新编中考数学试题分类汇编15新概念规律类题
- 格式:pdf
- 大小:5.36 MB
- 文档页数:34
专题15二次函数的实际应用(21题)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ;②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是()A .0B .1C .2D .32.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是()A .B .C .D .3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,23cm EF =,60E ∠=︒,现将菱形EFGH 以1cm /s的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是()A .B .C .D .二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是2cm .三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.9.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背背景◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.景1◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA ,从点O 处抛出一个小球,落到点33,2A ⎛⎫ ⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx =-+的一部分.(1)求抛物线的解析式;(2)求抛物线最高点的坐标;(3)斜坡上点B 处有一棵树,点B 是OA 的三等分点,小球恰好越过树的顶端C ,求这棵树的高度.21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠== .(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).。
中考数学复习新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2 .【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2同步训练:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型例题:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.同步训练:(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B 的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N 点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC 中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.类型3 新内容理解把握例题:(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.同步训练:(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D专题训练1.(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:22. (2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.3. (2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.4. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)5. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).6.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.。
2020年中考数学试题分类汇编之十五新概念新规律题一、选择题7.(2020河南)定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 只有一个实数根【答案】A【详解】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0,∴ 原方程有两个不相等的实数根,故选.A10.(2020湖北武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A. 160B. 128C. 80D. 48解:由图可知,在66⨯方格纸片中,32⨯方格纸片的个数为5420⨯=(个) 则20480n =⨯= 故选:C .③②①4.(2020重庆A 卷)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第①个图案中有3个黑色三角形,第①个图案中有6个黑色三角形,…,按此规律排列下去,则第①个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21解:∵第①个图案中黑色三角形的个数为1, 第①个图案中黑色三角形的个数3=1+2, 第①个图案中黑色三角形的个数6=1+2+3, ……∴第①个图案中黑色三角形的个数为1+2+3+4+5=15, 故选:B .8.(2020重庆B 卷)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B. 19C.20D.21 答案C.9.(2020山东枣庄)(3分)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b=-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( ) A .4x = B .5x = C .6x = D .7x =【解答】解:根据题意,得12144x x =---, 去分母得:12(4)x =--, 解得:5x =,经检验5x =是分式方程的解.故选:B .8.(3分)(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p格,这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .7.(3分)(2020•烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(√2)nB .(√2)n ﹣1C .(√22)nD .(√22)n ﹣1【解答】解:∵△OA 1A 2为等腰直角三角形,OA 1=1, ∴OA 2=√2;∵△OA 2A 3为等腰直角三角形, ∴OA 3=2=(√2)2;∵△OA 3A 4为等腰直角三角形, ∴OA 4=2√2=(√2)3. ∵△OA 4A 5为等腰直角三角形, ∴OA 5=4=(√2)4, ……∴OA n 的长度为(√2)n ﹣1.故选:B .12.(2020云南)(4分)按一定规律排列的单项式:a ,﹣2a ,4a ,﹣8a ,16a ,﹣32a ,…,第n 个单项式是( ) A .(﹣2)n ﹣1aB .(﹣2)n aC .2n ﹣1aD .2n a解:∵a =(﹣2)1﹣1a , ﹣2a =(﹣2)2﹣1a ,4a =(﹣2)3﹣1a ,﹣8a =(﹣2)4﹣1a ,16a =(﹣2)5﹣1a ,﹣32a =(﹣2)6﹣1a ,…由上规律可知,第n 个单项式为:(﹣2)n ﹣1a . 选:A .二、填空题9.(2020江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是 .【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2517.(2020贵州黔西南)(3分)如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为 1 .【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【解答】解:当x =625时,15x =125,当x =125时,15x =25,当x =25时,15x =5,当x =5时,15x =1,当x =1时,x +4=5, 当x =5时,15x =1,…依此类推,以5,1循环, (2020﹣2)÷2=1010, 即输出的结果是1, 故答案为:119.(2020贵州黔西南)(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为 57 .【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.17.(2020齐齐哈尔)((3分)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的边长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4, ∴第3个等腰直角三角形的面积=12×4×4=8=23, …则第2020个等腰直角三角形的面积是22020; 故答案为:22020(形式可以不同,正确即得分).17. (2020甘肃定西)已知5y x =+,当x 分别取1,2,3,…,2020时,所对应y 值的总和是_________. 答案:203218.(2020辽宁抚顺)(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)解:∵AE =DA ,点F 1是CD 的中点,矩形ABCD 的面积等于2, ∴△EF 1D 和△EAB 的面积都等于1, ∵点F 2是CF 1的中点, ∴△EF 1F 2的面积等于, 同理可得△EF n ﹣1F n 的面积为,∵△BCF n 的面积为2×÷2=,∴△EF n B 的面积为2+1﹣1﹣﹣…﹣﹣=2﹣(1﹣)=.故答案为:.15.(2020内蒙古呼和浩特)(3分)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为 112 ,并可推断出5月30日应该是星期几 五、六、日 .解:∵5月1日~5月30日共30天,包括四个完整的星期, ∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120, 若5月30日为星期二,所写张数为112+1+2<120, 若5月30日为星期三,所写张数为112+2+3<120, 若5月30日为星期四,所写张数为112+3+4<120, 若5月30日为星期五,所写张数为112+4+5>120, 若5月30日为星期六,所写张数为112+5+6>120, 若5月30日为星期日,所写张数为112+6+7>120, 故5月30日可能为星期五、六、日. 故答案为:112;五、六、日.20.(2020黑龙江龙东)(3分)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1,1).过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A ,以11O A 为边作正方形1111O A B C ,点1B 的坐标为(5,3).过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C .⋯.则点2020B 的坐标 2020231⨯-,20203 .解:点B 坐标为(1,1), 11OA AB BC CO CO ∴=====,1(2,3)A ,111111123AO A B B C C O ∴====,1(5,3)B ∴,2(8,9)A ∴,222222239A O A B B C C O ∴====,2(17,9)B ∴,同理可得4(53,27)B ,5(161,81)B ,⋯由上可知,(231,3)Bn n n ⨯-,∴当2020n =时,(2320201,32020)Bn ⨯-.故答案为:2020(231⨯-,20203).15.(2020黑龙江牡丹江)(3分)一列数1,5,11,19⋯按此规律排列,第7个数是() A .37 B .41 C .55 D .71解:1121=⨯-, 5231=⨯-, 11341=⨯-, 19451=⨯-,⋯第n 个数为(1)1n n +-, 则第7个数是:55. 故选:C .15.(2020四川遂宁)(4分)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若2a1+2a2+2a3+⋯+2a n=n2020.(n为正整数),则n的值为4039.【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵2a1+2a2+2a3+⋯+2a n=n2020,∴21×2+22×3+23×4+⋯+2n(n+1)=n2020,∴2×(1−12+12−13+13−14+⋯⋯+1n−1n+1)=n2020,∴2×(1−1n+1)=n2020,1−1n+1=n4040,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.16.(2020广西南宁)(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是556个.解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.16.(3分)(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+√2或x=﹣1−√2.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±√2,故答案为:x=2或x=﹣1+√2或x=﹣1−√2.17.(3分)(2020•徐州)如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于219.【解答】解:∵B1O=B1A1,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=12A2B2,∴A2B2=2A1B1,同法可得A 3B 3=2A 2B 2=22•A 1B 1,…, 由此规律可得A 20B 20=219•A 1B 1,∵A 1B 1=OA 1•tan30°=√3×√33=1, ∴A 20B 20=219, 故答案为219.12.(2020山西)(3分)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有 (3n +1) 个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示. 解:第1个图案有4个三角形,即4=3×1+1 第2个图案有7个三角形,即7=3×2+1 第3个图案有10个三角形,即10=3×3+1 …按此规律摆下去,第n 个图案有(3n +1)个三角形. 故答案为:(3n +1).17.(2020东莞)如图,等腰12Rt OA A ∆,1121OA A A ==,以2OA 为直角边作23Rt OA A ∆,再以3OA 为直角边作34Rt OA A ∆,以此规律作等腰89Rt OA A ∆,则89OA A ∆的面积是_________.答案:64(或62)18.(2020四川自贡)(4分)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =kx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.16.(3分)(2020•怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=√3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2√n,0).解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),把B1(t,√3t)代入y=√3x得t•√3t=√3,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),把B2(2+m,√3m)代入y=√3x得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),把B3(2√2+n,√3n)代入y=√3x得(2√2+n)•√3n=√3,∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√n,0),故答案为:(2√n,0).11.(2020青海)(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =,如:3⊕2==,那么12⊕4=.解:12⊕4==.故答案为:.12.(2020青海)(4分)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1. 请按以上规律写出第4个算式 4×6﹣52=24﹣25=﹣1 .用含有字母的式子表示第n 个算式为 n (n +2)﹣(n +1)2=﹣1 . 解:④4×6﹣52=24﹣25=﹣1.第n 个算式为:n (n +2)﹣(n +1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n (n +2)﹣(n +1)2=﹣1. 19.(2020山东滨州)(5分)观察下列各式:123a =,235a =,3107a =,4159a =,52611a =,⋯,根据其中的规律可得n a =21(1)21n n n ++-+ (用含n 的式子表示). 【解答】解:由分析可得21(1)21n n n a n ++-=+.故答案为:21(1)21n n n ++-+.18.(2020山东泰安)(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.16.(2020海南)(4分)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有 41 个菱形,第n 个图中有 2n 2﹣2n +1 个菱形(用含n 的代数式表示).解:∵第1个图中菱形的个数1=12+02,第2个图中菱形的个数5=22+12,第3个图中菱形的个数13=32+22,第4个图中菱形的个数25=42+32,∴第5个图中菱形的个数为52+42=41,第n个图中菱形的个数为n2+(n﹣1)2=n2+n2﹣2n+1=2n2﹣2n+1,故答案为:41,2n2﹣2n+1.三、解答题28.(2020北京)在平面直角坐标系中,①O的半径为1,A,B为①O外两点,AB=1.给出如下定义:平移线段AB,得到①O的弦(分别为点A,B的对应点),线段长度的最小值称为线段AB到①O的“平移距离”.(1)如图,平移线段AB到①O的长度为1的弦和,则这两条弦的位置关系是;在点中,连接点A与点的线段的长度等于线段AB到①O的“平移距离”;(2)若点A,B都在直线上,记线段AB到①O的“平移距离”为,求的最小值;(3)若点A的坐标为,记线段AB到①O的“平移距离”为,直接写出的取值范围.【解析】(1)平行;P3.(2)如图,线段AB在直线上,平移之后与圆相交,得到的弦为CD,CD ∥AB,过点O作OE⊥AB于点E,交弦CD于点F,OF⊥CD,令,直线与轴交点为(-2,0),直线与轴夹角为60°,∴.由垂径定理得:∴(3)如图,线段AB的位置变换,可以看做是以点A为圆心,半径为1的圆,只需在①O内找到与之平行,且长度为1的弦即可;点A到O的距离为.如图,平移距离的最小值即点A到①O的最小值:平移距离的最大值即点A到①O的最大值:∴的取值范围为:17.(2020安徽)(8分)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:.第5个等式:.按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第个等式:(用含的等式表示),并证明.【解答】解:(1)第6个等式:;(2)猜想的第个等式:.证明:左边右边,等式成立.故答案为:;.24.(2020长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图像上关于原点对称的两点叫做一对“H点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =( ) ①my (m 0)x=≠( ) ①31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x “H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,①(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【答案】(1)√;√;×;(2)-1<a <0,b=4,0<c <0;(3)2<12x x -<27. 解:(1)①2y x =是 “H 函数”①my (m 0)x=≠是 “H 函数”①31y x =-不是 “H 函数”; 故答案为:√;√;×; (2)①A,B 是“H 点” ①A,B 关于原点对称, ①m=4,n=1①A(1,4),B (-1,-4) 代入得44a b c a b c ++=⎧⎨-+=-⎩ 解得40b a c =⎧⎨+=⎩又①该函数的对称轴始终位于直线2x =的右侧,①-2ba >2 ①-42a>2 ①-1<a <0 ①a+c=0 ①0<c <0,的综上,-1<a <0,b=4,0<c <0;(3)①223y ax bx c =++是“H 函数”①设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q ⎧++=⎨-+=-⎩解得ap 2+3c=0,2bp=q ①p 2>0 ①a,c 异号, ①ac <0 ①a+b+c=0 ①b=-a -c ,①(2)(23)0c b a c b a +-++< ①(2)(23)0c a c a c a c a -----+< ①(2)(2)0c a c a -+< ①c 2<4a 2①22c a<4 ①-2<c a <2 ①-2<c a <0设t=ca,则-2<t <0设函数与x 轴的交点为(x 1,0)(x 2,0) ①x 1, x 2是方程223ax bx c ++=0的两根①12x x -== 又①-2<t <0①2<12x x -<.23.(2020山东青岛)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果. (2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果. 探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果. 归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果. 问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额. 拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果. 解:探究一:(3)如下表:所取的2个整数之和可以为3,4,5,6,7,8,9也就是从3到9的连续整数,其中最小是3,最大是9,所以共有7种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和的最小值是3,和的最大值是21,n - 所以一共有()213123n n --+=-种. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,如下表:从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种, (2)从1,2,3,4,5这5个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是12,所以从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和共有7种, 从而从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是33,n - 所以一共有()336138n n --+=-种, 探究三:从1,2,3,4,5这5个整数中任取4个整数, 这4个整数之和最小是10, 最大是14, 所以这4个整数之和一共有5种,从1,2,3,4,5,6这6个整数中任取4个整数, 这4个整数之和最小是10, 最大是18,, 所以这4个整数之和一共有9种,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数, 这4个整数之和的最小值是10,和的最大值是46n -, 所以一共有()46101415n n --+=- 种不同的结果. 归纳结论:由探究一,从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有()23n -种.探究二,从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有()38n -种,探究三,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有()415n - 种不同的结果. 从而可得:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果. 问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数), 一次任意抽取5张奖券,这5张奖券和的最小值是15,和的最大值是490, 共有490151476-+=种不同的优惠金额. 拓展延伸:(1) 从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果.∴ 当36,n = 有2361204,a a -+=236203,a a ∴-=-()218121,a ∴-=1811a ∴-=或1811,a -=- 29a ∴=或7.a =从1,2,3,…,36这36个整数中任取29个或7个整数,使得取出的这些整数之和共有204种不同的结果.(2)由探究可知:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,等同于从1,2,3,…,1n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,所以:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有()211a n a ⎡⎤+-+⎣⎦种不同的结果.21.(2020四川遂宁)(9分)阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数. 请思考小明的方法解决下面问题: (1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【解答】解:(1)由y =x 2﹣4x +3函数可知,a 1=1,b 1=﹣4,c 1=3, ∵a 1+a 2=0,b 1=b 2,c 1+c 2=0, ∴a 2=﹣1,b 2=﹣4,c 2=﹣3,∴函数y =x 2﹣4x +3的“旋转函数”为y =﹣x 2﹣4x ﹣3;(2)∵y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,∴{m −1=−n n −3=0, 解得:{m =−2n =3,∴(m +n )2020=(﹣2+3)2020=1.(3)证明:当x =0时,y =2(x ﹣1)(x +3))=﹣6, ∴点C 的坐标为(0,﹣6). 当y =0时,2(x ﹣1)(x +3)=0, 解得:x 1=1,x 2=﹣3,∴点A 的坐标为(1,0),点B 的坐标为(﹣3,0). ∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1, ∴A 1(﹣1,0),B 1(3,0),C 1(0,6).设过点A 1,B 1,C 1的二次函数解析式为y =a (x +1)(x ﹣3), 将C 1(0,6)代入y =a (x +1)(x ﹣3),得:6=﹣3a , 解得:a =﹣2,过点A 1,B 1,C 1的二次函数解析式为y =﹣2(x +1)(x ﹣3),即y =﹣2x 2+4x +6. ∵y =2(x ﹣1)(x +3)=2x 2+4x ﹣6,∴a 1=2,b 1=4,c 1=﹣6,a 2=﹣2,b 2=4,c 2=6, ∴a 1+a 2=2+(﹣2)=0,b 1=b 2=4,c 1+c 2=6+(﹣6)=0,∴经过点A 1,B 1,C 1的二次函数与函数y =2(x ﹣1)(x +3)互为“旋转函数”. 21.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形. (1)下面四边形是垂等四边形的是 ④ ;(填序号) ①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC ⊥BD ,过点D 作BD 垂线交BC 的延长线于点E ,且∠DBC =45°,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,∠BCD =60°.求⊙O 的半径.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC是平行四边形,∴AC=DE,又∵∠DBC=45°,∴△BDE是等腰直角三角形,∴BD=DE,∴BD=AC,又∵BD⊥AC,∴四边形ABCD是垂等四边形;(3)如图,过点O作OE⊥BD,∵四边形ABCD是垂等四边形,∴AC=BD,又∵垂等四边形的面积是24, ∴12AC •BD =24,解得,AC =BD =4√3, 又∵∠BCD =60°, ∴∠DOE =60°,设半径为r ,根据垂径定理可得: 在△ODE 中,OD =r ,DE =2√3, ∴r =DE sin60°=√3√32=4, ∴⊙O 的半径为4.24.(2020浙江宁波)(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E . (2)如图2,四边形ABCD 内接于⊙O ,AD̂=BD ̂,四边形ABCD 的外角平分线DF 交⊙O 于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE ,AF ,若AC 是⊙O 的直径. ①求∠AED 的度数;②若AB =8,CD =5,求△DEF 的面积.【解答】解:(1)∵BE 平分∠ABC ,CE 平分∠ACD , ∴∠E =∠ECD ﹣∠EBD =12(∠ACD ﹣∠ABC )=12∠A =12α, (2)如图1,延长BC 到点T ,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,̂=BD̂,∵AD∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠F AC=∠EBC=12∠ABC=45°,∵∠AED=45°,∴∠AED=∠F AC,∵∠FED=∠F AD,∴∠AED ﹣∠FED =∠F AC ﹣∠F AD ,∴∠AEG =∠CAD ,∵∠EGA =∠ADC =90°,∴△EGA ∽△ADC ,∴AE AC =AG CD ,∵在Rt △ABG 中,AG =√22AB =4√2,在Rt △ADE 中,AE =√2AD ,∴AD AC =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53,∴ED =AD =203,∴CE =CD +DE =353,∵∠BEC =∠FCE ,∴FC =FE ,∵FM ⊥CE ,∴EM =12CE =356, ∴DM =DE ﹣EM =56,∵∠FDM =45°,∴FM =DM =56,∴S △DEF =12DE •FM =259.25.(2020•株洲)如图所示,△OAB 的顶点A 在反比例函数y =k x (k >0)的图象上,直线AB 交y 轴于点C ,且点C 的纵坐标为5,过点A 、B 分别作y 轴的垂线AE 、BF ,垂足分别为点E 、F ,且AE =1.(1)若点E 为线段OC 的中点,求k 的值;(2)若△OAB 为等腰直角三角形,∠AOB =90°,其面积小于3.①求证:△OAE ≌△BOF ;②把|x 1﹣x 2|+|y 1﹣y 2|称为M (x 1,y 1),N (x 2,y 2)两点间的“ZJ 距离”,记为d (M ,N ),求d (A ,C )+d (A ,B )的值.【解答】解:(1)∵点E 为线段OC 的中点,OC =5,∴OE =12OC =52,即:E 点坐标为(0,52),又∵AE ⊥y 轴,AE =1,∴A(1,52),∴k =1×52=52. (2)①在△OAB 为等腰直角三角形中,AO =OB ,∠AOB =90°,∴∠AOE +∠FOB =90°,又∵BF ⊥y 轴,∴∠FBO +∠FOB =90°,∴∠AOE =∠FBO ,在△OAE 和△BOF 中,{∠AEO =∠OFB =90°∠AOE =∠FBO AO =BO ,∴△OAE ≌△BOF (AAS ),②解:设点A 坐标为(1,m ),∵△OAE ≌△BOF ,∴BF =OE =m ,OF =AE =1,∴B (m ,﹣1),设直线AB 解析式为:l AB :y =kx +5,将AB 两点代入得:则{k +5=m km +5=−1. 解得{k 1=−3m 1=2,{k 2=−2m 2=3. 当m =2时,OE =2,OA =√5,S △AOB =52<3,符合;∴d (A ,C )+d (A ,B )=AE +CE +(BF ﹣AE )+(OE +OF )=1+CE +OE ﹣1+OE +1=1+CE +2OE =1+CO +OE =1+5+2=8,当m =3时,OE =3,OA =√10,S △AOB =5>3,不符,舍去;综上所述:d (A ,C )+d (A ,B )=8.。
2020年中考数学试题分类汇编:新概念规律类题一、选择题1.(2020河南)定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 只有一个实数根【答案】A【详解】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A2.(2020湖北武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A. 160B. 128C. 80D. 48解:由图可知,在66⨯方格纸片中,32⨯方格纸片的个数为5420⨯=(个) 则20480n =⨯= 故选:C .3.(2020重庆A 卷)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色③②①三角形,第①个图案中有3个黑色三角形,第①个图案中有6个黑色三角形,…,按此规律排列下去,则第①个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21解:∵第①个图案中黑色三角形的个数为1, 第①个图案中黑色三角形的个数3=1+2, 第①个图案中黑色三角形的个数6=1+2+3, ……∴第①个图案中黑色三角形的个数为1+2+3+4+5=15, 故选:B .4.(2020重庆B 卷)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B. 19C.20D.21 答案C.5.(2020山东枣庄)(3分)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b =-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( ) A .4x = B .5x = C .6x = D.7x =【解答】解:根据题意,得12144x x =---, 去分母得:12(4)x =--, 解得:5x =,经检验5x =是分式方程的解. 故选:B .6.(3分)(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p格,这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .7.(3分)(2020•烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(√2)nB .(√2)n ﹣1C .(√22)nD .(√22)n ﹣1【解答】解:∵△OA 1A 2为等腰直角三角形,OA 1=1,∴OA2=√2;∵△OA2A3为等腰直角三角形,∴OA3=2=(√2)2;∵△OA3A4为等腰直角三角形,∴OA4=2√2=(√2)3.∵△OA4A5为等腰直角三角形,∴OA5=4=(√2)4,……∴OA n的长度为(√2)n﹣1.故选:B.8.(2020云南)(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.选:A.二、填空题9.(2020江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是.【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2510.(2020贵州黔西南)(3分)如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为 1 .【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【解答】解:当x =625时,15x =125,当x =125时,15x =25,当x =25时,15x =5,当x =5时,15x =1,当x =1时,x +4=5, 当x =5时,15x =1,…依此类推,以5,1循环, (2020﹣2)÷2=1010, 即输出的结果是1, 故答案为:111.(2020贵州黔西南)(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为 57 .【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.12.(2020齐齐哈尔)((3分)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的边长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4, ∴第3个等腰直角三角形的面积=12×4×4=8=23, …则第2020个等腰直角三角形的面积是22020; 故答案为:22020(形式可以不同,正确即得分).13.(2020甘肃定西)已知5y x =+,当x 分别取1,2,3,…,2020时,所对应y 值的总和是_________. 答案:203214.(2020辽宁抚顺)(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)解:∵AE =DA ,点F 1是CD 的中点,矩形ABCD 的面积等于2, ∴△EF 1D 和△EAB 的面积都等于1, ∵点F 2是CF 1的中点, ∴△EF 1F 2的面积等于, 同理可得△EF n ﹣1F n 的面积为,∵△BCF n 的面积为2×÷2=,∴△EF n B 的面积为2+1﹣1﹣﹣…﹣﹣=2﹣(1﹣)=.故答案为:.15.(2020内蒙古呼和浩特)(3分)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为 112 ,并可推断出5月30日应该是星期几 五、六、日 .解:∵5月1日~5月30日共30天,包括四个完整的星期, ∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120, 若5月30日为星期二,所写张数为112+1+2<120, 若5月30日为星期三,所写张数为112+2+3<120, 若5月30日为星期四,所写张数为112+3+4<120, 若5月30日为星期五,所写张数为112+4+5>120, 若5月30日为星期六,所写张数为112+5+6>120, 若5月30日为星期日,所写张数为112+6+7>120, 故5月30日可能为星期五、六、日. 故答案为:112;五、六、日.16.(2020黑龙江龙东)(3分)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1,1).过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A ,以11O A 为边作正方形1111O A B C ,点1B 的坐标为(5,3).过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C .⋯.则点2020B 的坐标 2020231⨯-,20203 .解:点B 坐标为(1,1), 11OA AB BC CO CO ∴=====,1(2,3)A ,111111123AO A B B C C O ∴====,1(5,3)B ∴,2(8,9)A ∴,222222239A O A B B C C O ∴====,2(17,9)B ∴,同理可得4(53,27)B ,5(161,81)B ,⋯由上可知,(231,3)Bn n n ⨯-,∴当2020n =时,(2320201,32020)Bn ⨯-.故答案为:2020(231⨯-,20203).17.(2020黑龙江牡丹江)(3分)一列数1,5,11,19⋯按此规律排列,第7个数是() A .37 B .41 C .55 D .71解:1121=⨯-, 5231=⨯-, 11341=⨯-, 19451=⨯-,⋯第n 个数为(1)1n n +-, 则第7个数是:55. 故选:C .18.(2020四川遂宁)(4分)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若2a1+2a2+2a3+⋯+2a n=n2020.(n为正整数),则n的值为4039.【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵2a1+2a2+2a3+⋯+2a n=n2020,∴21×2+22×3+23×4+⋯+2n(n+1)=n2020,∴2×(1−12+12−13+13−14+⋯⋯+1n−1n+1)=n2020,∴2×(1−1n+1)=n2020,1−1n+1=n4040,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.19.(2020广西南宁)(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是556个.解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.20.(3分)(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+√2或x=﹣1−√2.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±√2,故答案为:x=2或x=﹣1+√2或x=﹣1−√2.21.(3分)(2020•徐州)如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于219.【解答】解:∵B1O=B1A1,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=12A2B2,∴A2B2=2A1B1,同法可得A 3B 3=2A 2B 2=22•A 1B 1,…, 由此规律可得A 20B 20=219•A 1B 1,∵A 1B 1=OA 1•tan30°=√3×√33=1, ∴A 20B 20=219, 故答案为219.22.(2020山西)(3分)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有 (3n +1) 个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示. 解:第1个图案有4个三角形,即4=3×1+1 第2个图案有7个三角形,即7=3×2+1 第3个图案有10个三角形,即10=3×3+1 …按此规律摆下去,第n 个图案有(3n +1)个三角形. 故答案为:(3n +1).23.(2020东莞)如图,等腰12Rt OA A ∆,1121OA A A ==,以2OA 为直角边作23Rt OA A ∆,再以3OA 为直角边作34Rt OA A ∆,以此规律作等腰89Rt OA A ∆,则89OA A ∆的面积是_________.答案:64(或62)24.(2020四川自贡)(4分)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =kx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.25.(3分)(2020•怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=√3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2√n,0).解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),把B1(t,√3t)代入y=√3x得t•√3t=√3,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),把B2(2+m,√3m)代入y=√3x得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),把B3(2√2+n,√3n)代入y=√3x得(2√2+n)•√3n=√3,∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√n,0),故答案为:(2√n,0).26.(2020青海)(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =,如:3⊕2==,那么12⊕4=.解:12⊕4==.故答案为:.27.(2020青海)(4分)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1. 请按以上规律写出第4个算式 4×6﹣52=24﹣25=﹣1 .用含有字母的式子表示第n 个算式为 n (n +2)﹣(n +1)2=﹣1 . 解:④4×6﹣52=24﹣25=﹣1.第n 个算式为:n (n +2)﹣(n +1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n (n +2)﹣(n +1)2=﹣1. 28.(2020山东滨州)(5分)观察下列各式:123a =,235a =,3107a =,4159a =,52611a =,⋯,根据其中的规律可得n a =21(1)21n n n ++-+ (用含n 的式子表示). 【解答】解:由分析可得21(1)21n n n a n ++-=+.故答案为:21(1)21n n n ++-+.29.(2020山东泰安)(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.30.(2020海南)(4分)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有 41 个菱形,第n 个图中有 2n 2﹣2n +1 个菱形(用含n 的代数式表示).解:∵第1个图中菱形的个数1=12+02, 第2个图中菱形的个数5=22+12, 第3个图中菱形的个数13=32+22, 第4个图中菱形的个数25=42+32, ∴第5个图中菱形的个数为52+42=41,第n 个图中菱形的个数为n 2+(n ﹣1)2=n 2+n 2﹣2n +1=2n 2﹣2n +1, 故答案为:41,2n 2﹣2n +1.三、解答题31.(2020长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =( ) ①my (m 0)x=≠( ) ①31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x “H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,①(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【答案】(1)√;√;×;(2)-1<a <0,b=4,0<c <0;(3)2<12x x -<. 解:(1)①2y x =是 “H 函数”①my (m 0)x=≠是 “H 函数”①31y x =-不是 “H 函数”; 故答案为:√;√;×; (2)①A,B 是“H 点” ①A,B 关于原点对称, ①m=4,n=1①A(1,4),B (-1,-4) 代入223y ax bx c =++得44a b c a b c ++=⎧⎨-+=-⎩解得40b a c =⎧⎨+=⎩又①该函数的对称轴始终位于直线2x =的右侧,①-2ba >2 ①-42a>2 ①-1<a <0 ①a+c=0 ①0<c <0,综上,-1<a <0,b=4,0<c <0;(3)①223y ax bx c =++是“H 函数”①设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩ 解得ap 2+3c=0,2bp=q ①p 2>0 ①a,c 异号, ①ac <0 ①a+b+c=0①b=-a -c ,①(2)(23)0c b a c b a +-++< ①(2)(23)0c a c a c a c a -----+< ①(2)(2)0c a c a -+< ①c 2<4a 2①22c a<4 ①-2<c a <2 ①-2<c a <0设t=ca,则-2<t <0设函数与x 轴的交点为(x 1,0)(x 2,0) ①x 1, x 2是方程223ax bx c ++=0的两根①12x x -== 又①-2<t <0①2<12x x -<.32.(2020山东青岛)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果. (2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.解:探究一:(3)如下表:所取的2个整数之和可以为3,4,5,6,7,8,9也就是从3到9的连续整数,其中最小是3,最大是9,所以共有7种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和的最小值是3,和的最大值是21,n - 所以一共有()213123n n --+=-种. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,如下表:从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种,(2)从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和的最小值是6,和的最大值是12,所以从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和共有7种, 从而从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是33,n -所以一共有()336138n n --+=-种,探究三:从1,2,3,4,5这5个整数中任取4个整数, 这4个整数之和最小是10, 最大是14, 所以这4个整数之和一共有5种,从1,2,3,4,5,6这6个整数中任取4个整数, 这4个整数之和最小是10, 最大是18,, 所以这4个整数之和一共有9种,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和的最小值是10,和的最大值是46n -,所以一共有()46101415n n --+=- 种不同的结果.归纳结论:由探究一,从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有()23n -种.探究二,从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有()38n -种,探究三,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有()415n - 种不同的结果.从而可得:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,这5张奖券和的最小值是15,和的最大值是490,共有490151476-+=种不同的优惠金额.拓展延伸:(1) 从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果. ∴ 当36,n = 有2361204,a a -+=236203,a a ∴-=-()218121,a ∴-= 1811a ∴-=或1811,a -=-29a ∴=或7.a =从1,2,3,…,36这36个整数中任取29个或7个整数,使得取出的这些整数之和共有204种不同的结果.(2)由探究可知:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,等同于从1,2,3,…,1n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,所以:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有()211a n a ⎡⎤+-+⎣⎦种不同的结果. 33.(2020四川遂宁)(9分)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【解答】解:(1)由y =x 2﹣4x +3函数可知,a 1=1,b 1=﹣4,c 1=3,∵a 1+a 2=0,b 1=b 2,c 1+c 2=0,∴a 2=﹣1,b 2=﹣4,c 2=﹣3,∴函数y =x 2﹣4x +3的“旋转函数”为y =﹣x 2﹣4x ﹣3;(2)∵y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,∴{m −1=−n n −3=0, 解得:{m =−2n =3, ∴(m +n )2020=(﹣2+3)2020=1.(3)证明:当x =0时,y =2(x ﹣1)(x +3))=﹣6,∴点C 的坐标为(0,﹣6).当y =0时,2(x ﹣1)(x +3)=0,解得:x 1=1,x 2=﹣3,∴点A 的坐标为(1,0),点B 的坐标为(﹣3,0).∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.34.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是④;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC 是平行四边形,∴AC =DE ,又∵∠DBC =45°,∴△BDE 是等腰直角三角形,∴BD =DE ,∴BD =AC ,又∵BD ⊥AC ,∴四边形ABCD 是垂等四边形;(3)如图,过点O 作OE ⊥BD ,∵四边形ABCD 是垂等四边形,∴AC =BD ,又∵垂等四边形的面积是24,∴12AC •BD =24, 解得,AC =BD =4√3,又∵∠BCD =60°,∴∠DOE =60°,设半径为r ,根据垂径定理可得:在△ODE 中,OD =r ,DE =2√3,∴r =DE sin60°=2√332=4,∴⊙O 的半径为4.35.(2020浙江宁波)(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD ̂=BD ̂,四边形ABCD 的外角平分线DF 交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【解答】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=12(∠ACD﹣∠ABC)=12∠A=12α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,̂=BD̂,∵AD∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A 作AG ⊥BE 于点G ,过点F 作FM ⊥CE 于点M ,∵AC 是⊙O 的直径,∴∠ABC =90°,∵BE 平分∠ABC ,∴∠F AC =∠EBC =12∠ABC =45°,∵∠AED =45°,∴∠AED =∠F AC ,∵∠FED =∠F AD ,∴∠AED ﹣∠FED =∠F AC ﹣∠F AD ,∴∠AEG =∠CAD ,∵∠EGA =∠ADC =90°,∴△EGA ∽△ADC ,∴AE AC =AG CD ,∵在Rt △ABG 中,AG =√22AB =4√2,在Rt △ADE 中,AE =√2AD ,∴AD AC =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53,∴ED =AD =203,∴CE =CD +DE =353,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=12CE=356,∴DM=DE﹣EM=5 6,∵∠FDM=45°,∴FM=DM=5 6,∴S△DEF=12DE•FM=259.36.(2020•株洲)如图所示,△OAB的顶点A在反比例函数y=kx(k>0)的图象上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且AE=1.(1)若点E为线段OC的中点,求k的值;(2)若△OAB为等腰直角三角形,∠AOB=90°,其面积小于3.①求证:△OAE≌△BOF;②把|x1﹣x2|+|y1﹣y2|称为M(x1,y1),N(x2,y2)两点间的“ZJ距离”,记为d(M,N),求d(A,C)+d(A,B)的值.【解答】解:(1)∵点E为线段OC的中点,OC=5,∴OE=12OC=52,即:E点坐标为(0,52),第 31 页 共 31 页 又∵AE ⊥y 轴,AE =1,∴A(1,52),∴k =1×52=52.(2)①在△OAB 为等腰直角三角形中,AO =OB ,∠AOB =90°,∴∠AOE +∠FOB =90°,又∵BF ⊥y 轴,∴∠FBO +∠FOB =90°,∴∠AOE =∠FBO ,在△OAE 和△BOF 中,{∠AEO =∠OFB =90°∠AOE =∠FBO AO =BO ,∴△OAE ≌△BOF (AAS ),②解:设点A 坐标为(1,m ),∵△OAE ≌△BOF ,∴BF =OE =m ,OF =AE =1,∴B (m ,﹣1),设直线AB 解析式为:l AB :y =kx +5,将AB 两点代入得:则{k +5=m km +5=−1. 解得{k 1=−3m 1=2,{k 2=−2m 2=3. 当m =2时,OE =2,OA =√5,S △AOB =52<3,符合;∴d (A ,C )+d (A ,B )=AE +CE +(BF ﹣AE )+(OE +OF )=1+CE +OE ﹣1+OE +1=1+CE +2OE =1+CO +OE =1+5+2=8,当m =3时,OE =3,OA =√10,S △AOB =5>3,不符,舍去;综上所述:d (A ,C )+d (A ,B )=8.。
2021年中考数学真题分类汇编:专题15几何图形初步与视图一、单选题1.(2021·北京中考真题)如图是某几何体的展开图,该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱【答案】B【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B .【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.2.(2021·四川眉山市·中考真题)如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为()A .42°B .48°C .52°D .60°【答案】A【分析】先通过作辅助线,将∠1转化到∠BAC ,再利用直角三角形两锐角互余即可求出∠2.【详解】解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A ,由矩形对边平行,可得∠1=∠BAC ,∠∠BAC +∠2=90°,∠∠1+∠2=90°,因为∠1=48°,∠∠2=42°;故选:A .【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质等内容,要求学生能根据题意理解其中的隐含关系,解决本题的关键是对角进行的转化,因此需要牢记并能灵活应用相关性质等.3.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】 根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠CB平分∠DCE,∠∠BCE=∠BCD,∠∠BCE=∠ABC,∠∠AEC=∠BCE+∠ABC=40°,∠∠ABC=20°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.4.(2021·浙江台州市·中考真题)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【答案】A【分析】根据线段的性质即可求解.【详解】解:两地距离显示的是两点之间的线段,因为两点之间线段最短,所以导航的实际可选路线都比两地距离要长,故选:A.【点睛】本题考查线段的性质,掌握两点之间线段最短是解题的关键.5.(2021·江苏南京市·中考真题)下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2【答案】D【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.【点睛】本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.6.(2021·浙江中考真题)将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A.B.C.D.【答案】A【分析】依据长方体的展开图的特征进行判断即可.【详解】解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;C、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:A.【点睛】本题考查了长方体的展开图,熟练掌握长方体的展开图的特点是解题的关键.7.(2021·四川自贡市·中考真题)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【答案】B【分析】正方体的表面展开图“一四一”型,相对的面之间一定相隔一个正方形,根据这一特点解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方体,“迎”与“党”是相对面,“建”与“百”是相对面,“喜”与“年”是相对面.故答案为:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.(2021·江苏扬州市·中考真题)把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选A.【点睛】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.9.(2021·浙江金华市·中考真题)将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D.【答案】D【分析】由直棱柱展开图的特征判断即可.【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.【点睛】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.10.(2021·江苏苏州市·中考真题)如图所示的圆锥的主视图是()A.B.C.D.【答案】A【详解】试题分析:主视图是从正面看所得到的图形,圆锥的主视图是等腰三角形,如图所示:,故选A.考点:三视图.11.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.12.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A.80︒B.70︒C.60︒D.50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,m n∠=︒,∠//,140∠∠4=∠1=40°,∠=︒,∠230∠=∠+∠=︒;∠34270故选B.【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.13.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.14.(2021·山东聊城市·中考真题)如图,AB ∥CD ∥EF ,若∥ABC =130°,∥BCE =55°,则∥CEF 的度数为( )A .95°B .105°C .110°D .115°【答案】B【分析】 由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.15.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 16.(2021·浙江金华市·中考真题)某同学的作业如下框,其中∥处填的依据是( ) 如图,已知直线1234,,,l l l l .若12∠=∠,则34∠=∠.请完成下面的说理过程.解:已知12∠=∠,根据(内错角相等,两直线平行),得12//l l .再根据( ∥ ),得34∠=∠.A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补【答案】C【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知∠3和∠4是同位角关系,即可选出答案.【详解】解:∠12//l l ,∠34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.17.(2021·湖北随州市·中考真题)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( )A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同【答案】A【分析】画出组合体的三视图,即可得到结论.【详解】解:所给几何体的三视图如下,所以,主视图和左视图完全相同,故选:A.【点睛】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.18.(2021·四川资阳市·中考真题)如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【分析】根据俯视图可确定主视图的列数和小正方形的个数,即可解答.【详解】解:由俯视图可得主视图有2列组成,左边一列由3个小正方形组成,右边一列由1个小正方形组成.故选:C.【点睛】本题考查了由三视图判断几何体的知识,由几何体的俯视图可确定该几何体的主视图和左视图,要熟练掌握.19.(2021·湖北黄冈市·中考真题)如图是由四个相同的正方体组成的几何体,其俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的定义即可得.【详解】解:俯视图是指从上往下看几何体得到的视图.这个几何体的俯视图是由排在一行的三个小正方形组成,观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了俯视图,熟记定义是解题关键.20.(2021·四川广安市·中考真题)下列几何体的主视图既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】先判断主视图,再根据轴对称图形与中心对称图形的概念求解.【详解】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选B.【点睛】本题考查了几何体的三视图,中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.21.(2021·湖南衡阳市·中考真题)如图是由6个相同的正方体堆成的物体,它的左视图是().A.B.C.D.【答案】A【分析】结合题意,根据视图的性质分析,即可得到答案.【详解】由6个相同的正方体堆成的物体,它的左视图如下:故选:A【点睛】本题考查了视图的知识;解题的关键是熟练掌握左视图的性质,从而完成求解.22.(2021·浙江嘉兴市·中考真题)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【答案】C【分析】根据俯视图是从上边看得到的图形,可得答案.【详解】解:从上边看第一行是两个小正方形,第二行是一个小正方形并且在第二列,【点睛】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.23.(2021·安徽中考真题)几何体的三视图如图所示,这个几何体是()A.B.C.D.【答案】C【分析】根据三视图,该几何体的主视图可确定该几何体的形状,据此求解即可.【详解】解:根据A,B,C,D三个选项的物体的主视图可知,与题图有吻合的只有C选项,故选:C.【点睛】本题考查了由三视图判断几何体的知识,熟练掌握三视图并能灵活运用,是解题的关键.24.(2021·四川乐山市·中考真题)如图是由4个相同的小正方体成的物体,将它在水平面内顺时针旋转90 后,其主视图是()A.B.C.D.【分析】根据该几何体它在水平面内顺时针旋转90︒后,旋转后几何体的主视图与该几何体旋转前从右面看到的图形一样,由此即可解答.【详解】把该几何体它在水平面内顺时针旋转90︒后,旋转后的主视图与该几何体旋转前从右面看到的图形一样,∠该几何体的从右面看到的图形为,∠该几何体它在水平面内顺时针旋转90︒后,旋转后几何体的主视图为.故选C.【点睛】本题考查了简单几何体的三视图,熟知把该几何体它在水平面内顺时针旋转90︒后,旋转后几何体的主视图与该几何体旋转前从右面看到的图形一样是解决问题的关键.25.(2021·四川成都市·中考真题)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【答案】C【分析】根据简单几何体的三视图中俯视图从上面看得到的图形即可求解.【详解】解:从上面看简单组合体可得两行小正方形,第二行四个小正方形,第一行一个小正方形右侧对齐.故选C.【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.26.(2021·四川遂宁市·中考真题)如图所示的几何体是由6个完全相同的小正方体搭成,其主视图是()A.B.C.D.【答案】D【分析】从正面看:共有2列,从左往右分别有2,1个小正方形;据此可画出图形.【详解】解:如图所示的几何体的主视图是.故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.27.(2021·四川泸州市·中考真题)下列立体图形中,主视图是圆的是()A.B.C.D.【答案】D【分析】分别得出棱柱,圆柱,圆锥,球体的主视图,得出结论.【详解】解:棱柱的主视图是矩形(中间只有一条线段),不符合题意;圆柱的主视图是矩形,不符合题意;圆锥的主视图是等腰三角形,不符合题意;球体的主视图是圆,符合题意;故选:D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.28.(2021·浙江宁波市·中考真题)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.【答案】C【分析】根据主视图是从物体的正面看到的图形解答即可.【详解】解:由于圆柱的主视图是长方形,长方体的主视图是长方形,所以该物体的主视图是:.故选:C.【点睛】本题考查了简单组合体的三视图,属于常考题型,熟知主视图是从物体的正面看到的图形是解题关键.29.(2021·山东泰安市·中考真题)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】B【分析】直接从左边观察几何体,确定每列最高的小正方体个数,即对应左视图的每列小正方形的个数,即可确定左视图.【详解】解:如图所示:从左边看几何体,第一列是2个正方体,第二列是4个正方体,第三列是3个正方体;因此得到的左视图的小正方形个数依次应为2,4,3;故选:B.【点睛】本题考查了几何体的三视图,要求学生理解几何体的三种视图并能明白左视图的含义,能确定几何体左视图的形状等,解决本题的关键是牢记三视图定义及其特点,能读懂题意和从题干图形中获取必要信息等,本题蕴含了数形结合的思想方法,对学生的空间想象能力有一定的要求.30.(2021·浙江温州市·中考真题)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【分析】直接从上往下看,得到的是一个六边形,即可选出正确选项.【详解】解:从上往下看直六棱柱,看到的是个六边形;故选:C.【点睛】本题考查了三视图的相关内容,要求学生明白俯视图是对几何体进行从上往下看得到的视图,实际上也是从上往下得到的正投影,本题较为基础,考查了学生对三视图概念的理解与应用等.31.(2021·浙江绍兴市·中考真题)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】D【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点睛】本题考查了简答组合体的三视图,从正面看得到的图形是主视图.32.(2021·浙江衢州市·中考真题)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.【答案】B【分析】根据主视图是从几何体正面看得到的图形即可得到答案.【详解】从正面看可以看到有3列小正方形,从左至右小正方体的数目分别为1、2、1,所以主视图为:,故选B.【点睛】本题考查了简单几何体的三视图,关键是掌握主视图所看的位置.33.(2021·浙江丽水市·中考真题)如图是由5个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看下面一层是三个正方形,上面一层中间是一个正方形.即:故选:B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.34.(2021·四川乐山市·中考真题)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为()A.3B.72C.2D.52【答案】A【分析】根据由边长为4的正方形分割制作的七巧板,可得共5种图形,然后根据阴影部分的构成图形,计算阴影部分面积即可.【详解】解:如下图所示,由边长为4的正方形分割制作的七巧板,共有以下几种图形:∠腰长是22的等腰直角三角形,∠腰长是2的等腰直角三角形,∠腰长是2的等腰直角三角形,∠边长是2的正方形,∠边长分别是2245和135的平行四边形,根据图2可知,图中抬起的“腿”(即阴影部分)是由一个腰长是2的等腰直角三角形,和一个边长分别是2和2,顶角分别是45和135的平行四边形组成,如下图示,根据平行四边形的性质可知,顶角分别是45和135的平行四边形的高是DB,且2DB=,∠21221 2=,顶角分别是45和135222=,∠阴影部分的面积为:123+=,故选:A.【点睛】本题考查了七巧板中的图形的构成和面积计算,熟悉七巧板中图形的分类是解题的关键.二、填空题35.(2021·上海中考真题)70︒的余角是__________.【答案】20︒【分析】根据余角的定义即可求解.【详解】70︒的余角是90°-70︒=20︒故答案为:20︒.此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.36.(2021·湖北武汉市·中考真题)如图,海中有一个小岛A,一艘轮船由西向东航行,在B点测得小岛A 在北偏东60︒方向上;航行12n mile到达C点,这时测得小岛A在北偏东30方向上.小岛A到航线BC的距离是__________n mile(3 1.73≈,结果用四舍五入法精确到0.1).【答案】10.4【分析】过点A作AD∠BC,垂足为D,根据题意,得∠ABC=30°,∠ACD=60°,从而得到AC=BC=12,利用sin60°=AD AC计算AD即可【详解】过点A作AD∠BC,垂足为D,根据题意,得∠ABC=30°,∠ACD=60°,∠∠ABC=∠CAB=30°,∠AC=BC=12,∠sin60°=AD AC,∠AD=AC sin60°=1232⨯3 1.73610.38≈⨯=≈10.4故答案为:10.4.本题考查了方位角,解直角三角形,准确理解方位角的意义,构造高线解直角三角形是解题的关键.37.(2021·山东临沂市·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).∥射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;∥车轮做成圆形,应用了“圆是中心对称图形”;∥学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;∥地板砖可以做成矩形,应用了“矩形对边相等”.【答案】∠【分析】根据直线的性质,圆的性质,特殊四边形的性质分别判断即可.【详解】解:∠射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”,故正确;∠车轮做成圆形,应用了“同圆的半径相等”,故错误;∠学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的四边相等”,故错误;∠地板砖可以做成矩形,应用了“矩形的四个角是直角,可以密铺”,故错误;故答案为:∠.【点睛】本题考查了直线的性质,圆的性质,特殊四边形的性质,都属于基本知识,解题的关键是联系实际,掌握相应性质定理.38.(2021·浙江中考真题)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB 的长应是______.【答案】21- 【分析】 根据裁剪和拼接的线段关系可知3CD =,1BD CE ==,在Rt ACD △中应用勾股定理即可求解.【详解】解:∠地毯平均分成了3份,∠每一份的边长为1333=,∠3CD =,在Rt ACD △中,根据勾股定理可得222AD CD AC =-,根据裁剪可知1BD CE ==,∠21AB AD BD =-=,故答案为:21-.【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键.39.(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【答案】减少 10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF 与∠D 、∠E 、∠DCE 之间的关系,进行计算即可判断.【详解】解:∠∠A +∠B =50°+60°=110°,∠∠ACB =180°-110°=70°,∠∠DCE =70°,如图,连接CF 并延长,∠∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF ,∠∠EFD =∠DFM +∠EFM =20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD =110°,则∠EFD 减少了10°,若只调整∠D 的大小,由∠EFD =∠DFM +∠EFM =∠D +∠DCF +∠E +∠ECF =∠D +∠E +∠ECD =∠D +30°+70°=∠ D +100°,因此应将∠D 减少10度;故答案为:∠减少;∠10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.40.(2021·江苏扬州市·中考真题)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____2cm.【答案】100π【分析】根据圆柱体的主视图为边长为10cm的正方形,得到圆柱的底面直径和高,从而计算侧面积.【详解】解:∠果罐的主视图是边长为10cm的正方形,为圆柱体,∠圆柱体的底面直径和高为10cm,π⨯=100π,∠侧面积为1010故答案为:100π.【点睛】本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据.。
2020年中考数学试题分类汇编之十五新概念新规律题一、选择题7.(2020河南)定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 只有一个实数根【答案】A【详解】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0,∴ 原方程有两个不相等的实数根,故选.A10.(2020湖北武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A. 160B. 128C. 80D. 48解:由图可知,在66⨯方格纸片中,32⨯方格纸片的个数为5420⨯=(个) 则20480n =⨯= 故选:C .③②①4.(2020重庆A 卷)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第①个图案中有3个黑色三角形,第①个图案中有6个黑色三角形,…,按此规律排列下去,则第①个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21解:∵第①个图案中黑色三角形的个数为1, 第①个图案中黑色三角形的个数3=1+2, 第①个图案中黑色三角形的个数6=1+2+3, ……∴第①个图案中黑色三角形的个数为1+2+3+4+5=15, 故选:B .8.(2020重庆B 卷)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B. 19C.20D.21 答案C.9.(2020山东枣庄)(3分)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b=-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( ) A .4x = B .5x = C .6x = D .7x =【解答】解:根据题意,得12144x x =---, 去分母得:12(4)x =--, 解得:5x =,经检验5x =是分式方程的解.故选:B .8.(3分)(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p格,这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .7.(3分)(2020•烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(√2)nB .(√2)n ﹣1C .(√22)nD .(√22)n ﹣1【解答】解:∵△OA 1A 2为等腰直角三角形,OA 1=1, ∴OA 2=√2;∵△OA 2A 3为等腰直角三角形, ∴OA 3=2=(√2)2;∵△OA 3A 4为等腰直角三角形, ∴OA 4=2√2=(√2)3. ∵△OA 4A 5为等腰直角三角形, ∴OA 5=4=(√2)4, ……∴OA n 的长度为(√2)n ﹣1.故选:B .12.(2020云南)(4分)按一定规律排列的单项式:a ,﹣2a ,4a ,﹣8a ,16a ,﹣32a ,…,第n 个单项式是( ) A .(﹣2)n ﹣1aB .(﹣2)n aC .2n ﹣1aD .2n a解:∵a =(﹣2)1﹣1a , ﹣2a =(﹣2)2﹣1a ,4a =(﹣2)3﹣1a ,﹣8a =(﹣2)4﹣1a ,16a =(﹣2)5﹣1a ,﹣32a =(﹣2)6﹣1a ,…由上规律可知,第n 个单项式为:(﹣2)n ﹣1a . 选:A .二、填空题9.(2020江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是 .【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2517.(2020贵州黔西南)(3分)如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为 1 .【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【解答】解:当x =625时,15x =125,当x =125时,15x =25,当x =25时,15x =5,当x =5时,15x =1,当x =1时,x +4=5, 当x =5时,15x =1,…依此类推,以5,1循环, (2020﹣2)÷2=1010, 即输出的结果是1, 故答案为:119.(2020贵州黔西南)(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为 57 .【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.17.(2020齐齐哈尔)((3分)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的边长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4, ∴第3个等腰直角三角形的面积=12×4×4=8=23, …则第2020个等腰直角三角形的面积是22020; 故答案为:22020(形式可以不同,正确即得分).17. (2020甘肃定西)已知5y x =+,当x 分别取1,2,3,…,2020时,所对应y 值的总和是_________. 答案:203218.(2020辽宁抚顺)(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)解:∵AE =DA ,点F 1是CD 的中点,矩形ABCD 的面积等于2, ∴△EF 1D 和△EAB 的面积都等于1, ∵点F 2是CF 1的中点, ∴△EF 1F 2的面积等于, 同理可得△EF n ﹣1F n 的面积为,∵△BCF n 的面积为2×÷2=,∴△EF n B 的面积为2+1﹣1﹣﹣…﹣﹣=2﹣(1﹣)=.故答案为:.15.(2020内蒙古呼和浩特)(3分)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为 112 ,并可推断出5月30日应该是星期几 五、六、日 .解:∵5月1日~5月30日共30天,包括四个完整的星期, ∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120, 若5月30日为星期二,所写张数为112+1+2<120, 若5月30日为星期三,所写张数为112+2+3<120, 若5月30日为星期四,所写张数为112+3+4<120, 若5月30日为星期五,所写张数为112+4+5>120, 若5月30日为星期六,所写张数为112+5+6>120, 若5月30日为星期日,所写张数为112+6+7>120, 故5月30日可能为星期五、六、日. 故答案为:112;五、六、日.20.(2020黑龙江龙东)(3分)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1,1).过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A ,以11O A 为边作正方形1111O A B C ,点1B 的坐标为(5,3).过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C .⋯.则点2020B 的坐标 2020231⨯-,20203 .解:点B 坐标为(1,1), 11OA AB BC CO CO ∴=====,1(2,3)A ,111111123AO A B B C C O ∴====,1(5,3)B ∴,2(8,9)A ∴,222222239A O A B B C C O ∴====,2(17,9)B ∴,同理可得4(53,27)B ,5(161,81)B ,⋯由上可知,(231,3)Bn n n ⨯-,∴当2020n =时,(2320201,32020)Bn ⨯-.故答案为:2020(231⨯-,20203).15.(2020黑龙江牡丹江)(3分)一列数1,5,11,19⋯按此规律排列,第7个数是() A .37 B .41 C .55 D .71解:1121=⨯-, 5231=⨯-, 11341=⨯-, 19451=⨯-,⋯第n 个数为(1)1n n +-, 则第7个数是:55. 故选:C .15.(2020四川遂宁)(4分)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若2a1+2a2+2a3+⋯+2a n=n2020.(n为正整数),则n的值为4039.【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵2a1+2a2+2a3+⋯+2a n=n2020,∴21×2+22×3+23×4+⋯+2n(n+1)=n2020,∴2×(1−12+12−13+13−14+⋯⋯+1n−1n+1)=n2020,∴2×(1−1n+1)=n2020,1−1n+1=n4040,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.16.(2020广西南宁)(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是556个.解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.16.(3分)(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+√2或x=﹣1−√2.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±√2,故答案为:x=2或x=﹣1+√2或x=﹣1−√2.17.(3分)(2020•徐州)如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于219.【解答】解:∵B1O=B1A1,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=12A2B2,∴A2B2=2A1B1,同法可得A 3B 3=2A 2B 2=22•A 1B 1,…, 由此规律可得A 20B 20=219•A 1B 1,∵A 1B 1=OA 1•tan30°=√3×√33=1, ∴A 20B 20=219, 故答案为219.12.(2020山西)(3分)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有 (3n +1) 个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示. 解:第1个图案有4个三角形,即4=3×1+1 第2个图案有7个三角形,即7=3×2+1 第3个图案有10个三角形,即10=3×3+1 …按此规律摆下去,第n 个图案有(3n +1)个三角形. 故答案为:(3n +1).17.(2020东莞)如图,等腰12Rt OA A ∆,1121OA A A ==,以2OA 为直角边作23Rt OA A ∆,再以3OA 为直角边作34Rt OA A ∆,以此规律作等腰89Rt OA A ∆,则89OA A ∆的面积是_________.答案:64(或62)18.(2020四川自贡)(4分)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =kx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.16.(3分)(2020•怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=√3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2√n,0).解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),把B1(t,√3t)代入y=√3x得t•√3t=√3,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),把B2(2+m,√3m)代入y=√3x得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),把B3(2√2+n,√3n)代入y=√3x得(2√2+n)•√3n=√3,∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√n,0),故答案为:(2√n,0).11.(2020青海)(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =,如:3⊕2==,那么12⊕4=.解:12⊕4==.故答案为:.12.(2020青海)(4分)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1. 请按以上规律写出第4个算式 4×6﹣52=24﹣25=﹣1 .用含有字母的式子表示第n 个算式为 n (n +2)﹣(n +1)2=﹣1 . 解:④4×6﹣52=24﹣25=﹣1.第n 个算式为:n (n +2)﹣(n +1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n (n +2)﹣(n +1)2=﹣1. 19.(2020山东滨州)(5分)观察下列各式:123a =,235a =,3107a =,4159a =,52611a =,⋯,根据其中的规律可得n a =21(1)21n n n ++-+ (用含n 的式子表示). 【解答】解:由分析可得21(1)21n n n a n ++-=+.故答案为:21(1)21n n n ++-+.18.(2020山东泰安)(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.16.(2020海南)(4分)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有 41 个菱形,第n 个图中有 2n 2﹣2n +1 个菱形(用含n 的代数式表示).解:∵第1个图中菱形的个数1=12+02,第2个图中菱形的个数5=22+12,第3个图中菱形的个数13=32+22,第4个图中菱形的个数25=42+32,∴第5个图中菱形的个数为52+42=41,第n个图中菱形的个数为n2+(n﹣1)2=n2+n2﹣2n+1=2n2﹣2n+1,故答案为:41,2n2﹣2n+1.三、解答题28.(2020北京)在平面直角坐标系中,①O的半径为1,A,B为①O外两点,AB=1.给出如下定义:平移线段AB,得到①O的弦(分别为点A,B的对应点),线段长度的最小值称为线段AB到①O的“平移距离”.(1)如图,平移线段AB到①O的长度为1的弦和,则这两条弦的位置关系是;在点中,连接点A与点的线段的长度等于线段AB到①O的“平移距离”;(2)若点A,B都在直线上,记线段AB到①O的“平移距离”为,求的最小值;(3)若点A的坐标为,记线段AB到①O的“平移距离”为,直接写出的取值范围.【解析】(1)平行;P3.(2)如图,线段AB在直线上,平移之后与圆相交,得到的弦为CD,CD ∥AB,过点O作OE⊥AB于点E,交弦CD于点F,OF⊥CD,令,直线与轴交点为(-2,0),直线与轴夹角为60°,∴.由垂径定理得:∴(3)如图,线段AB的位置变换,可以看做是以点A为圆心,半径为1的圆,只需在①O内找到与之平行,且长度为1的弦即可;点A到O的距离为.如图,平移距离的最小值即点A到①O的最小值:平移距离的最大值即点A到①O的最大值:∴的取值范围为:17.(2020安徽)(8分)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:.第5个等式:.按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第个等式:(用含的等式表示),并证明.【解答】解:(1)第6个等式:;(2)猜想的第个等式:.证明:左边右边,等式成立.故答案为:;.24.(2020长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图像上关于原点对称的两点叫做一对“H点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =( ) ①my (m 0)x=≠( ) ①31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x “H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,①(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【答案】(1)√;√;×;(2)-1<a <0,b=4,0<c <0;(3)2<12x x -<27. 解:(1)①2y x =是 “H 函数”①my (m 0)x=≠是 “H 函数”①31y x =-不是 “H 函数”; 故答案为:√;√;×; (2)①A,B 是“H 点” ①A,B 关于原点对称, ①m=4,n=1①A(1,4),B (-1,-4) 代入得44a b c a b c ++=⎧⎨-+=-⎩ 解得40b a c =⎧⎨+=⎩又①该函数的对称轴始终位于直线2x =的右侧,①-2ba >2 ①-42a>2 ①-1<a <0 ①a+c=0 ①0<c <0,的综上,-1<a <0,b=4,0<c <0;(3)①223y ax bx c =++是“H 函数”①设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q ⎧++=⎨-+=-⎩解得ap 2+3c=0,2bp=q ①p 2>0 ①a,c 异号, ①ac <0 ①a+b+c=0 ①b=-a -c ,①(2)(23)0c b a c b a +-++< ①(2)(23)0c a c a c a c a -----+< ①(2)(2)0c a c a -+< ①c 2<4a 2①22c a<4 ①-2<c a <2 ①-2<c a <0设t=ca,则-2<t <0设函数与x 轴的交点为(x 1,0)(x 2,0) ①x 1, x 2是方程223ax bx c ++=0的两根①12x x -== 又①-2<t <0①2<12x x -<.23.(2020山东青岛)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果. (2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果. 探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果. 归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果. 问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额. 拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果. 解:探究一:(3)如下表:所取的2个整数之和可以为3,4,5,6,7,8,9也就是从3到9的连续整数,其中最小是3,最大是9,所以共有7种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和的最小值是3,和的最大值是21,n - 所以一共有()213123n n --+=-种. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,如下表:从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种, (2)从1,2,3,4,5这5个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是12,所以从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和共有7种, 从而从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是33,n - 所以一共有()336138n n --+=-种, 探究三:从1,2,3,4,5这5个整数中任取4个整数, 这4个整数之和最小是10, 最大是14, 所以这4个整数之和一共有5种,从1,2,3,4,5,6这6个整数中任取4个整数, 这4个整数之和最小是10, 最大是18,, 所以这4个整数之和一共有9种,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数, 这4个整数之和的最小值是10,和的最大值是46n -, 所以一共有()46101415n n --+=- 种不同的结果. 归纳结论:由探究一,从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有()23n -种.探究二,从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有()38n -种,探究三,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有()415n - 种不同的结果. 从而可得:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果. 问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数), 一次任意抽取5张奖券,这5张奖券和的最小值是15,和的最大值是490, 共有490151476-+=种不同的优惠金额. 拓展延伸:(1) 从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果.∴ 当36,n = 有2361204,a a -+=236203,a a ∴-=-()218121,a ∴-=1811a ∴-=或1811,a -=- 29a ∴=或7.a =从1,2,3,…,36这36个整数中任取29个或7个整数,使得取出的这些整数之和共有204种不同的结果.(2)由探究可知:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,等同于从1,2,3,…,1n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,所以:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有()211a n a ⎡⎤+-+⎣⎦种不同的结果.21.(2020四川遂宁)(9分)阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数. 请思考小明的方法解决下面问题: (1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【解答】解:(1)由y =x 2﹣4x +3函数可知,a 1=1,b 1=﹣4,c 1=3, ∵a 1+a 2=0,b 1=b 2,c 1+c 2=0, ∴a 2=﹣1,b 2=﹣4,c 2=﹣3,∴函数y =x 2﹣4x +3的“旋转函数”为y =﹣x 2﹣4x ﹣3;(2)∵y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,∴{m −1=−n n −3=0, 解得:{m =−2n =3,∴(m +n )2020=(﹣2+3)2020=1.(3)证明:当x =0时,y =2(x ﹣1)(x +3))=﹣6, ∴点C 的坐标为(0,﹣6). 当y =0时,2(x ﹣1)(x +3)=0, 解得:x 1=1,x 2=﹣3,∴点A 的坐标为(1,0),点B 的坐标为(﹣3,0). ∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1, ∴A 1(﹣1,0),B 1(3,0),C 1(0,6).设过点A 1,B 1,C 1的二次函数解析式为y =a (x +1)(x ﹣3), 将C 1(0,6)代入y =a (x +1)(x ﹣3),得:6=﹣3a , 解得:a =﹣2,过点A 1,B 1,C 1的二次函数解析式为y =﹣2(x +1)(x ﹣3),即y =﹣2x 2+4x +6. ∵y =2(x ﹣1)(x +3)=2x 2+4x ﹣6,∴a 1=2,b 1=4,c 1=﹣6,a 2=﹣2,b 2=4,c 2=6, ∴a 1+a 2=2+(﹣2)=0,b 1=b 2=4,c 1+c 2=6+(﹣6)=0,∴经过点A 1,B 1,C 1的二次函数与函数y =2(x ﹣1)(x +3)互为“旋转函数”. 21.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形. (1)下面四边形是垂等四边形的是 ④ ;(填序号) ①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC ⊥BD ,过点D 作BD 垂线交BC 的延长线于点E ,且∠DBC =45°,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,∠BCD =60°.求⊙O 的半径.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC是平行四边形,∴AC=DE,又∵∠DBC=45°,∴△BDE是等腰直角三角形,∴BD=DE,∴BD=AC,又∵BD⊥AC,∴四边形ABCD是垂等四边形;(3)如图,过点O作OE⊥BD,∵四边形ABCD是垂等四边形,∴AC=BD,又∵垂等四边形的面积是24, ∴12AC •BD =24,解得,AC =BD =4√3, 又∵∠BCD =60°, ∴∠DOE =60°,设半径为r ,根据垂径定理可得: 在△ODE 中,OD =r ,DE =2√3, ∴r =DE sin60°=√3√32=4, ∴⊙O 的半径为4.24.(2020浙江宁波)(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E . (2)如图2,四边形ABCD 内接于⊙O ,AD̂=BD ̂,四边形ABCD 的外角平分线DF 交⊙O 于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE ,AF ,若AC 是⊙O 的直径. ①求∠AED 的度数;②若AB =8,CD =5,求△DEF 的面积.【解答】解:(1)∵BE 平分∠ABC ,CE 平分∠ACD , ∴∠E =∠ECD ﹣∠EBD =12(∠ACD ﹣∠ABC )=12∠A =12α, (2)如图1,延长BC 到点T ,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,̂=BD̂,∵AD∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠F AC=∠EBC=12∠ABC=45°,∵∠AED=45°,∴∠AED=∠F AC,∵∠FED=∠F AD,∴∠AED ﹣∠FED =∠F AC ﹣∠F AD ,∴∠AEG =∠CAD ,∵∠EGA =∠ADC =90°,∴△EGA ∽△ADC ,∴AE AC =AG CD ,∵在Rt △ABG 中,AG =√22AB =4√2,在Rt △ADE 中,AE =√2AD ,∴AD AC =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53,∴ED =AD =203,∴CE =CD +DE =353,∵∠BEC =∠FCE ,∴FC =FE ,∵FM ⊥CE ,∴EM =12CE =356, ∴DM =DE ﹣EM =56,∵∠FDM =45°,∴FM =DM =56,∴S △DEF =12DE •FM =259.25.(2020•株洲)如图所示,△OAB 的顶点A 在反比例函数y =k x (k >0)的图象上,直线AB 交y 轴于点C ,且点C 的纵坐标为5,过点A 、B 分别作y 轴的垂线AE 、BF ,垂足分别为点E 、F ,且AE =1.(1)若点E 为线段OC 的中点,求k 的值;(2)若△OAB 为等腰直角三角形,∠AOB =90°,其面积小于3.①求证:△OAE ≌△BOF ;②把|x 1﹣x 2|+|y 1﹣y 2|称为M (x 1,y 1),N (x 2,y 2)两点间的“ZJ 距离”,记为d (M ,N ),求d (A ,C )+d (A ,B )的值.【解答】解:(1)∵点E 为线段OC 的中点,OC =5,∴OE =12OC =52,即:E 点坐标为(0,52),又∵AE ⊥y 轴,AE =1,∴A(1,52),∴k =1×52=52. (2)①在△OAB 为等腰直角三角形中,AO =OB ,∠AOB =90°,∴∠AOE +∠FOB =90°,又∵BF ⊥y 轴,∴∠FBO +∠FOB =90°,∴∠AOE =∠FBO ,在△OAE 和△BOF 中,{∠AEO =∠OFB =90°∠AOE =∠FBO AO =BO ,∴△OAE ≌△BOF (AAS ),②解:设点A 坐标为(1,m ),∵△OAE ≌△BOF ,∴BF =OE =m ,OF =AE =1,∴B (m ,﹣1),设直线AB 解析式为:l AB :y =kx +5,将AB 两点代入得:则{k +5=m km +5=−1. 解得{k 1=−3m 1=2,{k 2=−2m 2=3. 当m =2时,OE =2,OA =√5,S △AOB =52<3,符合;∴d (A ,C )+d (A ,B )=AE +CE +(BF ﹣AE )+(OE +OF )=1+CE +OE ﹣1+OE +1=1+CE +2OE =1+CO +OE =1+5+2=8,当m =3时,OE =3,OA =√10,S △AOB =5>3,不符,舍去;综上所述:d (A ,C )+d (A ,B )=8.。
初三数学专题复习 新概念型问题一、选择题1.古希腊著名的毕达哥拉斯派1、3、6、10、…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数".从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻的“三角形数”之和,下列等式中,符合这一规律的是( ) A 。
13=3+10 B.25=9+16 C.36=15+21 D 。
49=18+31 【答案】C 2.小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示的方向经过B 跑到 点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翊跑步的时间为t (单位:秒),他与教练距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2,刚这个固定位置可能是图1的( ) A .点M B .点N C .点P D .Q答案:D.3。
如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材枓表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个.下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的6倍.其中正确的判断有( )个. A .1个B .2个C .3个D .4个 答案:B4.已知2222211211,c x b x a y c x b x a y ++=++=且满足)1,0(212121≠===k k c c b b a a .则称抛物线21,y y 互为“友好抛物线",则下列关于“友好抛物线”的说法不正确的是( )O30 t / 秒y /米QNM PC B AA 、y 1,y 2开口方向,开口大小不一定相同B 、因为y 1,y 2的对称轴相同C 、如果y 2的最值为m ,则y 1的最值为kmD 、如果y 2与x 轴的两交点间距离为d ,则y 1与x 轴的两交点间距离为d k 答案:D二、填空题5。
中考数学专题新概念型问题一、中考专题诠释所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.考点二:运算题型中的新概念2.若(x1,y1)•(x2,y2)=x1x2+y1y2,则(4,5)•(6,8)=.考点三:探索题型中的新概念例3 如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.考点四:开放题型中的新概念例4 在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下概念:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).(1)已知点A(-12,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=34x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.思路分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的概念可以确定|0-y|=2,据此可以求得y的值;②设点B的坐标为(0,y).因为|- 12-0|≥|0-y|,所以点A与点B的“非常距离”最小值为|-12-0|=12;(2)①设点C的坐标为(x0,34x0+3).根据材料“若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|”知,C、D两点的“非常距离”的最小值为-x0= 34x0+2,据此可以求得点C的坐标;②当点E在过原点且与直线y= 34x+3垂直的直线上时,点C与点E的“非常距离”最小,即E(- 35,45).解答思路同上.解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|-12-0|=12≠2,∴|0-y|=2,解得,y=2或y=-2;∴点B的坐标是(0,2)或(0,-2);②点A与点B的“非常距离”的最小值为12;(2)①∵C是直线y=34x+3上的一个动点,∴设点C的坐标为(x0,34x0+3),∴-x0=34x0+2,此时,x0=-87,∴点C与点D的“非常距离”的最小值为:87,此时C(-87,157);②E(-35,45).-35-x0=34x0+3-45,解得,x0=-85,则点C的坐标为(-85,95),最小值为1.点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的概念是正确解题的关键.对应训练4.(2012•台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=- 76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a⊕b= (用a,b的一个代数式表示).考点五:阅读材料题型中的新概念将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,3]得△AB′C′,则S△AB′C′:S△ABC= ;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.。
2018年中考数学试题之分类汇编规律题和新概念题20.(2018浙江临安)(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= 109 .【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.15.(2018浙江台州)(5.00分)如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B 在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为(﹣2,5).【分析】如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.利用全等三角形的性质,平行四边形的性质求出OC、OD即可;【解答】解:如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.∵NK=MK,∠DNK=∠BMK,∠NKD=∠MKB,∴△NDK≌△MBK,∴DN=BM=OC=2,DK=BK,在Rt△KBM中,BM=2,∠MBK=60°,∴∠BMK=30°,∴DK=BK=BM=1,∴OD=5,∴N(﹣2,5),故答案为(﹣2,5)【点评】本题考查坐标与图形变化,轴对称等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.8.(2018浙江绍兴) 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【答案】B【解析】【分析】根据班级序号的计算方法一一进行计算即可.【解答】A.第一行数字从左到右依次为1,0,1,0,序号为,表示该生为10班学生.B.第一行数字从左到右依次为0,1, 1,0,序号为,表示该生为6班学生.C.第一行数字从左到右依次为1,0,0,1,序号为,表示该生为9班学生.D.第一行数字从左到右依次为0,1,1,1,序号为,表示该生为7班学生.故选B.【点评】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.20. (2018浙江绍兴)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点,,的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式. (1),,.(2),,.【答案】(1)绘制线段,;(2)绘制抛物线.【解析】【分析】(1),,,绘制线段,. (2),,,,绘制抛物线,用待定系数法求函数解析式即可. 【解答】(1)∵,,,∴绘制线段,.(2)∵,,,,∴绘制抛物线,设,把点坐标代入得,∴,即.【点评】属于新定义问题,考查待定系数法求二次函数解析式,解题的关键是弄懂程序框图.14.(2018浙江金华)对于两个非零实数x,y,定义一种新的运算:.若,则的值是________.【解析】【解答】解:∵,∴,则=故答案为:-1.【分析】给的新定义运算中,有a,b两个字母,而题中只给了一个条件,就不能把a,b两个值都能求出,但能求出a与b的数量关系,将a与b的数量等式代入到中即可得出。
2020年中考数学试题分类汇编之十五新概念新规律题一、选择题1.(2020河南)定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 只有一个实数根【答案】A【详解】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A2.(2020湖北武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A. 160B. 128C. 80D. 48解:由图可知,在66⨯方格纸片中,32⨯方格纸片的个数为5420⨯=(个) 则20480n =⨯= 故选:C .③②①3.(2020重庆A 卷)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第①个图案中有3个黑色三角形,第①个图案中有6个黑色三角形,…,按此规律排列下去,则第①个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21解:∵第①个图案中黑色三角形的个数为1, 第①个图案中黑色三角形的个数3=1+2, 第①个图案中黑色三角形的个数6=1+2+3, ……∴第①个图案中黑色三角形的个数为1+2+3+4+5=15, 故选:B .4.(2020重庆B 卷)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B. 19C.20D.21 答案C.5.(2020山东枣庄)(3分)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b=-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( ) A .4x = B .5x = C .6x = D .7x =【解答】解:根据题意,得12144x x =---, 去分母得:12(4)x =--, 解得:5x =,经检验5x =是分式方程的解.故选:B .6.(3分)(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p格,这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .7.(3分)(2020•烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(√2)nB .(√2)n ﹣1C .(√22)nD .(√22)n ﹣1【解答】解:∵△OA 1A 2为等腰直角三角形,OA 1=1, ∴OA 2=√2;∵△OA 2A 3为等腰直角三角形, ∴OA 3=2=(√2)2;∵△OA 3A 4为等腰直角三角形, ∴OA 4=2√2=(√2)3. ∵△OA 4A 5为等腰直角三角形, ∴OA 5=4=(√2)4, ……∴OA n 的长度为(√2)n ﹣1.故选:B .8.(2020云南)(4分)按一定规律排列的单项式:a ,﹣2a ,4a ,﹣8a ,16a ,﹣32a ,…,第n 个单项式是( ) A .(﹣2)n ﹣1aB .(﹣2)n aC .2n ﹣1aD .2n a解:∵a =(﹣2)1﹣1a , ﹣2a =(﹣2)2﹣1a ,4a =(﹣2)3﹣1a ,﹣8a =(﹣2)4﹣1a ,16a =(﹣2)5﹣1a ,﹣32a =(﹣2)6﹣1a ,…由上规律可知,第n 个单项式为:(﹣2)n ﹣1a . 选:A .二、填空题9.(2020江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是 .【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2510.(2020贵州黔西南)(3分)如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为 1 .【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【解答】解:当x =625时,15x =125,当x =125时,15x =25,当x =25时,15x =5,当x =5时,15x =1,当x =1时,x +4=5, 当x =5时,15x =1,…依此类推,以5,1循环, (2020﹣2)÷2=1010, 即输出的结果是1, 故答案为:111.(2020贵州黔西南)(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为 57 .【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.12.(2020齐齐哈尔)((3分)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的边长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4, ∴第3个等腰直角三角形的面积=12×4×4=8=23, …则第2020个等腰直角三角形的面积是22020; 故答案为:22020(形式可以不同,正确即得分).13.(2020甘肃定西)已知5y x =+,当x 分别取1,2,3,…,2020时,所对应y 值的总和是_________. 答案:203214.(2020辽宁抚顺)(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)解:∵AE =DA ,点F 1是CD 的中点,矩形ABCD 的面积等于2, ∴△EF 1D 和△EAB 的面积都等于1, ∵点F 2是CF 1的中点, ∴△EF 1F 2的面积等于, 同理可得△EF n ﹣1F n 的面积为,∵△BCF n 的面积为2×÷2=,∴△EF n B 的面积为2+1﹣1﹣﹣…﹣﹣=2﹣(1﹣)=.故答案为:.15.(2020内蒙古呼和浩特)(3分)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为 112 ,并可推断出5月30日应该是星期几 五、六、日 .解:∵5月1日~5月30日共30天,包括四个完整的星期, ∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120, 若5月30日为星期二,所写张数为112+1+2<120, 若5月30日为星期三,所写张数为112+2+3<120, 若5月30日为星期四,所写张数为112+3+4<120, 若5月30日为星期五,所写张数为112+4+5>120, 若5月30日为星期六,所写张数为112+5+6>120, 若5月30日为星期日,所写张数为112+6+7>120, 故5月30日可能为星期五、六、日. 故答案为:112;五、六、日.16.(2020黑龙江龙东)(3分)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1,1).过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A ,以11O A 为边作正方形1111O A B C ,点1B 的坐标为(5,3).过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C .⋯.则点2020B 的坐标 2020231⨯-,20203 .解:点B 坐标为(1,1), 11OA AB BC CO CO ∴=====,1(2,3)A ,111111123AO A B B C C O ∴====,1(5,3)B ∴,2(8,9)A ∴,222222239A O A B B C C O ∴====,2(17,9)B ∴,同理可得4(53,27)B ,5(161,81)B ,⋯由上可知,(231,3)Bn n n ⨯-,∴当2020n =时,(2320201,32020)Bn ⨯-.故答案为:2020(231⨯-,20203).17.(2020黑龙江牡丹江)(3分)一列数1,5,11,19⋯按此规律排列,第7个数是() A .37 B .41 C .55 D .71解:1121=⨯-, 5231=⨯-, 11341=⨯-, 19451=⨯-,⋯第n 个数为(1)1n n +-, 则第7个数是:55. 故选:C .18.(2020四川遂宁)(4分)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若2a1+2a2+2a3+⋯+2a n=n2020.(n为正整数),则n的值为4039.【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵2a1+2a2+2a3+⋯+2a n=n2020,∴21×2+22×3+23×4+⋯+2n(n+1)=n2020,∴2×(1−12+12−13+13−14+⋯⋯+1n−1n+1)=n2020,∴2×(1−1n+1)=n2020,1−1n+1=n4040,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.19.(2020广西南宁)(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是556个.解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.20.(3分)(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+√2或x=﹣1−√2.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±√2,故答案为:x=2或x=﹣1+√2或x=﹣1−√2.21.(3分)(2020•徐州)如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于219.【解答】解:∵B1O=B1A1,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=12A2B2,∴A2B2=2A1B1,同法可得A 3B 3=2A 2B 2=22•A 1B 1,…, 由此规律可得A 20B 20=219•A 1B 1,∵A 1B 1=OA 1•tan30°=√3×√33=1, ∴A 20B 20=219, 故答案为219.22.(2020山西)(3分)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有 (3n +1) 个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示. 解:第1个图案有4个三角形,即4=3×1+1 第2个图案有7个三角形,即7=3×2+1 第3个图案有10个三角形,即10=3×3+1 …按此规律摆下去,第n 个图案有(3n +1)个三角形. 故答案为:(3n +1).23.(2020东莞)如图,等腰12Rt OA A ∆,1121OA A A ==,以2OA 为直角边作23Rt OA A ∆,再以3OA 为直角边作34Rt OA A ∆,以此规律作等腰89Rt OA A ∆,则89OA A ∆的面积是_________.答案:64(或62)24.(2020四川自贡)(4分)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =kx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.25.(3分)(2020•怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=√3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2√n,0).解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),把B1(t,√3t)代入y=√3x得t•√3t=√3,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),把B2(2+m,√3m)代入y=√3x得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),把B3(2√2+n,√3n)代入y=√3x得(2√2+n)•√3n=√3,∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√n,0),故答案为:(2√n,0).26.(2020青海)(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =,如:3⊕2==,那么12⊕4=.解:12⊕4==.故答案为:.27.(2020青海)(4分)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1. 请按以上规律写出第4个算式 4×6﹣52=24﹣25=﹣1 .用含有字母的式子表示第n 个算式为 n (n +2)﹣(n +1)2=﹣1 . 解:④4×6﹣52=24﹣25=﹣1.第n 个算式为:n (n +2)﹣(n +1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n (n +2)﹣(n +1)2=﹣1. 28.(2020山东滨州)(5分)观察下列各式:123a =,235a =,3107a =,4159a =,52611a =,⋯,根据其中的规律可得n a =21(1)21n n n ++-+ (用含n 的式子表示). 【解答】解:由分析可得21(1)21n n n a n ++-=+.故答案为:21(1)21n n n ++-+.29.(2020山东泰安)(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.30.(2020海南)(4分)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有 41 个菱形,第n 个图中有 2n 2﹣2n +1 个菱形(用含n 的代数式表示).解:∵第1个图中菱形的个数1=12+02, 第2个图中菱形的个数5=22+12, 第3个图中菱形的个数13=32+22, 第4个图中菱形的个数25=42+32, ∴第5个图中菱形的个数为52+42=41,第n 个图中菱形的个数为n 2+(n ﹣1)2=n 2+n 2﹣2n +1=2n 2﹣2n +1, 故答案为:41,2n 2﹣2n +1.三、解答题31.(2020长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =( ) ①my (m 0)x=≠( ) ①31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x “H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,①(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【答案】(1)√;√;×;(2)-1<a <0,b=4,0<c <0;(3)2<12x x -<. 解:(1)①2y x =是 “H 函数”①my (m 0)x=≠是 “H 函数”①31y x =-不是 “H 函数”; 故答案为:√;√;×; (2)①A,B 是“H 点” ①A,B 关于原点对称, ①m=4,n=1①A(1,4),B (-1,-4) 代入223y ax bx c =++得44a b c a b c ++=⎧⎨-+=-⎩解得40b a c =⎧⎨+=⎩又①该函数的对称轴始终位于直线2x =的右侧,①-2ba >2 ①-42a>2 ①-1<a <0 ①a+c=0 ①0<c <0,综上,-1<a <0,b=4,0<c <0;(3)①223y ax bx c =++是“H 函数”①设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩ 解得ap 2+3c=0,2bp=q ①p 2>0 ①a,c 异号, ①ac <0 ①a+b+c=0①b=-a -c ,①(2)(23)0c b a c b a +-++< ①(2)(23)0c a c a c a c a -----+< ①(2)(2)0c a c a -+< ①c 2<4a 2①22c a<4 ①-2<c a <2 ①-2<c a <0设t=ca,则-2<t <0设函数与x 轴的交点为(x 1,0)(x 2,0) ①x 1, x 2是方程223ax bx c ++=0的两根①12x x -== 又①-2<t <0①2<12x x -<.32.(2020山东青岛)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果. (2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.解:探究一:(3)如下表:所取的2个整数之和可以为3,4,5,6,7,8,9也就是从3到9的连续整数,其中最小是3,最大是9,所以共有7种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和的最小值是3,和的最大值是21,n - 所以一共有()213123n n --+=-种. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,如下表:从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种,(2)从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和的最小值是6,和的最大值是12,所以从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和共有7种, 从而从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是33,n -所以一共有()336138n n --+=-种,探究三:从1,2,3,4,5这5个整数中任取4个整数, 这4个整数之和最小是10, 最大是14, 所以这4个整数之和一共有5种,从1,2,3,4,5,6这6个整数中任取4个整数, 这4个整数之和最小是10, 最大是18,, 所以这4个整数之和一共有9种,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和的最小值是10,和的最大值是46n -,所以一共有()46101415n n --+=- 种不同的结果.归纳结论:由探究一,从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有()23n -种.探究二,从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有()38n -种,探究三,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有()415n - 种不同的结果.从而可得:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,这5张奖券和的最小值是15,和的最大值是490,共有490151476-+=种不同的优惠金额.拓展延伸:(1) 从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果. ∴ 当36,n = 有2361204,a a -+=236203,a a ∴-=-()218121,a ∴-= 1811a ∴-=或1811,a -=-29a ∴=或7.a =从1,2,3,…,36这36个整数中任取29个或7个整数,使得取出的这些整数之和共有204种不同的结果.(2)由探究可知:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,等同于从1,2,3,…,1n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,所以:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有()211a n a ⎡⎤+-+⎣⎦种不同的结果. 33.(2020四川遂宁)(9分)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【解答】解:(1)由y =x 2﹣4x +3函数可知,a 1=1,b 1=﹣4,c 1=3,∵a 1+a 2=0,b 1=b 2,c 1+c 2=0,∴a 2=﹣1,b 2=﹣4,c 2=﹣3,∴函数y =x 2﹣4x +3的“旋转函数”为y =﹣x 2﹣4x ﹣3;(2)∵y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,∴{m −1=−n n −3=0, 解得:{m =−2n =3, ∴(m +n )2020=(﹣2+3)2020=1.(3)证明:当x =0时,y =2(x ﹣1)(x +3))=﹣6,∴点C 的坐标为(0,﹣6).当y =0时,2(x ﹣1)(x +3)=0,解得:x 1=1,x 2=﹣3,∴点A 的坐标为(1,0),点B 的坐标为(﹣3,0).∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.34.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是④;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC 是平行四边形,∴AC =DE ,又∵∠DBC =45°,∴△BDE 是等腰直角三角形,∴BD =DE ,∴BD =AC ,又∵BD ⊥AC ,∴四边形ABCD 是垂等四边形;(3)如图,过点O 作OE ⊥BD ,∵四边形ABCD 是垂等四边形,∴AC =BD ,又∵垂等四边形的面积是24,∴12AC •BD =24, 解得,AC =BD =4√3,又∵∠BCD =60°,∴∠DOE =60°,设半径为r ,根据垂径定理可得:在△ODE 中,OD =r ,DE =2√3,∴r =DE sin60°=2√332=4,∴⊙O 的半径为4.35.(2020浙江宁波)(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD ̂=BD ̂,四边形ABCD 的外角平分线DF 交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【解答】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=12(∠ACD﹣∠ABC)=12∠A=12α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,̂=BD̂,∵AD∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A 作AG ⊥BE 于点G ,过点F 作FM ⊥CE 于点M ,∵AC 是⊙O 的直径,∴∠ABC =90°,∵BE 平分∠ABC ,∴∠F AC =∠EBC =12∠ABC =45°,∵∠AED =45°,∴∠AED =∠F AC ,∵∠FED =∠F AD ,∴∠AED ﹣∠FED =∠F AC ﹣∠F AD ,∴∠AEG =∠CAD ,∵∠EGA =∠ADC =90°,∴△EGA ∽△ADC ,∴AE AC =AG CD ,∵在Rt △ABG 中,AG =√22AB =4√2,在Rt △ADE 中,AE =√2AD ,∴AD AC =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53,∴ED =AD =203,∴CE =CD +DE =353,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=12CE=356,∴DM=DE﹣EM=5 6,∵∠FDM=45°,∴FM=DM=5 6,∴S△DEF=12DE•FM=259.36.(2020•株洲)如图所示,△OAB的顶点A在反比例函数y=kx(k>0)的图象上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且AE=1.(1)若点E为线段OC的中点,求k的值;(2)若△OAB为等腰直角三角形,∠AOB=90°,其面积小于3.①求证:△OAE≌△BOF;②把|x1﹣x2|+|y1﹣y2|称为M(x1,y1),N(x2,y2)两点间的“ZJ距离”,记为d(M,N),求d(A,C)+d(A,B)的值.【解答】解:(1)∵点E为线段OC的中点,OC=5,∴OE=12OC=52,即:E点坐标为(0,52),又∵AE ⊥y 轴,AE =1,∴A(1,52),∴k =1×52=52.(2)①在△OAB 为等腰直角三角形中,AO =OB ,∠AOB =90°,∴∠AOE +∠FOB =90°,又∵BF ⊥y 轴,∴∠FBO +∠FOB =90°,∴∠AOE =∠FBO ,在△OAE 和△BOF 中,{∠AEO =∠OFB =90°∠AOE =∠FBO AO =BO ,∴△OAE ≌△BOF (AAS ),②解:设点A 坐标为(1,m ),∵△OAE ≌△BOF ,∴BF =OE =m ,OF =AE =1,∴B (m ,﹣1),设直线AB 解析式为:l AB :y =kx +5,将AB 两点代入得:则{k +5=m km +5=−1. 解得{k 1=−3m 1=2,{k 2=−2m 2=3. 当m =2时,OE =2,OA =√5,S △AOB =52<3,符合;∴d (A ,C )+d (A ,B )=AE +CE +(BF ﹣AE )+(OE +OF )=1+CE +OE ﹣1+OE +1=1+CE +2OE =1+CO +OE =1+5+2=8,当m =3时,OE =3,OA =√10,S △AOB =5>3,不符,舍去;综上所述:d (A ,C )+d (A ,B )=8.。
2020年中考数学试题分类汇编之十五新概念新规律题一、选择题1.(2020河南)定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 只有一个实数根【答案】A【详解】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A2.(2020湖北武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A. 160B. 128C. 80D. 48解:由图可知,在66⨯方格纸片中,32⨯方格纸片的个数为5420⨯=(个) 则20480n =⨯= 故选:C .③②①3.(2020重庆A 卷)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第①个图案中有3个黑色三角形,第①个图案中有6个黑色三角形,…,按此规律排列下去,则第①个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21解:∵第①个图案中黑色三角形的个数为1, 第①个图案中黑色三角形的个数3=1+2, 第①个图案中黑色三角形的个数6=1+2+3, ……∴第①个图案中黑色三角形的个数为1+2+3+4+5=15, 故选:B .4.(2020重庆B 卷)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B. 19C.20D.21 答案C.5.(2020山东枣庄)(3分)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b=-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( ) A .4x = B .5x = C .6x = D .7x =【解答】解:根据题意,得12144x x =---, 去分母得:12(4)x =--, 解得:5x =,经检验5x =是分式方程的解.故选:B .6.(3分)(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p格,这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .7.(3分)(2020•烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(√2)nB .(√2)n ﹣1C .(√22)nD .(√22)n ﹣1【解答】解:∵△OA 1A 2为等腰直角三角形,OA 1=1, ∴OA 2=√2;∵△OA 2A 3为等腰直角三角形, ∴OA 3=2=(√2)2;∵△OA 3A 4为等腰直角三角形, ∴OA 4=2√2=(√2)3. ∵△OA 4A 5为等腰直角三角形, ∴OA 5=4=(√2)4, ……∴OA n 的长度为(√2)n ﹣1.故选:B .8.(2020云南)(4分)按一定规律排列的单项式:a ,﹣2a ,4a ,﹣8a ,16a ,﹣32a ,…,第n 个单项式是( ) A .(﹣2)n ﹣1aB .(﹣2)n aC .2n ﹣1aD .2n a解:∵a =(﹣2)1﹣1a , ﹣2a =(﹣2)2﹣1a ,4a =(﹣2)3﹣1a ,﹣8a =(﹣2)4﹣1a ,16a =(﹣2)5﹣1a ,﹣32a =(﹣2)6﹣1a ,…由上规律可知,第n 个单项式为:(﹣2)n ﹣1a . 选:A .二、填空题9.(2020江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是 .【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2510.(2020贵州黔西南)(3分)如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为 1 .【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【解答】解:当x =625时,15x =125,当x =125时,15x =25,当x =25时,15x =5,当x =5时,15x =1,当x =1时,x +4=5, 当x =5时,15x =1,…依此类推,以5,1循环, (2020﹣2)÷2=1010, 即输出的结果是1, 故答案为:111.(2020贵州黔西南)(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为 57 .【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.12.(2020齐齐哈尔)((3分)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的边长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4, ∴第3个等腰直角三角形的面积=12×4×4=8=23, …则第2020个等腰直角三角形的面积是22020; 故答案为:22020(形式可以不同,正确即得分).13.(2020甘肃定西)已知5y x =+,当x 分别取1,2,3,…,2020时,所对应y 值的总和是_________. 答案:203214.(2020辽宁抚顺)(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)解:∵AE =DA ,点F 1是CD 的中点,矩形ABCD 的面积等于2, ∴△EF 1D 和△EAB 的面积都等于1, ∵点F 2是CF 1的中点, ∴△EF 1F 2的面积等于, 同理可得△EF n ﹣1F n 的面积为,∵△BCF n 的面积为2×÷2=,∴△EF n B 的面积为2+1﹣1﹣﹣…﹣﹣=2﹣(1﹣)=.故答案为:.15.(2020内蒙古呼和浩特)(3分)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为 112 ,并可推断出5月30日应该是星期几 五、六、日 .解:∵5月1日~5月30日共30天,包括四个完整的星期, ∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120, 若5月30日为星期二,所写张数为112+1+2<120, 若5月30日为星期三,所写张数为112+2+3<120, 若5月30日为星期四,所写张数为112+3+4<120, 若5月30日为星期五,所写张数为112+4+5>120, 若5月30日为星期六,所写张数为112+5+6>120, 若5月30日为星期日,所写张数为112+6+7>120, 故5月30日可能为星期五、六、日. 故答案为:112;五、六、日.16.(2020黑龙江龙东)(3分)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1,1).过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A ,以11O A 为边作正方形1111O A B C ,点1B 的坐标为(5,3).过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C .⋯.则点2020B 的坐标 2020231⨯-,20203 .解:点B 坐标为(1,1), 11OA AB BC CO CO ∴=====,1(2,3)A ,111111123AO A B B C C O ∴====,1(5,3)B ∴,2(8,9)A ∴,222222239A O A B B C C O ∴====,2(17,9)B ∴,同理可得4(53,27)B ,5(161,81)B ,⋯由上可知,(231,3)Bn n n ⨯-,∴当2020n =时,(2320201,32020)Bn ⨯-.故答案为:2020(231⨯-,20203).17.(2020黑龙江牡丹江)(3分)一列数1,5,11,19⋯按此规律排列,第7个数是() A .37 B .41 C .55 D .71解:1121=⨯-, 5231=⨯-, 11341=⨯-, 19451=⨯-,⋯第n 个数为(1)1n n +-, 则第7个数是:55. 故选:C .18.(2020四川遂宁)(4分)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若2a1+2a2+2a3+⋯+2a n=n2020.(n为正整数),则n的值为4039.【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵2a1+2a2+2a3+⋯+2a n=n2020,∴21×2+22×3+23×4+⋯+2n(n+1)=n2020,∴2×(1−12+12−13+13−14+⋯⋯+1n−1n+1)=n2020,∴2×(1−1n+1)=n2020,1−1n+1=n4040,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.19.(2020广西南宁)(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是556个.解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.20.(3分)(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+√2或x=﹣1−√2.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±√2,故答案为:x=2或x=﹣1+√2或x=﹣1−√2.21.(3分)(2020•徐州)如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于219.【解答】解:∵B1O=B1A1,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=12A2B2,∴A2B2=2A1B1,同法可得A 3B 3=2A 2B 2=22•A 1B 1,…, 由此规律可得A 20B 20=219•A 1B 1,∵A 1B 1=OA 1•tan30°=√3×√33=1, ∴A 20B 20=219, 故答案为219.22.(2020山西)(3分)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有 (3n +1) 个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示. 解:第1个图案有4个三角形,即4=3×1+1 第2个图案有7个三角形,即7=3×2+1 第3个图案有10个三角形,即10=3×3+1 …按此规律摆下去,第n 个图案有(3n +1)个三角形. 故答案为:(3n +1).23.(2020东莞)如图,等腰12Rt OA A ∆,1121OA A A ==,以2OA 为直角边作23Rt OA A ∆,再以3OA 为直角边作34Rt OA A ∆,以此规律作等腰89Rt OA A ∆,则89OA A ∆的面积是_________.答案:64(或62)24.(2020四川自贡)(4分)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =kx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.25.(3分)(2020•怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=√3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2√n,0).解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),把B1(t,√3t)代入y=√3x得t•√3t=√3,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),把B2(2+m,√3m)代入y=√3x得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),把B3(2√2+n,√3n)代入y=√3x得(2√2+n)•√3n=√3,∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√n,0),故答案为:(2√n,0).26.(2020青海)(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =,如:3⊕2==,那么12⊕4=.解:12⊕4==.故答案为:.27.(2020青海)(4分)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1. 请按以上规律写出第4个算式 4×6﹣52=24﹣25=﹣1 .用含有字母的式子表示第n 个算式为 n (n +2)﹣(n +1)2=﹣1 . 解:④4×6﹣52=24﹣25=﹣1.第n 个算式为:n (n +2)﹣(n +1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n (n +2)﹣(n +1)2=﹣1. 28.(2020山东滨州)(5分)观察下列各式:123a =,235a =,3107a =,4159a =,52611a =,⋯,根据其中的规律可得n a =21(1)21n n n ++-+ (用含n 的式子表示). 【解答】解:由分析可得21(1)21n n n a n ++-=+.故答案为:21(1)21n n n ++-+.29.(2020山东泰安)(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.30.(2020海南)(4分)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有 41 个菱形,第n 个图中有 2n 2﹣2n +1 个菱形(用含n 的代数式表示).解:∵第1个图中菱形的个数1=12+02, 第2个图中菱形的个数5=22+12, 第3个图中菱形的个数13=32+22, 第4个图中菱形的个数25=42+32, ∴第5个图中菱形的个数为52+42=41,第n 个图中菱形的个数为n 2+(n ﹣1)2=n 2+n 2﹣2n +1=2n 2﹣2n +1, 故答案为:41,2n 2﹣2n +1.三、解答题31.(2020长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =( ) ①my (m 0)x=≠( ) ①31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x “H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,①(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【答案】(1)√;√;×;(2)-1<a <0,b=4,0<c <0;(3)2<12x x -<. 解:(1)①2y x =是 “H 函数”①my (m 0)x=≠是 “H 函数”①31y x =-不是 “H 函数”; 故答案为:√;√;×; (2)①A,B 是“H 点” ①A,B 关于原点对称, ①m=4,n=1①A(1,4),B (-1,-4) 代入223y ax bx c =++得44a b c a b c ++=⎧⎨-+=-⎩解得40b a c =⎧⎨+=⎩又①该函数的对称轴始终位于直线2x =的右侧,①-2ba >2 ①-42a>2 ①-1<a <0 ①a+c=0 ①0<c <0,综上,-1<a <0,b=4,0<c <0;(3)①223y ax bx c =++是“H 函数”①设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩ 解得ap 2+3c=0,2bp=q ①p 2>0 ①a,c 异号, ①ac <0 ①a+b+c=0①b=-a -c ,①(2)(23)0c b a c b a +-++< ①(2)(23)0c a c a c a c a -----+< ①(2)(2)0c a c a -+< ①c 2<4a 2①22c a<4 ①-2<c a <2 ①-2<c a <0设t=ca,则-2<t <0设函数与x 轴的交点为(x 1,0)(x 2,0) ①x 1, x 2是方程223ax bx c ++=0的两根①12x x -== 又①-2<t <0①2<12x x -<.32.(2020山东青岛)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果. (2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.解:探究一:(3)如下表:所取的2个整数之和可以为3,4,5,6,7,8,9也就是从3到9的连续整数,其中最小是3,最大是9,所以共有7种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和的最小值是3,和的最大值是21,n - 所以一共有()213123n n --+=-种. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,如下表:从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种,(2)从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和的最小值是6,和的最大值是12,所以从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和共有7种, 从而从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是33,n -所以一共有()336138n n --+=-种,探究三:从1,2,3,4,5这5个整数中任取4个整数, 这4个整数之和最小是10, 最大是14, 所以这4个整数之和一共有5种,从1,2,3,4,5,6这6个整数中任取4个整数, 这4个整数之和最小是10, 最大是18,, 所以这4个整数之和一共有9种,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和的最小值是10,和的最大值是46n -,所以一共有()46101415n n --+=- 种不同的结果.归纳结论:由探究一,从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有()23n -种.探究二,从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有()38n -种,探究三,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有()415n - 种不同的结果.从而可得:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,这5张奖券和的最小值是15,和的最大值是490,共有490151476-+=种不同的优惠金额.拓展延伸:(1) 从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果. ∴ 当36,n = 有2361204,a a -+=236203,a a ∴-=-()218121,a ∴-= 1811a ∴-=或1811,a -=-29a ∴=或7.a =从1,2,3,…,36这36个整数中任取29个或7个整数,使得取出的这些整数之和共有204种不同的结果.(2)由探究可知:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,等同于从1,2,3,…,1n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,所以:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有()211a n a ⎡⎤+-+⎣⎦种不同的结果. 33.(2020四川遂宁)(9分)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【解答】解:(1)由y =x 2﹣4x +3函数可知,a 1=1,b 1=﹣4,c 1=3,∵a 1+a 2=0,b 1=b 2,c 1+c 2=0,∴a 2=﹣1,b 2=﹣4,c 2=﹣3,∴函数y =x 2﹣4x +3的“旋转函数”为y =﹣x 2﹣4x ﹣3;(2)∵y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,∴{m −1=−n n −3=0, 解得:{m =−2n =3, ∴(m +n )2020=(﹣2+3)2020=1.(3)证明:当x =0时,y =2(x ﹣1)(x +3))=﹣6,∴点C 的坐标为(0,﹣6).当y =0时,2(x ﹣1)(x +3)=0,解得:x 1=1,x 2=﹣3,∴点A 的坐标为(1,0),点B 的坐标为(﹣3,0).∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.34.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是④;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC 是平行四边形,∴AC =DE ,又∵∠DBC =45°,∴△BDE 是等腰直角三角形,∴BD =DE ,∴BD =AC ,又∵BD ⊥AC ,∴四边形ABCD 是垂等四边形;(3)如图,过点O 作OE ⊥BD ,∵四边形ABCD 是垂等四边形,∴AC =BD ,又∵垂等四边形的面积是24,∴12AC •BD =24, 解得,AC =BD =4√3,又∵∠BCD =60°,∴∠DOE =60°,设半径为r ,根据垂径定理可得:在△ODE 中,OD =r ,DE =2√3,∴r =DE sin60°=2√332=4,∴⊙O 的半径为4.35.(2020浙江宁波)(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD ̂=BD ̂,四边形ABCD 的外角平分线DF 交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【解答】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=12(∠ACD﹣∠ABC)=12∠A=12α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,̂=BD̂,∵AD∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A 作AG ⊥BE 于点G ,过点F 作FM ⊥CE 于点M ,∵AC 是⊙O 的直径,∴∠ABC =90°,∵BE 平分∠ABC ,∴∠F AC =∠EBC =12∠ABC =45°,∵∠AED =45°,∴∠AED =∠F AC ,∵∠FED =∠F AD ,∴∠AED ﹣∠FED =∠F AC ﹣∠F AD ,∴∠AEG =∠CAD ,∵∠EGA =∠ADC =90°,∴△EGA ∽△ADC ,∴AE AC =AG CD ,∵在Rt △ABG 中,AG =√22AB =4√2,在Rt △ADE 中,AE =√2AD ,∴AD AC =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53,∴ED =AD =203,∴CE =CD +DE =353,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=12CE=356,∴DM=DE﹣EM=5 6,∵∠FDM=45°,∴FM=DM=5 6,∴S△DEF=12DE•FM=259.36.(2020•株洲)如图所示,△OAB的顶点A在反比例函数y=kx(k>0)的图象上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且AE=1.(1)若点E为线段OC的中点,求k的值;(2)若△OAB为等腰直角三角形,∠AOB=90°,其面积小于3.①求证:△OAE≌△BOF;②把|x1﹣x2|+|y1﹣y2|称为M(x1,y1),N(x2,y2)两点间的“ZJ距离”,记为d(M,N),求d(A,C)+d(A,B)的值.【解答】解:(1)∵点E为线段OC的中点,OC=5,∴OE=12OC=52,即:E点坐标为(0,52),又∵AE ⊥y 轴,AE =1,∴A(1,52),∴k =1×52=52.(2)①在△OAB 为等腰直角三角形中,AO =OB ,∠AOB =90°,∴∠AOE +∠FOB =90°,又∵BF ⊥y 轴,∴∠FBO +∠FOB =90°,∴∠AOE =∠FBO ,在△OAE 和△BOF 中,{∠AEO =∠OFB =90°∠AOE =∠FBO AO =BO ,∴△OAE ≌△BOF (AAS ),②解:设点A 坐标为(1,m ),∵△OAE ≌△BOF ,∴BF =OE =m ,OF =AE =1,∴B (m ,﹣1),设直线AB 解析式为:l AB :y =kx +5,将AB 两点代入得:则{k +5=m km +5=−1. 解得{k 1=−3m 1=2,{k 2=−2m 2=3. 当m =2时,OE =2,OA =√5,S △AOB =52<3,符合;∴d (A ,C )+d (A ,B )=AE +CE +(BF ﹣AE )+(OE +OF )=1+CE +OE ﹣1+OE +1=1+CE +2OE =1+CO +OE =1+5+2=8,当m =3时,OE =3,OA =√10,S △AOB =5>3,不符,舍去;综上所述:d (A ,C )+d (A ,B )=8.。
找规律、新概念1. (2012广东肇庆3分)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的, 那么这一组数的第k 个数是 .2. (2012福建三明4分)填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是 .3. (2012湖北孝感3分)2008年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦 举行,奥运会的年份与届数如下表所示:表中n 的值等于 . 4. (2012贵州安顺4分)已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+a b =82×a b (a ,b 为正整数),则a +b = .5. (2012贵州遵义4分)猜数字游戏中,小明写出如下一组数:2481632,57111935,,,,,小亮猜想出第六个数字是6467,根据此规律,第n 个数是 . 6. (2012辽宁丹东3分)将一些形状相同的小五角星如下图所示的规律摆放,据此规律,第10个图形 有 个五角星.7. (2012内蒙古赤峰3分)将分数67化为小数是0.857142,则小数点后第2012位上的数是 . 8. (2012重庆市4分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【 】A.50B.64C.68D.729. (2012福建莆田4分)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C -D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】10. (2012贵州铜仁4分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是【】A.54B.110C.19D.10911. (2012山东烟台3分)一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是【】A.3B.4C.5D.612. (2012湖南岳阳3分)图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m=(用含n的代数式表示).13. (2012湖南娄底4分)如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“”,共个.14. (2012贵州毕节5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有个小正方形。
【九年级】2021中考数学试卷规律型数字的变化类分类汇编2021中考数学真题分类汇编:规律型(数字的变化类)一.选择题(共5小题)1.(2021•张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2021,则m的值是()A.46 B.45 C.44 D.432.(2021•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2021=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)3.(2021•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()A.B.C.D.4.(2021•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.2525.(2021•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8 B.9 C.13 D.15二.填空题(共19小题)6.(2021•巴中)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=?1;?1的差倒数是 = ;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2021= .7.(2021•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2021是第个三角形数.8.(2021•黔西南州)已知A32=3×2=6,A53=5×4×3=60,A52=5×4×3×2=120,A63=6×5×4×3=360,依此规律A74= .9.(2021•孝感)观察下列等式:12=1,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2021=.10.(2021•郴州)请观察下列等式的规律:= (1? ), = ( ? ),= ( ? ), = ( ? ),…则+ + +…+ =.11.(2021•娄底)下列数据是按一定规律排列的,则第7行的第一个数为.12.(2021•绥化)填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= .13.(2021•济宁)若1×22?2×32=?1×2×7;(1×22?2×32)+(3×42?4×52)=?2×3×11;(1×22?2×32)+(3×42?4×52)+(5×62?6×72)=?3×4×15;则(1×22?2×32)+(3×42?4×52)+…+[(2n?1)(2n)2?2n(2n+1)2]= .14.(2021•黔东南州)将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是.15.(2021•常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是(请用文字语言表达).16.(2021•通辽)一列数x1,x2,x3,…,其中x1= ,xn= (n为不小于2的整数),则x2021= .17.(2021•东莞)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.18.(2021•恩施州)观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n都连续出现n次,那么这一组数的第119个数是.19.(2021•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.20.(2021•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= .21.(2021•安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.22.(2021•遵义)按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是.23.(2021•淮安)将连续正整数按如下规律排列:若正整数565位于第a行,第b列,则a+b= .24.(2021•常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为.三.解答题(共1小题)25.(2021•张家界)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.则:(1)等比数列3,6,12,…的公比q为,第4项是.(2)如果一个数列a1,a2,a3,a4,…是等比数列,且公比为q,那么根据定义可得到: =q, =q, =q,… =q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2,a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an= (用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.2021中考数学真题分类汇编:规律型(数字的变化类)参考答案与试题解析一.选择题(共5小题)1.(2021•张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2021,则m的值是()A.46 B.45 C.44 D.43考点:规律型:数字的变化类.分析:观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2021的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.解答:解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m= ,∵2n+1=2021,n=1007,∴奇数2021是从3开始的第1007个奇数,∵ =966, =1015,∴第1007个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选B.点评:本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.2.(2021•荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2021=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2021是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2021是第 =1008个数,设2021在第n组,则1+3+5+7+…+(2n?1)≥1008,即≥1008,解得:n≥ ,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024?1=2047,第32组的第一个数为:2×962?1=1923,则2021是( +1)=47个数.故A2021=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.3.(2021•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()A.B.C.D.考点:规律型:数字的变化类.分析:观察数据,发现第n个数为,再将n=6代入计算即可求解.解答:解:观察该组数发现:1,,,,…,第n个数为,当n=6时, = = .故选C.点评:本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为.4.(2021•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252考点:规律型:数字的变化类.分析:首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于n+1;然后根据4?1=3,6?2=4,8?3=5,10?4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3、4、5、…,n+2,据此求出a的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x的值是多少即可.解答:解:∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选:C.点评:此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.5.(2021•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为()A.8 B.9 C.13 D.15考点:规律型:数字的变化类.分析:根据每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,据此解答即可.解答:解:∵每个数都等于它前面的两个数之和,∴x=1+2=3,∴y=x+5=3+5=8,即这组数中y表示的数为8.故选:A.点评:此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是求出x的值是多少.二.填空题(共19小题)6.(2021•巴中)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=?1;?1的差倒数是 = ;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2021= ? .考点:规律型:数字的变化类;倒数.专题:规律型.分析:根据差倒数定义表示出各项,归纳总结即可得到结果.解答:解:a1=3,a2是a1的差倒数,即a2= =? ,a3是a2的差倒数,即a3= = ,a4是a3差倒数,即a4=3,…依此类推,∵2021÷3=671…2,∴a2021=? .故答案为:? .点评:此题考查了规律型:数字的变化类,以及新定义,找出题中的规律是解本题的关键.7.(2021•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45 ,2021是第63 个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2021,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.8.(2021•黔西南州)已知A32=3×2=6,A53=5×4×3=60,A52=5×4×3×2=120,A63=6×5×4×3=360,依此规律A74= 840 .考点:规律型:数字的变化类.分析:对于Aab(b<a)来讲,等于一个乘法算式,其中最大因数是a,依次少1,最小因数是b.依此计算即可.解答:解:根据规律可得:A74=7×6×5×4=840;故答案为:840.点评:本题考查了规律型?数字的变化,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到Aab(b<a)中的最大因数,最小因数.9.(2021•孝感)观察下列等式:12=1,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2021=1016064 .考点:规律型:数字的变化类.分析:根据1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,可得1+3+5+…+(2n?1)=n2,据此求出1+3+5+…+2021的值是多少即可.解答:解:因为1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,所以1+3+5+…+2021=1+3+5+…+(2×1008?1)=10082=1016064故答案为:1016064.点评:此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:1+3+5+…+(2n?1)=n2.10.(2021•郴州)请观察下列等式的规律:= (1? ), = ( ? ),= ( ? ), = ( ? ),…则+ + +…+ =.考点:规律型:数字的变化类.分析:观察算式可知 = ( ? )(n为非0自然数),把算式拆分再抵消即可求解.解答:解:+ + +…+= (1? )+ ( ? )+ ( ? )+…+ ( ? )= (1? + ? + ? +…+ ? )= (1? )= ×= .故答案为:.点评:考查了规律型:数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为 = ( ? )(n为非0自然数).11.(2021•娄底)下列数据是按一定规律排列的,则第7行的第一个数为22 .考点:规律型:数字的变化类.分析:先找到数的排列规律,求出第n?1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.解答:解:由排列的规律可得,第n?1行结束的时候排了1+2+3+…+n?1= n(n?1)个数.所以第n行的第1个数 n(n?1)+1.所以n=7时,第7行的第1个数为22.故答案为:22.点评:此题主要考查了数字的变化规律,找出数字排列的规律是解决问题的关键.12.(2021•绥化)填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= 110 .考点:规律型:数字的变化类.分析:观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积减去1的差,根据此规律列式进行计算即可得解.解答:解:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积减去1的差,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110点评:本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.13.(2021•济宁)若1×22?2×32=?1×2×7;(1×22?2×32)+(3×42?4×52)=?2×3×11;(1×22?2×32)+(3×42?4×52)+(5×62?6×72)=?3×4×15;则(1×22?2×32)+(3×42?4×52)+…+[(2n?1)(2n)2?2n(2n+1)2]= ?n (n+1)(4n+3).考点:规律型:数字的变化类.分析:仔细观察题目提供的三个算式,发现结果和式子序列号之间的关系,然后将这个规律表示出来即可.解答:解:∵1×22?2×32=?1×2×7=?1×2×(4×1+3);(1×22?2×32)+(3×42?4×52)=?2×3×11=?2×3×(4×2+3);(1×22?2×32)+(3×42?4×52)+(5×62?6×72)=?3×4×15??3×4×(4×3+3);…(1×22?2×32)+(3×42?4×52)+…+[(2n?1)(2n)2?2n(2n+1)2]=?n(n+1)(4n+3),故答案为:?n(n+1)(4n+3).点评:本题考查了数字的变化类问题,仔细观察提供的算式,用含有n的代数式表示出来即可.14.(2021•黔东南州)将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是50 .考点:规律型:数字的变化类.分析:先找到数的排列规律,求出第n?1行结束的时候一共出现的数的个数,再求第n行从左向右的第5个数,即可求出第10行从左向右的第5个数.解答:解:由排列的规律可得,第n?1行结束的时候排了1+2+3+…+n?1= n(n?1)个数.所以第n行从左向右的第5个数 n(n?1)+5.所以n=10时,第10行从左向右的第5个数为50.故答案为:50.点评:此题主要考查了数字的变化规律,找出数字排列的规律是解决问题的关键.15.(2021•常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是所有大于2的偶数都可以写成两个素数之和(请用文字语言表达).考点:规律型:数字的变化类.分析:根据以上等式得出规律进行解答即可.解答:解:此规律用文字语言表达为:所有大于2的偶数都可以写成两个素数之和,故答案为:所有大于2的偶数都可以写成两个素数之和点评:此题考查规律问题,关键是根据几个等式寻找规律再用文字表达即可.16.(2021•通辽)一列数x1,x2,x3,…,其中x1= ,xn= (n为不小于2的整数),则x2021= 2 .考点:规律型:数字的变化类.分析:根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2021除以3,根据商和余数的情况确定a2021的值即可.解答:解:根据题意得,a2= =2,a3= =?1,a4= = ,…,依此类推,每三个数为一个循环组依次循环,∵2021÷3=671…2,∴a2021是第671个循环组的第2个数,与a2相同,即a2021=2.故答案为:2.点评:本题考查数字的变化规律,计算并观察出每三个数为一个循环组依次循环是解题的关键.17.(2021•东莞)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.考点:规律型:数字的变化类.分析:由分子1,2,3,4,5,…即可得出第10个数的分子为10;分母为3,5,7,9,11,…即可得出第10个数的分母为:1+2×10=21,得出结论.解答:解:∵分子为1,2,3,4,5,…,∴第10个数的分子为10,∵分母为3,5,7,9,11,…,∴第10个数的分母为:1+2×10=21,∴第10个数为:,故答案为:.点评:此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题是解答此题的关键.18.(2021•恩施州)观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n都连续出现n次,那么这一组数的第119个数是15 .考点:规律型:数字的变化类.分析:根据每个数n都连续出现n次,可列出1+2+3+4+…+x=119+1,解方程即可得出答案.解答:解:因为每个数n都连续出现n次,可得:1+2+3+4+…+x=119+1,解得:x=15,所以第119个数是15.故答案为:15.点评:此题考查数字的规律,关键是根据题目首先应找出哪哪些部分发生了变化,是按照什么规律变化的.19.(2021•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为 4 .考点:规律型:数字的变化类.分析:根据报数规律得出甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49,即可得出报出的数为3的倍数的个数,即可得出答案.解答:解:∵甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束;∴50÷4=12余2,∴甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49,∴报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需报到:9,21,33,45这4个数时,应拍手4次.故答案为:4.点评:此题主要考查了数字规律,得出甲的报数次数以及分别报数的数据是解决问题的关键.20.(2021•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000 .考点:规律型:数字的变化类.分析:首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.解答:解:∵ ;;;…∴ ;∴ .故答案为:1.6×105或160000.点评:本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.21.(2021•安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是xy=z .考点:规律型:数字的变化类.分析:首项判断出这列数中,2的指数各项依次为 1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.解答:解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.点评:此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征.22.(2021•遵义)按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是.考点:规律型:数字的变化类.分析:首先根据, = ,可得当这列数的分子都化成4时,分母分别是5、8、11、14、…,分母构成以5为首项,以3为公差的等差数列,据此求出这列数中的第10个数与第16个数各是多少;然后求出它们的积是多少即可.解答:解:∵ , = ,∴这列数依次为:,,,,…,∴当这列数的分子都化成4时,分母分别是5、8、11、14、…,∵8?5=11?8=14?11=3,∴分母构成以5为首项,以3为公差的等差数列,∴这列数中的第10个数与第16个数的积是:== .故答案为:.点评:此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:当这列数的分子都化成4时,分母构成以5为首项,以3为公差的等差数列.23.(2021•淮安)将连续正整数按如下规律排列:若正整数565位于第a行,第b列,则a+b= 147 .考点:规律型:数字的变化类.分析:首先根据连续正整数的排列图,可得每行都有4个数,所以用565除以4,根据商和余数的情况判断出正整数565位于第几行;然后根据奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,判断出565在第几列,确定出b的值,进而求出a+b的值是多少即可.解答:解:∵565÷4=141…1,∴正整数565位于第142行,即a=142;∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b=5,∴a+b=142+5=147.故答案为:147.点评:此题主要考查了探寻数列规律问题,注意观察总结出规律,并能正确的应用规律,解答此题的关键是判断出:(1)每行都有4个数.(2)奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小.24.(2021•常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为128、21、20、3 .考点:规律型:数字的变化类;推理与论证.分析:首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.解答:解:根据分析,可得则所有符合条件的m的值为:128、21、20、3.故答案为:128、21、20、3.点评:(1)此题主要考查了探寻数列规律问题,考查了逆推法的应用,注意观察总结出规律,并能正确的应用规律.(2)此题还考查了推理和论证问题,要熟练掌握,解答此题的关键是要明确:①演绎推理是从一般规律出发,运用逻辑证明或数学运算,得出特殊事实应遵循的规律,即从一般到特殊.②归纳推理就是从许多个别的事物中概括出一般性概念、原则或结论,即从特殊到一般.三.解答题(共1小题)25.(2021•张家界)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.则:(1)等比数列3,6,12,…的公比q为 2 ,第4项是24 .(2)如果一个数列a1,a2,a3,a4,…是等比数列,且公比为q,那么根据定义可得到: =q, =q, =q,… =q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2,a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an= a1•qn?1(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.考点:规律型:数字的变化类.专题:阅读型.分析:(1)由第二项除以第一项求出公比q的值,确定出第4项即可;(2)根据题中的定义归纳总结得到通项公式即可;(3)由公比q与第二项的值求出第一项的值,进而确定出第4项的值.解答:解:(1)q= =2,第4项是24;(2)归纳总结得:an=a1•qn?1;(3)∵等比数列的公比q=2,第二项为10,∴a1= =5,a4=a1•q3=5×23=40.故答案为:(1)2;24;(2)a1•qn?1点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.感谢您的阅读,祝您生活愉快。
======s a a a a a a 则.......,9926,6317,72,31,3253214111nnx x 第4讲:规律探究、新概念专项训练 1.(2015 广东省东莞市) 观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是 . 2.(2015 内蒙古包头市) 观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为( )A .B .C .D .3.(2016年鄂尔多斯)请观察下列式子的规律:4.(2016 湖北省荆州市) 如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .6745.(2010年鄂尔多斯)定义新运算:,则函数的图象大致是( ).6.(2016 贵州省黔南州) 】.阅读材料并解决问题: 求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015 两式相减:得2S ﹣S=22015﹣1 所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+ (32015)7.(2015 内蒙古通辽市) 一列数1x ,2x ,3x ,…,其中1x =12,(n 为不小于2的整数),则2015x= .8.(2015 贵州省铜仁地区).请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .9.(2016 青海省西宁市) 如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x= ,一般地,用含有m ,n 的代数式表示y ,即y= .10.(2013 山东省潍坊市) 对于实数,我们规定表示不大于的最大整数,例如,,,若,则的取值可以是( ).(A )40 (B )45 (C )51 (D )5611.(2016 广东省梅州市) 】.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (23,0),B (0,2),则点B 2016的坐标为______________.。