a =--+,2211x a a =-++,其中12x x <当x 变化时,()f x ',()f x 的变化情况如下表:yxO yx O yx O DC B A O x y授课内容及过程:知识解析1.复合函数的概念一般地,对于两个函数y=f(u)和u=φ(x)=ax+b,给定x的一个值,就得到了u的值,进而确定了y的值,这样y可以表示成x 的函数,我们称这个函数为函数y=f(u)和u=φ(x)的复合函数,记作y=f(φ(x)).其中u为中间变量.2.复合函数的求导法则复合函数y=f(φ(x))的导数为y x'=[f(φ(x))]'=f'(u)φ'(x)(u=φ(x)).3.复合函数求导的基本步骤求复合函数的导数,一般按以下三个步骤进行:(1)分解:分解复合函数为初等函数,注意适当选择中间变量;(2)层层求导:求每一层初等函数的导数(弄清每一步求导是哪个变量对哪个变量求导);(3)作积还原:将各层初等函数的导数相乘,并将中间变量还原为原来的函数.以上步骤可称之为复合函数求导三步曲.例题解析【做一做2】求下列函数的导数:(1)y=(3x-2)2; (2)y=sin2x.解:(1)(方法一)y'=[(3x-2)2]'=(9x2-12x+4)'=18x-12.(方法二)将函数y=(3x-2)2看作是函数y=u2和函数u=3x-2复合所成的函数,并分别求对应变量的导数如下: y'u=(u2)'=2u,u'x=(3x-2)'=3.两个导数相乘,得y'x=y'u·u'x=2u·3=2(3x-2)·3=18x-12.(2)y'=2sin x·(sin x)'=2sin x·cos x=sin 2x.反思应用复合函数的求导法则求导,应注意以下几个方面:(1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,弄清每层是对哪个变量求导.(3)一般是从最外层开始,由外及里,一层层地求导.(4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,可省略中间步骤.。
高中数学《导数的计算》教案5 选修2-2
教学目标:
1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x =的导数公式;
2.掌握并能运用这四个公式正确求函数的导数.
教学重点:四种常见函数y c =、y x =、2y x =、1y x
=的导数公式及应用 教学难点: 四种常见函数y c =、y x =、2
y x =、1y x =的导数公式 教学过程:
一.创设情景
我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?
由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.
二.新课讲授
1.函数()y f x c ==的导数
根据导数定义,因为()()0y f x x f x c c x x x
∆+∆--===∆∆∆ 所以00
lim
lim 00x x y y x ∆→∆→∆'===∆
0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.
2.函数()y f x x ==的导数
因为()()1y f x x f x x x x x x x
∆+∆-+∆-===∆∆∆ 所以00
lim lim11x x y y x ∆→∆→∆'===∆
1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.
3.函数2
()y f x x ==的导数 因为22
()()()y f x x f x x x x x x x
∆+∆-+∆-==∆∆∆ 222
2()2x x x x x x x x
+∆+∆-==+∆∆ 所以00
lim lim(2)2x x y y x x x x ∆→∆→∆'==+∆=∆
2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .
4.函数1()y f x x
==的导数 因为11()()y f x x f x x x x x x x
-∆+∆-+∆==∆∆∆
2()1()x x x x x x x x x x
-+∆==-+∆∆+⋅∆ 所以220011lim lim()x x y y x x x x x
∆→∆→∆'==-=-∆+⋅∆
(2)推广:若*()()n y f x x n Q ==∈,则1()n f x nx
-'= 三.课堂练习
1.课本P 13探究1
2.课本P 13探究2
4.求函数y =
四.回顾总结
五.布置作业。