最新初中数学数据分析图文解析
- 格式:doc
- 大小:340.00 KB
- 文档页数:11
最新初中数学数据分析图文解析
一、选择题
1.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2
----,关于这组数据,下列结论不正确的是()
A.平均数是B.中位数是C.众数是D.方差是
【答案】D
【解析】
【分析】
一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].
【详解】
解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9
故选D.
2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:
决赛成绩/分95908580
人数4682
那么20名学生决赛成绩的众数和中位数分别是( )
A.85,90 B.85,87.5 C.90,85 D.95,90
【答案】B
【解析】
试题解析:85分的有8人,人数最多,故众数为85分;
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分.
故选B.
考点:1.众数;2.中位数
3.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不
变,则x
y
等于()
A.3
4
a
b
B.
4
3
a
b
C.
3
4
b
a
D.
4
3
b
a
【答案】D
【解析】
【分析】
根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.【详解】
解:∵甲、乙两种糖果,原价分别为每千克a元和b元,
两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,
∴两种糖果的平均价格为:ax by
x y
+
+
,
∵甲种糖果单价下降15%,乙种糖果单价上涨20%,
∴两种糖果的平均价格为:
1520 (1)(1)
100100
a x
b y
x y
-•++
+
,
∵按原比例混合的糖果单价恰好不变,
∴ax by
x y
+
+
=
1520
(1)(1)
100100
a x
b y
x y
-•++
+
,
整理,得15ax=20by
∴
4
3
x b
y a =,
故选:D.
【点睛】
本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.
4.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()
A.队员1 B.队员2 C.队员3 D.队员4
【解析】
【分析】
根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.
【详解】
解:因为队员1和2的方差最小,所以这俩人的成绩较稳定,
但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定.
故选B.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()
A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较
【答案】A
【解析】
【分析】
根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.
【详解】
解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,
∵甲班的中位数是104,乙班的中位数是106,
∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,
∴甲优<乙优,
故选:A.
【点睛】
本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.
6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是()
A.20分,22分B.20分,18分
C.20分,22分D.20分,20分