华工应用随机过程试卷及参考答案
- 格式:pdf
- 大小:429.00 KB
- 文档页数:25
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k === 。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解 0()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
华工综评机试题目广州
综评机试题目广州华工
1. 在一个数组中,找出两个数的和等于目标值的所有组合。
2. 请实现一个函数,判断一个字符串是否是回文串。
3. 编写一个程序,判断一个正整数是否为素数。
4. 实现一个函数,将给定的二叉树展开为一个单链表,要求链表的顺序为二叉树的先序遍历顺序。
5. 编写一个函数,输入两个字符串,判断第二个字符串是否为第一个字符串的子串。
6. 设计一个缓存结构,满足以下要求:
- 缓存大小固定,当缓存满时,再加入新的数据时,需要删除最久没有被访问的数据;
- 每个数据项都有一个访问次数,当访问某个数据项时,需要增加其访问次数,且每次访问之后的次数会更新为最新值; - 需要支持以访问次数为排序方式的范围查询,即查询在某个范围内访问次数的数据项。
7. 设计一个多线程程序,使用互斥锁解决线程并发访问共享资源的问题。
8. 实现一个简单的迷宫求解算法,输入一个迷宫地图,求从起
点到终点的最短路径。
9. 实现一个简单的单词计数器,统计一个文本文件中每个单词出现的次数,并按照出现次数从大到小排序输出。
10. 设计一个计算器程序,支持四则运算和括号,并能处理表达式中的错误情况。
以上为华工综评机试题目的一部分,具体题目可能会根据不同年份和专业的要求变化。
应聘者可以根据自己的能力和兴趣进行选择,并在规定的时间内完成相应的编程任务。
二、(12分)在某种牌赛中,5张牌为一组,其大小与出现的概率有关。
一付52张的牌(四种花色:黑桃、红心、方块、梅花各13张,即2-10、J=11、Q=12、K=13、A=14),求(1)同花顺(5张同一花色连续数字构成)的概率;(2)3张带一对(3张数字相同、2张数字相同构成)的概率;(3)3张带2散牌(3张数字相同、2张数字不同构成)的概率。
三、(10分)某安检系统检查时,非危险人物过安检被误认为是危险人物的概率是0.02;而危险人物又被误认为非危险人物的概率是0.05。
假设过关人中有96%是非危险人物。
问:(1)在被检查后认为是非危险人物而确实是非危险人物的概率?(2)如果要求对危险人物的检出率超过0.999概率,至少需安设多少道这样的检查关卡?四、(8分)随机变量X 服从),(2σμN ,求)0( >=a a Y X 的密度函数五、(12分)设随机变量X、Y的联合分布律为:已知E(X+Y)=0,求:(1)a,b;(2)X的概率分布函数;(3)E(XY)。
六、(10分)某学校北区食堂为提高服务质量,要先对就餐率p进行调查。
决定在某天中午,随机地对用过午餐的同学进行抽样调查。
设调查了n个同学,其中在北区食堂用过餐的学生数为m,若要求以大于95%的概率保证调查所得的就餐频率与p之间的误差上下在10% 以内,问n应取多大?七、(10分)设二维随机变量(X,Y)在区域:{}b y a x <<<<0,0上服从均匀分布。
(1)求(X,Y)的联合概率密度及边缘概率密度;(2)已知36,12==DY DX ,求参数a 、b ;(3)判断随机变量X 与Y 是否相互独立?八、(8分)证明:对连续型随机变量ξ,如果c E =3||ξ存在,则0>∀t ,3)|(|t ct P ≤>ξ。
九、(12分)设(X ,Y )的密度函数为⎩⎨⎧<<<<=其他010,10,),(y x Axy y x f 求(1)常数A ;(2)P(X<0.4,Y<1.3);(3)sY tX Ee +;(4)EX ,DX ,Cov(X ,Y)。
,考试作弊将带来严重后果!华南理工大学期末考试《信号与系统》试卷B1. 考前请将密封线内填写清楚;所有答案请直接答在试卷上(或答题纸上); .考试形式:闭 卷;2分/题,共20分)1) 信号x(n), n=0,1,2,3,…是能量有限的意思是a) x(n)有限;b) |x(n)|有界;c)()2n x n ∞=<∞∑; d)()01Nn x n N=<∞∑。
c2) 一个实信号x(t)的偶部是a) x(t)+x(-t); b) 0.5(x(t)+x(-t)); c) |x(t)|-|x(-t)|; d) x(t)-x(-t)。
b 3) LTI 连续时间系统输入为(),0ate u t a ->,冲击响应为h(t)=u(t), 则输出为a)()11at e a --; b) ()()11at e t a δ--; c) ()()11at e u t a --; d) ()()11at e t aδ---。
c 4) 设两个LTI 系统的冲击响应为h(t)和h 1(t),则这两个系统互为逆系统的条件是 a) ()()()1h t h t t δ*=; b) ()()()1h t h t u t *=; a c) ()()()1h t h t u t *=-; d) ()()10h t h t *=。
5) 一个LTI 系统稳定指的是a) 对于周期信号输入,输出也是周期信号;b)对于有界的输入信号,输出信号趋向于零;c)对于有界输入信号,输出信号为常数信号;d)对于有界输入信号,输出信号也有界 d6) 离散信号的频谱一定是a) 有界的;b) 连续时间的;c) 非负的;d) 连续时间且周期的。
d 7) 对于系统()()()dy t y t x t dtτ+=,其阶跃响应为 a) ()/1t e u t τ-⎡⎤-⎣⎦; b) ()/1t e t τδ-⎡⎤-⎣⎦; c) ()/1t e u t τ-⎡⎤+⎣⎦; d) ()/1t e t τδ-⎡⎤+⎣⎦. a8) 离散时间LTI 因果系统的系统函数的ROC 一定是a) 在一个圆的外部且包括无穷远点; b)一个圆环区域;c) 一个包含原点的圆盘;d) 一个去掉原点的圆盘。
应用化工考试题目及答案一、选择题(每题2分,共20分)1. 下列哪种物质不属于化工原料?A. 硫酸B. 尿素C. 聚乙烯D. 铁矿石答案:D2. 化工生产中常用的催化剂是?A. 氧化铜B. 氢氧化钠C. 硫酸D. 硝酸答案:A3. 化工生产中,下列哪种设备用于分离液体混合物?A. 反应器B. 分馏塔C. 过滤器D. 蒸发器答案:B4. 化工生产中,下列哪种操作不属于单元操作?A. 混合B. 过滤C. 蒸馏D. 化学反应答案:D5. 在化工生产中,下列哪种物质常用作制冷剂?A. 氨B. 二氧化碳C. 氮气D. 氧气答案:A6. 化工生产中,下列哪种物质不属于有机化合物?A. 甲烷B. 乙醇C. 氯化钠D. 苯答案:C7. 化工生产中,下列哪种物质常用作抗氧化剂?A. 维生素CB. 硫酸亚铁C. 碳酸氢钠D. 氢氧化钠答案:B8. 在化工生产中,下列哪种设备用于加热?A. 冷凝器B. 蒸发器C. 反应器D. 热交换器答案:D9. 化工生产中,下列哪种物质常用作干燥剂?A. 氯化钙B. 硫酸铜C. 氢氧化钠D. 硫酸答案:A10. 在化工生产中,下列哪种操作用于控制反应速率?A. 增加反应物浓度B. 提高温度C. 增加催化剂D. 以上都是答案:D二、填空题(每题2分,共20分)1. 化工生产中,常用的酸碱指示剂有________和________。
答案:酚酞、甲基橙2. 化工原料中的“三酸两碱”指的是硫酸、盐酸、________和氢氧化钠、________。
答案:硝酸、氢氧化钾3. 在化工生产中,________是一种重要的化工原料,广泛应用于合成橡胶、合成纤维和塑料等领域。
答案:乙烯种化工产品。
答案:氢气5. 化工生产中,________是一种常用的有机溶剂,广泛应用于油漆、涂料和清洁剂等领域。
答案:甲苯6. 化工生产中,________是一种常用的氧化剂,可用于制备多种化工产品。
答案:氧气7. 化工原料中的“三烯”指的是乙烯、丙烯和________。
第 1 页/共 6 页一、 填空题(每小题5分,共10题)1)在三角形ABC ∆,三个内角A 、B 、C 对应的边分离为,,a b c ,已知22222sin 5b c a bc A bc +=-+,则cos A =35-。
2),0,2a b π⎛⎫∈ ⎪⎝⎭,函数()()sin f x a ax b =+关于轴2x =对称,则112a b +的取值范围是9[,)π+∞。
3)随意画一个三角形,其随意两个内角之和大于第三个内角的概率为14。
4)F 是椭圆22143x y +=的一个焦点,12,,,n P P P 是此椭圆上的点,倘若{}nFP 是以150为公差的等差数列,S 是此数列的和,则S 的最大值为202。
5)三棱锥P ABC -中90APB BPC APC ︒∠=∠=∠=,2,4,6PA AB BC ===,则三棱锥P ABC -的外接球的半径为。
6)已知函数()21010x x f x x ⎧+≥=⎨<⎩,则不等式()()212f x f x ->的解集为[1,[1)-=-。
7)已知F 是抛物线24y x =的焦点,点,,A B C 是此抛物线上的点,且有0FA FB FC ++=,则FA FB FC ++=6。
8)圆221x y +=与直线2y x m =+相交于,A B 两点,且,OA OB 与x 正方向所成的角为,αβ(以x 正方向为始边,逆时针旋转),()sin αβ+=45-。
9)已知函数()()22log log a a y a x ax =⋅,当[]2,4x ∈时,y 的取值范围是1,08⎡⎤-⎢⎥⎣⎦,则a 的取值为12。
10)对于二次函数()2f x ax bx c =++有()00f '>,且对任给的x R ∈使得20ax bx c ++≥恒成立,则()0a b cf ++'的最小值为2。
二、 解答题(本大题共5题,每小题10分)11)数列{}n a 是正数数列,且对随意正整数n 有11n na a +≤-,试证实: 1、当1n ≥时,n a ≤ 2、当2n ≤时,()212n a n ≤+证实:1、因为11n na a +≤-所以12n n a a a +-又因为数列{}n a 是正数数列,所以数列{}n a 是递减的,因此12n n a a a +≤-=≤第 3 页/共 6 页n a ≤2、由n a ≤1≤当2n =(221111416a ⎤≤≤⇒≤⎦ 假设n k =时有()212k a k ≤+,当1n k =+时,(1112k ≤≤+ 12k a k ≤⇒+综上命题得证。
华南理工大学2011—2012 学年第一学期 《应用随机过程》考试试卷(A 卷)(闭卷时间 120 分钟)院/系年级 __专业姓名学号1、设X 是概率空间(Ω,F ,P )且EX 存在,C 是F 的子σ-域,定义E (XC )如下:(1)_______________ ;(2)_____________________________________________ ; 2、设{N (t ),t ≥ 0}是强度为λ的 Poisson 过程,则 N (t )具有_____、_____增量,且∀t >0,h >0充分小,有:P ({N (t + h )− N (t ) = 0})= ________,P ({N (t + h )− N (t ) =1})=_____________;3、设{W (t ),t ≥ 0}为一维标准 Brown 运动,则∀t >0,W (t ) ~____,且与 Brown 运动有关的三个随机过程____________、________ ______________、______________都是鞅(过程);4、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 ______________________________________________________。
二、证明分析题(共 12 分,选做一题)1、设X 是定义于概率空间(Ω,F ,P )上的非负随机变量,并且具有指数分布,即:P({X ≤ a}) =1−e−λa ,a >0,其中λ是正常数。
设λ是另一个正常数,定义:Z = λλe−(λ−λ)X ,由下式定义:P(A)=∫A ZdP,∀A∈F ;(1)证明:P(Ω) =1;(2)在概率测度P 下计算的分布函数:P({X ≤ a}),a>0;2、设X0~U (0,1),X n+1~U (1−X n,1),n≥1,域流{F n,n≥ 0}满足:F n =σ(X k,0 ≤k≤n),n≥ 0 ;又设Y0 = X0 ,Y n = 2n ⋅∏kn=1 1 X−k X −1 k ,n ≥1,试证:{Yn,n ≥ 0}关于域流{F n,n ≥ 0}是鞅!三、计算证明题(共60 分)1、(12 分)假设X~E(λ),给定c >0,试分别由指数分布的无记E(XI A )忆性和E(X A) = ,求E(XX >c);P(A)2、(10 分,选做一题)(1)设X~E(λ),Y~E(μ),λ> μ,且X,Y 相互独立;∀c >0,设fX X )为给定X +Y = c 时X 的条件概率密度,试求之并由此求+Y (x cE(X X +Y = c);⎧1)及(2)设(X,Y)~f (x, y) = ⎪⎨x ,0 ≤ y ≤ x ≤1;,试求fY X (y x⎪⎩0,其它;P(X 2 +Y 2 ≤1X = x),并由此(连续型全概率公式)求P({X 2 +Y 2 ≤1});3、(4 分,选做一题)(1)设X,Y独立同U [0,1]分布,试基(2)设于微元法由条件密度求E(XX <Y);(X,Y)~U (D),D:0 ≤ y≤x≤1,试由条件数学期望的直观方法求E(YX )、E ⎡⎣(Y −X )2X ⎤⎦;[0,1]分布,Y = min{X1, X2, , 4、(10 分)设X1, X2, , X n 独立同U求E(X1Y) = E(X1 σ(Y));X n},试由条件数学期望的一般定义5、(14 分)设{N (t),t ≥ 0}是强度为λ的Poisson 过程,S0 = 0,S n 表示第n个事件发生(到达)的时刻,试求:(1)P(N (s) =kN (t) = n)(s <t,k = 0,1, ,n);(2)E(S k N (t) = n),k ≤ n;6、(10 分)设{W (t),t ≥ 0}为标准Brown 运动,试由Ito-Doeblin 公式求解随机微分方程 d ⎡⎣S(t)⎤⎦= μS(t)dt +σS(t)dW (t),并求E ⎡⎣W4 (t)⎤⎦,E ⎡⎣W6 (t)⎤⎦。