线性霍尔效应传感器IC
- 格式:doc
- 大小:347.50 KB
- 文档页数:14
什么是霍尔效应传感器?它是如何⼯作的?⼀、引⾔霍尔效应是测量磁场最常⽤的⽅法,并且霍尔效应传感器在现代得到了⼴泛的应⽤和⼴泛的应⽤。
例如,它们在汽车上⽤作车轮转速传感器和曲轴或凸轮轴位置传感器。
它们通常被⽤作开关、MEMS罗盘、接近传感器和其他应⽤。
现在我们来看看这些传感器是如何⼯作的,但是⾸先,让我们来定义霍尔效应。
⽬录⼀、引⾔⼆、什么是霍尔效应三、什么是霍尔效应传感器四、霍尔效应传感器是如何⼯作的五、霍尔效应传感器类型5.1阈值5.2线性六、霍尔效应传感器的⽤途6.1正⾯检测6.2侧向检测七、霍尔效应传感器应⽤7.1旋转应⽤中的霍尔效应传感器7.2近距离应⽤中的霍尔效应传感器7.3接近霍尔效应传感器在机器⼈技术中的应⽤⼋、如何测试霍尔效应传感器九、常见问题⼆、什么是霍尔效应描述霍尔效应如下所⽰:如果我们有⼀个像图中所⽰的导电板并向其施加电流,则电荷载流⼦将沿直线从⼀侧流向另⼀侧。
现在,如果我们在极板附近施加⼀个磁场,我们可以在洛伦兹⼒的作⽤下破坏载流⼦的直线流。
电⼦会偏向极板的⼀边,⽽正空⽳则会偏向另⼀边。
这意味着如果我们现在⽤电表连接另两个侧⾯,我们就可以得到⼀个可以测量的电压。
如前所述,获得可测量电压的效果被称为霍尔效应,这是1879年埃德温·霍尔发现的。
三、什么是霍尔效应传感器霍尔效应传感器检测磁场功率的变化。
这种传感器为机器⼈传感器的应⽤提供了⼴泛的可能性。
它们可⽤于接近、定位、速度和电流传感等应⽤。
它们通常⽤于⽓动⽓缸上,⽤于将⽓缸的位置与PLC或机器⼈控制器进⾏通信。
汽车、个⼈电⼦和机器⼈只是使⽤霍尔效应传感器的少数⾏业。
根据应⽤的不同,它们⽐其他传感器有⼀些优势。
它们被完全包裹起来,因为它们在磁场中⼯作,使它们不易受到肮脏或潮湿环境的损害。
它们⽐机械系统在⼤量循环后磨损或倾斜读数的可能性更⼩。
由于霍尔效应传感器不需要物理接触就可以正常⼯作,因此其可靠性和使⽤寿命在⼴泛的应⽤中⾮常有⽤。
~ 1 ~ © 2014 深圳响拇指电子科技有限公司 霍尔线性器件SS441基本资料
概述:
SS441是一个采用双极晶体管技术制造的单极霍尔效应传感器IC 。
该器件集成了电压调节器、反向电池保护二极管、带动态偏移消除系统的霍尔传感器、温度补偿电路、小信号放大器、施密特触发器和一个输出灌电流达25mA 的集电极开漏输出驱动器。
配合以适当的上拉输出电路,它即可与双极型晶体管电路或CMOS 逻辑电路器件协同工作。
该器件提供了小外形利用Transis-TOR (SOT ),或在塑料单列直插(SIP3L 平),两个3引脚封装均符合RoHS 标准。
优点和特性:
– 4.5V 到24V 的工作电压范围
– -40°C 到150°C 的极大的工作温度范围
– 双极晶体管工艺
– 集电极开漏25mA 输出
– 反向电池保护
– 小尺寸SOT23 3L 或者SIP 3L 封装
– 高固态可靠性
– 抗物理应力
应用实例:
– 汽车、消费类电子及工业级应用
– 固态开关
– 无刷直流电机
– 速度检测
– 线性位置检测
– 角度检测
– 近感探测
– 电流检测
封装:
3引脚的SOT23封装 (器件标号后缀为SO) ; 3引脚的SIP 封装 (器件标号后缀为UA)。
霍尔开关分类霍尔开关,相信很多第一次听到这个词的朋友都不知道是什么意思,究竟是用来做什么的,为了让大家可以认识和了解霍尔开关,今天小编就给大家详细的介绍一下什么是霍尔开关,霍尔开关的特点,以及霍尔开关有哪些分类。
什么是霍尔开关当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。
两端具有的电位差值称为霍尔电势U,其表达式为U=Kk·I·B/d。
其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场的磁感应强度,d是薄片的厚度。
霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。
霍尔开关的特点霍尔开关具有无触点、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。
霍尔开关可应用于接近开关,压力开关,里程表等,作为一种新型的电器配件。
霍尔开关的分类1、单极霍尔效应开关(数字输出)。
单极霍尔效应开关具有磁性工作阈值。
如果霍尔单元承受的磁通密度大于工作阈值,那么输出晶体管将开启;当磁通密度降至低于工作阈值时,晶体管会关闭。
滞后是两个阈值之间的差额。
即使存在外部机械振动及电气噪音,此内置滞后页可实现输出的净切换。
单极霍尔效应的数字输出可适应各种逻辑系统。
这些器件非常适合与简单的磁棒或磁杆一同使用。
单极性霍尔开关它的正反面会各指定一个磁极感应才会有作用,在具体应用当中应该注意磁铁的磁极的安装,反了就会造成单极性不感应输出。
2、双极霍尔效应开关(数字输出)。
双极性霍尔具体又分双极性不带锁存型霍尔开关和双极性锁存型霍尔开关。
双极霍尔效应开关通常在南极磁场强度足够的情况下打开,并在北极磁场强度足够的情况下关闭,但如果磁场被移除,则是随机输出,有可能是打开,也有可能是关闭。
SS490SERIESLinear Hall-effect Sensor ICsDESCRIPTIONThe SS490 Series are small, versatile, linear Hall-effect devices that are operated by the magnetic field from a permanent magnet or an electromagnet. The ratiometric output voltage is set by the supply voltage and varies in proportion to the strength of the magnetic field. The integrated circuitry provides increased temperature stability and sensitivity. Laser-trimmed, thin film resistors provide high accuracy (null to ±%, sensitivity up to ±3%) and temperature compensation.They respond to either positive or negative Gauss, monitoring either or both magnetic poles. The quad Hall sensing element minimizes the effects of mechanical or thermal stress on the output. The positive temperature coefficient of the sensitivity (+0.02%/°C typical) helps compensate for the negative temperature coefficients of low-cost magnets, providing a robust design over a wide temperature range. Rail-to-rail operation (over full voltage range) provides a more usable signal for higher accuracy. These products have an operating temperature range of -40°C to 150°C [-40°F to 302°F], appropriate for industrial and automotive environments.PORTFOLIOHoneywell offers a variety of linear Hall-effect sensor ICsfor potential use in many applications. To view the entire product portfolio, click here.005843Issue 4FEATURES• Linear output for circuit design flexibility• Quad-Hall IC design minimizes mechanical stress effects• Responds to either positive or negative Gauss• Uses 7 mA at 5 Vdc for energy efficiency• Single current sinking or current sourcing output• Rail-to-rail operation provides more usable signal for higher accuracy• Temperature-compensated magnetics help provide stable operation over a wide temperature range of -40°C to 150°C [-40°F to 302°F]The SS490B versions offer cost-effective sensing solutions with wider null and sensitivity tolerances, and a wider drift over temperature than the SS490A higher performance products. Both the SS490A and SS490B versions have a typical sinking or sourcing output of 1.5 mA continuous, use 7 mA supply current at 5.0 V at 25°C [77°F], and provide predictable performance over the full temperature range. For design flexibility, these products are available in the following flat TO-92 package styles:• SS4XX: Straight standard leads, bulk pack• SS4XX-L: Straight long leads, bulk pack• SS4XX-T2: Formed leads, ammopack tape-in-box• SS4XX-T3: Straight standard leads, ammopack tape-in-box• SS4XX-SP: Surface mount, pocket tape and reelPOTENTIAL APPLICATIONS• Basic current sensing for motor load monitoring, detection• Anti-tampering magnetic field sensor in smart remote utility meters• Pump control in heavy-duty equipment and household appliances• Simple linear or angular displacement sensing• Handlebar/throttle position sensing in e-bikes and scooters• Current sensing in appliances• Speed adjustment trigger in tools and appliances• Magnetic code reading in safes, security and building access control systemsNOTICEThe magnetic field strength (Gauss) required to cause the switch to change state (operate and release) will be as specified in the magnetic characteristics. To test the switch against the specified limits, the switch must be placed in a uniform magnetic field.NOTICEAbsolute maximum ratings are the extreme limits the device will momentarily withstand without damage to the device. Electrical and mechanical characteristics are not guaranteed if the rated voltage and/or currents are exceeded, nor will the device necessarily operate at absolute maximum ratings.FIGURE 3. TRANSFER CHARACTERISTICS: TYPICAL OUTPUT VOLTAGE2.50.5Magnetic Range (Gauss)-400-200200400V o l t a g e (V )4.5 2.50.5Magnetic Range (Gauss)-640-320320640V o l t a g e (V )4.52.50.5Magnetic Range (Gauss)-800-400400800V o l t a g e (V )4.5SS495XSS494XSS496XFIGURE 1. BLOCK DIAGRAMFIGURE 2. MAXIMUM SUPPLY VOLTAGE VS TEMPERATUREsupply (+)Ambient Temperature (°C [°F])[257]V o l t a g e (V )[302]FIGURE 4. SS490 SERIES FLAT TO-92-STYLE MOUNTING AND DIMENSIONAL DRAWINGS (FOR REFERENCE ONLY: MM/[IN].)A. Straight Standard Leads Sensor IC, Bulk PackB. Straight Long Leads Sensor IC, Bulk PackNote: Ensure the minimum hole size in the PCB is 0,68 mm [0.027] dia. based on the IPC 2222 Level B standard.C. Formed Leads Sensor IC, Ammopack Tape-in-BoxD. Straight Leads Sensor IC, Ammopack Tape-in-Box (See Figure 5.A. for individual sensor IC dimensions.)FIGURE 5. SS490 SERIES FLAT TO-92-STYLE MOUNTING AND DIMENSIONAL DRAWINGS (CONTINUED)E. Surface Mount Sensor IC, Pocket Tape and ReelArbor hole1,70Section A-ATop cover tapeSS49X-T2SS49X-T3NOTICEProducts ordered in bulk pack (plastic bag) may not have perfectly straight leads as a result of normal handling and shipping operations. Please order a tape packaging option forapplications requiring straight leads.005843-4-EN | 4 | 05/22WARRANTY/REMEDYHoneywell warrants goods of itsmanufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period ofcoverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion,finds defective. The foregoing is buyer’s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.While Honeywell may provide application assistance personally, through ourliterature and the Honeywell web site, it is buyer’s sole responsibility to determine the suitability of the product in the application.Specifications may change without notice. The information we supply isbelieved to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.m WARNINGPERSONAL INJURYDO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.Failure to comply with theseinstructions could result in death or serious injury.m WARNINGMISUSE OFDOCUMENTATION•The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.•Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.Failure to comply with theseinstructions could result in death or serious injury.HoneywellAdvanced Sensing Technologies 830 East Arapaho Road Richardson, TX 75081FOR MORE INFORMATIONHoneywell Advanced SensingTechnologies services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or the nearest Authorized Distributor, visit our website or call:USA/Canada +1 302 613 4491Latin America +1 305 805 8188Europe +44 1344 238258Japan +81 (0) 3-6730-7152Singapore +65 6355 2828Greater China +86 4006396841。
概述CC6511是一款高性能单端输出的线性霍尔传感器IC ,采用单端模拟输出方式,使得产品更易于使用,当磁场南极靠近丝印面,输出值降低。
该IC 采用先进的BiCMOS 制程生产,具有霍尔系数高的优点,芯片内部包含了高灵敏度霍尔传感器,霍尔信号预放大器,高精度的霍尔温度补偿单元,振荡器,动态失调消除电路和放大器输出模块CC6511采用了专利的霍尔温度补偿技术,产品可在-40~125°C 之间正常工作,且灵敏度变化很小。
在无磁场的情况下,IC 的静态输出为50% VCC 。
CC6511的线性输出范围宽,在电源电压5V 条件下,OUT 可以在0.5~4.5V 之间随磁场线性变化,信号线性输出范围4V ,信号输出强度较传统单端输出有了很大提升,同时能提高产品的抗干扰性能。
CC6511内部集成的动态失调消除电路使IC 的灵敏度,不受外界压力和IC 封装应力的影响。
CC6511内部斩波频率高达1MHz ,使得传感器的带宽高,响应速度快。
CC6511提供TO-92S 封装,工作温度范围-40~125°C 。
特性◆ 静态共模输出点为50% VCC , ◆ 测量范围宽,线性度优于0.2%。
◆ 1MHz 斩波频率,高带宽,低噪声,全差分模拟输出 ◆ 低功耗,IC 静态工作电流为2.5mA◆温度稳定性好,内部采用了芯进专利的霍尔信号放大电路和温度补偿电路,工作环境温度为:-40~125°C 。
◆ 抗干扰能力强◆ 抗机械应力,磁参数不会因为受外界压力而偏移 ◆ESD (HBM) 6000V应用◆ 电流传感器 ◆ 磁编码器 ◆ 齿轮传感器 ◆ 位移测量 ◆ 舵机功能框图CC6511可编程线性霍尔传感器IC订购信息产品名称 封装外形 包装 CC6511TOTO-92S袋装,1000片/袋管脚定义TO-92S名称编号功能TO-94VCC 1 电源电压 GND 2 地 OUT3模拟输出极限参数参数符号 数值 单位 电源电压 V CC -0.3~6 V 输出电压 V OUT -0.3~VCC+0.3V 输出源电流 I OUT (SOURCE ) 400 uA 输出沉电流 I OUT (SINK ) 30 mA 工作环境温度 T A -40~125 °C 最大结温 T J 165 °C 存储环境温度 T S -55~150 °C 磁场强度 B 无限制 mT 静电保护ESD(HBM)6000V注意: 应用时不要超过最大额定值,以防止损坏。
ALLEGRO品牌霍尔专区Allegro MicroSystems 公司在高性能电源和霍尔效应传感器集成电路的开发、制造及营销领域始终引领全球潮流。
Allegro 独具创新的解决方案服务于汽车市场中的高增长应用,此外也开发办公自动化、工业和消费通讯解决方案。
Allegro 主要为电动机控制、调节及磁场感测应用开发集成电路解决方案。
提供高度集成的混合信号IC,不仅元件数量日益增多,功能也更加强大。
A1201参数下载A1202参数下载A1203参数下载A1204参数下载A1205参数下载A1101参数下载A1102参数下载A1103参数下载A1104参数下载A1106参数下载A1321参数下载A1322资料下载A1323参数下载A1642参数下载A3121参数下载A3187参数下载A3212参数下载A3240参数下载A3280参数下载A3282参数下载A3955参数下载A3977参数下载A8904参数下载ACS712参数下载ACS712参数下载ACS712参数下载ATS616参数下载ATS674参数下载注:点击霍尔型号查看详细参数MELEXIS品牌霍尔专区来源: 发布时间: 2012-04-11 00:13 1579 次浏览大小: 16px 14px 12px MELEXIS公司是一家专业的集成电路公司,10多年来,Melexis公司已开发出世界一流的,创新的混合信号半导体,依靠优秀的技术,在霍尔IC的研发能力和速度在业内是屈指可数的,在降低系统成本和产品设计的灵活性和优越的霍尔质量可靠性方面具有很大的MELEXIS公司是一家专业的集成电路公司,10多年来,Melexis公司已开发出世界一流的,创新的混合信号半导体,依靠优秀的技术,在霍尔IC的研发能力和速度在业内是屈指可数的,在降低系统成本和产品设计的灵活性和优越的霍尔质量可靠性方面具有很大的竞争优势。
在全球的各种汽车品牌中基本上都有Melexis设计研发的霍尔集成电路。
一.霍尔传感器市场调研1.霍尔效应在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为U H的霍尔电压。
2.霍尔传感器霍尔传感器是根据霍尔效应制作的一种磁场传感器。
霍尔效应是磁电效应的一种,这一现象是霍尔(1855—1938)于1879年在研究金属的导电机构时发现的。
后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。
霍尔效应是研究半导体材料性能的基本方法。
通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
3.霍尔传感器的工作原理霍尔电流传感器有两种工作方式,即磁平衡式和直式。
霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、次级线圈和放大电路等组成。
①直放式电流传感器(开环式)众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。
这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。
②磁平衡式电流传感器(闭环式)磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。
磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。
这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。
当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起指示零磁通的作用,此时可以通过Is来平衡。
2工作原理霍尔元件应用霍尔效应的半导体。
所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。
金属的霍尔效应是1879年被美国物理学家霍尔发现的。
当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。
半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。
利用霍尔效应可以设计制成多种传感器。
霍尔电位差UH的基本关系为:UH=RHIB/d (1)RH=1/nq(金属)(2)式中RH――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;B――垂直于I的磁感应强度;d――导体的厚度。
对于半导体和铁磁金属,霍尔系数表达式和式(2)不同,此处从略。
由于通电导线周围存在磁场,其大小和导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。
利用这一原理可以设计制成霍尔电流传感器。
其优点是不和被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。
若把霍尔元件置于电场强度为E、磁场强度为H的电磁场中,则在该元件中将产生电流I,元件上同时产生的霍尔电位差和电场强度E成正比,如果再测出该电磁场的磁场强度,则电磁场的功率密度瞬时值P可由P=EH确定。
利用这种方法可以构成霍尔功率传感器。
如果把霍尔元件集成的开关按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。
根据脉冲信号列可以传感出该运动物体的位移。
若测出单位时间内发出的脉冲数,则可以确定其运动速度。
[1]3元件特性1、霍尔系数(又称霍尔常数)RH在磁场不太强时,霍尔电势差UH与激励电流I和磁感应强度B的乘积成正比,与霍尔片的厚度δ成反比,即UH =RH*I*B/δ,式中的RH称为霍尔系数,它表示霍尔效应的强弱。
另RH=μ*ρ即霍尔常数等于霍尔片材料的电阻率ρ与电子迁移率μ的乘积。
Hall芯片原理一、什么是Hall芯片Hall芯片是一种使用霍尔效应来检测磁场的传感器芯片。
它基于霍尔效应,通过应用来自外部磁场的作用力来产生电压。
Hall芯片通常由霍尔元件、前置放大电路、温度补偿电路和输出电路组成。
二、霍尔效应的基本原理霍尔效应是指当一根导体中有电流通过时,若将该导体放置在一个垂直于导流方向的磁场中,那么在导体两边会产生一定的电势差。
这个现象被称为霍尔效应,它是由于磁场对载流子运动的影响导致的。
三、Hall芯片的工作原理1.霍尔元件Hall芯片中的霍尔元件是最关键的部分,它通常是由半导体材料制成的,并具有一些特殊设计的结构。
当磁场垂直于霍尔元件表面时,会在其两侧产生正负的电荷,并形成一个电场。
这个电场会对载流子的运动产生影响,从而引起电势差的产生。
2.前置放大电路Hall芯片中的前置放大电路用于放大霍尔元件产生的微弱信号。
它通常由一个或多个放大器组成,以提供足够的增益来强化霍尔元件的输出信号。
3.温度补偿电路温度对Hall芯片的工作性能有一定的影响,因此通常需要对温度进行补偿。
温度补偿电路会通过测量环境温度,并采取一些措施来抵消温度对Hall芯片输出的影响,从而提高温度稳定性。
4.输出电路输出电路将前置放大电路放大后的信号转换为数字或模拟的输出信号。
这个输出信号可以被微控制器或其他电子设备读取和处理,以实现磁场的检测和应用。
四、Hall芯片的应用领域Hall芯片由于其特殊的工作原理和优良的性能,在许多领域得到了广泛的应用。
以下是几个常见的应用领域:1.磁场测量Hall芯片可以用于测量磁场的强度和方向。
它可以被用于磁力计、地磁测量、电流测量等领域,如地理勘探、导航系统、电力系统等。
2.速度测量由于Hall芯片可以产生与速度相关的电压,因此它可以被用于测量旋转设备的转速,如车辆的车速、电机的转速等。
3.位置检测Hall芯片还可以通过测量磁场来检测物体的位置。
这在自动化控制系统中非常重要,例如机械传动系统、电梯控制系统等。
霍尔效应摘要:1879年美国霍普金斯大学研究生霍尔在研究金属导电机构时发现了能使导电材料中的电力与磁场相互作用而产生电动势的效应,所以称为霍尔效应。
如今,随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,现在广泛运用于电动机车测速、电磁测量和汽车等方面。
Abstract:Research in 1879 America Hopk i university students in the Holzer conductive mechanism o f metal found effect can make th e electric and magnetic conducti ve material arising from the inter action of electric potential, so it i s called the Holzer effect. Nowa days, with the development of s emiconductor materials and ma nufacturing processes, people a lso use semiconductor material Holzer element, is now widely a pplied to Motor car speed, electr omagnetic measurement and car.一.发现霍尔效应[1]在1879年被物理学家霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的电磁感应完全不同。
当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的的作用力,从而在垂直于导体与磁感线的两个方向上产生电势差。
虽然这个效应多年前就已经被人们知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。
NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no respon-sibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.Recommended Substitutions:For existing customer transition, and for new customers or new appli-cations, refer to the ACS712.Bidirectional 1.5 mΩ Hall Effect Based Linear Current Sensor ICwith V oltage Isolation and 15 A Dynamic RangeACS706ELC-05CDate of status change: December 26, 2006These parts are in production but have been determined to beNOT FOR NEW DESIGN. This classification indicates that sale of this device is currently restricted to existing customer applications. The device should not be purchased for new design applications because obsolescence in the near future is probable. Samples are no longer available.Not for New DesignFeatures and Benefits• Small footprint, low-profile SOIC8 package• 1.5 m Ω internal conductor resistance• 1600 V RMS minimum isolation voltage between pins 1-4 and 5-8• 4.5 to 5.5 V, single supply operation • 50 kHz bandwidth• 133 mV/A output sensitivity and 15 A dynamic range • Output voltage proportional to ac and dc currents • Factory-trimmed for accuracy• Extremely stable output offset voltage • Near-zero magnetic hysteresis• Ratiometric output from supply voltageThe Allegro ACS706 family of current sensor ICs provides economical and precise solutions for current sensing in industrial, automotive, commercial, and communications systems. The device package allows for easy implementation by the customer. Typical applications include motor control, load detection and management, switch-mode power supplies, and overcurrent fault protection.The device consists of a precision, low-offset linear Hall circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which the Hall IC converts into a proportional voltage. Device accuracy is optimized through the close proximity of the magnetic signal to the Hall transducer. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BiCMOS Hall IC, which is programmed for accuracy at the factory.The output of the device has a positive slope (>V CC / 2) when an increasing current flows through the primary copper conduction path (from pins 1 and 2, to pins 3 and 4), which is the path used for current sampling. The internal resistance of this conductive path is typically 1.5 m Ω, providing low power loss. The thickness of the copper conductor allows survival of the device at up to 5× overcurrent conditions. The terminals of the conductive path are electrically isolated from the signal leads (pins 5 through 8). This allows the ACS706 to be used in applications requiring electrical isolation without the use of opto-isolators or other costly isolation techniques.The ACS706 is provided in a small, surface mount SOIC8 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the flip-chip uses high-temperature Pb-based solder balls, currently exempt from RoHS. The device is fully calibrated prior to shipment from the factory.Use the following complete part number when ordering:Part NumberPackageACS706ELC-05CSOIC8 surface mountTÜV AmericaCertificate Number:U8V 04 12 54214 005AB S O L UTE MAX I M UM RAT I NGSSupply V oltage, V CC ..........................................16 V Reverse Supply V oltage, V RCC ........................–16 V Output V oltage, V OUT ........................................16 V Reverse Output V oltage, V ROUT ......................–0.1 V Output Current Source, I OUT(Source) ................. 3 mA Output Current Sink, I OUT(Sink) .......................10 mA Maximum Transient Sensed Current *, I R(max) ...100 A Operating Temperature, Maximum Junction, T J(max).......................165°C Storage Temperature, T S ......................–65 to 170°C*Junction Temperature, T J < TJ(max).*100 total pulses, 250 ms duration each, applied at a rate of1 pulse every 100 seconds.Nominal Operating Temperature, T A Range E ............................................–40 to 85ºC Overcurrent Transient Tolerance*, I P ................60 ABidirectional 1.5 m Ω Hall Effect Based Linear Current Sensorwith Voltage Isolation and 15 A Dynamic RangePackage LCPin 1: IP+Pin 2: IP+Pin 3: IP–Pin 4: IP–Pin 8: VCC Pin 7: VOUTPin 6: N.C.Pin 5: GNDPins 6 and 7 are internally connected in shipping product. For compatibility with future devices, leave pin 6 floating.Functional Block Diagram0.1 μFPERFORMANCE CHARACTERISTICS, over operating ambient temperature range, unless otherwise specifiedPropagation Time t PROP I P =±5 A, T A = 25°C– 3.15–μs Response Time t RESPONSE I P =±5 A, T A = 25°C–6–μs Rise Time t r I P =±5 A, T A = 25°C–7.45–μs Frequency Bandwidth f–3 dB, T A = 25°C; I P is 10 A peak-to-peak; no external filter–50–kHzSensitivity Sens Over full range of I P , I P applied for 5 ms; T A = 25°C–133–mV/A Over full range of I P , I P applied for 5 ms124–142mV/ANoise V NOISE Peak-to-peak, T A = 25°C, no external filter–90–mV Root Mean Square, T A = 25°C, no external filter–16–mVLinearity E LIN Over full range of I P , I P applied for 5 ms–±1±4.7% Symmetry E SYM Over full range of I P , I P applied for 5 ms98100104.5% Zero Current Output Voltage V OUT(Q)I P = 0 A, T A = 25°C–V CC / 2–VElectrical Offset Voltage V OE I P = 0 A, T A = 25°C–15–15mV I P = 0 A–65–65mVMagnetic Offset Error I ERROM I P = 0 A, after excursion of 5 A–±0.01±0.05ATotal Output Error1E TOT I P =±5 A, I P applied for 5 ms;T A = 25°C–±1.5–% I P = ±5 A, I P applied for 5 ms––±12.5%Characteristic Symbol Test Conditions Min.Typ.Max.Units ELECTRICAL CHARACTERISTICS, over operating ambient temperature range unless otherwise specifiedOptimized Accuracy Range I P–5–5A Linear Sensing Range I R–15–15A Supply Voltage V CC 4.5 5.0 5.5V Supply Current I CC V CC = 5.0 V, output open5810mA Output Resistance R OUT I OUT = 1.2 mA–12ΩOutput Capacitance Load C LOAD VOUT to GND––10nF Output Resistive Load R LOAD VOUT to GND 4.7––kΩPrimary Conductor Resistance R PRIMARY T A = 25°C– 1.5–mΩRMS Isolation Voltage V ISORMS Pins 1-4 and 5-8; 60 Hz, 1 minute16002500–V DC Isolation Voltage V ISODC–5000–V OPERATING CHARACTERISTICSTHERMAL CHARACTERISTICS2,3, T A = –40°C to 125°C, V CC = 5 V unless otherwise specified–Value–UnitsJunction-to-Lead Thermal Resistance RθJLMounted on the Allegro ASEK 70x evaluation board; additionalinformation about reference boards and tests is available on theAllegro Web site–5–°C/WJunction-to-Ambient Thermal Resistance RθJAMounted on the Allegro ASEK 70x evaluation board; additionalinformation about reference boards and tests is available on theAllegro Web site–41–°C/W1Percentage of I P, with I P = 5 A. Output filtered. Up to a 2.0% shift in E TOT may be observed at end-of-life for this device.2 The Allegro evaluation board has 1500 mm2 of 2 oz. copper on each side, connected to pins 1 and 2, and to pins3 and 4, with thermal vias connect-ing the layers. Performance values include the power consumed by the PWB. Further details on the board are available from the ACS704 Frequently Asked Questions document on our website. Further information about board design and thermal performance also can be found on pages 16 and 17 of this datasheet.3RθJA values shown in this table are typical values, measured on the Allegro evaluation board. The actual thermal performance depends on the board design, the airflow in the system, and thermal interactions between the device and surrounding components through the PCB and the ambient air. To improve thermal performance, see our applications material on the Allegro Web site.Typical Performance Characteristics-50-25255075100125150Supply Current versus Ambient TemperatureV CC = 5 VT A (°C)I C C (m A )4.54.64.74.84.95 5.15.25.35.45.5V CC (V)I C C (m A )8.008.058.108.158.208.258.308.358.408.458.50Supply Current versus Applied VCC11.01.52.02.53.03.54.0-9-8-7-6-5-4-3-2-10123456789V O U T (V )Output Voltage versus Primary CurrentV CC = 5 VI P (A)110115120125130135140145150160S e n s (m V /A )-9-8-7-6-5-4-3-2-1123456789I P (A)Sensitivity versus Primary CurrentV CC = 5 V-50-250255075100125150V O U T (Q ) (V )2.4702.5802.4902.5002.5102.5202.530Zero Current Output Voltage vs. Ambient TemperatureT A (°C)I P = 0 AZero Current Output Currrent versus Ambient Temperature(Data in above chart converted to amperes)I V O U T (Q ) (A )–0.3–0.2–0.10.10.20.3–50–25255075100125150T A (°C)V O M (m A )-1.0-0.8-0.6-0.4-0.200.20.40.60.81.0-50-25255075150100125T A (°C)Magnetic Offset Error versus Ambient TemperatureV CC = 5 V; I P= 0 A, after excursion to 5 A-50-25255075150100125T A (°C)00.51.01.52.02.53.0E L I N (%)Nonlinearity versus Ambient TemperatureV CC = 5 V I P= 5 ATypical Peak-to-Peak Noise of ACS706ELC-05C at T A =25°CStep Response of ACS706ELC-05C at T A =25°CACS706 Output (mV)5 A Excitation SignalTime = 10 μs/div.Excitation signal = 1.00 A/div.Output = 100 mV/div.Time = 20 μs/div.Noise = 20.0 mV/div.ACS706ELC-05C Noise Filtering and Frequency Response Performance Break Frequencyof Filter on Output(kHz)Resistance,R F (kΩ)Capacitance,C F (μF)NominalProgrammedSensitivity(mV/A)FilteredPeak-to-Peak Noise(mV)Resolutionwith Filtering(A)Rise Timefor 5A Step,Filtered(μs)Unfiltered––133 900.6777.45800.2000.01 75.90.5718.26500.32064.70.48610.08 400.39260.30.45311.39 200.80043.30.32617.56 10 1.628.90.21831.96 7.0 3.1518.30.13754.55 3.3 4.813.80.10481.77 0.626 1.90.015404.16 0.3530.760.00573732.89OUTTypical Application DrawingThe ACS706 outputs an analog signal, V Sig. that varies linearly with the bidirectional primarysensed current, I P, within the range specified. R F and C F, are recommended for noise management,with values that depend on the application, as shown in the noise filtering table.Sensitivity (Sens). The change in device output in response to a 1 A change through the primary conductor. The sensitivity is the prod-uct of the magnetic circuit sensitivity (G / A ) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.Noise (V NOISE ). The product of the linear IC amplifier gain (mV/G) and the noise floor for the Allegro Hall effect linear IC (≈1 G). The noise floor is derived from the thermal and shot noise observed in Hall elements. Dividing the noise (mV) by the sensitivity (mV/A) provides the smallest current that the device is able to resolve.Linearity (E LIN ): The degree to which the voltage output from the device varies in direct proportion to the primary current through its full-scale amplitude. Nonlinearity in the output can be attributed to the saturation of the flux concentrator approaching the full-scale current. The following equation is used to derive the linearity:Definitions of Accuracy Characteristics1001– [{[{V out_full-scale amperes –V OUT(Q)()2 (V out_half-scale amperes –V OUT(Q))100where V out_full-scale amperes = the output voltage (V) when the sensed current approximates full-scale ±I P .Symmetry (E SYM ). The degree to which the absolute voltage output from the device varies in proportion to either a positive or nega-tive full-scale primary current. The following formula is used to derive symmetry:Quiescent output voltage (V OUT(Q)). The output of the device when the primary current is zero. For a unipolar supply voltage, it nominally remains at V CC ⁄ 2. Thus, V CC = 5 V translates into V OUT(Q) = 2.5 V . Variation in V OUT(Q) can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift.Electrical offset voltage (V OE ). The deviation of the device output from its ideal quiescent value of V CC / 2 due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.Accuracy (E TOT ). The accuracy represents the maximum deviation of the actual output from its ideal value. This is also known as the total ouput error. The accuracy is illustrated graphically in the Output V oltage versus Current chart on the following page.Accuracy is divided into four areas:∙ 0 A at 25°C. Accuracy at zero current flow at 25°C, without the effects of temperature.∙ 0 A over Δ temperature. Accuracy at zero current flow including temperature effects.∙ Full-scale current at 25°C. Accuracy at the full-scale current at 25°C, without the effects of temperature.∙ Full-scale current over Δ temperature. Accuracy at full-scale current flow including temperature effects.Ratiometry . The ratiometric feature means that its 0 A output, V OUT(Q), (nominally equal to V CC /2) and sensitivity, Sens, are propor-tional to its supply voltage, V CC . The following formula is used to derive the ratiometric change in 0 A output voltage, ∆V OUT(Q)RAT (%):100V IOUT(Q)VCC /V IOUT(Q)5VV CC /5 VThe ratiometric change in sensitivity, ∆Sens RAT (%), is defined as:100Sens VCC /Sens 5V V CC /5 V ‰Output voltage vs. current, illustrating device accuracy at 0 A and at full-scale currentDefinitions of Dynamic Response CharacteristicsPropagation delay (t PROP): The time required for the device output to reflect a change in the primary cur-rent signal. Propagation delay is attributed to inductive loading within the linear IC package, as well as in the inductive loop formed by the primary conductor geometry. Propagation delay can be considered as a fixed time offset and may be compensated.Response time (t RESPONSE): The time interval between a) when the primary current signal reaches 90% of its final value, and b) when the device reaches 90% of its output corresponding to the applied current.Rise time (t r): The time interval between a) when the device reaches 10% of its full scale value, and b) when it reaches 90% of its full scale value. The rise time to a step response is used to derive the bandwidth of the device, in which ƒ(–3 dB) = 0.35 / t r. Both t r and t RESPONSE are detrimentally affected by eddy current losses observed in the conductive IC ground plane.Device Branding Key (Two alternative styles are used)ACS706T ELC05C YYWWA ACS Allegro Current Sensor706Device family numberT Indicator of 100% matte tin leadframe platingE Operating ambient temperature range codeLC Package type designator05C Primary sensed currentYY Manufacturing date code: Calendar year (last two digits) WW Manufacturing date code: Calendar weekA Manufacturing date code: Shift codeACS706T ELC05CL...L YYWWACS Allegro Current Sensor706Device family numberT Indicator of 100% matte tin leadframe platingE Operating ambient temperature range codeLC Package type designator05C Primary sensed currentL...L Manufacturing lot codeYY Manufacturing date code: Calendar year (last two digits)WW Manufacturing date code: Calendar week Standards and Physical SpecificationsParameter SpecificationFlammability (package molding compound)UL recognized to UL 94V-0Fire and Electric Shock UL60950-1:2003EN60950-1:2001CAN/CSA C22.2 No. 60950-1:2003Chopper Stabilization TechniqueChopper Stabilization is an innovative circuit technique that is used to minimize the offset voltage of a Hall element and an associated on-chip amplifier. Allegro patented a Chopper Stabilization technique that nearly eliminates Hall IC output drift induced by temperature or package stress effects. This offset reduction technique is based on a signal modulation-demodulation process. Modulation is used to separate the undesired dc offset signal from the magnetically induced signal in the frequency domain. Then, using a low-pass filter, the modu-lated dc offset is suppressed while the magnetically induced signal passes through the filter. As a result of this chopper stabilization approach, the output voltage from the Hall IC is desensitized to the effects of temperature and mechanical stress. This technique produces devices that have an extremely stable Electrical Offset V oltage, are immune to thermal stress, and have precise recoverability after temperature cycling.This technique is made possible through the use of a BiCMOS process that allows the use of low-offset and low-noise amplifiers in combination with high-density logic integration and sample and hold circuits.Concept of Chopper Stabilization TechniqueApplications InformationIn order to quantify transient common-mode voltage rejection for the ACS706, a device was soldered onto a printedcircuit board. A 0.1 μF bypass capacitor and a 5 V dc power supply were connected between VCC and GND (pins 8 and5) for this device. A 10 k Ω load resistor and a 0.01 μF capacitor were connected in parallel between the VOUT pin andthe GND pin of the device (pins 7 and 5).A function generator was connected between the primary current conductor (pins 1 thru 4) and the GND pin ofthe device (pin 5). This function generator was configured to generate a 10 V peak (20 V peak-to-peak) sinewave between pins 1-4 and pin 5. Note that the sinusoidal stimulus was applied such that no electrical currentwould flow through the copper conductor composed of pins 1-4 of this device.The frequency of this sine wave was varied from 60 Hz to 5 MHz in discrete steps. At each frequency, thestatistics feature of an oscilloscope was used to measure the voltage variations (noise) on the ACS706 outputin mV (peak to peak). The noise was measured both before and after the application of the stimulus. Transientcommon-mode voltage rejection as a function of frequency is shown in the following figure.Transient Common-Mode Voltage Rejection in the ACS706(kHz)Frequency of 20 V Peak-to-Peak Stimulus –60–55–50–45–40–35–30Tr a nsi e ntR ej ect i o n(d B)The Effect of PCB Layout on ACS706 Thermal PerformanceEight different PC boards were fabricated to characterize the effect of PCB design on the operating junction temperature of the Hall-effect IC inside of the ACS706. These PC boards are shown in the figure below. 2 oz. Cu on one side of board 2 oz. Cu on both sides of board An ACS706 device was soldered on to each PCB for thermal testing. The results of the testing are shown in the following table.Test Results on Eight Thermal Characterization PCBsTested at 15A, T A = 20°C, still air, 2 oz. copper traces, current carried on and off boardby 14 gauge wiresPC BoardsSides with Traces Trace Width (mm)Trace Length (mm)Temperature Rise Above Ambient (°C)1 450901.550Overheated 410481.5101102450531.550106410381.51054Improved PC Board DesignsThe eight PC boards in the figure above do not represent an ideal PC board for use with the ACS706. The ACS706 evaluation boards, for sale at the Allegro Web site On-Line Store, represent a more optimal PC board design (see photo below). On the evaluation boards, the current to be sensed flows through very wide traces that were fabricated using 2 layers of 2 oz. copper. Thermal management tests were conducted on the Allegro evaluation boards and all tests were performed using the same test conditions described in the bulleted list above. The results for these thermal tests are shown in the table below. When using the Allegro evaluation boards we see that even at an applied current of 20 A the junction temperature of the ACS706 is only ≈30 degrees above ambient temperature.Test Results on Eight Electrical Characterization PCBsTested at T A = 20°C, still airApplied Current(A)Temp Rise Above Ambient( C)1522 2031Allegro Current sensor IC evaluation board with ACS706 and external connections.The products described herein are manufactured under one or more of the following U.S. patents: 5,045,920; 5,264,783; 5,442,283; 5,389,889; 5,581,179; 5,517,112; 5,619,137; 5,621,319; 5,650,719; 5,686,894; 5,694,038; 5,729,130; 5,917,320; and other patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time to time, such de p ar t ures from the detail spec i f i c a t ions as may be required topermit improvements in the per f or m ance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro products are not authorized for use as critical components in life-support devices or sys t ems without express written approval.The in f or m a t ion in c lud e d herein is believed to be ac c u r ate and reliable. How e v e r, Allegro MicroSystems, Inc. assumes no re s pon s i b il i t y for its use; nor for any in f ringe m ent of patents or other rights of third parties which may result from its use.Copyright©2005, 2006 Allegro MicroSystems, Inc.Package LC, 8-pin SOICPreliminary dimensions, for reference onlyDimensions in millimetersU.S. Customary dimensions (in.) in brackets, for reference only(reference JEDEC MS-012 AA)Dimensions exclusive of mold flash, gate burrs, and dambar protrusionsExact case and lead configuration at supplier discretion within limits shownA Terminal #1 mark area。
1.概述HAL49E HAL49E为小型、通用、线性霍尔效应传感器,其输出信号电平决定于施加在器件敏感面的磁场强度,随磁场强度成比例地变化。
当HAL49E处于零磁场条件时,其输出电压是电源电压的一半。
S磁极出现在HAL49E标记面时,输出电压将随磁场强度增加而线性升高;相反,N磁极将使输出电压随磁场强度增加而线性降低。
HAL49E具有低噪声输出的特点,不再需要采用外部滤波。
它还包括薄膜式电阻,能提高温度的稳定性和准确性。
工作温度范围为-40°C至85 °C,适用于各种商业用户和工业环境。
2.特点3.典型应用♦耐压高♦电动车调速转把♦精确度高♦电流检测传感器♦稳定性好♦接近检测器♦灵敏度高♦运动检测器♦可靠性高♦齿轮传感器♦低噪声♦电动机控制♦低功耗♦旋转编码器4. 功能框图Hallwee5. 芯片外观图6. 管脚描述名称 管 脚功能 TO-92SSOT-23 V cc 11电源端 GND2 3 地端 OUT32输出端7. 极限参数参数符号 参数值 单位 供电电压 V CC8.0 V 输出电流 IOUT20 mA工作温度 T A -40 〜85 C 存储温度 T S-65 〜150C参数 符号 测试条件最小值 典型值 最大值 单位 工作电压 V CCOperating 35 6.5 V 工作电流 ICCAverage3 4.5 mA输出电阻 R O40 100 0 噪音V no BW=10Hz-10K Hz90uV 静态输出电压 V OB = 0Gs 2.35 2.52.65 V最低输出电压B = -1200Gs 0.80 0.95V 最高输出电压B = 1200Gs4.2V49ywwHAL49EHallwee9.磁场特性参数 测试条件 最小值 典型值 最大值 单位 灵敏度 T A = 25°C1.52.0 2.5mV/Gs 磁场强度范围 ±650 ±1000 Gs 线性度-0.007量程的%零位漂移-0.100.10 %/C灵敏度温漂T A N 25 C -0.15 0.05 %/CT A V 25 C-0.040.18510.特性曲线-100 -80 -60 -40 -20 020 40 60 80 100畿场例度(mT)工作电流与工作电压关系曲线输出电压与磁场强度曲线 655. 5 工作电压E)55d -d -332211 5 TO -20 0 20 ■« 608050505 05 050静态输出电压与工作电压关系曲线 输出电压与环境温度曲线HAL49EHallwee11. 使用注意1) 安装时应尽量减小作用到霍尔电路上的机械应力; 2) 在保证焊接质量的条件下,尽量使焊接温度低,时间短。
霍尔传感器的工作原理霍尔传感器是一种常见的电子元件,用于测量磁场的强度和方向。
它是根据霍尔效应而设计的,可以在不接触被测物体的情况下获取关于磁场的信息。
在本文中,将详细介绍霍尔传感器的工作原理。
1. 霍尔效应的基本原理:霍尔效应是指当电流通过导体时,在垂直于电流方向的磁场作用下,产生电势差。
这个效应是由于电子受到洛伦兹力的作用,导致电荷分布不平衡而产生的。
霍尔传感器利用了这一效应来测量磁场。
2. 核心元件:霍尔传感器的核心元件是霍尔元件,它通常是以硅材料制成的。
在霍尔元件内部有一条细长的导线,被称为霍尔芯片。
霍尔芯片中有两个电极,一个为输入电极,用于输入电流;另一个为输出电极,用于输出电位差。
3. 工作原理:霍尔传感器工作时,首先通过输入电极输入一定大小的电流。
当电流通过霍尔芯片时,由于磁场的作用,电子受到洛伦兹力的作用而产生偏转。
这导致了霍尔芯片内部电子的不平衡,从而形成了一个电势差。
4. 电位差测量:霍尔传感器的输出电极会读取这个电位差,并将其转换为一个电压信号。
这个电压信号的大小和方向与施加在传感器上的磁场的强度和方向成正比。
因此,通过测量输出电压的变化,可以间接地获取磁场的信息。
5. 灵敏度调节:霍尔传感器可以通过调节输入电流的大小来调整其灵敏度。
一般来说,较大的输入电流将导致较大的电位差,从而提高传感器的灵敏度。
然而,过大的电流也会产生过大的能量损耗,因此需要在实际应用中平衡这两个因素。
6. 应用领域:霍尔传感器在许多领域中得到广泛应用,例如汽车工业、电子设备、航空航天等。
在汽车工业中,霍尔传感器常用于测量车速、转速和行程等参数。
在电子设备中,它可以用于电源管理、电流测量和位置检测等。
在航空航天领域,霍尔传感器被用于导航和自动控制系统中。
总结:霍尔传感器是一种基于霍尔效应的电子元件,可以用于测量磁场的强度和方向。
它的工作原理是通过输入电流产生电势差,并将其转换为输出电压信号。
调节输入电流的大小可以调整传感器的灵敏度。
小电流霍尔传感器芯片主要用于检测磁场并转换成电信号,广泛应用于电流测量、位置检测、速度检测等领域。
下面介绍一些常见的小电流霍尔传感器芯片:
1. ACS758:该芯片是一款高灵敏度、低噪声的霍尔效应传感器,常用于电流检测、磁场测量等领域。
它具有低功耗、线性度好、抗干扰能力强等优点。
2. ACS712:该芯片是一款线性霍尔传感器,专为电流检测而设计。
它能够将电流转换成电压,具有高精度、低噪声、响应速度快等优点。
3. AH800:该芯片是一款高精度、低功耗的霍尔电流传感器芯片,能够测量直流和交流电流。
它具有线性度好、温度稳定性高、响应速度快等优点。
4. ACS724:该芯片是一款数字霍尔传感器,适用于电流检测和位置检测。
它具有高灵敏度、低噪声、低功耗等优点,并且支持SPI和I2C 通信协议。
5. ACS660:该芯片是一款高灵敏度、低噪声的霍尔效应传感器,适用于电动车电池管理和电机控制等领域。
它具有高精度、快速响应、低功耗等优点。
这些小电流霍尔传感器芯片都具有不同的特点和应用领域,可以根据具体需求选择适合的芯片。
线性霍尔效应传感器IC
线性传感器芯片 - 特点和优点
线性传感器拥有很宽的磁场工作范围,关键性指标是在其规定的工作温度范围的灵敏度和线性度。
线性霍尔器件几乎不受环境因素的影响,例如振动,潮湿,灰尘或油膜,环境照明等。
一些应用领域
•电流传感
•电源感应(电能计量)
•磁(偏)传感应用
•黑色金属探测器
•接近传感器
•液体位置传感器
•温度/压力/真空感应器
•油门或空气阀门位置传感器
•非接触式电位器
比值定义
大多数的线性霍尔器件是有具体比例的,静态时候的输出电
压(典型值是二分之一的电源电压),灵敏度与电源电压成正比。
例如,一个霍尔器件的电源电压为5V,在没有外加磁场的情况下,器件的静态输出为2.5V,并且以1.5mV/GS的比率变化。
如果电源电压变为5.5V,静态输出变为2.75V,并且以1.75mV/GS的比率变化。
线性器件特性
早期的线性比例式装置的
使用单校准线性霍尔元件
电流感应
线性霍尔效应器件对电流检测来说是理想的,可以精确的测量由几毫安到几千安培的电流值。
电流通过导体将产生一个大约每6.9GS/mA的自由空间磁场。
因为一个霍尔器件的测量范围是有限的,所以,需要配置检测电路使被测量的电流强度范围是在器件允许的范围内。
大电流测量
对于大电流的产品来说,线性霍尔能够在不使用加强外部电场和不加磁环和线圈的情况下,通过感应总磁场产生的一个分信号,来提供一个可用的输出。
对于低电流的产品,需要外加一个环形线圈来增加可检测磁场的范围。
理想情况下,考虑了信号与噪声的比例问题,磁场强度要在100GS以上。
在芯片表面的磁通量密度可以计算为:B ≈ I/4πr
或者 I ≈ 4πrB
B:磁场强度,单位:高斯;
I:电流强度,单位:安培
r:由导线的中心到器件芯片的距离,单位:英寸
例1:导线的半径0.25英寸,加上0.1英寸空气间隙,2000安培的电流。
B≈2000/4.40≈445G。
例2:导线的半径0.15英寸,加上0.1英寸空气间隙,300安培的电流。
B≈300/3.14≈95G。
请注意,霍尔元件对于经过它的垂直磁场是最敏感的,与器件成某一角度的磁感线,将在余弦方向上降低霍尔电压的值,在90度位置的磁感线产生的有效磁场为0。
使用线圈提高灵敏度
磁通密度可随线圈的使用变大,由器件到线圈到空气的距离共为0.06英寸,增加的磁场强度可以由下列公式计算:
B ≈ 6.9nI
或者 n ≈ B/6.9I
n:线圈匝数
例如,在12安培的电流下,要显示400高斯:n≈400/83=5圈。
使用磁环使灵敏度最大化
对于一个低于120A的精确的电流测量来说,使用与通电导体一起穿过空间定位装置的磁环,是最佳的方式。
磁环将加强通过磁敏器件的磁场。
由于与内部噪声有关的固定器件和放大器的原因,1高斯以下的磁场是很难被测量的。
为了测量低电流,被测产品应该使用磁环。
磁环圈数n ≈ B/6.9I
与永磁材料一起使用的线性霍尔器件的应用
在许多应用中,线性设备与永久磁铁一起使用。
下面是几种磁铁的配置。
为了最大限度地提高线性度,电场强度的变化与所需的位移的比值必须要是理想的。
对磁铁和传感器件的合适选择,能够节省
巨大的成本,一般来说,高品质,高场强磁体要用于最线性的传感应用。
头传感器(单极磁铁)
虽然简单,但是一个单极磁铁产生一个与空气间隙成非线性的模拟输出磁场。
在空气间隙很小的时候,在某些应用领域,可以认为,空气间隙与输出电压成线性比例。
空气间隙很大的时候,认为输出有一个明显的非线性特征。
线性器件将精确的追踪南极或者北极磁场。
特点:
•器件的输出和跟踪磁场
•简单的机械配置
相对距离(总有效气隙)
滑动传感器(单极磁铁)
滑动传感器是一种可以获得与滑动成比例的线性输出电压的简单方式。
把器件放到磁场的零场位置,南极和北极磁场的相应输出便
可以产生了。
输出的中心的线性度很好,可以应用于电位器,空气阀,油门位置等类型的领域。
特点:
•线性度好的输出定位在一个相对距离较小的范围内
•磁场与输出电压的曲线斜率很大
•相对距离磁通量的变化很大
•输出电压接近0至Vcc。
相对距离
相对距离
推拉方式
器件在两个相反的磁极之间运动,互补的磁场可以使输出曲线更加的线性,更加的陡峭倾斜。
输出电压可以通过磁极的改变在0到附近的轨电压之间变化。
特点:
•磁场与输出电压的曲线斜率更加陡峭倾斜
•输出数值随磁铁极性方向变化,数值接近0至Vcc,不能够进行精确定位。
相对距离
推推方式
器件位于两个相同的磁极之间运动,两个相对的同磁场可以产生一个非常线性的,中等斜度的输出曲线。
特点:
•陡峭的磁场与输出电压曲线
•输出接近0至Vcc,不能够进行准确的定位
相对距离
复合磁体
复合磁体可用于产生专门的产出,包括正弦波型的输出。
磁偏线性传感器
线性器件可用于检测黑色金属是否存在。
这需要在器件上绑定一个偏置磁铁。
虽然专门的齿轮检测可能需要更适合他们应用的设计,但是这个技术是可以用于齿轮检测的。
优化线性输出
让线性器件与几种常见的电路结合使用,以此来优化专业应用的输出。
A / D转换接口
线性器件可以为模数转换器提供输入信号。
线性器件由A/D转换器的参考电压提供电压,可以追踪A/D转换器的LSB(最低有效位)的变化。
随着参考电压的变化,LSB会有不同的比例。
查找表
如果数字输出是提供给微处理器,那么该器件的输出可以参考查找表,来校正任何的非线性。
比较器
虽然具有斩波稳定结构的霍尔效应开关可能更适合这些应用,但是比较器可以提供一个触发点从而将线性器件转换成一个可调节的数字开关。
运算放大器
运算放大器可用于提高器件的的输出值,并提供可调整的偏移。
相对距离
磁偏线性缺口传感检测
磁偏线性齿轮传感检测。