近五年高考数学(理科)立体几何题目汇总
近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分)1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( )A 20π B24π C28π D.32π2. βα,是两个平面,m,n 是两条直线,有下列四个命题:(1)如果m ⊥n

2020-05-27
-2018江苏高考数学立体几何真题汇编
-2018江苏高考数学立体几何真题汇编

A B CD E F 2008-2018江苏高考数学立体几何真题汇编(2008年第16题)在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD(2)平面EFC

2020-06-20
最新-江苏高考数学立体几何真题汇编
最新-江苏高考数学立体几何真题汇编

A B CD EF 2008-2018江苏高考数学立体几何真题汇编(2008年第16题)在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点,求证:(1)直线EF ∥平面ACD(2)平面EFC ⊥平

2020-01-01
历年全国理科数学高考试题立体几何部分精选(含答案)
历年全国理科数学高考试题立体几何部分精选(含答案)

(一)1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23==,则棱锥AB BC-的体积为。O ABCD3.如图,四棱锥P—ABCD中,底面ABCD为平行

2024-02-07
历年高考数学真题精选31 立体几何中的垂直关系
历年高考数学真题精选31 立体几何中的垂直关系

历年高考数学真题精选(按考点分类)专题31 垂直关系(学生版)1.(2019•北京)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若60ABC ∠

2024-02-07
2018年高考数学立体几何试题汇编
2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217B

2024-02-07
十年高考真题分类汇编(2010-2019)  数学 专题10 立体几何
十年高考真题分类汇编(2010-2019) 数学 专题10 立体几何

十年高考真题分类汇编(2010—2019)数学专题10立体几何1.(2019·浙江·T4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh,其中S 是柱体的底面积

2024-02-07
历年江苏高考数学立体几何真题汇编含详解
历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解)(2008年第16题)在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD(2)平面EFC ⊥平面BCD证明:(1)⎭

2024-02-07
立体几何  高考真题全国卷
立体几何 高考真题全国卷

(2018 文 I )在平行四边形中,,,以为折痕将折起,使点到达点的位置,且. ⑴证明:平面平面;⑵为线段上一点,为线段上一点,且,求三棱锥的体积.(2018 文 I I )如图,在三棱锥中,, ,为的中点.(1)证明:平面;(2)若点在

2024-02-07
历年全国理科数学高考试题立体几何部分精选(含答案)
历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23==,则棱锥AB BC-的体积为。O ABCD3.如图,四棱锥P—ABCD中,底面ABCD为平行四边形

2024-02-07
高考真题理科数学解析分类汇编7立体几何
高考真题理科数学解析分类汇编7立体几何

2012年高考真题理科数学解析分类汇编7 立体几何一、选择题1.【2012高考新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9()C 12 ()D 18【答案】B【解

2024-02-07
-2017立体几何全国卷高考真题
-2017立体几何全国卷高考真题

2015-2017立体几何高考真题1、(2015年1卷6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之

2024-02-07
2019高考数学试题汇编之立体几何(原卷版)
2019高考数学试题汇编之立体几何(原卷版)

暅原理,利用该原理可以得到柱体的体积公式V柱体Sh,其中S是柱体的底面积,h是柱体的高.若某柱“专题04立体几何1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β

2024-02-07
高考文科数学立体几何试题汇编
高考文科数学立体几何试题汇编

图 21俯视图侧视图正视图212013年高考文科数学立体几何试题集锦1.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D

2024-02-07
2018年高考数学立体几何试题汇编
2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217B

2024-02-07
最新近五年浙江数学高考立体几何考题
最新近五年浙江数学高考立体几何考题

近五年浙江数学高考立体几何考题【2018年】3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .86.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的

2024-02-07
高三数学理科综合立体几何试题个大题
高三数学理科综合立体几何试题个大题

立体几何复习试题1.如图甲所示,BO 是梯形ABCD 的高,∠BAD=45°,OB=BC=1,OD=3OA ,现将梯形ABCD 沿OB 折起如图乙所示的四棱锥P ﹣OBCD ,使得PC=,点E 是线段PB 上一动点.(1)证明:DE 和PC

2024-02-07
高考数学真题立体几何分类汇编
高考数学真题立体几何分类汇编

2013高考数学—立体几何分类汇编1.(2013山东卷理4)已知三棱柱111C B A ABC -的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面111C B A 的中心,则PA 与平面ABC 所成角的大小为.A π12

2024-02-07
历年全国理科数学高考试题立体几何部分含答案
历年全国理科数学高考试题立体几何部分含答案

(一)1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 。3.如图,四棱锥P —ABCD 中,底面

2024-02-07
(2010-2019)十年高考数学真题分类汇编:立体几何(含解析)
(2010-2019)十年高考数学真题分类汇编:立体几何(含解析)

(2010-2019)十年高考数学真题分类汇编:立体几何(含解析)1.(2019·浙江·T4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的

2024-02-07